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The Gross-Neveu model in 1þ 1 dimensions is generalized to the case of different scalar and

pseudoscalar coupling constants. This enables us to interpolate smoothly between the standard massless

Gross-Neveu models with either discrete or continuous chiral symmetry. We present the solution of the

generalized model in the large N limit including the vacuum, fermion-antifermion scattering and bound

states, solitonic baryons with fractional baryon number and the full phase diagram at finite temperature

and chemical potential.
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I. INTRODUCTION

The sustained interest in Gross-Neveu (GN) models in
1þ 1 dimensions [1] stems to a large extent from their
chiral properties. Thus the simplest model with Lagrangian

L ¼ �c i��@�c þ 1

2
g2ð �c c Þ2 (1)

(suppressing flavor indices, i.e., �c c ¼ P
N
k¼1

�c kc k etc.)

has a discrete chiral Z2 symmetry

c ! �5c ; (2)

whereas the chiral GN model or, equivalently, the two-
dimensional Nambu–Jona-Lasinio model (NJL2) [2],

L ¼ �c i��@�c þ 1

2
g2ð �c c Þ2 þ 1

2
g2ð �c i�5c Þ2; (3)

possesses a continuous chiral U(1) symmetry,

c ! ei��5c : (4)

Chiral symmetry and in particular its breakdown manifest
themselves in such diverse physical phenomena as dynami-
cal fermion masses, the meson spectrum, topological ef-
fects in the structure of baryons, and rich phase diagrams at
finite density and temperature with various types of homo-
geneous and solitonic crystal phases, see the introductory
review article [3] as well as the recent updates in [4–6]. By
adding a bare mass term to the Lagrangian, one breaks the
chiral symmetry explicitly and gets additional insights into
the symmetry aspects of both models [7,8]. Nevertheless,
studies of models (1) and (3) with their strikingly different
properties have remained somewhat disconnected.

In this work, we propose and solve a simple field theo-
retical model which interpolates continuously between the
Lagrangians (1) and (3). Our motivation is to get a better
understanding of how the conspicuous differences in the
phase diagrams and baryon structure come about.
Moreover, we would like to explore an alternative mecha-

nism for breaking chiral symmetry explicitly, different
from the usual bare mass term. To this end, we consider
a Lagrangian similar to Eq. (3), but with different (attrac-
tive) scalar and pseudoscalar couplings,

L ¼ �c i��@�c þ 1

2
g2ð �c c Þ2 þ 1

2
G2ð �c i�5c Þ2: (5)

By varying G2 from 0 to g2, we generate a family of
theories interpolating between the GN and the NJL2 mod-
els. The idea to generalize the GN model in this fashion is
not new. Thus for instance, Klimenko studied a closely
related problem a long time ago [9,10]. However, since the
role of inhomogeneous condensates has only been appre-
ciated in recent years, there is almost no overlap between
the present work and these earlier studies.
The methods which we shall use in our investigation

have been developed during the last few years in an effort
to clarify the phase structure of massless and massive GN
models. As a result, we have now at our disposal a whole
toolbox of analytical and numerical instruments. The most
important keywords are the derivative expansion, asymp-
totic expansions, perturbation theory, Ginzburg-Landau
(GL) theory and numerical Hartree-Fock (HF) approach
including the Dirac sea. This will enable us to solve the
generalized GN model (5) in a rather straightforward fash-
ion, although the model is far from trivial. Its two limiting
cases, the standard massless GN and NJL2 models, can
both be solved analytically. This is unfortunately not true
for the generalized model which in this respect is closer to
the massive NJL2 model [8].
This paper is organized as follows. We present our

computations and results starting with mostly analytical
work and ending with purely numerical results. The logic
of the HF approach demands that we begin with a discus-
sion of the vacuum, dynamical fermion mass and coupling
constant renormalization in Sec. II. Section III is dedicated
to fermion-fermion bound states (mesons) and scattering.
In Sec. IV, we solve the theory in the baryon sector as well
as for low density soliton crystals in the vicinity of the
chiral limit, using a kind of chiral perturbation theory
obtained from the derivative expansion. We then begin
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our study of thermodynamics at finite temperature and
chemical potential with an investigation of the tricritical
behavior near the chiral limit in Sec. V. In Sec. VI the
microscopic GL approach underlying Sec. V is extended to
more general coupling constants, and the tricritical point of
the generalized GN model is determined exactly. Some
technical details are deferred to the appendix. Section VII
is devoted to the full phase diagram of the generalized GN
model for arbitrary coupling constants, chemical potential
and temperature, only accessible via a numerical relativis-
tic HF calculation. As a by-product, we also present infor-
mation about baryons away from the chiral limit. The
paper ends with a concluding section, Sec. VIII.

II. VACUUM, DYNAMICAL FERMION MASS,
RENORMALIZATION

Consider the Lagrangian of the generalized GN model
with two coupling constants in 1þ 1 dimensions, Eq. (5).
For G2 ¼ g2, it coincides with the one from the massless
NJL2 model, Eq. (3). For G2 ¼ 0, we recover the massless
GN model, Eq. (1). The case G2 > g2 can be mapped onto
G2 < g2 by means of a chiral rotation about a quarter of a
circle,

c ! ei�5�=4c : (6)

Since this is a canonical transformation, we may assume
0<G2 < g2 without loss of generality. Hence the gener-
alized GN model can serve as a continuous interpolation
between twowell-studied model field theories with distinct
symmetry properties. Notice that the generalized
Lagrangian (5) always has the discrete chiral symmetry
c ! �5c under which �c c and �c i�5c change sign. The
continuous chiral symmetry c ! ei��5c is only recovered
at the point g2 ¼ G2.

To find the vacuum in the large N limit, we introduce
homogeneous scalar and pseudoscalar condensates,

m ¼ �g2h �c c i; M ¼ �G2h �c i�5c i: (7)

The Dirac-Hartree-Fock equation

ð��5i@x þ �0mþ i�1MÞc ¼ Ec (8)

then yields the single particle energies

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þM2

p
(9)

and the (cutoff regularized) vacuum energy,

Evac ¼ �
Z �=2

��=2

dk

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þM2

p
þ m2

2Ng2
þ M2

2NG2

¼ ��2

8�
þm2 þM2

4�

�
ln

�
m2 þM2

�2

�
� 1

�
þ m2

2Ng2

þ M2

2NG2
: (10)

If we choose the following relations between the UV cutoff

�=2 and the bare coupling constants g2; G2,

�

Ng2
� ln� ¼ �1;

�

NG2
� ln� ¼ �2; (11)

Evacðm;MÞ is well defined in the limit � ! 1 (dropping
the irrelevant quadratic divergence) and given by

E vac ¼ m2 þM2

4�
½lnðm2 þM2Þ � 1� þ �1m

2

2�
þ �2M

2

2�
:

(12)

Minimize Evac with respect to m;M,

0 ¼ m½2�1 þ lnðm2 þM2Þ�;
0 ¼ M½2�2 þ lnðm2 þM2Þ�: (13)

These equations only admit a solution with nonvanishingm
and M if �1 ¼ �2 ¼ � 1

2 lnðm2 þM2Þ. This takes us back
to the NJL2 model with its infinitely degenerate vacua

along the chiral circle of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2

p
. The other

options are m � 0, M ¼ 0, �2 unspecified and

�1 ¼ � 1

2
lnm2; Evac ¼ �m2

4�
; (14)

or else m ¼ 0, M � 0, �1 unspecified and

�2 ¼ � 1

2
lnM2; Evac ¼ �M2

4�
: (15)

The vacuum energy is lowest for m � 0 if �1 < �2 and for
M � 0 if �1 > �2. In view of the remark below Eq. (6), we
may adopt the first scenario. Choosing units such that m ¼
1 and denoting �2ð>0Þ by � from now on, we finally get the
renormalization conditions (gap equations)

�

Ng2
¼ ln�;

�

NG2
¼ �þ �

Ng2
¼ �þ ln�: (16)

With the help of these relations, all physical quantities can
be expressed in terms of the scalem (set equal to 1) and the
dimensionless parameter � which serves to interpolate
between the massless NJL2 (� ¼ 0) and GN (� ¼ 1)
models. This expectation is borne out in the following
sections, supporting our renormalization method.

III. MESON SPECTRUM AND
FERMION-ANTIFERMION SCATTERING

In the large N limit, fermion-antifermion bound and
scattering states can conveniently be derived via the rela-
tivistic random phase approximation (RPA) [11,12]. Since
the scalar and pseudoscalar channels decouple and the HF
vacuum is the same as in the GN or NJL2 model, this
analysis requires only minor changes of the standard cal-
culation for the NJL2 model. Consider first the bound state
problem. The scalar channel has been spelled out in all
detail in Ref. [12] where it is shown that the eigenvalue
equation assumes the form
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1 ¼ 2Ng2
Z dk

2�
�uðkÞvðk� PÞ �uðk� PÞvðkÞ

� Eðk� P; kÞ
E2ðPÞ � E2ðk� P; kÞ : (17)

Here, P is the total momentum of the fermion-antifermion
system, u; v are positive and negative energy HF spinors,
and

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
; Eðk0; kÞ ¼ Eðk0Þ þ EðkÞ: (18)

The energy of the meson is denoted by EðPÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
. An analogous computation in the pseudosca-

lar channel gives

1 ¼ �2NG2
Z dk

2�
�uðkÞi�5vðk� PÞ �uðk� PÞi�5vðkÞ

� Eðk� P; kÞ
E2ðPÞ � E2ðk� P; kÞ : (19)

Use of the identities

�uðkÞvðk� PÞ �uðk� PÞvðkÞ ¼ 4þ P2 � E2ðk� P; kÞ
4EðkÞEðk� PÞ

(20)

�uðkÞi�5vðk� PÞ �uðk� PÞi�5vðkÞ

¼ �P2 � E2ðk� P; kÞ
4EðkÞEðk� PÞ (21)

puts these eigenvalue equations into the more convenient
form

1 ¼ Ng2

2

Z dk

2�

�
1

Eðk� PÞ þ
1

EðkÞ
�

� 4þ P2 � E2ðk� P; kÞ
E2ðPÞ � E2ðk� P; kÞ ;

1 ¼ NG2

2

Z dk

2�

�
1

Eðk� PÞ þ
1

EðkÞ
�

� P2 � E2ðk� P; kÞ
E2ðPÞ � E2ðk� P; kÞ :

(22)

If we regularize the momentum integrals with the same
cutoff �=2 as used in the treatment of the vacuum energy
and use the renormalization conditions Eqs. (16), we get
the renormalized eigenvalue conditions

0 ¼
Z dk

2�

�
1

Eðk� PÞ þ
1

EðkÞ
�

4þ P2 � E2ðPÞ
E2ðPÞ � E2ðk� P; kÞ ;

(23)

2�

�
¼

Z dk

2�

�
1

Eðk� PÞ þ
1

EðkÞ
�

P2 � E2ðPÞ
E2ðPÞ � E2ðk� P; kÞ ;

(24)

now free of divergences. Equation (23) is the same as in the
standard GN and NJL2 models and gives the familiar result
for the scalar (�) meson mass, M ¼ 2. The right-hand
side of Eq. (24) is independent of P and can readily be
evaluated in the c.m. frame of the meson (P ¼ 0),

� ¼ �M2

2

Z
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
ðM2 � 4� 4k2Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

p arctan
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

�� 1
p (25)

with

� ¼ 4

M2
: (26)

Solving the transcendental equation (25) numerically, the
pseudoscalar (�) meson mass is found to rise fromM ¼ 0
at � ¼ 0 to 2 at � ! 1, see Fig. 1. The first limit is as
expected—this is the would-be Goldstone boson of the
NJL2 model. The second one is surprising at first glance,
since we are supposed to reach the GN model in this limit.
The GN model does not have any pseudoscalar fermion-
antifermion interaction, let alone a bound state.
To better understand what is going on, we briefly turn to

the fermion-antifermion scattering problem. Since the RPA
equations have a separable kernel with one-term separable
potentials in the scalar and pseudoscalar channels, this is
straightforward [13]. The energy dependence of the scat-
tering matrix is encoded in the following functions of the
Mandelstam variable s,

0

0.5

1

1.5

2

2 4 6 8 10

FIG. 1. Masses of � and � mesons versus � in the large N
limit of the generalized GN model, obtained from Eqs. (23)–(26).
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�� ¼ Ng2

1þ Ng2
Rðdk=2�Þð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

Þð4k2=ðs� 4ð1þ k2Þ þ i	ÞÞ

�� ¼ NG2

1þ NG2
Rðdk=2�Þð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

Þð4ð1þ k2Þ=ðs� 4ð1þ k2Þ þ i	ÞÞ :
(27)

Upon isolating the divergent part of the integrals and using
the renormalization conditions, this becomes

��1
� ¼ ðs� 4Þ

2�
IðsÞ

��1
� ¼ �

�
þ s

2�
IðsÞ

IðsÞ ¼
Z

dk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p 1

s� 4ð1þ k2Þ þ i	

(28)

where the integral IðsÞ can be evaluated in closed form,

IðsÞ ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð4� sÞp arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
s

4� s

r
ðs < 4Þ (29)

IðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� 4Þp �

ln

ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
s� 4

p
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffi
s� 4

p � i�

�
ðs > 4Þ:

(30)

�� has the expected pole at s ¼ 4 corresponding to the
marginally bound scalar meson with M ¼ 2. The pole of
�� in turn coincides with the mass of the pseudoscalar
meson, see Eqs. (25) and (26). According to the second line
of Eq. (28), the strength of the pseudoscalar scattering
matrix vanishes like�1=� for � ! 1. We therefore arrive
at the following picture: As � ! 1, the pseudoscalar
interaction vanishes, in accordance with the expected GN
limit. However, since an arbitrary weak attractive interac-
tion is sufficient to support a bound state in 1þ 1 dimen-
sions, the pseudoscalar bound state pole persists, the
binding energy going to zero. As we shall see later on,
this decoupled � meson has no influence on any other
observables of the model in the large N limit, so that it
does not really upset our goal of interpolating between the
NJL2 and GN models.

IV. BARYONS AND SOLITON CRYSTALS AT
SMALL � AND LOW DENSITY

The derivative expansion is a standard technique to deal
with quantum mechanical particles subject to smooth po-
tentials [14,15]. In Ref. [16] it has been adapted to the
particular needs of the HF approach for low dimensional
fermion field theories. In effect, it amounts to integrating
out the fermions in favor of an effective bosonic field
theory, where the scalar and pseudoscalar fields can be
identified with the HF potentials related to the composite
fermion operators �c c and �c i�5c . For baryons in the
massiveNJL2 model it leads to a chiral expansion in closed

analytical form [16]. Note that this method can only handle
fully occupied valence levels at present.
Since the HF equation in the problem at hand has the

same form as in the NJL2 model, we can take over the
derivation of the effective action from Ref. [16] almost
literally. The Dirac-HF equation is written as in Eqs. (7)
and (8) except that the scalar (S) and pseudoscalar (P)
condensates in the baryon state are x dependent,

½��5i@x þ �0SðxÞ þ i�1PðxÞ�c ¼ Ec ; (31)

with

S ¼ �g2h �c c i; P ¼ �G2h �c i�5c i: (32)

As is well known, the HF energy can be written as the sum
over single particle energies of occupied orbits and a
double counting (DC) correction. Only this last part is
different in the present case. Because of the renormaliza-
tion condition (16), it depends on the parameter �,

E DC ¼ S2

2Ng2
þ P2

2NG2
¼ S2 þ P2

2�
ln�þ �

2�
P2: (33)

The cutoff dependent term cancels exactly the logarithmic
divergence in the sum over single particle energies. Only
the last term in Eq. (33) is different from what it was
before. Consequently, we can simply take over the effec-
tive action from Ref. [16], set the confinement parameter
� ¼ 0 (vanishing bare fermion mass) and add the new
contribution proportional to � from Eq. (33). Adopting
polar coordinates in field space,

S� iP ¼ ð1þ 
Þe2i�; (34)

and working at the same order in the derivative expansion
as in [16], we then get at once the energy density (0 ¼ @x
and �IV denotes the 4th derivative of �)

2�E ¼ �ð1þ 
Þ2sin2ð2�Þ þ ð�0Þ2 � 1

6
ð�00Þ2 þ 1

30
ð�000Þ2

� 1

140
ð�IVÞ2 � 1

45
ð�00Þ4 þ 
2 þ 1

12
ð
0Þ2 þ 1

3

3

� 1

120
ð
00Þ2 � 1

6

ð
0Þ2 � 1

12

4 þ 1

3

ð�00Þ2

þ 1

15

ð�000Þ2 þ 1

5

�00�IV � 1

2

2ð�00Þ2: (35)

We have to vary the energy functional with respect to 
 and
� and solve the Euler-Lagrange equations, then compute
baryon number and baryon mass. Although we shall follow
the same procedure as in Ref. [16], the results will be quite
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different, reflecting the different ways in which chiral
symmetry is broken in these two models. For simplicity,
take first the case of the leading order (LO) derivative
expansion. Here, we only keep two terms in the energy
density,

2�E ¼ �sin2ð2�Þ þ ð�0Þ2: (36)

Rescaling the chiral phase field and its spatial argument as
follows,

�ðxÞ ¼ 1

4
�ðyÞ; y ¼ 2

ffiffiffi
�

p
x; (37)

we recognize the (static) sine-Gordon action ( _¼ @y)

4�

�
E ¼ 1

2
_�2 � cos�þ 1: (38)

The Euler-Lagrange equation is the time-independent sine-
Gordon equation

€� ¼ sin�; (39)

so that the baryon can be identified with the sine-Gordon
kink

� ¼ 4 arctaney: (40)

But unlike in the massive NJL2 model, this object has
baryon number 1=2, exactly like the kink in the standard
GN model (with fully occupied zero mode),

NB ¼
Z

dx
�0

�
¼ 1

�
½�ð1Þ � �ð�1Þ� ¼ 1

2
: (41)

Here we have used the topological relationship between
baryon number and winding number of the chiral phase
[11,16]. The mass of this kinklike baryon is found to be

MB

N
¼

ffiffiffi
�

p
�

¼ m�

2�
; (42)

where, in the second step, we have made use of Eq. (25) to
LO in � and denoted the pion mass by m�.

In the same vein, higher order calculations closely fol-
low Ref. [16]. We find it useful to switch from the parame-
ter � to m� by means of Eq. (25),

� � 1

4
m2

� þ 1

24
m4

� þ 1

120
m6

� þ 1

560
m8

�; (43)

and to expand � and 
 into Taylor series in m�,

� � �0 þm2
��1 þm4

��2 þm6
��3;


 � m2
�
1 þm4

�
2 þm6
�
3:

(44)

The Euler-Lagrange equations corresponding to the effec-
tive action (35) can then be solved analytically with the
NNNLO results (y ¼ m�x)

�0 ¼ arctaney 
1 ¼ � 1

4

1

cosh2y
�1 ¼ 1

16

sinhy

cosh2y


2 ¼ � 1

96

10cosh2y� 13

cosh4y

�2 ¼ � 1

2304

sinhyð11cosh2y� 26Þ
cosh4y


3 ¼ � 1

5760

562cosh4y� 3090cosh2yþ 2811

cosh6y

�3 ¼ sinhy

138 2400

ð6271cosh4yþ 29 588cosh2y� 26 784Þ
cosh6y

:

(45)

The baryon mass becomes

MB

N
¼ m�

2�

�
1� 1

36
m2

� þ 13

3600
m4

� � 1193

705 600
m6

�

�
:

(46)

As the whole winding number of � resides in the LO term
�0, baryon number is always 1=2. Therefore the complex
potential S� iP traces out half a turn around the chiral
circle. This is confirmed by plotting S and P, showing
kinklike behavior of S like in the massless GN model,
see Fig. 2. The presence of a nonvanishing P signals that
we are dealing with a new kind of solitonic baryon here
which did not show up yet in any other variant of the GN
model family.
Let us now turn to periodic solutions of the Euler-

Lagrange equations in the derivative expansion. They are
expected to approximate systematically the ground state of
matter at low densities and in the vicinity of the chiral limit
� ¼ 0. Since the resulting expressions are rather lengthy,

–1

–0.5

0

0.5

1

–4 –2 0 2 4

FIG. 2. Scalar (S) and pseudoscalar (P) potentials for baryon
in the derivative expansion, � ¼ 0:2, m� � 0:8389. Dashed
curves: LO (sine-Gordon), solid curves: NNNLO, see
Eqs. (45).
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we only give them up to NNLO here,

�0 ¼ �

4
þ 1

2
am 
1 ¼ � 1

4
cn2 �1 ¼

�


24
þ 1

16

�
sn cn� 

24�2
dn Z


2 ¼
�
13

96
� 

24

�
sn4 þ

�


24
� 1þ �2

24�2

�
sn2 þ 4� �2

96�2
� 

24�2
sn cn dn Z

�2 ¼
�

3

576�2
þ ð�2 � 5Þ2

576�2
þ ð61þ 30�2Þ

2880�2
þ 59�2 � 44

2304�2

�
sn cn�

�
3

576�4
þ ð�2 � 3Þ2

288�4
þ ð61þ 30�2Þ

2880�4

�
dnZ

�
�

13

1152
þ 

96
þ 2

576

�
sn3cn� 2

576�2
sn cn Z2 þ

�
2

288�2
þ 

96�2

�
dn sn2Z: (47)

Here,

 ¼ ð1� �2ÞK
E
; (48)

E,K are complete elliptic integrals of � and am, sn, cn, dn
and Z are standard Jacobi elliptic functions with spatial
argument

z ¼ m�

�
x (49)

and elliptic modulus �. The mean density can be simply
inferred from the period of the crystal,

� ¼ m�

4�K
: (50)

By way of example, we show in Fig. 3 the scalar and
pseudoscalar potentials corresponding to � ¼ 0:2 (as in
Fig. 2) and the density � ¼ 0:05. Again the convergence
seems to be very good.

Since the derivative expansion is anyway expected to be
most useful at low densities, we note the following sim-
plification in the low density limit: for � ! 1, we can use
the approximation  � 0 and keep � only in the arguments

of the Jacobi elliptic functions. Expressions (47) then
reduce to periodic extensions of the baryon results obtained
by simply replacing

coshy ! 1

cnðz; �Þ ; sinhy ! snðz; �Þ
cnðz; �Þ (51)

in Eqs. (45).
Finally, we derive a sum rule for the baryon number of a

single baryon, following Ref. [17]. This will equip us with
a way of testing the results from the derivative expansion.
The starting point is the divergence of the axial current in
the generalized GN model

@�j
�
5 ¼ �2ðg2 �G2Þ �c c �c i�5c ¼ 2ðS �c i�5c � P �c c Þ
¼ �2N

�
1

NG2
� 1

Ng2

�
SP ¼ � 2N�

�
SP; (52)

where we have taken a ground state expectation value and
used large N factorization. Owing to the properties

j05 ¼ j1; j15 ¼ j0 (53)

specific for 1þ 1 dimensions, we get for stationary states

@1�ðxÞ ¼ � 2N�

�
SðxÞPðxÞ: (54)

Twofold integration for the baryon case then leads to a sum
rule relating baryon number directly to an integral over the
HF potentials S, P,

�ðxÞ ¼ � 2N�

�

Z x

�1
dx0Sðx0ÞPðx0Þ (55)

1

2
¼ � 2�

�

Z 1

�1
dx

Z x

�1
dx0Sðx0ÞPðx0Þ

¼ 2�

�

Z 1

�1
dxxSðxÞPðxÞ: (56)

In the last step, partial integration was used. Inserting the
results for S, P from the baryon, i.e.,

S ¼ þð1þ 
Þ cosð2�Þ; P ¼ �ð1þ 
Þ sinð2�Þ;
(57)

with �, 
 from Eqs. (45), we find that the sum rule (56) is

–1

–0.5

0

0.5

1

–8 –6 –4 –2 0 2 4 6 8 10

FIG. 3. Soliton crystal for generalized GN model, � ¼ 0:2,
m� � 0:8389, � ¼ 0:05. Dashed curves: LO (sine-Gordon),
solid curves: NNLO, see Eqs. (47).
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only violated atOðm8
�Þ. This is a good independent test of a

considerable amount of algebra behind the derivative
expansion.

V. PHASE DIAGRAM NEAR THE NJL2

TRICRITICAL POINT (� ¼ 0)

We start our investigation of the phase diagram of the
generalized GN model by zooming in onto the tricritical
point at � ¼ 0, i.e., of the NJL2 model. In Ref. [18] it was
shown that this region is well suited for the derivative
expansion, which here leads to a (microscopic)
Ginzburg-Landau type theory. In that work, chiral symme-
try was broken as usual by means of a bare fermion mass
term. Here instead we break it by choosing two slightly
different coupling constants in the scalar and pseudoscalar
channels. The central quantity of interest is the grand
canonical potential which differs in these two cases only
by the double counting correction. Since the latter is inde-
pendent of temperature and chemical potential, the situ-
ation is very similar to the one in the preceding section.
Once again we can take over the effective action from the
literature about the massive NJL2 model [18]. The only
necessary modification is to replace the double counting
correction term coming from the bare mass by the one
proportional to �, cf. Eq. (33). For the present purpose, it is
advantageous to combine the HF potentials S, P into one
complex field � ¼ S� iP. The result for the grand ca-
nonical potential density to the order needed here (drop-
ping a field independent part) then becomes

�eff ¼ �2j�j2 þ �3 Imð��0�Þ þ �4ðj�j4 þ j�0j2Þ
þ �

2�
ðIm�Þ2 (58)

with

�2 ¼ 1

2�
½lnð4�TÞ þ Re�ðzÞ�

�3 ¼ � 1

8�2T
Im�ð1ÞðzÞ

�4 ¼ � 1

64�3T2
Re�ð2ÞðzÞ

(59)

and

z ¼ 1

2
þ i�

2�T
: (60)

We denote the digamma and polygamma functions as

�ðzÞ ¼ d

dz
ln�ðzÞ; �ðnÞðzÞ ¼ dn

dzn
�ðzÞ: (61)

In the chiral limit (� ¼ 0), the tricritical point is located at

�t ¼ 0; Tt ¼ Tc ¼ eC

�
(62)

with Euler’s constant C � 0:577 216. Following Ref. [18],

we expand the coefficients (59) of the GL effective action
around the tricritical point (62),

�2 � 7

8�
ð3Þe�2C�2 � 1

2
e�C�2

�3 � 7

8�
ð3Þe�2C� �4 � 7

32�
ð3Þe�2C

(63)

with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
. The � dependence can now be re-

moved as follows. Rescaling the field and the coordinate
according to

�ðxÞ ¼ �1=2’ðuÞ; u ¼ �1=2x

�0ðxÞ ¼ � _’ðuÞ; �00ðxÞ ¼ �3=2 €’ðuÞ
(64)

and introducing rescaled thermodynamic variables

� ¼ 2�

�1=2
; � ¼

ffiffiffiffiffi
a

Tc

s
�

�1=2
(65)

with the constant

a ¼ 16e2C

7ð3Þ � 6:031 98; (66)

the reduced grand canonical potential density

~� eff ¼ 2�a

�2
�eff (67)

becomes indeed independent of �,

~�eff ¼ j _’j2 � i�ð’ _’� � _’’�Þ þ ð�2 � �2Þj’j2

þ j’j4 � a

4
ð’� ’�Þ2: (68)

The Euler-Lagrange equation

€’� 2i� _’þ ð�2 � �2Þ’� 2j’j2’� a

2
ð’� ’�Þ ¼ 0

(69)

differs from the complex nonlinear Schrödinger equation
by the term �’�. This has prevented us from finding the
solution in closed analytical form. Let us first determine
the expected 2nd order phase boundaries. The phase
boundary between massless and massive homogeneous

phases can easily be found by minimizing ~�eff with the
ansatz ’ ¼ m and setting m ¼ 0 in the condition for the
nontrivial solution. The result in the new coordinates is the
straight line

� ¼ �: (70)

Next consider the phase boundary separating the crystal
phase from the chirally restored (m ¼ 0) homogeneous
phase. Here we use the ansatz (see Sec. IV of Ref. [18]
for the justification)

’ ¼ c0 cosðquÞ þ id0 sinðquÞ (71)

and evaluate the spatial average of ~�eff , keeping only
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terms up to 2nd order in c0; d0,

h ~�effi ¼ M11c
2
0 þ 2M12c0d0 þM22d

2
0; (72)

with

M 11 ¼ 1

2
ðq2 þ �2 � �2Þ M12 ¼ ��q

M22 ¼ 1

2
ðaþ q2 þ �2 � �2Þ:

(73)

As explained in Ref. [8], the phase boundary is now
defined by the conditions

detM ¼ 0;
@

@q2
detM ¼ 0; (74)

yielding the critical curve

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að8�2 � aÞp

4�
: (75)

The wave number q obeys

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 � a

2

r
: (76)

The tricritical point can be identified with the point of
intersection of the two critical curves (70) and (75),

�t ¼ �t ¼
ffiffiffi
a

p
2

: (77)

Going back to the original, unscaled variables, this trans-
lates into

Tt ¼ Tc

�
1� 1

4
�

�
; �t ¼

ffiffiffi
a

p
4

�1=2: (78)

Notice that q vanishes at the tricritical point. We expect
that a third critical line ends at the tricritical point, namely
the 1st order phase boundary separating the crystal from
the massive Fermi gas phase. It has to be determined
numerically. To this end, we insert the Fourier series ansatz

’ ¼ X
n

cn cos½ð2nþ 1Þqu� þ i
X
n

dn sin½ð2nþ 1Þqu�

(79)

into Eq. (68) and minimize the effective action with respect
to the parameters cn, dn and q. By keeping only wave
numbers which are odd multiples of q, we restrict our-
selves to potentials which are antiperiodic over half a
period,

’ðuþ �=qÞ ¼ �’ðuÞ: (80)

This kind of shape is indeed favored by the minimization,
as was the case for the massless GN model. It shows that
discrete chiral symmetry and translational symmetry are
broken down to a discrete combination of the 2 trans-
formations, namely

c ðxÞ ! �5c ðxþ �=qÞ (81)

from which Eq. (80) for bilinears follows. In practice, we
found that it is sufficient to keep c0, c1, d0, d1 in the
expansion (79). Comparing the reduced grand potential
with the one from the homogeneous massive solution, we

0

1

2

3

4

5

1 2 3 4 5

FIG. 4. Rescaled phase diagram near the tricritical point of the
NJL2 model. Straight line: 2nd order phase boundary, Eq. (70).
Dashed curve: 2nd order phase boundary, Eq. (75). Solid
curve: 1st order phase boundary, numerical calculation. The 3
critical curves meet at the tricritical point �t ¼ �t ¼

ffiffiffi
a

p
=2. The

parameter � has been eliminated by the choice of variables, see
Eq. (65).
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FIG. 5. Reconstructed phase diagram of generalized GN
model near the tricritical point of NJL2 model for � ¼
0:0001; 0:0002; 0:0004; 0:0007; 0:001; 0:002; 0:004; 0:007; 0:01,
from left to right. All curves are obtained from the ones shown in
Fig. 4, but �;� values up to � 50 are needed for the smallest �
value.
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can locate the phase boundary. The result of the calculation
is shown in Fig. 4 together with the two 2nd order phase
boundaries discussed above. Because of the rescalings, this
is a kind of universal phase diagram which contains all
information about the actual phase diagram in the vicinity
of the tricritical point at � ¼ 0. By undoing the rescaling
we can reconstruct the phase diagrams for small � values in
a limited region of the ð�; TÞ plane. This is shown in Fig. 5.
Here one sees nicely the transition from the behavior
qualitatively familiar from the GN model to the one from
the massless NJL2 model. The angle between the two
phase boundaries delimiting the crystal at the tricritical
point is consistent with zero, just like in the standard GN
model.

VI. EXACT TRICRITICAL BEHAVIOR FROM
GINZBURG-LANDAU THEORY

As � varies from 0 to 1, the tricritical point of the
generalized GN model moves from the NJL2 to the GN
tricritical point, i.e. from � ¼ 0, T ¼ 0:5669 to � ¼
0:6082, T ¼ 0:3183. Since the HF potential � ¼ S� iP
vanishes at the tricritical point and its period is expected to
diverge, the derivative expansion should be sufficient to
determine the exact tricritical behavior for all �. As a
matter of fact, this will enable us to determine analytically
the location of the tricritical point as a function of �. We
will also be interested in the behavior of the phase bounda-
ries in the vicinity of the tricritical point. It turns out that
the region of validity of the GL theory as defined in
Eq. (58) shrinks rapidly with increasing �. One of the
reasons is the fact that both �2 and �4 vanish at the GN
tricritical point, so that it would be necessary to go to
higher orders in the derivative expansion for large �. To
keep the analytical work reasonably simple, we therefore
analyze the phase boundaries only for moderate � values.

We start once again from the GL effective action (58).
Consider first the homogeneous phases. The constant an-
satz � ¼ m yields

�eff ¼ �2m
2 þ �4m

4: (82)

Minimizing with respect to m, we find either m ¼ 0 or

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �2

2�4

s
ð�2 < 0Þ: (83)

We thus recover the well-known result for the phase bound-
ary between massless and massive Fermi gas phases,
namely

�2 ¼ 0 (84)

or, parametrically (parameter ~�),

T ¼ 1

4�
e�Re�ðzÞ

�
z ¼ 1

2
þ i

~�

2�

�
;

� ¼ ~�T:

(85)

Next consider the 2nd order phase boundary between
crystal and massless homogeneous phase. As in Sec. V,
the ansatz

� ¼ c0 cosðQxÞ þ id0 sinðQxÞ (86)

is adequate for a continuous phase transition which can be
treated in perturbation theory. The spatial average of the
effective action, keeping only quadratic terms in ðc0; d0Þ,
then becomes

h�effi ¼ M11c
2
0 þ 2M12c0d0 þM22d

2
0 (87)

where

M 11 ¼ 1

2
ð�2 þ �4Q

2Þ M12 ¼ � 1

2
�3Q

M22 ¼ 1

2

�
�2 þ �4Q

2 þ �

2�

�
:

(88)

The 2nd order phase boundary is again defined by

detM ¼ 0;
@

@Q2
detM ¼ 0 (89)

or, equivalently,

0 ¼ Q4 þ
�

�

2��4

�
�
�3

�4

�
2 þ 2�2

�4

�
Q2 þ �2�

2��2
4

þ �2
2

�2
4

0 ¼ Q2 þ �

4��4

þ �2

�4

� �2
3

2�2
4

: (90)

These two equations determine Q and the critical curve in
the ð�; TÞ plane. The tricritical point must lie on this curve
and on the curve �2 ¼ 0. This gives the conditions Q ¼ 0
and

� ¼ 2��2
3

�4

��������t
; (91)

where the right-hand side is to be evaluated at the tricritical
point. Using Eqs. (59), we finally arrive at the following
parametric representation of the dependence of the tricrit-
ical point ð�t; TtÞ on � (parameter ~�t),

� ¼ � 2½Im�ð1ÞðztÞ�2
Re�ð2ÞðztÞ

�
zt ¼ 1

2
þ i~�t

2�

�

Tt ¼ 1

4�
e�Re�ðztÞ �t ¼ ~�tTt:

(92)

This result should hold exactly in the generalized GN
model, since GL theory becomes rigorous at the tricritical
point. It has the correct limits for � ! 0 (NJL2) and � ! 1
(GN), as follows immediately from the vanishing of �3 and
�4, respectively. Moreover, by expanding in �t we recover
the asymptotic behavior of ð�t; TtÞ for � ! 0 found in
Sec. V, cf. Eq. (78).
We now determine the shape of the phase boundaries

near the tricritical point for finite � values. To this end, we
measure chemical potential and temperature from the tri-
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critical point (at fixed �),

� ¼ �t þ �; T ¼ Tt þ �: (93)

We then rotate the coordinate frame in the ð�; �Þ plane such
that the new axes are tangential and normal to the homo-
geneous phase boundary �2 ¼ 0,

�
�

� �
¼ cos� � sin�

sin� cos�

� �
�
�

� �
(94)

with

sin� ¼ I1
�

; cos� ¼ 

�
: (95)

We have defined

 ¼ 2�þ ~�tI1; �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 þ 2

q
; I1 ¼ Im�ð1ÞðztÞ:

(96)

Because of the cusp, the phase boundaries lie in the region
around the tricritical point where

�� "; �� "2: (97)

In this region, the Taylor expansion

�2 ¼ a22"
2 þ � � � �3 ¼ a30 þ a31"þ a32"

2 þ � � �
�4 ¼ a40 þ a41"þ a42"

2 þ � � � (98)

holds with calculable coefficients given in the appendix.
We first determine the shape of the 2nd order phase bound-
ary from (90), (91), and (98). To leading order in ", we find

Q2 ¼ a30ð2a31a40 � a30a41Þ
2a340

" (99)

and the following condition for the phase boundary,

0 ¼ 4a30a31a40a41 þ 4a22a
3
40 � 4a231a

2
40 � a230a

2
41:

(100)

We can also determine the ratio d0=c0 of imaginary to real
amplitudes,

d0
c0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a31a40 � a30a41

2a30a40

s ffiffiffi
"

p
: (101)

Computing the 1st order phase boundary is the most com-
plicated task. Let us decompose � into real and imaginary
parts and assume the following LO behavior in ",

� ¼ Fþ iG y ¼ "1=2x FðxÞ ¼ "F0ðyÞ;
F0ðxÞ ¼ "3=2 _F0ðyÞ GðxÞ ¼ "3=2G0ðyÞ;

G0ðxÞ ¼ "2 _G0ðyÞ:
(102)

These assumptions will be justified a posteriori once we
have constructed a consistent solution. We then get

�eff ¼
�
�a30F0

_G0 þ a30G0
_F0 þ a230

a40
G2

0 þ a40 _F2
0

�
"3

þ ða22F2
0 � a31F0

_G0 þ a31G0
_F0 þ a40F

4
0

þ a40 _G2
0 þ a41 _F2

0Þ"4: (103)

G0 can be eliminated as follows: Vary the Oð"3Þ term with
respect to G0, find the condition

G0 ¼ �a40
a30

_F0: (104)

If we insert this relation into Eq. (103), the "3 term dis-
appears after a partial integration and we are left with

�eff ¼ a340
a230

€F2
0 �

2a31a40 � a30a41
a30

_F2
0 þ a40F

4
0 þ a22F

2
0:

(105)

Here we have set the formal expansion parameter " ¼ 1
since it is not needed anymore. The coefficients may be
simplified by rescaling,

F0ðyÞ ¼ 
fð�yÞ: (106)

The choice


 ¼ 2a31a40 � a30a41
a240

� ¼
ffiffiffiffiffiffiffiffiffiffi
a30


a40

s
(107)

then yields the simpler expression

�eff ¼ N ½ðf00Þ2 � ðf0Þ2 þ f4 þ �f2� (108)

with only two residual parameters

N ¼ a40

4; � ¼ a22

a40

1


2
: (109)

Now we focus on the reduced effective action

�eff

N
¼ c eff ¼ ðf00Þ2 � ðf0Þ2 þ f4 þ �f2: (110)

As we have not been able to solve the Euler-Lagrange
equation

fIV þ f00 þ 2f3 þ �f ¼ 0 (111)

analytically, we minimize the reduced effective action with
the Fourier series ansatz

fðzÞ ¼ Xnmax

n¼0

cn cos½ð2nþ 1Þqz�: (112)

Provided we keep only one term in the sum (nmax ¼ 0),
everything can be worked out analytically with the result

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

6

s
; q ¼ 1ffiffiffi

2
p : (113)

The (spatially averaged) reduced effective action in this
approximation is given by
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hc effi ¼ � 1

96
ð1� 4�Þ2: (114)

The 2nd order phase boundary is obtained from hc effi ¼ 0
and assumes the simple form

� ¼ 1

4
: (115)

The homogeneous, massive solution in the rescaled model
is characterized by

q ¼ 0; c0 ¼
ffiffiffiffiffiffiffiffiffi
��

2

r
(116)

and has the reduced action

c hom ¼ � 1

4
�2: (117)

The 1st order phase boundary then follows from the con-
dition hc effi ¼ c hom or

� ¼ � 1

2
�

ffiffiffi
6

p
4

: (118)

Equation (118) defines the 1st order phase boundary in the
tricritical region. Since the final formulas for all coeffi-
cients and phase boundaries are quite complicated, we
have collected them in the appendix. These results have
been used to draw the tricritical behavior for 3 values of �
as shown in Fig. 6.

Truncating the Fourier series (112) after a single term
may seem too crude an approximation. Actually, if we keep
more terms and minimize the effective action numerically,
we get results which are almost indistinguishable on our
plot. To illustrate this point, we take the simpler case where

we move along the homogeneous phase boundary.
According to Eq. (109), � ¼ 0 and the reduced effective
action (110) becomes

c eff ¼ ðf00Þ2 � ðf0Þ2 þ f4: (119)

Let us minimize this action using the Fourier ansatz (112).
For nmax ¼ 0, we find the analytical result from above,

c0 ¼ 1ffiffiffi
6

p ¼ 0:408 248 290 4;

q ¼ 1ffiffiffi
2

p ¼ 0:707 106 781 2:

(120)

For larger values of nmax, the minimization has to be done
numerically. The following result for nmax ¼ 3 is sufficient
for all practical purposes,

c0 ¼ þ0:409 297 185 5 c1 ¼ �0:002 118 503 3

c2 ¼ þ0:000 003 686 1 c3 ¼ �0:000 000 006 4

q ¼ þ0:706 425 938 3: (121)

Because of the rapid convergence of the Fourier series, the
lowest order approximation (nmax ¼ 0) to fðzÞ is already
very close to the full result. Likewise, a calculation of the
spatially averaged effective action,

hc effi ¼ �0:010 416 666 7 ðnmax ¼ 0Þ
hc effi ¼ �0:010 452 628 3 ðnmax ¼ 3Þ (122)

confirms the excellent convergence.

VII. FULL PHASE DIAGRAM

So far, we have discussed only those results about the
generalized GN model that could be obtained analytically,
or at least with a minimal numerical effort. For the sake of
completeness we have also determined the full phase dia-
gram with the help of the HF approach for a number of
values of the parameter �, interpolating between the well-
known GN and NJL2 phase diagrams. As is clear from the
previous sections, for each � one needs to determine three
phase boundaries meeting at the tricritical point:
(i) The 2nd order critical line separating massless and

massive homogeneous phases, identical to the cor-
responding phase boundary in the original phase
diagram of the GN model [19]. This phase boundary
has already been discussed in Sec. VI and is given
analytically by Eqs. (84) and (85). In our case, it
connects the NJL2 critical point to the critical point
for a given value of �, Eq. (92).

(ii) The 2nd order phase boundary separating the soliton
crystal from the massless homogeneous phase which
can be determined perturbatively (i.e., treating the
potentials S; P in the Dirac-HF equation in 2nd order
perturbation theory). The numerical work here
amounts to one-dimensional numerical integrations

0
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FIG. 6. Tricritical behavior from GL theory for � ¼
0:1; 0:4; 1:0, from left to right. This figure shows how the 1st
order and 2nd order phase boundaries merge in a cusp at the
tricritical point.
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and solution of transcendental equations and can be
done easily to any desired accuracy. Moreover, an
asymptotic expression for large chemical potential
will be given in closed analytical form.

(iii) A 1st order phase boundary between crystal phase
and massive Fermi gas which requires a full numeri-
cal HF calculation. Since the technique has been set
up previously in a study of the massive NJL2 model
and is described in detail in Ref. [8], we shall be very
brief here and merely show the final results.

Consider the perturbative phase boundary between crystal
and massless Fermi gas first. The calculation is similar to
the corresponding one for the massive NJL2 model [8],
except that we may set m ¼ 0 right away. Introducing the
Fourier components S1; P1 of the HF potentials via

SðxÞ ¼ 2S1 cosð2pfxÞ; PðxÞ ¼ 2P1 sinð2pfxÞ (123)

where the Fermi momentum pf is related to the mean

fermion density as

� ¼ 1

a
¼ pf

�
; (124)

the single particle energies in 2nd order perturbation theory
read

E�;p ¼ pþ ðS1 � P1Þ2
2ðpþ pfÞ þ

ðS1 þ P1Þ2
2ðp� pfÞ ð�p> 0Þ

E�;p ¼ �p� ðS1 þ P1Þ2
2ðpþ pfÞ �

ðS1 � P1Þ2
2ðp� pfÞ ð�p< 0Þ:

(125)

The correction to the single particle contribution of the
grand canonical potential density is then given by

��SP ¼ P:V:
Z �=2

0
dpðf1 þ f2 þ f3 þ f4Þ (126)

with

f1 ¼ � pðS21 þ P2
1Þ

�ðp2 � p2
fÞ
; f2 ¼

2pfP1S1

�ðp2 � p2
fÞ

f3 ¼ pðS21 þ P2
1Þ

�ðp2 � p2
fÞ
�

1

1þ e�ðp��Þ þ
1

1þ e�ðpþ�Þ

�

f4 ¼
2pfP1S1

�ðp2 � p2
fÞ
�

1

1þ e�ðp��Þ �
1

1þ e�ðpþ�Þ

�
:

(127)

As in any HF calculation it has to be supplemented by the
double counting correction,

��DC ¼ 1

�
ðS21 þ P2

1Þ ln�þ �

�
P2
1: (128)

Carrying out the principal value integrals involving f1, f2
analytically, we arrive at the finite expression for the sum
of (127) and (128)

�� ¼ 1

�
ðS21 þ P2

1Þ lnð2pfÞ þ �

�
P2
1P:V:

Z 1

0
dpðf3 þ f4Þ:

(129)

From here on, we can proceed in the same manner as in the
previous sections, i.e., we set

�� ¼ M11S
2
1 þ 2M12S1P1 þM22P

2
1 (130)

and solve the equations

detM ¼ 0;
@

@pf

detM ¼ 0 (131)

numerically. Further simplifications occur at large�where
the asymptotic behavior of the phase boundary can be
determined analytically. Once again we take over the
corresponding formula from the massive NJL2 model [8],
merely modifying the double counting correction and
dropping the S0ð¼ mÞ piece. Setting S1 ¼ X þ y=2, P1 ¼
X� y=2, we then get

�eff ¼ 2X2

�
lnð4pfÞ þ y2

4�
ðlnðy2Þ � 1Þ þ �

�

�
X� y

2

�
2

� 2

��

Z 1

0
dp lnð1þ e��

ffiffiffiffiffiffiffiffiffiffi
p2þy2

p
Þ: (132)

Minimization with respect to X yields

X ¼ �y

4 lnð4pfÞ þ 2�
: (133)

Minimization with respect to y gives the condition

0 ¼ 2
Z 1

0
dp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ y2

p ð1þ e�
ffiffiffiffiffiffiffiffiffiffi
p2þy2

p
Þ
þ lny

þ � lnð4pfÞ
�þ 2 lnð4pfÞ : (134)

Expanding the integral in (134) for small y [20],

0 ¼ lnyþ � lnð4pfÞ
�þ 2 lnð4pfÞ � ln

�y

�
� Cþ Oðy2Þ; (135)

the asymptotic form of the phase boundary is finally given
by the expression (� � pf),

Tcrit ¼ eC

�
e�K; K ¼ � lnð4�Þ

�þ 2 lnð4�Þ : (136)

X in Eq. (133) interpolates between 0 (NJL2) and y=2 (GN)
for � ¼ 0 . . .1. Likewise, Tcrit smoothly interpolates be-
tween the known results for the NJL2 and GN model,
respectively.
In Fig. 7 we show by way of example the perturbative

phase boundary at � ¼ 1:2, together with theNJL2 (� ¼ 0)
and GN (� ! 1) model phase boundaries. The asymptotic
expression (136) is shown as the dashed curve and only
deviates from the full result below � � 1. Figure 8 repre-
sents a 3D plot of the perturbative phase boundary for 10
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values of � ranging from 0 to 10. The thick line is the
tricritcial curve. We have also drawn asymptotic behavior
according to Eq. (136) for 3 moderate values of � to
demonstrate how well this simple formula catches the
perturbative critical sheet for all values of �, starting
from � � 1.

Still missing in Fig. 8 is the critical sheet separating the
crystal from the massive Fermi gas. We recall that this
phase transition is of 2nd order in the GN model, nonexist-

ing in the massless NJL2 model and of 1st order in the
massive NJL2 model. We find that it is of 1st order in the
generalized GN model for all values of �, so that appar-
ently the phase transition becomes continuous only in the
GN limit � ! 1. Hence there is no way of determining the
critical sheet perturbatively and we need a full thermal HF
calculation. Fortunately, this can be done using the tech-
niques which have recently been developed for the massive
NJL2 model [8]. As a matter of fact, all that is needed is a
trivial modification of the double counting correction. We
therefore refer to Ref. [8] for more technical details and
immediately pass on to the results.
Let us first consider the 1st order critical line at T ¼ 0,

i.e., the baseline of the 1st order critical sheet in a 3D plot.
This is closely related to the baryon mass discussed in
Sec. IV near the chiral limit. Since we are not restricted
to small � values in the numerical HF calculation, we can
now get complementary information to the one of Sec. IV
and complete the picture about baryons in the generalized
GN model. Figure 9 shows the phase boundary at zero
temperature in the ð�;�Þ plane (the actual calculation was
done at T ¼ 0:05, but this makes no difference). Since
baryon number is 1=2 in our model, the critical chemical
potential has to be identified with twice the baryon mass
(divided by N) here. The reason is the following: The
critical chemical potential at T ¼ 0 is the amount of energy
needed to add a fermion to the vacuum. If the kinklike
baryon has mass MB and carries N=2 fermions, we get
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0.5

0.6

0.5 1 1.5 2

FIG. 7. Perturbative 2nd order phase boundary separating the
crystal from the chirally restored homogeneous phase at � ¼
1:2. Also shown are the corresponding critical lines for the NJL2

model (� ¼ 0) and the GN model (� ¼ 1). Dashed
curve: Asymptotic expression, Eq. (136). The open circles are
the tricritical points for all 3 cases.
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FIG. 8. Like Fig. 7, 3D plot for several values of � (�¼
0;0:1;0:2;0:4;0:8;1:2;2:0;3:0;5:0;10:0). Thick curve: Tricritical
line. Three curves at constant � (� ¼ 1:0; 1:5; 2:0): Asymptotic
expression, Eq. (136).
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FIG. 9. First order phase boundary separating the crystal from
the massive Fermi gas phases at T ¼ 0 in the generalized GN
model. The vertical axis may be interpreted either as critical
chemical potential or twice the baryon mass, due to fractional
baryon number 1=2 in this model. The straight line shows the
asymptotic value 2=� taken from the standard GN model.
Numerical calculations performed for a few extra points (� ¼
0:3; 0:6; 1:0; 1:6; 2:5; 4:0; 6:5; 8:0) in addition to the values men-
tioned in the caption of Fig. 8.
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�crit ¼ 2MB=N. The curve in Fig. 9 interpolates between
the massless baryons of theNJL2 model and twice the mass
of the kink in the GN model, MB=N ¼ 1=�. As shown in
Fig. 10, at small values of � the numerical HF results match
nicely onto the derivative expansion, a welcome test of
both the analytical and numerical approaches. From the HF
calculation at the phase boundary we can also extract the
shape of the self-consistent potentials for a single baryon,
now for arbitrary values of �. A typical example is shown
in Fig. 11 for the case � ¼ 2. The scalar potential has kink
shape at all �, going over into the GN model kink in the

limit � ! 1. The pseudoscalar potential is bell shaped and
gets more and more suppressed with increasing �. This is
of course just the effect of the double counting correction
term (33) where � acts like a Lagrange multiplier for P,
quenching it completely in the limit � ! 1. The other
limit, � ! 0, has already been discussed before in Sec. IV
in terms of the sine-Gordon kink with scalar and pseudo-
scalar potentials of the same amplitude.
Finally, we come to the full phase diagram as a function

of �, �, T, including the numerically determined 1st order
sheet. It is shown in Figs. 12 and 13 under 2 different
viewing angles for the sake of clarity. As explained in more
detail in Ref. [8], the phase boundary is determined by
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FIG. 10. Like Fig. 9, but blowing up the region of small � to
check the consistency between the derivative expansion of
Sec. IV (lower curve: NNNLO, upper curve: NNLO) and the
numerical HF calculation (circles).
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FIG. 11. Example of numerical baryon HF potentials at � ¼
2:0. For larger values of �, P decreases and S approaches the GN
kink (not shown).
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FIG. 13. Like Fig. 12, but different orientation for better
visibility.
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FIG. 12. Like Fig. 8, but including 1st order phase boundaries
separating the crystal from the massive Fermi gas. The curve
drawn at � ¼ 2 is the asymptotic expectation according to
Eq. (136), the baseline at T ¼ 0 is taken from Fig. 9.
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performing the HF calculation along a trajectory crossing
the critical line and comparing the grand canonical poten-
tial of the massive Fermi gas to the one of the soliton
crystal. As we know the exact location of the tricritical
point in the present case, we are even in a somewhat better
position here than in the previous study of the massive
NJL2 model.

VIII. SUMMARYAND CONCLUSIONS

In this paper, we have studied a generalization of the GN
model with two different (scalar and pseudoscalar) cou-
pling constants. This equips us with an ‘‘interpolating field
theory’’ between the well-studied massless GN and NJL2

models in a way which always keeps the discrete Z2 chiral
symmetry intact. The continuous chiral symmetry of the
NJL2 model is only recovered for equal coupling constants,
so that we now break chiral symmetry (explicitly) in a quite
different manner than via the usual fermion mass term. Our
motivation was primarily to get further insights into the
solitonic aspects of 4-fermion theories in 1þ 1 dimensions
which have been investigated intensely in recent years.

The first insight is the emergence of the dimensionless
parameter � during the process of regularization and re-
normalization, in addition to the familiar fermion mass.
The basic relations, Eqs. (16), which generalize the stan-
dard gap equation remove all divergences encountered in
subsequent applications, both in the treatment of bound
states (mesons, baryons) and in the thermodynamics of the
model. The parameter � plays a role analogous to the
‘‘confinement parameter’’ � in massive GN models. This
is particularly striking in the RPA approach to the pseudo-
scalar fermion-antifermion bound and scattering states,
where the results for the massive NJL2 model and the
generalized GN model become identical if we replace �
by �. The qualitative effect of � on the HF calculations at
zero and finite temperature is very easy to understand. It
only enters in the double counting correction to energy or
thermodynamic potential as an extra term ��

R
dxP2.

Hence it acts like a Lagrange multiplier for the pseudosca-
lar potential, leading to a complete quenching of P in the
GN limit � ! 1. Thus � may be thought of as a ‘‘chiral
quenching parameter’’ responsible for the transition from
complex condensates living on the chiral circle in theNJL2

model to the purely real condensates of the GN model.
As far as baryon structure is concerned, the most inter-

esting result is perhaps the fact that the new baryons
interpolate between the kink of the GN model and the
massless baryon of the NJL2 model, always carrying frac-
tional baryon number 1=2. This is certainly a consequence
of the fact that the generalized GNmodel still has a discrete
chiral symmetry. Indeed in the massive NJL2 model, chiral
symmetry is explicitly broken by the mass term without a
residual Z2 symmetry and one finds baryons with integer
baryon number 1. This new kind of chiral kink is different
from all known multifermion bound states in the GNmodel

family and has been determined analytically for small �
and numerically for large �.
The phase diagrams of the NJL2 and GN model look

very different, so that we were curious to see how our
theory would manage to interpolate between these two
pictures. This can now be answered most clearly by the
study of the tricritical behavior near the chiral limit, largely
analytically owing to the GL approach. The relevant pic-
ture is Fig. 5, showing a kind of ‘‘morphing’’ from GN-
type behavior to the NJL2 phase diagram with its single
straight line phase boundary. Together with the numerical
HF calculation, we are now confident that the solitonic
crystal phase is separated from the massless (massive)
Fermi gas by a 2nd (1st) order transition, respectively.
This was not clear a priori, since the transition from the
crystal to the massive homogeneous phase is continuous in
the GN model and does not even exist in the NJL2 model.
Our interpolated phase diagram also looks qualitatively
different from the one of the massive NJL2 model which
has only 2 phases (no massless phase due to explicit break-
ing of the Z2 symmetry), and where the opening angle
between the 2 phase boundaries at the tricritical point was
� rather than 0.
Initially, we had hoped that the generalized GN model

can be solved analytically for arbitrary �, since this is what
happens at the ‘‘end points’’ � ¼ 0 (NJL2) and � ¼ 1
(GN). However, this does not seem to be the case. In this
situation, the fact that our toolbox also contains the nu-
merical HF method has turned out to be a definite advan-
tage. A combination of analytical calculations and a
numerical approach gives us confidence that we have
solved and understood the model in the large N limit fairly
well. The most serious limitation at present is the fact that
our techniques are tailored to pointlike 4-fermion interac-
tions and cannot deal with gauge theories in a systematic
fashion. This is unfortunate in view of the interesting
features of, e.g., the ’t Hooft model [21] where more
analytical insights into the early [11] and very recent
[22,23] numerical HF calculations on the lattice would
be welcome.
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APPENDIX: DETAILS OF THE
GINZBURG-LANDAU APPROACH OF SEC. VI

Here we collect the detailed formulas used in preparing
Fig. 6 in Sec. VI. We first list the coefficients of the Taylor
expansion (98). Using the notation

�ðnÞðztÞ ¼ Rn þ iIn; zt ¼ 1

2
þ i~�t

2�
; (A1)

one finds
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a20 ¼ 0 a21 ¼ 0 a22 ¼ I21 � R2

4�T2
t �

2
�2 þ �

4�2Tt

� a30 ¼ � I1
8�2Tt

a31 ¼ I21 � R2

8�2T2
t �

� a32 ¼ I3 þ 4I1R2 � 2I31
16�2T3

t �
2

�2 þ 2�ðI21 � R2Þ þ R2�
2

16�3T2
t I1�

� a40 ¼ � R2

64�3T2
t

a41 ¼ 2I1R2 þ I3
64�3T3

t �
� a42 ¼ R4 � 6I1I3 � 6I21R2

128�3T4
t �

2
�2 þ 2�ðI3 þ 2I1R2Þ � I3�

2

128�4T3
t I1�

�:

(A2)

Equation (91) now reads

� ¼ 2�a230
a40

¼ � 2I21
R2

: (A3)

The scale parameters 
, � from Eq. (107) and the residual
parameter � in the effective action (110) then become,


 ¼ 8�ð2R2
2 þ I1I3Þ

�R2
2

� �2 ¼ 64�2TtI1ð2R2
2 þ I1I3Þ

�R3
2

�

� ¼ R3
2ð��2ðR2 � I21Þ � �Tt�

3Þ
4��2ð2R2

2 þ I1I3Þ2
: (A4)

2nd order phase boundary in local coordinates �, �, see

Eq. (100),

� ¼ �

Tt�
3

�
ðR2 � I21Þ �

ð2R2
2 þ I1I3Þ2
R3
2

�
�2: (A5)

1st order phase boundary,

� ¼ �

Tt�
3

�
ðR2 � I21Þ þ ð2þ ffiffiffi

6
p Þ ð2R

2
2 þ I1I3Þ2
R3
2

�
�2:

(A6)

These critical lines can easily be rotated back to the origi-
nal coordinates, see Fig. 6 for some results.
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