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This is a more detailed version of our recent paper where we proposed, from first principles, a direct

method for evaluating the exact fermion propagator in the presence of a general background field at finite

temperature. This can, in turn, be used to determine the finite temperature effective action for the system.

As applications, we discuss the complete one loop finite temperature effective actions for 0þ 1

dimensional QED as well as for the Schwinger model in detail. These effective actions, which are

derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes

calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in

these theories. Various other aspects of the problem are also discussed in detail.
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I. INTRODUCTION

The effective action for a system of fermions interacting
with a background field, which incorporates all the one
loop corrections in the theory, is an important fundamental
concept in quantum field theory. At zero temperature we
know that the n-point amplitudes (involving the back-
ground fields) at one loop are, in general, divergent and,
consequently, the evaluation of the effective action at T ¼
0 needs a regularization. Effective actions can, of course,
be evaluated perturbatively. However, a beautiful method
due to Schwinger [1], also known as the proper time
formalism, is quite useful in evaluating one loop effective
actions at zero temperature with a gauge invariant regu-
larization (in the case of gauge backgrounds). We note that
the effective action for a fermion with mass m interacting
with a general background is given by

�eff½A� ¼ �iTr lnði@�m� gAÞ ¼ �iTr lnH; (1)

where A denotes the background field and g represents the
coupling to the background, and we have identified

H ¼ i@�m� gA: (2)

Here we have suppressed the Lorentz structure of the
kinetic term as well as the background to allow for general-
ity. For example, the background field can be a scalar or a
gauge background. Similarly, the system under considera-
tion may be a (0þ 1 dimensional) quantum mechanical
system, in which case the fermion kinetic term will have no
structure (or contraction with Dirac gamma matrices).

Schwinger expressed the effective action (1) in a regu-
larized integral form,

�eff½A� ¼ lim
�!0

i
Z 1
0

d�

�1��
Tre��H; (3)

where � is known as the ‘‘proper time’’ parameter. The idea
here is that the operator e��H in the integrand can be
thought of as the evolution operator in the Euclidean
time �, with H denoting the (Hamiltonian) generator for
the evolution. (The proper time can also be made
Minkowskian with an appropriate i� prescription.) As a
result, we can write the proper time evolution equations

dx�

d�
¼ �i½x�;H�; dp�

d�
¼ �i½p�;H�: (4)

If these equations can be solved and x�ð�Þ [or p�ð�Þ] can
be determined in a closed form, then one can evaluate the
trace in (3) in the eigenbasis jx�ð�Þi [or jp�ð�Þi] and

evaluate the (gauge invariant) regularized effective action
in a closed form as well (or at least give an integral
representation for it). This has been profitably used to
calculate the imaginary part of the effective action for
fermions interacting with a constant background electro-
magnetic field which describes the decay rate of the vac-
uum [1]. However, solving the dynamical equations in (4)
is, in general, not easy when interactions are present. When
the dynamical equations cannot be solved in a closed form,
the method due to Schwinger leads to a perturbative deter-
mination of the effective action.
In the past couple of decades, there have been several

attempts [2,3] to generalize the method due to Schwinger
to finite temperature [4,5] and to determine the imaginary
part of the effective action leading to conflicting results [2].
In [6] we have presented an alternative method for deter-
mining finite temperature effective actions for fermions
interacting with an arbitrary background field. We believe
that since the amplitudes at finite temperature are ultravio-
let finite unlike those at zero temperature, it is not neces-
sary to generalize the method due to Schwinger to finite
temperature. After all, the proper time method was de-
signed to provide a (gauge invariant) regularization which
is not necessary at finite temperature. Therefore, we have
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proposed [6] a direct method for evaluating finite tempera-
ture effective actions based mainly on the general proper-
ties of systems at finite temperature. In this paper we give a
detailed description of this method along with various
other aspects not discussed in [6].

As we have emphasized in [6], we believe that the real
time formalism [5] (we use the closed time path formalism
due to Schwinger [7]) is more suited for this purpose. We
note that, in general, the imaginary time formalism (the
Matsubara formalism [8]) leads naturally to retarded and
advanced amplitudes, but the Feynman (time ordered)
amplitudes (beyond the two point function) cannot be
consistently generated in this formalism [9]. (We empha-
size that this is true for space-time dimensions d � 2. In
0þ 1 dimension the Feynman and retarded amplitudes
coincide and, therefore, the imaginary time formalism
naturally leads to Feynman amplitudes.) On the other
hand, the effective action that we are interested in is
precisely the one that generates Feynman amplitudes. In
contrast to the imaginary time formalism, the effective
action, when evaluated properly in the real time formalism,
leads naturally not only to the Feynman amplitudes, but
also to the retarded and advanced amplitudes as we will
show in examples. Furthermore, as we have emphasized
earlier in [5,10], the real time calculations can be carried
out quite easily in the mixed space where the spatial
coordinates have been Fourier transformed, as we will
describe in the following examples.

The present paper is organized as follows. In Sec. II we
recapitulate our proposal [6] for evaluating effective ac-
tions at finite temperature. In Sec. III we apply the method
to evaluating the complete effective action at finite tem-
perature for the 0þ 1 dimensional QED. From the struc-
ture of this effective action, we show that all the
temperature dependent retarded (advanced) amplitudes
vanish. The temperature dependent effective action for
the Schwinger model, the 1þ 1 dimensional massless
QED, is discussed in detail in Sec. IV where we show
that the temperature dependent retarded (advanced) ampli-
tudes vanish in this theory as well. We present our con-
clusions and summarize future directions in Sec. V.

II. PROPOSAL

From the definition of the effective action (1) for a
system of massive fermions interacting with an arbitrary
background, it is straightforward to obtain

@�eff

@m
¼

Z
dtdxSðt;x; t;xÞ; (5)

where Sðt;x; t0;x0Þ denotes the complete Feynman propa-
gator for the fermion (including the factor i) in the pres-
ence of the background field. However, keeping in mind
that the fermion may not always have a mass (say, for
example, in the Schwinger model [11]), we use, alterna-
tively, the fact that the variation of the effective action with

respect to the background field leads to the generalized
fermion ‘‘propagator’’ at coincident points [even though
we use the same symbol as in (5), the exact meaning of S
below depends on the nature of the background field as we
explain],

��eff

�Aðt;xÞ ¼ gSðt;x; t;xÞ; (6)

where we are suppressing the Lorentz structure of the
background field as well as that of the generalized propa-
gator. We note that for a scalar background, S in (6) indeed
denotes the complete fermion propagator of the interacting
theory at coincident coordinates. On the other hand, for a
gauge field background, the right-hand side in (6) deter-
mines the current density of the theory which is related to
the complete fermion propagator of the theory through a
Dirac trace involving the Dirac matrix. In either case, we
note that it is the fermion propagator that is relevant in (6)
for the evaluation of the effective action. We note that in
the mixed space (where the spatial coordinates x have been
Fourier transformed), we can write (6) as

��eff

�Aðt;�pÞ ¼ gSðt; t;pÞ: (7)

Since the effective action is so intimately connected with
the fermion propagator, our proposal is to determine the
complete fermion propagator at finite temperature directly
such that
(i) it satisfies the appropriate equations for the complete

propagator of the theory,
(ii) it satisfies the necessary symmetry properties of the

theory such as the Ward identity,
(iii) and most importantly, it satisfies the antiperiodicity

property associated with a finite temperature fermion
propagator [5].

In fact, it is the third requirement that is quite important in
a direct determination of the propagator. We note that this
last condition is missing at zero temperature, which makes
it difficult to determine the complete propagator (indepen-
dent of the problem of divergence). When the theory is free
of ultraviolet divergence (so that it does not need a regu-
larization at zero temperature), this propagator will be the
exact fermion propagator of the theory and would lead to
the complete effective action including the correct zero
temperature part. On the other hand, if the theory needs to
be regularized at zero temperature, this propagator will not
yield the correct zero temperature effective action.
However, we note that our interest is in the finite tempera-
ture part of the effective action which does not need to be
regularized (it is not ultraviolet divergent) and will be
determined correctly in this approach. We illustrate the
method with two examples.
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III. 0þ 1 DIMENSIONAL QED

Let us consider the 0þ 1 dimensional QED described
by the Lagrangian

L ¼ �c ðtÞði@t �m� eAðtÞÞc ðtÞ; (8)

where the fermion mass can be thought of as a chemical
potential, and in 0þ 1 dimension, the gauge potential has
only a single component (which we suppress). There are no
Dirac matrices, and as a result, the gauge background
behaves like a scalar background. This is a simple model
which has been studied exhaustively [12,13] in connection
with large gauge invariance [14] at finite temperature, but it
is also quite useful in clarifying various concepts involved
in our proposal before we generalize it to higher
dimensions.

A. Finite temperature propagator

As we noted earlier, we use the closed time path formal-
ism where the path in the complex time plane has the form
shown in Fig. 1. In the closed time path formalism (in any
real time formalism) [5], the degrees of freedom need to be
doubled, and we denote the background fields on the C�
branches of the contour as A�ðtÞ, respectively. The two
branches labeled by C� lead to the doubling of the degrees
of freedom, while the branch C? along the imaginary axis
decouples from any physical amplitude.

Since t is the only coordinate on which field variables
depend in this theory, there is no need for a mixed space
propagator. We note that the complete fermion propagator
of the theory (ordered along the contour in Fig. 1) satisfies
the equations

ði@t �m� eAcðtÞÞScðt; t0Þ ¼ i�cðt� t0Þ;
Scðt; t0Þði@

 
t0 þmþ eAcðt0ÞÞ ¼ �i�cðt� t0Þ;

(9)

where the subscript ‘‘c’’ characterizes a function on the
contour. On the contour, the step function is defined natu-
rally as [5]

�cðt� t0Þ ¼

8>>>>><
>>>>>:

�ðt� t0Þ if both t; t0 2 Cþ
�ðt0 � tÞ if both t; t0 2 C� or 2 C?
1 if t2 C�ðor 2 C?Þand t0 2 Cþ
0 if t2 Cþ and t0 2 C�ðor 2 C?Þ;

(10)

and the delta function on the contour is defined in the
standard manner as

�cðt� t0Þ ¼ @t�cðt� t0Þ: (11)

Equations (9) can be solved exactly, subject to our three
requirements in the following manner. First we note that a
general solution of (9) can be written (in the contour
ordered form) as

Scðt; t0Þ ¼ ð�cðt� t0ÞC� �cðt0 � tÞDÞ
� e�imðt�t

0Þ�ie
R

t

t0 dt
00
cAcðt00c Þ; (12)

where C and D are independent of t, t0, satisfying

CþD ¼ 1; (13)

in order for (12) to satisfy (9). If we now impose the
antiperiodicity condition

Scð�1; t0Þ ¼ �Scð�1� i�; t0Þ; (14)

where � is the inverse of temperature in units of the
Boltzmann constant (k), we determine

D ¼ Ce��m�ie
R�1�i�
�1 dt0cAcðt0cÞ ¼ Ce��m�ieðaþ�a�Þ: (15)

Here we have defined

a� ¼
Z 1
�1

dtA�ðtÞ; (16)

and have used the fact that the vertical branch decouples
from amplitudes.
Together with (13) the relation in (15) determines

C ¼ 1� nF

�
mþ ie

�
ðaþ � a�Þ

�
;

D ¼ nF

�
mþ ie

�
ðaþ � a�Þ

�
;

(17)

where nF denotes the Fermi distribution function and leads
to the contour ordered propagator of the form

Scðt; t0Þ ¼ e�imt�ie
R

d�t�cðt��tÞAcð�tÞ
�
�cðt� t0Þ � nF

�
mþ ie

�

� ðaþ � a�Þ
��
eimt0þie

R
d�t�cðt0��tÞAcð�tÞ: (18)

In fact, this propagator satisfies antiperiodicity in both its
arguments, namely, (14) as well as the condition

Scðt;�1Þ ¼ �Scðt;�1� i�Þ: (19)

FIG. 1. The closed time path contour in the complex t plane.
Here T ! �1, while T0 ! 1 and � denotes the inverse tem-
perature (in units of the Boltzmann constant k) [5].
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Although the phases in (18) can be combined to write them
in a simpler form as in (12), in this case, we have chosen to
write them in this suggestive form which generalizes natu-
rally to higher dimensions where the propagator will carry
spinor indices. When t, t0 are restricted to the appropriate
branches of the contour, (18) determines all the compo-
nents of the full 2� 2 matrix propagator of the theory,

Sþþðt; t0Þ ¼ ð�ðt� t0Þ �DÞe�imðt�t0Þ�ie
R

t

t0 dt
00Aþðt00Þ;

Sþ�ðt; t0Þ ¼ �De�imðt�t
0Þþieð

R1
t
dt00Aþðt00Þþ

R1
t0 dt

00A�ðt00ÞÞ;

S�þðt; t0Þ ¼ Ce�imðt�t
0Þ�ieð

R1
t
dt00A�ðt00Þþ

R1
t0 dt

00Aþðt00ÞÞ;

S��ðt; t0Þ ¼ �ð�ðt� t0Þ � CÞe�imðt�t0Þþie
R

t

t0 dt
00A�ðt00Þ;

(20)

where the constants C, D are defined in (17).

B. Lippmann-Schwinger equation

In addition to satisfying the antiperiodicity conditions, it
can be checked that the propagator in (18) satisfies the
required Ward identity. Furthermore, it also satisfies the
Lippmann-Schwinger equation (the perturbation expan-
sion) [15] for the propagator, which can be seen as follows.
For simplicity of discussion, let us consider the propagator
only in the Cþ branch of the contour in the complex t plane

and factor out the exponential factor e�imðt�t0Þ which trivi-
ally factors out in a product. In this case, we can write
(suppressing the thermal index þ)

Sðt; t0Þ ¼ e�ie�ðtÞð�ðt� t0Þ �DÞeie�ðt0Þ; (21)

where we have defined [D is defined in (17)]

�ðtÞ ¼
Z

dt00�ðt� t00ÞAðt00Þ; (22)

with

�ð1Þ ¼ a ¼
Z 1
�1

dtAðtÞ; �ð�1Þ ¼ 0: (23)

The propagator, in the absence of interactions, is given by

S0ðt; t0Þ ¼ �ðt� t0Þ � nFðmÞ: (24)

The Lippmann-Schwinger equation can be written as

Sðt; t0Þ ¼ ð1þ ieS0AÞ�1S0ðt; t0Þ; (25)

which can also be expressed as

ð1þ ieS0AÞSðt; t0Þ ¼ S0ðt; t0Þ or

Sðt; t0Þ � S0ðt; t0Þ þ ieS0ASðt; t0Þ ¼ 0: (26)

Using the definition (22) we note that we can write

AðtÞ ¼ d�ðtÞ
dt

; (27)

which leads to

ieS0ASðt; t0Þ ¼ �
Z

dt00S0ðt; t00Þde
�ie�ðt00Þ

dt00

� ð�ðt00 � t0Þ �DÞeie�ðt0Þ: (28)

Integrating the right-hand side of (28) (by parts) and using
(23) as well as identities associated with Fermi distribution
functions, we obtain

ieS0ASðt; t0Þ ¼ �Sðt; t0Þ þ S0ðt; t0Þ: (29)

Using this in (26) we conclude that the propagator (21)
satisfies the Lippmann-Schwinger equation to all orders.
This argument can be carried over to show that the com-
plete 2� 2 matrix propagator satisfies the Lippmann-
Schwinger equation. In other words, the complete propa-
gator (18) satisfies exactly the perturbative expansion (for
the propagator) to all orders in the interaction at finite
temperature.

C. Effective action

The 0þ 1 dimensional theory is free from ultraviolet
divergences and, therefore, (18) represents the complete
fermion propagator of the theory in the presence of a
background gauge field. We can now take the coincident
limit (t ¼ t0) in (18) to obtain

Scðt; tÞ ¼ 1

2

�
1� 2nF

�
mþ ie

�
ðaþ � a�Þ

��
: (30)

It is interesting to note that in the coincident limit the
propagator is independent of the time coordinate. This is,
in fact, a consequence of the Ward identity of the theory
(see [13]).
Using (30) we can integrate (6) or (7) (note that there is

no momentum in this 0þ 1 dimensional example) to ob-
tain the normalized effective action of the theory, which
has the form

�eff½aþ; a�� ¼ �i ln
�
cos

eðaþ � a�Þ
2

þ i tanh
�m

2

� sin
eðaþ � a�Þ

2

�
: (31)

This is the complete effective action of the theory which
reduces to the well studied action [12,13] on Cþ when we
set a� ¼ 0. However, being the complete effective action,
(31) contains all the information about retarded, advanced,
and other amplitudes as well.
For example, from the structure of the complete effec-

tive action in (31) we can now show that all the retarded
(advanced) amplitudes in this theory vanish at finite tem-
perature. Let us recall that the retarded n-point amplitude
in a theory can be expressed as [16]

�ðnÞR ¼ �þþ���þ þ �þ�þ���þ þ �þþ�þ���þ � � � þ � � �
þ �þ������þ þ �þ�������: (32)
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Namely, it is the sum of all amplitudes, where the first
index is held fixed to beþ and all the (n� 1) other thermal
indices are permuted over the two values �. Let us note
from (31) that since �eff ¼ �eff½aþ � a��, it now follows
from (32) that the retarded n-point amplitude of the theory
can be written as [since the amplitudes are time indepen-
dent, taking the derivative with respect to the background
field A�ðtÞ is equivalent to taking the derivative with
respect to a�]

�ðnÞR ¼
Xn�1
m¼0

n�1Cm

dn�1�m

dan�1�mþ

dm

dam�
d�eff½aþ � a��

daþ

��������
¼ Xn�1

m¼0
n�1Cm

dn�1�m

dan�1�mþ

�
� d

daþ

�
m d�eff½aþ � a��

daþ

��������
¼ ð1� 1Þn�1 d

n�eff½aþ � a��
danþ

��������¼ 0; n� 2; (33)

where the restriction stands for setting all the background
fields to zero. Therefore, all the retarded (advanced) am-
plitudes vanish in this theory. (The one point amplitude is,
by definition, a Feynman amplitude.)

IV. SCHWINGER MODEL

After the derivation of the complete effective action in
the 0þ 1 dimensional theory, let us next consider the
fermion sector of the Schwinger model [11] or massless
QED in 1þ 1 dimensions described by the Lagrangian
density

L ¼ �c ðt; xÞ��ði@� � eA�ðt; xÞÞc ðt; xÞ: (34)

At zero temperature, this model is soluble and describes
free massive photons. The effective action for this model
(for an arbitrary gauge background) has also been studied
perturbatively at finite temperature [17], even in the pres-
ence of a chemical potential [18]. Here we will derive the
closed form expression of the finite temperature effective
action following our method. We note here that the two
point function in the Schwinger model needs to be regu-
larized at zero temperature (this is the only nonvanishing
amplitude in the Schwinger model at zero temperature)
and, consequently, the zero temperature part of the effec-
tive action following from our propagator will not coincide
with the regularized zero temperature effective action.
However, our interest is in the finite temperature part of
the effective action which is free from ultraviolet diver-
gences. For completeness we note that the simple point-
splitting regularization of the fermion propagator is suffi-
cient to regularize the theory and can be carried out even in
our method. However, we will not do this here since our
main interest is in the finite temperature part of the effec-
tive action (which does not need a regularization).

The theory (34) is best studied in the natural basis of
right-handed and left-handed fermion fields (although
everything that we say can be carried out covariantly as

well as in the presence of a chemical potential). Defining
[19,20]

c R ¼ 1

2
ð1þ �5Þc ; c L ¼ 1

2
ð1� �5Þc ;

x� ¼ x0 � x1

2
; p� ¼ p0 � p1;

@� ¼ @0 � @1; A� ¼ A0 � A1; (35)

the Lagrangian density (34) naturally decomposes into two
decoupled sectors described by

L ¼ c yRði@þ � eAþÞc R þ c yLði@� � eA�Þc L; (36)

where c R, c L denote only the component spinor fields
(there is no spinor index left anymore). While the zero
temperature regularization mixes the two sectors through
the two point function (anomaly), at finite temperature we
do not have divergences and, therefore, we do not expect
the two sectors to mix. Therefore, we can study the finite
temperature effective action in each of the two sectors
separately.

A. Propagator

Let us consider the theory only in the sector of the right-
handed fermions in (36). This is very much like the 0þ 1
dimensional theory. However, there is one essential differ-
ence which makes the derivation much more difficult;
namely, the field variables depend on two coordinates
ðt; xÞ or, equivalently, on ðxþ; x�Þ. We would like to em-
phasize here that although we use the light-cone coordi-
nates for simplicity, the theory is still quantized on the
equal-time surface and the propagator is defined through
the time ordered Green’s function (namely, we do not use
the statistical mechanics of the light-front [21]). As we
mentioned earlier, the finite temperature derivations be-
come a lot simpler in the mixed space. Thus, Fourier
transforming the x� coordinate, the action for the right-
handed fermions takes the form (the conjugate variables to
x� should be written as p�, k�, which we write as p, k for
simplicity)

SR ¼ 2
Z

dxþ
dp

2	
c yRðxþ;�pÞ

�
i@þc Rðxþ; pÞ

� e
Z dk

2	
Aþðxþ; p� kÞc Rðxþ; kÞ

�
: (37)

As a result, we recognize that the equations for the
propagator will involve a convolution. They are best de-
scribed by introducing the following operator notations for
the propagator as well as the gauge potential:

Sðxþ; x0þ;p; kÞ ¼ hpjŜðxþ; x0þÞjki;
Aþðxþ; p� kÞ ¼ hpjÂþðxþÞjki:

(38)

For example, the propagator equation following from (37),
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i@þSðxþ; x0þ;p;kÞ � e
Z dq

2	
Aþðxþ; p� qÞSðxþ; x0þ;q;kÞ

¼ i

2
�ðxþ � x0þÞ2	�ðp� kÞ; (39)

can be written in the compact form

ði@þ � eÂþðxþÞÞŜðxþ; x�Þ ¼ i

2
�ðxþ � x0þÞ; (40)

with the operator notation. Here we have assumed the
normalization of the momentum states to be

hpjki ¼ 2	�ðp� kÞ: (41)

With the operator notation in (38) the equations for the
propagator ordered along the contour take the (operator)
forms [see also (9)]

ði@þ � eÂcðxþÞÞŜcðxþ; x0þÞ ¼ i

2
�cðxþ � x0þÞ;

Ŝcðxþ; x0þÞði@
 0
þ þ eÂcðx0þÞÞ ¼ � i

2
�cðxþ � x0þÞ:

(42)

We note from (7) and (37) that, in the present case, we can
identify

Scðxþ; x0þ;pÞ ¼
Z dk

2	
hkþ pjŜcðxþ; x0þÞjki: (43)

The general solution of (42) can be written in the form

Ŝcðxþ;x0þÞ¼ 1
4e
�ie

R
d �xþ�cðxþ� �xþÞÂþcð �xþÞðsgncðxþ�x0þÞþÔÞ

�eie
R
d �xþ�cðx0þ� �xþÞÂþcð �xþÞ; (44)

where

sgn cðxþ � x0þÞ ¼ �cðxþ � x0þÞ � �cðx0þ � xþÞ; (45)

and Ô, which contains all the nontrivial information about
interactions and temperature, is independent of the coor-
dinates xþ, x0þ. Since x�, x0� have been Fourier trans-
formed, the antiperiodicity can be imposed only at the level
of matrix elements in the mixed space by requiring

hpjŜ
��1þ x

2
; x0þ

�
jki

¼ �e�ð�pÞ=2hpjŜ
��1� i�þ x

2
; x0þ

�
jki: (46)

The factor e�ð�pÞ=2 in (46) arises basically from the ex-
ponential factor in the Fourier transform. The requirement
of antiperiodicity (46) determines

Ô ¼ 1� 2ðÔþ þ 1Þ�1;
Ôþ ¼ eðieðâþðþÞ�âþð�ÞÞÞ=2eð�K̂Þ=2eðieðâþðþÞ�âþð�ÞÞÞ=2;

(47)

where K̂ denotes the momentum operator satisfying

K̂jpi ¼ pjpi; (48)

and [ð�Þ with the parentheses denote the thermal indices,
while þ without the parentheses represents the light-cone
component of the background field]

âþð�Þ ¼
Z 1
�1

dxþÂþð�ÞðxþÞ: (49)

Therefore, the contour ordered propagator satisfying the
Ward identity as well as the appropriate antiperiodicity
condition has the form

Ŝcðxþ; x0þÞ ¼ 1
4e
�ie

R
d �xþ�cðxþ� �xþÞÂþcð �xþÞðsgncðxþ � x0þÞ

þ 1� 2ðÔþ þ 1Þ�1Þeie
R

d �xþ�cðx0þ� �xþÞÂþcð �xþÞ:

(50)

It can be checked that this propagator also satisfies the
antiperiodicity condition on the second variable, namely,

hpjŜ
�
xþ;
�1þ x0

2

�
jki

¼ �eð�kÞ=2hpjŜ
�
xþ;
�1� i�þ x0

2

�
jki: (51)

Therefore, it satisfies all the requirements of our proposal.

B. Lippmann-Schwinger equation

As in 0þ 1 dimension, we can show that the complete
propagator (50) satisfies the Lippmann-Schwinger equa-
tion. Once again, for simplicity, we will restrict ourselves
to the propagator on the Cþ branch (and we suppress the
thermal indexþ). Let us note from (50) that in the absence
of interactions, the propagator at finite temperature can be
written as

S0ðxþ; x0þÞ ¼ 1

4
ðsgnðxþ � x0þÞ þ Ô0Þ

¼ 1

4

�
sgnðxþ � x0þÞ þ 1� 2nF

�
K̂

2

��
: (52)

Furthermore, we define

�̂ðxþÞ ¼
Z

d �xþ�ðxþ � �xþÞÂþð �xþÞ; (53)

satisfying

�̂ð1Þ ¼ âþ ¼
Z

dxþAþðxþÞ; �̂ð�1Þ ¼ 0; (54)

so that the complete propagator at finite temperature (50)
can be written as

Sðxþ; x0þÞ ¼ e�ie�̂ðxþÞ14ðsgnðxþ � x0þÞ þ ÔÞeie�̂ðx0þÞ;
(55)

where Ô is defined in (47).
In terms of these operators the Lippmann-Schwinger

equation can be written as [we point out here that the
unconventional factor of 2 in the interaction term is a
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consequence of the use of light-cone coordinates, which
can also be understood from the factor of 1

2 in Eq. (42)]

Sðxþ; x0þÞ ¼ ð1þ 2ieS0AÞ�1S0ðxþ; x0þÞ; (56)

which also has the equivalent description

ð1þ2ieS0AÞSðxþ;x0þÞ¼S0ðxþ;x0þÞ or
Sðxþ;x0þÞ�S0ðxþ;x0þÞþ2ieS0ASðxþ;x0þÞ¼0: (57)

Using the identity

ÂþðxþÞ ¼ d�̂ðxþÞ
dxþ

; (58)

we note that we can write

2ieS0ÂþSðxþ; x0þÞ ¼ �2
Z

dx00þS0ðxþ; x00þÞ de
�ie�̂ðx00þÞ

dx00þ

� 1

4
ðsgnðx00þ � x0þÞ þ ÔÞeie�̂ðx0þÞ:

(59)

Integrating this by parts, as in the 0þ 1 dimensional case,
it is straightforward to show that (57) holds; namely, the
Lippmann-Schwinger equation holds so that the complete
propagator agrees with its perturbative expansion to all
orders.

C. Effective action

We note that the propagator (50) involves operators
which do not commute, in general. Nonetheless, it can be
checked that at the coincident point, xþ¼x0þ, the two
exponential factors cancel each other and the propagator
becomes independent of xþ, much like in 0þ1 dimension.
Let us recall that the effective action can be obtained from
the propagator at the coincident limit [see, for example,
(7)]. This coordinate independence is expected from the
equations of motion (42) as well as from the Ward identity
of the theory. However, since the cancellation is a bit more
involved than in 0þ 1 dimension, we discuss this in some
detail.

To show the cancellation of phases in (50) to all orders
when xþ ¼ x0þ, let us recall the definitions in (38) and (53)
which lead to

hkþ pj�̂ðxþÞjki ¼ �ðxþ; pÞ
¼

Z
dx00þ�cðxþ � x00þÞAþcðx00þ; pÞ:

(60)

With this, let us look at the contributions coming only from
the phases in the propagator (50) or (55) at any fixed order
N when xþ ¼ x0þ, namely,

Scðxþ;pÞj ¼ Scðxþ; xþ;pÞj

¼
Z dk

8	
hkþ pje�ie�̂ðxþÞÔeie�̂ðxþÞjkij: (61)

Here the restriction stands for looking at only theNth order
terms coming from the exponentials. Introducing sets of
complete momentum states, we can write this as [we
suppress the xþ dependence in �ðxþ; pÞ]

Scðxþ;pÞj ¼ ð�ieÞN
XN
m¼0

NCmð�1Þm
Z dk

8	

dp1

2	
� � �

� dpNþ1
2	

2	�ðp� p1 � � � � � pNþ1Þ

�
�Ym
i¼1

�ðpiÞ
�� YNþ1

j¼mþ2
�ðpjÞ

�

� hkþ p1 þ � � � þ pmþ1jÔjk
þ p1 þ � � � þ pmi; (62)

where we understand that the first product is unity for m ¼
0 while the second factor is unity for m ¼ N. Redefining
k! k� p1 � � � � � pm followed by the transformation
p1 $ pmþ1, Eq. (62) can be written as

Scðxþ;pÞj ¼
Z dk

8	

dp1

2	
� � � dpNþ1

2	
2	�ðp� p1 � � � �

� pNþ1Þ�ðp2Þ�ðp3Þ � � ��ðpNþ1Þ

� hkþ p1jÔjkið�ieÞN
XN
m¼0

NCmð�1Þm: (63)

The sum in the last line of (63) simply vanishes because

XN
m¼0

NCmð�1Þm ¼ ð1� 1ÞN ¼ 0: (64)

This shows that the contributions coming from the expo-
nentials at any order N vanish when xþ ¼ x0þ so that the
phases do not contribute to the propagator in the coincident
limit in spite of the fact that these now involve noncom-
muting operators. As a result, the propagator (50) can be
written in the coincident limit as

Scðxþ;pÞ ¼
Z dk

8	
hkþ pjÔjki

¼
Z dk

2	
hkþ pj 1

4
ð1� 2ðÔþ þ 1Þ�1Þjki; (65)

and since the operator Ô (47) is independent of coordi-
nates, it follows that the propagator is independent of the
coordinate xþ in the coincident limit

@þScðxþ;pÞ ¼ 0: (66)

This is consistent with the Ward identity of the theory and
also follows from the equations of motion (42).
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Once the coincident limit of the propagator is deter-
mined, we can integrate (7) to determine the normalized
effective action in the right-handed sector in the following
manner. We recall the definitions in (47) which lead, for
example, to

dÔþ
dâþ

¼ ieÔþ: (67)

Let us define

F̂ ¼ 1
2 lnÔþ; (68)

in terms of which we can write

Ôþ ¼ e2F̂;

Ô ¼ 1� 2ðÔþ þ 1Þ�1 ¼ 1� 2ðe2F̂ þ 1Þ�1:
(69)

From the definition in (68) as well as (67), it follows that

dF̂

dâþ
¼ 1

2Ôþ

dÔþ
dâþ

¼ ie

2
: (70)

Using this, we can now derive the well-defined derivative

d ln coshF̂

dâþ
¼ ie

2
ðeF̂ þ e�F̂Þ�1ðeF̂ � e�F̂Þ

¼ ie

2
ð1� 2ðe2F̂ þ 1Þ�1Þ

¼ ie

2
ð1� 2ðÔþ þ 1Þ�1Þ ¼ ie

2
Ô: (71)

Using these relations we can write the complete normal-
ized effective action in the right-handed sector as

�R;eff ¼ � i

2

Z dk

2	
hkj ln coshF̂� ln cosh

�K̂

4
jki

¼ � i

2

Z dk

2	
hkj ln cosh

�
1

2
lnÔþ

�
� ln cosh

�K̂

4
jki:
(72)

We note here that the perturbative expansion for the effec-
tive action is much easier to obtain from the propagator in
(65).

The thermal part of this effective action has the right
(delta function) structure that had already been observed in
the perturbative calculation in the right-handed sector [17],
which is a consequence of the Ward identity in the theory.
(We remind the readers that we are not interested in the
zero temperature part of this effective action which, as we
have argued, would not correspond to the regularized
action.) However, the expansion of this effective action
on Cþ (namely, setting Aþð�Þ ¼ 0) does not quite agree

with the perturbative result order by order. In fact, the
difference already shows up in the quartic effective action.
This is indeed very interesting and brings out the power of
calculations in the mixed space which we have stressed

repeatedly. The perturbative calculation [17,18] which was
carried out in momentum space misses out on a class of
terms because of some subtlety that is not present in the
mixed space. Namely, a class of terms had been set to zero
in the perturbative calculation because of the identity

1

pðpþ qÞ þ
1

qðpþ qÞ �
1

pq
¼ 0: (73)

Although this identity is naively true, it does not hold when
principal values are involved, which is the case in the
perturbative calculation. The correct identity in this case is

1

pðpþ qÞ þ
1

qðpþ qÞ �
1

pq
¼ 	2�ðpÞ�ðqÞ; (74)

and with this correction, the perturbative effective action in
the right-handed sector coincides exactly with the quartic
effective action derived from (72). [It is worth pointing out
here that the effective action (72) is complete compared
with the one proposed in [6] which was not derived there.]
We note here that in the leading order of the hard thermal
loop approximation, when operators commute, this effec-
tive action coincides with that for the 0þ 1 case for every
value of the momentum with the identification k ¼ 2m.
This is easily seen by comparing (65) in the commuting
limit with (30). (The extra factor of 1

2 is associated with

light-cone coordinates.)
The effective action for the left-handed sector can simi-

larly be derived and is given by

�L;eff ¼ � i

2

Z dk

2	
hkj ln cosh

�
1

2
lnÔ�

�
� ln cosh

�K̂

4
jki;
(75)

where k, p should be understood as the light-cone compo-
nents conjugate to xþ (which should be written as kþ, pþ)
and we have identified

Ô� ¼ eðieâ�Þ=2eð�K̂Þ=2eðieâ�Þ=2; â� ¼ â�ðþÞ � â�ð�Þ;

â�ð�Þ ¼
Z 1
�1

dx�Â�ð�Þðx�Þ: (76)

Once again, the thermal part of this effective action has
the right (delta function) structure as in the perturbative
calculation, and the thermal part agrees with the perturba-
tive result order by order when restricted to Cþ [with the
modification due to the subtlety discussed in (74)]. The
finite temperature effective action for the 1þ 1 dimen-
sional fermion interacting with an arbitrary Abelian gauge
background can, therefore, be obtained from

�eff ¼ �R;eff þ �L;eff ; (77)

and the thermal part of (77) leads to the correct perturba-
tive result order by order on the branch Cþ with the
correction (74). Furthermore, since (77) represents the
complete effective action and since it is a functional of
ðâ�ðþÞ � â�ð�ÞÞ [see (72)–(75)], it can be checked as in
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(33) that all the retarded (advanced) amplitudes vanish in
this theory. This should be contrasted with the fact that this
had been verified explicitly only up to the four-point func-
tion in perturbation theory [16].

V. SUMMARY

In summary, we have proposed an alternative method [6]
for determining effective actions at finite temperature for
fermions interacting with an arbitrary background field.
This is done by determining the complete fermion propa-
gator (in the closed time path formalism) directly by using
the antiperiodicity condition appropriate at finite tempera-

ture. We have illustrated in detail how our proposal works
with the examples of the 0þ 1 dimensional QED as well as
the Schwinger model. The next step in this direction would
involve determining the effective action for massive QED
in 1þ 1 dimensions at finite temperature. This would lead
directly to the finite temperature effective actions for the
known solvable examples in four dimensional QED [1,22].
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