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We present a comprehensive, nonperturbative analytical method to investigate the dynamics of time-

dependent oscillating scalar field configurations. The method is applied to oscillons in a �4 Klein-Gordon

model in two and three spatial dimensions, yielding high accuracy results in the characterization of all

aspects of the complex oscillon dynamics. In particular, we show how oscillons can be interpreted as long-

lived perturbations about an attractor in field configuration space. By investigating their radiation rate as

they approach the attractor, we obtain an accurate estimate of their lifetimes in d ¼ 3 and explain why

they seem to be perturbatively stable in d ¼ 2, where d is the number of spatial dimensions.
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I. INTRODUCTION

Nonlinear field theories contain a large number of local-
ized solutions that display a rich array of properties [1]. Of
particular interest are those that are static and stable, that is,
that retain their spatial profile as they move across space or
scatter with each other, as is the case of sine-Gordon
solitons. The details of the solitonic configurations are, of
course, sensitive to the dimensionality of space and to the
nature of the field interactions. Long ago, Derrick has
shown that, in the case of models with just a real scalar
field, no static solitonic configurations can exist in more
than one spatial dimension [2]. Given that most models of
interest in high energy physics involve more complicated
fields in three spatial dimensions, this restriction was
somewhat frustrating. Fortunately, the subsequent explora-
tion of a variety of models led to a plethora of static,
nonperturbative, localized field configurations. Examples
include topological defects, solutions of models usually
involving gauge fields that owe their stability to the non-
trivial topology of the vacuum, such as strings and mono-
poles [3], and the so-called nontopological solitons,
solutions of models where a conserved global charge is
trapped inside a finite region of space due to a mass gap
condition, such as Q-balls [4] and the models with a real
and a complex scalar field of Friedberg, Lee, and Sirlin [5].

In the midnineties [6], a new class of localized non-
perturbative solution began to be explored in detail, after
being proposed earlier [7]. Named oscillons, such long-
lived solutions have the distinctive and counter-intuitive
feature of being time-dependent. In spite of this, the non-
linear interactions act to preserve the localization of the
energy, which remains approximately constant for a sur-
prisingly long time [8]. During the past few years, oscillons
have attracted much interest. Their properties were ex-
plored in two [9] and higher [10] spatial dimensions, in
the presence of gauge fields [11], in the standard model of

particle physics [12], and in a simple cosmological setting
[13]. There have also been detailed attempts at understand-
ing some properties of oscillon-related configurations
(typically with small-amplitude oscillations), including
their longevity, using perturbative techniques [14]. On
the other hand, a treatment explaining the remarkable
longevity of oscillons in models related to spontaneous
symmetry breaking, and thus of obvious interest in particle
physics and cosmology, has been lacking. The situation
was partially remedied recently, when we published a
preliminary treatment of the problem [15]. In the present
work, we greatly extend the range of our dynamical theory
of oscillons in scalar field models, include the details of
many key derivations, and demonstrate its accuracy in
reproducing numerical results. Our approach is general
enough to be extended to different scalar field models
that exhibit long-lived, time-dependent localized
configurations.

II. LINEARVS. NONLINEAR DYNAMICS AND THE
OSCILLON MASS GAP

In order to introduce some of the basic quantities needed
for our theory, it is instructive to start by reviewing some of
the main properties of relativistic oscillons. We will do so
in the context of a simple �4 model with a symmetric
double-well potential, as this is also the main focus of the
present work. To begin, consider the Lagrangian for a
spherically-symmetric, real scalar field in d-spatial dimen-
sions,

L ¼ cd
Z

rd�1dr

�
1

2
_�2 � 1

2

�
@�

@r

�
2 � Vð�Þ

�
; (1)

where V0ð�Þ ¼ m2�2 þ VNL, and cd ¼ 2�d=2=�ðd=2Þ is
the unit-sphere volume in d dimensions. VNL represents the
nonlinear terms to the potential, which wewill add later on.

Quantities are scaled to be dimensionless as follows: � ¼
mðd�1Þ=2�0 and r� ¼ r�0 =m. We will henceforth only use

dimensionless variables, dropping the subscript ‘‘0.’’
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We start by investigating the linear theory [VNL ¼ 0 in
Eq. (1)] so that we can more easily contrast it with non-
linear models that give rise to oscillons. Since oscillons
have been shown to maintain their approximate Gaussian-
shaped spatial profiles during their lifetimes, we will write
the scalar field as

�ðr; tÞ ¼ AðtÞPðr;RÞ ¼ AðtÞe�r2=R2
: (2)

Here, AðtÞ is the time-dependent amplitude of the configu-
ration and Pðr;RÞ its spatial profile, which is parameter-
ized by the radial extension R.

A. Linear dynamics

As shown in Ref. [8], the d ¼ 3 linear theory with a
Gaussian-profile initial condition has the solution,

�ðr; tÞ ¼ R3

2

Affiffiffiffi
�

p
Z 1

0
ke�R2k2=4 sinðkrÞ

r
cosð!tÞdk; (3)

where A is an arbitrary initial amplitude and the dispersion

relation is ! ¼ ðk2 þ!2
massÞð1=2Þ, where the mass fre-

quency !mass ¼
ffiffiffi
2

p
. To calculate �lin, the decay width

associated with the above solution, we recall that in [8] it
was also shown that Eq. (3) can be approximately inte-
grated to obtain (at r ¼ 0, the configuration’s maximum
amplitude)

�ð0; tÞ ¼ A0

ð1þ 2t2

R4 Þð3=4Þ
cos

� ffiffiffi
2

p
tþ 3

2
tan�1

� ffiffiffi
2

p
t

R2

��
; (4)

whose envelope of oscillation is given by �ð0; tÞ ¼
A0=ð1þ 2t2=R4Þ3=4, which reaches 1=e of its initial value
in a time given by T linear ’ :836!massR

2. This yields the
linear decay width �lin,

1

2
�lin ¼ 1

T linear

’ 1:196

!massR
2
’ :846

R2
: (5)

In the linear theory, any initial configurationor excitation
above the vacuum-will quickly decay by emitting radia-
tion. The key difference between the linear and the
oscillon-supporting nonlinear models is that, in the latter
case, the decay modes are strongly suppressed. It is this
suppression that gives rise to the oscillon’s remarkable
longevity. Our goal in this paper is to make this statement
quantitatively precise. To obtain the linear radiation distri-
bution, which we denote by bð!Þ, we simply take the

k-space representation ke�R2k2=4 of the Gaussian in
Eq. (3) and express it in terms of ! using the dispersion

relation ! ¼ ðk2 þ 2Þð1=2Þ:
bð!Þ ¼ k½!�e�R2k½!�2=4 ¼ ð!2 � 2Þð1=2Þe�R2ð!2�2Þ=4: (6)

bð!Þ is a lopsided distribution with frequencies above

!mass ¼
ffiffiffi
2

p
and peaked at !max ¼ ð2þ 2=R2Þ1=2. Now

define !left and !right to be the frequencies where the

distribution bð!Þ rises to half of its peak value. A straight-

forward calculation gives !left ’ ð2þ :203=R2Þð1=2Þ and

!right ’ ð2þ 7:38=R2Þð1=2Þ. The radiation distribution is

then approximately centered on the frequency !lin, given
by (see Fig. 1)

!lin � 1

2
ð!left þ!rightÞ

’ 1

2

�
2þ :203

R2

�ð1=2Þ þ 1

2

�
2þ 7:38

R2

�ð1=2Þ
; (7)

which we take to represent the dominant linear radiation
frequency.

B. Nonlinear dynamics and decay rate

Imagine now that one or more nonlinear terms are added
to the linear potential and that the field is again initialized
with the same localized Gaussian perturbation. Roughly
speaking, the nonlinearities will shift the dominant linear
oscillation frequency !lin, to a new value, denoted by !nl.
If the added terms serve to decrease the curvature of the
potential, then !nl <!lin. Such a situation is depicted
qualitatively in Fig. 1, where the arrow indicates how the
shift in frequencies occurs.
When nonlinearities are efficient enough that !nl is

lowered substantially below !lin, an oscillon may form.
The reason for this is the following. As the initial field
configuration begins to oscillate, it will attempt to emit
small-amplitude radiation waves in an effort to dissipate its
energy. However, if !nl is sufficiently less than !lin, the
bulk of the frequency components composing the oscilla-
tion will be unable to excite small-amplitude radiation
waves (since the configuration can only radiate appreciably
in the frequency range !left <!<!right). This condition

leads to the stabilization mechanism responsible for the
formation of oscillons.

FIG. 1. Schematic description of the linear radiation peak
centered on !lin being shifted to the left by the presence of
nonlinearities. An oscillon will form if the peak is shifted far
enough into the nonlinear region such that it no longer overlaps
significantly with the linear peak.
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It then follows that the oscillon will enter the nonlinear
regime if the two peaks in Fig. 1 do not significantly
overlap. Mathematically, the right ‘‘edge’’ of the nonlinear
peak, given by !nl þ 1

2 �nl, must be less than the left edge

of the linear peak, given by !lin � 1
2 �lin. Therefore, we

have !nl þ 1
2 �nl <!lin � 1

2 �lin which, by defining !gap �
!lin �!nl as the frequency gap between the linear and
nonlinear peaks, becomes

!gap >
1

2
ð�nl þ �linÞ: (8)

Since nonlinearities tend to increase a configuration’s life-
time and thus decrease its decay rate, it follows that 0 �
�nl � �lin. One can thus state that if

!gap > �lin; (9)

then the configuration will be forced into the nonlinear
regime. In other words, Eq. (9) is a necessary condition for
the formation of an oscillon. As we will soon see, if an
oscillon is formed and, during the course of its time evo-
lution, reaches a point where Eq. (9) is no longer satisfied,
it will cease to exist. This implies that oscillons decay
when

!gap ¼ �lin: (10)

To obtain the nonlinear radiation frequency!nl and thus
!gap, we substitute Eq. (2) into Eq. (1) and integrate, giving

L ¼
�
�

2

�ðd=2Þ
Rd

�
1

2
_A2 � VðAmaxÞ

�
;

E ¼
�
�

2

�ðd=2Þ
RdVðAmaxÞ;

(11)

where VðAÞ now includes nonlinear terms and E is the
energy which is found by taking the appropriate Legendre
transform of the Lagrangian and evaluating it at the upper
turning point of an oscillation, Amax. The oscillation fre-
quency of the oscillon, !nl, at a given time is given by

2�

!nl

¼ T osc ¼
Z T osc

0
dt ¼ 2

Z Amin

Amax

dA
_A
; (12)

where _A ¼ ½2E=cR � 2VðAÞ�1=2, cR � ð�=2Þd=2Rd, and
Amin is given by VðAminÞ ¼ VðAmaxÞ.

C. The attractor point

Results from numerical simulations suggest that there
exists an attractor point in configuration space to which the
oscillon tends. It was noted in [15] that one can obtain the
energy of this attractor point (in �4 models) by finding the
minimum energy which has the property that the effective
potential VðAÞ possesses at least one point for which
V 00ðAÞ � 0. In order to compute the attractor point, it is
easier to work within a specific model. Choosing V0ð�Þ ¼
�2 ��3 þ�4=4, we obtain, using Eq. (2) and integrating
over all space,

VðAÞ ¼
�
1þ d

2R2

�
A2 �

�
2

3

�ðd=2Þ
A3 þ A4

2ððdþ4Þ=ð2ÞÞ ; (13)

and

V 00ðAÞ ¼
�
2þ d

R2

�
� 6

�
2

3

�ðd=2Þ
Aþ 3

A2

2ðd=2Þ
: (14)

Equate this to zero and solve for R as a function of A. Then
substitute the result into Eq. (11) to eliminate R, yielding
energy as a function only of A. This curve possesses a
minimum, shown in Fig. 2 for d ¼ 3, the energy of which
yields the correct attractor energy E1 of the oscillon,
which has numerical values E1 ’ 4:44 in d ¼ 2 and E1 ’
37:69 in d ¼ 3.
Given the energies calculated above, there is a locus of

points in ðA; RÞ parameter space (the thinner solid lines in
Figs. 3 and 4) which possess these asymptotic values for
the energy; one of them is the attractor. To locate the
attractor point, we need to determine its amplitude coor-
dinate, denoted A1. In d ¼ 2, this is most easily deter-
mined numerically to be A1 ’ :3. In d ¼ 3, we cannot
determine A1 numerically since the oscillon decays before
reaching it. Therefore, in d ¼ 3, we must estimate A1
analytically. To do this, we choose the point (satisfying
E ¼ E1) which has!nl ’ !mass, even though, in reality, its
frequency is slightly less than!mass (never above it). As we
will see, this approximation will suffice for our purposes.
From Eq. (12), the amplitude which gives !nl ’ !mass (in
d ¼ 3) has numerical value A1 ’ :456.
Given the pair ðA1; E1Þ ’ ð:456; 37:69Þ in d ¼ 3 and

ðA1; E1Þ ’ ð:3; 4:44Þ in d ¼ 2, we can use Eq. (11) to
obtain R1. We obtain R1 ’ 4:79 for d ¼ 3, and R1 ’
5:77 in d ¼ 2. The circles in Figs. 3 (d ¼ 3) and 4 (d ¼
2) mark the locations of the attractor points.
Given Eqs. (5), (7), and (12) (and their equivalents in

d ¼ 2 shown in Appendix A), we can also calculate the
quantities in Eq. (9), that is, the oscillon existence condi-
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FIG. 2. Minimum oscillon energy as a function of core ampli-
tude for a double-well potential in d ¼ 3. The minimum of this
curve is the attractor point with E1 ’ 37:69.
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tion, as a function of the parameter pair ðA; RÞ. In Figs. 3
(d ¼ 2) and 4 (d ¼ 3), the thicker continuous lines repre-
sent the locus of points satisfying !gap ¼ �lin, defining the

boundary line between the region where oscillons may
exist (above the line, and provided that E> E1) and where
they cannot exist (below the line). We will often refer to
this boundary as the ‘‘line of existence.’’ As a test of the
existence condition [Eq. (9)], we also plot the numerical
result for the ‘‘minimum radius’’ as a function of amplitude
(dashed line), found by pinpointing the minimum initial
radius which causes a configuration to live longer than the
linear decay time. The arrows in Figs. 3 and 4 indicate the
values of the minimum radii calculated in [8] which pos-
sess no amplitude dependence and thus provide only lim-
ited information.
As can be seen, the attractor point in d ¼ 3 lies below

the line of existence curve, explaining the finite lifetimes of
oscillons in that system: the configurations decay before
reaching the attractor point. On the other hand, the attractor
point in d ¼ 2 lies above the curve, explaining the seem-
ingly infinite oscillon lifetimes observed in numerical
simulations. We can thus interpret the oscillons as time-
dependent perturbations about the attractor point. Those in
d ¼ 3 are unstable, albeit some can be extremely long-
lived. Those in d ¼ 2 are at least perturbatively stable.
In situations such as d ¼ 3, where oscillons eventually

decay, it is interesting to compute their lifetimes and how
they depend on their radiation rate. In a recent work, we
presented the basic features of a method designed to do so
[15]. In the next section, we develop the appropriate for-
malism in detail, based on the overlap between the non-
linear and linear radiation spectra. We point out that our
formalism is, in principle, applicable to any time-
dependent scalar field configuration, offering a much-
needed handle on how to compute radiation rates of non-
perturbative configurations in relativistic scalar filed
theories.

III. LIFETIME OF LONG-LIVED OSCILLONS:
GENERAL THEORY

In the situation that !gap > �lin and an oscillon has

formed (above the solid curve in Fig. 4) it will begin to
radiate small amounts of energy. In this section, we will
derive a general equation governing its radiation rate so
that, in the event that !gap ¼ �lin and the oscillon decays,

we may calculate its lifetime. As in the previous section,
our general approach will be to compute the overlap be-
tween the nonlinear peak and the linear peak. Since we are
assuming that !gap > �lin � �nl for a long-lived oscillon,

this overlap will be small; the amount by which it differs
from zero will determine the radiation rate.
In Fig. 5, we plot a possible frequency distribution for an

oscillon (the width of the peak centered on !nl has been
greatly exaggerated for visibility) in units of the mass

frequency (!mass ¼
ffiffiffi
2

p
). Note how the tail of the distribu-
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FIG. 4. The thick solid line represents the locus of points
satisfying the condition !gap ¼ �lin in d ¼ 3 (line of existence)

calculated analytically. The thin solid line represents the locus of
points that have the attractor energy E ’ 37:69. The dashed line
is the numerical minimum radius based on Gaussian initial
configurations. The arrow indicates the value of the (constant)
minimum radius calculated in [8]. Oscillons can only exist if
their core amplitude and average radius are above the curve
(wherein E � E1 is automatically satisfied). The circle repre-
sents the location of the attractor point; since it lies below the
line of existence, oscillons will not be absolutely stable in this
system.
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FIG. 3. The thick solid line represents the locus of points
satisfying the condition !gap ¼ �lin in d ¼ 2 (‘‘line of exis-

tence’’) calculated analytically. The thin solid line represents
the locus of points that have the attractor energy E ’ 4:44. The
dashed line is the numerical minimum radius based on Gaussian
initial configurations. Oscillons can only exist if their energy
E � E1 and if they have a core amplitude and average radius
lying above the line of existence. This is why the numerically
measured minimum radius follows the line of existence for A *
1 but follows the line of minimum energy for A & 1. The arrow
indicates the value of the (constant) minimum radius calculated
in [8]. The circle represents the location of the attractor point;
since it lies above the line of existence, oscillons will be
perturbatively stable in this system.
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tion ‘‘leaks’’ beyond the mass frequency. It is this leakage
that will determine the radiation rate and thus the decay
rate of the oscillon.

A. The long-lived oscillon radiation equation

In order to compute the oscillon decay rate, we model
oscillons as spherically-symmetric objects whose radiation
obeys a distribution (amplitude per unit frequency) �ð!Þ
which consists of a narrow peak of width � centered at
some frequency!rad. The radiation flux� (energy per unit
time per unit surface area) emitted by such an object is

� � � _E

S
’ �v ’ 1

2
A2!2

rad

!rad

krad
’ 1

2
�2�ð!radÞ2 !

3
rad

krad
;

(15)

where S is the surface area of the oscillon, � is the
radiation-wave energy density, v ¼ !rad=krad is the phase
velocity of the wave, krad is the wave number, andA is the
amplitude of the radiation wave, which is given by

A ¼
Z 1

!mass

�ð!Þd! ’ �ð!radÞ�: (16)

The function �ð!Þ, which represents the amplitude per
unit frequency of the radiation wave, is simply determined
by the ‘‘overlap’’ between the oscillon and the linear
radiation peaks. Taking �ð!Þ (the overlap function) to
be the product of the nonlinear peak and the linear radia-
tion distribution bð!Þ obtained in the previous section, we
have

�ð!Þ ¼ �F ð!Þbð!Þ; � F ð!Þ~bð!Þ; (17)

whereF ð!Þ is the nonlinear peak (Fourier transform of the

oscillon’s core). � is a proportionality constant to be

determined, and ~b � �bð!Þ. The inset in Fig. 5 shows a
typical overlap function for an oscillon in d ¼ 3. (See
Appendix C for details.) In Appendix B we show that, in
the tail,

F ð!Þ ’ �
ffiffiffiffi
2

�

s
_A

1þ �
ð!�!nlÞ�2: (18)

Combining Eqs. (15), (17), and (18) and letting S ¼
cdR

d�1, we have

�
dE

dt
þ

�
dA

dt

�
2 ¼ 0; (19)

where � is a time-dependent parameter given by

� � �ð1þ �Þ2ð!rad �!nlÞ4krad
cdR

d�1!3
rad�

2 ~bð!radÞ2
: (20)

Equation (19) is a differential equation which must be
satisfied by a long-lived oscillon. In Appendix C, we
compute both � and � in general and in the context of
the model of Eq. (1).

B. Integration of the long-lived oscillon radiation
equation

In this section, we will attempt to integrate Eq. (19) to
obtain the oscillon energy as a function of time. This
process is not straightforward since Eq. (19) contains
derivatives of two different quantities (amplitude and en-
ergy) and the parameter � possesses a complicated time
dependence which is not known. However, in Appendix D
we develop a simple method to solve this problem, based
on the assumption that the time scale associated with the
oscillon’s loss of energy is closely related to the time scales
associated with the rates of change of all other oscillon
parameters. The result of our approach is Eq. (D4), which
we will employ below.
First, write Eq. (D4) for the cases X ¼ A and X ¼ � and

substitute into Eq. (19), obtaining,

_E ¼ �1

�2
A	

2
A

½�1 þ 	�ðE� E1Þ���ðE� E1Þ2�2�A : (21)

Now, consider the situation where �1 ’ 0 (which is the
case in the system we are studying here since, in d ¼ 3, the
attractor point satisfies !nl ’ !mass, leading to !rad ’
!mass, which causes � to be zero there). In this situation,
Eq. (21) is somewhat simplified:

_E ¼ �	 _EðE� E1Þ� _E ; (22)

where the constant 	 _E is given by

	 _E � 	�

�2
A	

2
A

; (23)

and the exponent � _E is (using that ½ _E�1 ¼ 0)

0.96 0.98 1 1.02 1.04

Frequency

0.98 1 1.02 1.04 1.06 1.08 1.1

FIG. 5. Schematic of an oscillon frequency distribution show-
ing the tail penetrating the radiation region. The graph is plotted
in units of !mass. In the inset we show a close-up view of F ð!Þ
and bð!Þ, respectively, (dashed lines), and their product �ð!Þ
(solid line) for the system given by Eq. (1) in d ¼ 3 for typical
values of the various parameters. Note that the curves have been
vertically scaled so that all are visible on the same graph.
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� _E ¼ 2ð1� �AÞ þ ��: (24)

Equation (22) is a constant-coefficient, ordinary differen-
tial equation governing the oscillon energy as a function of
time, and can be easily integrated:

EðtÞ ¼ E1 þ Ei � E1
½1þ 	 _EgðEi � E1Þgt�ð1=gÞ

; (25)

where g � � _E � 1 and Ei is the energy at t ¼ 0. Equa-
tion (25) is the energy of an oscillon as a function of time.

As shown in Fig. 4, in d ¼ 3 an oscillon will always
decay before reaching E ¼ E1. The decay is quite sudden,
a burst of scalar radiation. As stated in Sec. II, this occurs
when !gap ¼ �lin; hence the decay energy, denoted ED, is

given by

ED ¼ Ej½!gap¼�lin�: (26)

To calculate the lifetime, denotedT life, which is defined
as the amount of time taken for the oscillon to decay from a
sufficiently high initial energy down to ED, we invert
Eq. (25) to yield time as a function of energy and evaluate
at ED:

tðEDÞ ¼ 1

	 _Eg

�
1

ðED � E1Þg �
1

ðEi � E1Þg
�
: (27)

When Ei � E1 � E� E1, the function tðEÞ tends to a
finite, maximum value leading to

T life ¼ 1

	 _Eg

1

½ED � E1�g : (28)

This means that, when the initial energy Ei is much larger
than the energy ED in question, the time it takes for EðtÞ to
fall from Ei to ED becomes independent of the initial
condition (i.e., from Ei). One can then say that, in a
restricted sense, the long-lived oscillon is decoupled from
initial conditions: if the necessary conditions for its exis-
tence are satisfied, a variety of initial configurations will
approach an oscillon. Recent studies that have observed the
emergence of oscillons from stochastic initial conditions
after a fast quench offer strong support for this claim [16].

Equations (26) and (28) together give the lifetime of an
oscillon and can be considered the main results of this
paper. Before moving on, we note that, for a long-lived
oscillon, �nl is given by

�nl � �A ¼ �
_A

A� A1
¼ ��A

_E

E� E1
¼ �A	 _EðE� E1Þg; (29)

where we have used Eqs. (B9), (D3), and (22). This is
related to the lifetime by [combine Eqs. (28) and (29)]

T life ¼
�
�A

g

�
��1
nl jE¼ED

: (30)

C. Sample calculation: �4 Klein-Gordon field in d ¼ 3

We now apply the above results to the system given by
the Lagrangian in Eq. (1) for d ¼ 3, supplemented by the
nonlinear potential of Eq. (13). We will begin with the
existence condition shown in Fig. 4. In Sec. II C, we
calculated the coordinates of the attractor point and ob-
tained ðA1; R1Þ ’ ð:456; 4:79Þ. Comparison with Fig. 4
reveals that the attractor point lies below the curve, and
thus that !gap=�lin < 1 there. As we noted before, stable

oscillons will not exist in this model. However, there are
still long-lived oscillons obtained by initializing the field
sufficiently far from the attractor point.
As these structures radiate energy, their amplitude A and

radius R will change in time. Hence, they will trace out
trajectories in the ðA; RÞ plane of Fig. 4, all of which will
eventually intersect the line of existence. To calculate these
trajectories, begin by writing Eq. (D4) for AðtÞ and RðtÞ,
obtaining ½AðtÞ � A1� ¼ 	A½EðtÞ � E1��A and ½RðtÞ �
R1� ¼ 	R½EðtÞ � E1��R , respectively. Substituting the
first into the second to eliminate the energy, we obtain

RðtÞ ¼ R1 þ 	RA½AðtÞ � A1��RA ; (31)

where 	RA � 	R=	
�RA

A and �RA � �R=�A. Note that when

A ¼ A1, R ¼ R1.
Since each possible trajectory will intersect the line of

existence, every point along the line of existence is a point
along some trajectory. Thus, we can choose an arbitrary
point on this line (which we will call the ‘‘reference
point’’) and use its coordinates, labeled ðAr; RrÞ, to calcu-
late all of the dynamical exponents (�A, �R, � _E, �!, ��,

etc.) associated with the trajectory that intersects that point.
Equation (D12), reproduced below, was evaluated numeri-
cally for X ¼ � _E and X ¼ �A, respectively:

�X ¼ ð2þ @
�
@
E

Þ @
X@
E
þ ð@
�@
A

� 2Þ @
X@
A

ð2þ @
�
@
E

Þ : (32)

Figure 6 shows the results for the exponents g � � _E � 1
(top curve) and �A (bottom curve) as a function of Ar.
Given values for �X, we can calculate 	X by evaluating

each side of Eq. (D4) at the reference point (wherein X
assumes the value Xr ¼ X½Ar; Rr�) and solving for 	X,
obtaining

	X ¼ Xr � X1
ðEr � E1Þ�X

: (33)

Figure 7 shows the results of such a calculation for 	 _E (top
graph) and 	A (bottom graph).
Having computed �X and 	X for the parameters A and R

allows us to calculate the coefficients in Eq. (31) for each
trajectory [i.e., compute Eqs. (32) and (33) for various
reference points along the line of existence]. The result
of this is shown in Fig. 8 for selected trajectories. Note that
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they all asymptotically tend toward the attractor point but
intersect the line of existence before doing so.

As an example, consider the trajectory which intersects
the line of existence at Ar ’ :92 [this will be shown to
correspond to the longest-lived oscillon in the system of
Eq. (1)]. From Figs. 6 and 7, we have g ’ 2:67 and 	 _E ’
2:0� 10�6. If this oscillon were initiated at an energy of
Ei ’ 82:5 (which will be the case for the numerical simu-
lation we will be comparing to), then Eq. (25) for that

oscillon becomes

EðtÞ ’ 37:69þ 44:8

½1þ ð:136Þt�:375 ; (34)

which, for times t * 100 is approximately

EðtÞ � E1 ’ 94:77

t:375
: (35)

Since the decay energy for this oscillon is ED ¼ Er ¼
ErðAr; RrÞ ’ 41:0963, Eq. (28) yields

T life ’ 1

½2:0� 10�6�½2:67�
1

½41:10� 37:69�2:67 ’ 7100:

(36)

Given Eq. (34), we can write, for example, an expression
for the oscillon amplitude as a function of time. From
Figs. 6 and 7, we have �A ’ :67 and 	A ’ :21. Com-
bining this information with ½A� A1� ¼ 	A½E� E1��A

and Eq. (34), we have

AðtÞ ’ :456þ 2:58

½1þ ð:136Þt�:249 : (37)

Carrying out the above calculations for several trajecto-
ries along the line of existence and plotting the lifetime vs
Ar, Rr, and Er, results in Figs. 9 and 10, respectively.
Figure 9 shows the analytical decay amplitude and radius
as a function of lifetime (dashed lines) plotted against
several long-lived and short-lived oscillons, with excellent
agreement: oscillons decay as they cross the coordinates
specified by the line of existence. Figure 10 shows the
computed lifetime as a function of decay energy (ED ¼
Er), reproducing the maximum lifetime on the order of 104

which is characteristic of oscillons in this system. The
figure compares the analytical computation of lifetime
(continuous line) with the numerical results (dashed
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line). The small disparity in the center of the peak (of order
�6%) is probably due to the Gaussian ansatz we use to
describe oscillon configurations.

As was done in Eqs. (34) and (37), our method allows us
to investigate an oscillon evolving along a particular tra-
jectory in detail. As an example, we consider the longest-
lived oscillon in this model, obtained with the initial pa-
rameters (A0 ¼ 2; R0 ¼ 2:86Þ. Using the information from
the curve in Fig. 10, we can find the trajectory whose
lifetime corresponds to this oscillon (T life ’ 7100),
marked as the thicker line in Fig. 8 [the coordinates of

the reference (or decay) point are Ar ’ :92 and Rr ’ 3:25].
We then use Eqs. (32) and (33) to calculate �X and 	X for
any parameter of interest. Then, combining these values
with Eqs. (25) and (D4), we can compute the amplitude
[Eq. (37)], radius, frequency, energy Eq. (34)], and radia-
tion rate as functions of time and compare the results with
the numerical values. The results are plotted in Figs. 11–
13, showing excellent agreement. We can also plot the
theoretical prediction for the trajectory of this oscillon in
the ðA; RÞ plane (shown by the thicker line in Fig. 8), and
compare it to the numerical value, as shown in Fig. 14.
In the next section, we will complete the characteriza-

tion of this system by deriving an expression for the
frequency of the superimposed oscillation observed in,
for example, Fig. 9, which seems to be connected with
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FIG. 10. Oscillon lifetimes vs decay energy ED ¼ Er. Solid
curve is theoretical, dashed line is numerical. The theoretical
curve (with an error of �6% in the horizontal positioning of the
peak) correctly predicts the shape of the distribution and that
there exists a maximum lifetime in this system on the order of
�104.
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the oscillon decay process: the larger the amplitude of the
superimposed oscillation, the shorter the lifetime.

IV. ANALYSIS OF OSCILLON STABILITYAS A
FUNCTION OF TIME

Recall from the first chapter that the three conditions
representing an oscillon before decay, at the point of decay,
and after decay, respectively, are:

!gap > �lin; !gap ¼ �lin; !gap < �lin: (38)

In this section, we seek to investigate the concept of
oscillon stability in more depth. In doing so, we will obtain
a more general formulation of Eq. (38) which will provide
a precise measure of the oscillon’s stability when !gap �

�lin. We will then see that an expression for the frequency
of the superimposed oscillation seen in Fig. 9, which is
clearly related to stability, will naturally emerge.
In deriving the equations governing the radiation rate

and lifetime in the previous sections, we made the simpli-
fying assumption that the oscillons under study are long-
lived. Mathematically, this assumption is employed in
approximating the series expansion in Eq. (B7) by its first
term, yielding Eq. (B8). The more stable the oscillon, the
smaller a given term in the series expansion will be relative
to the term before it.
Let 
n denote the magnitude of the nth term in the series

of Eq. (B7). In this section, instead of assuming that 
n �

nþ1, we will compute the fractional difference between
two adjacent terms and take the result to be a natural
measure of the stability of the oscillon.
Define the (dimensionless) stability function� from two

adjacent terms in the series of Eq. (B7) as

� � 
n � 
nþ1


n

: (39)

When the oscillon is highly stable, 
n � 
nþ1, and � !
1; conversely, as 
nþ1 ! 
n [causing the series in Eq. (B7)
to fail to converge] then � ! 0. In Appendix E [see
Eq. (E7)] it is shown that, for any value of n,

� ¼ 1�
�
�nl

!gap

�
2
: (40)

Equation (40) is referred to as the stability function; as
would be expected, it involves the ratio between !gap and

�nl. Using Eq. (29) for �nl, we can plot Eq. (40) for the
longest-lived oscillon [using Eqs. (32) and (33)]. This is
shown in the top graph of Fig. 15. The extreme closeness of
� to unity for most of the oscillon’s life, when compared to
Eq. (39), verifies that we are quite justified in assuming

n � 
nþ1.
The minimum stability allowed at a given time, �min, is

attained when �nl is at its maximum, namely, when �nl ¼
�lin,
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FIG. 13. Comparison of theoretical (continuous line) vs nu-
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conditions (A0 ¼ 2, R0 ¼ 2:86), showing excellent agreement.
The inset, which is plotted on a log scale, makes it clear that the
theory correctly reproduces the rapid initial drop in radiation rate
over many orders of magnitude; the linear scale on the larger
graph shows that the theory correctly reproduces the extremely
small (but finite) radiation rate towards the end of the oscillon’s
life [ðAr; RrÞ ’ ð:92; 3:25Þ].
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FIG. 14. Comparison of theoretical trajectory (solid curve) vs
numerical trajectory (dashed curve) for the longest-lived oscillon
(A0 ¼ 2, R0 ¼ 2:86), showing very good agreement during the
more stable phase of the oscillon’s life (A & 1:5). The great
increase in density of data points in the dashed line in the range
:9 & A & 1:5 is due to the prolonged period of time spent in this
region by the oscillon (i.e., the ‘‘plateau’’ phase). The end point
where the dashed line again becomes dashed (A ’ :9, R ’ 3:2)
signals the numerical decay point of the oscillon. The thick
segment of the solid line highlights the portion of the theoretical
trajectory during the low-radiation plateau phase; the end of the
thick segment ðAr; RrÞ ’ ð:92; 3:24Þ marks the theoretical decay
point, showing very good agreement. It is interesting to note that,
even after the oscillon decay at A ’ :9, the remaining field
configuration continues to tend to the attractor point at
ðA1; R1Þ ’ ð:456; 4:79Þ, as does the theoretical curve.
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�min ¼ 1�
�
�lin

!gap

�
2
: (41)

Now note that the conditions in Eq. (38) can be written
in terms of �min as

�min > 0; �min ¼ 0; �min < 0; (42)

respectively. In the bottom graph of Fig. 15, we plot �min

for the longest-lived oscillon [again, using Eqs. (32) and
(33) and with �lin given by Eq. (5)].

It is clear that one can interpret the stability � as a
measure of the radiation rate of the oscillon: the radiation
rate decreases in time, so the stability increases. On the
other hand, �min measures the resistance of the oscillon
against spontaneous decay: as the oscillon evolves and
approaches the line of existence, this kind of stability
decreases.

We will now write the conditions in Eqs. (38) and (42) in
a third and final form. First, observe that we can write �min

as

�min ¼
�
!mod

!gap

�
2
; (43)

where

!mod �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

gap � �2
lin

q
: (44)

In terms of !mod, the conditions in Eq. (42) become

!mod 2 <;� 0; !mod ¼ 0; !mod 2 =; (45)

respectively. In other words, if we consider the quantity
BðtÞ � ei!modt, then the real part of BðtÞ before the decay, at

the decay point, and after the decay are

BðtÞ ¼ cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

gap � �2
lin

q
tÞ; BðtÞ ¼ 1;

BðtÞ ¼ e	�lint;
(46)

respectively, where the last condition follows since, after
the decay is initiated,!gap tends to zero, making!mod tend

to 	i�lin.
Therefore, we can conclude that !mod is a special fre-

quency associated with the decay of the oscillon whose
value decreases in time and, at a certain point, becomes
imaginary, signaling the oscillon’s final demise with time
scale on the order of the linear decay width [Eq. (46)]. In
fact, as mentioned previously, such a phenomenon is com-
monly observed in, for example, Fig. 9. Specifically, there
exists a modulation oscillation whose frequency tends to
decrease as time progresses, until, at a certain point, the
oscillon decays with width ��lin.
In Fig. 16, we plot the period

T decay � 2�

!mod

¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

gap � �2
lin

q ; (47)

along with the numerically measured period of the super-
imposed oscillation. As shown, T decay quite accurately

reproduces this frequency.
In conclusion, we now have three separate (yet equiva-

lent) formulations of the condition for oscillon decay. The
first says that the nonlinear and linear peaks must signifi-
cantly overlap [Eqs. (38)]. The second says that the mea-
sure of oscillon stability must fall to zero [Eqs. (42)]. The
last states that the modulation frequency !mod must be-
come imaginary [Eqs. (45)].
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FIG. 15. The top graph shows the theoretical calculation of �
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FIG. 16. The solid curve is the theoretical calculation of
T decay for ðAr; RrÞ ’ ð:92; 3:25Þ. The dashed curve is the nu-

merically measured period of the superimposed oscillation,
showing very good agreement.
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V. THE FOUR OSCILLON TIME SCALES

We will now review the four time scales associated with
oscillons encountered in our theory. They are:

T relax ¼ �E� E1
_E

¼ 1

	 _E½E� E1�g ¼ ��1
E ; (48)

T decay ¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

mod � �2
lin

q ; (49)

T linear �!massR
2; (50)

T osc ¼ 2�

!nl

: (51)

The first,T relax, is the relaxation time of the oscillon and
is typically the longest time scale present. This is the time
scale over which the oscillon experiences significant
change. Its net value expresses the inverse rate of energy
radiation, being thus largest where the oscillon radiates the
least, as can be seen from the flatness of curves such as
those in Fig. 11 and 12. This is linked to the lifetime by

T life ¼ 1

	 _Eg

1

½ED � E1�g

¼ 1

g
T relaxjE¼ED

�T relaxjE¼ED
:; (52)

where we have used Eq. (28) and the fact that the dynami-
cal exponents are typically of order unity (see Fig. 6).

The second time scale, T decay, is the period of the

superimposed oscillations seen in the oscillon as a result
of its motion towards the line of existence. The third is the
decay time of an object in the linear theory [8]. The fourth,

and shortest time scale, is the oscillation period of the
oscillon.
The theoretical values of the four time scales are plotted

in Fig. 17 vs time for the longest-lived oscillon. Note how,
together, they span many orders of magnitude. It is the
presence of these four widely different time scales in one
single system that makes oscillons such intriguing objects
to study.

VI. CONCLUSIONS AND OUTLOOK

In this work, we expanded upon and improved our
method to compute analytically the decay rate and lifetime
of oscillonlike configurations [15]. Our approach relies on
the comparison between the radiation spectrum of the
nonlinear, oscillon-bearing, model and its linear limit.
The radiation ultimately responsible for the oscillon decay
is related to the overlap between the two spectra: the larger
the overlap, the faster the decay. We have shown that in
both d ¼ 2 and d ¼ 3 there is an attractor point in field
configuration space and that oscillons may form as con-
figurations evolve toward that point. In d ¼ 3, we may
think of oscillons as unstable but very long-lived perturba-
tions about the attractor point. In d ¼ 2, oscillons may be
considered as perturbatively stable perturbations about the
attractor point. All oscillon configurations are shown to
migrate toward the attractor point as they evolve in time.
However, in d ¼ 3 this point lies below the oscillon’s line
of existence, and no oscillons in the models analyzed here,
double-well potentials, are absolutely stable. It remains to
be seen if it is possible to find models in d ¼ 3 where
oscillons are perturbatively stable. In d ¼ 2, the situation is
different: the attractor point lies within the oscillon region
and our theory predict that they should be at least pertur-
batively stable or exceedingly long-lived. We can thus
interpret the oscillons in symmetric double-well potentials
as special types of perturbations about the attractor point:
those in d ¼ 3 are unstable but can be very long-lived,
while those in d ¼ 2 are perturbatively stable. Comparison
with numerical results show that our method provides a
very good quantitative description of these configurations.
We remark that there are very few examples in the litera-
ture where analytical results provide a good description of
time-dependent, nonperturbative phenomena in relativistic
field theories in d > 1. We have also obtained a precise
criterion to establish the stability of these configurations, as
encapsulated in the oscillon stability function of Eq. (41).
It should be borne in mind that the assumptions used in

this paper, although quite general, limit the applicability of
the theory. First, it is known that the oscillon solution is not
an exact Gaussian. Therefore, given that all quantitative
predictions made by the theory are based on the Gaussian,
all results will possess a slight error. The exact nature of
this error is difficult to quantify; however, it should be
small given that the oscillon (in the models studied here)
is known to be well approximated by a Gaussian. Another
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FIG. 17. The four oscillon time scales plotted over time. From
top to bottom we have plottedT relax,T decay,T linear, andT osc. It

can clearly be seen here that an oscillon is an object governed by
multiple time scales spanning many orders of magnitude.
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limitation of the theory lies in Eq. (D4). In the models
studied in this paper, the core amplitudes of oscillons with
shorter lifetimes oscillate with large amplitude about their
mean value. (See, e.g., Fig. 9.) Since the energy EðtÞ does
not oscillate, it follows that it is not possible to state, for
example, that AðtÞ � A1 ¼ 	AðE� E1Þ�A , when the os-
cillation amplitude of the superimposed oscillon (or of the
radius, RðtÞ) is large. Thus, our theory cannot make accu-
rate predictions of the time dependence of individual pa-
rameters for oscillons which are relatively short-lived.

Given the generality of our method, we expect it to be
extendable to many other models. For example, a simple
next step would be to apply it to oscillons in asymmetric
double-well potentials, where their longevity is expected to
increase [6]. We currently are searching for models where
oscillons in d ¼ 3 may have an attractor point above the
line of existence. The relative location of the attractor point
with respect to the line of existence should serve as a
general criterion to determine the longevity of time-
dependent scalar field configurations in a variety of mod-
els, including those with more than one scalar field. Quite
possibly, there may be models with two coupled fields that
produce stable oscillons even in d ¼ 3, at least in the sense
that �min � 1. Another possible extension of the present
results is the inclusion of gauge fields. As shown in
Refs. [11,12], in both U(1) and SU(2)XU(1) models oscil-
lons have not been seen to decay. The question of their
absolute stability remains open and is of obvious interest.
Finally, oscillons may play a key role in the dynamics of
the early universe: they may be formed during preheating
after inflation and delay thermalization; they may leave
behind a gravitational-radiation signature; and they may
contribute to the dark matter component of the cosmic
energy density. We are currently investigating how to ex-
tend the current methods to an expanding cosmological
background.
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APPENDIX A: LINEAR RADIATION
DISTRIBUTION IN d ¼ 2

We begin by expanding the Gaussian in eigenfunctions
(zeroth-order bessel function of the first kind) of the two-
dimensional, spherically-symmetric Klein-Gordon equa-
tion:

AðtÞe�ð�2=R2Þ ¼
Z 1

0
bðkÞJ0ðk�Þdk: (A1)

Using the orthogonality relationZ 1

0
�J0ðk�ÞJ0ðk0�Þd� ¼ 1

k
�ðk� k0Þ; (A2)

we can invert Eq. (A1) to yield

bðkÞ ¼ kAðtÞ
Z 1

0
J0ðk�Þe�ð�2=R2Þ�d�: (A3)

In [17], it is shown that integration gives

bðkÞ ¼ R2A

2
ke�R2k2=4: (A4)

Note that this function has the same form as the corre-
sponding one in d ¼ 3. Hence the results in Eqs. (6) and
(7) need not be recomputed. To obtain �lin in d ¼ 2 one
could, in principle, solve the equation of motion as was
done in d ¼ 3; however, for our purposes it will be suffi-
cient to determine this parameter numerically (by numeri-
cally integrating the linear Klein-Gordon equation in
d ¼ 2 with a Gaussian initial condition), yielding

1

2
�lin ¼ 1

T linear

’ :848

!massR
2
’ :6

R2
: (A5)

APPENDIX B: DERIVATION OF NONLINEAR
FREQUENCY PEAK

In this paper, we consider spherically-symmetric oscil-
lons which can be accurately modeled by an oscillating
field configuration whose spatial profile and amplitude of
oscillation vary little over the course of an oscillation, i.e.,

�ðr; tÞ ’ AcðtÞPðr;RÞ � AoscðtÞAðtÞPðr;RÞ; (B1)

where� is the field, r is radial position, t is time,PðrÞ is the
spatial profile of the oscillon normalized so that PðrÞ ¼ 1
at the origin, R is a time-dependent measure of the spatial
extent of the oscillon (i.e., the ‘‘radius’’) which is assumed
to vary little over the period of a single oscillation, AcðtÞ is
the time-dependent oscillon core [�ð0; tÞ], AðtÞ is its time-
dependent envelope of oscillation, and AoscðtÞ is an oscil-
lating function which is normalized to an upper turning
point of unity.
If the oscillon oscillates approximately harmonically, we

can write

AoscðtÞ ’ �

1þ �
þ cosð!nltÞ

1þ �
; (B2)

where !nl is the time-dependent frequency of the oscillon
and � is a dimensionless constant which accounts for a
possible nonzero center of oscillation.
Now assume that we are interested in calculating the

radiation rate of the oscillon at t ¼ 0. Since the oscillon
radiation rate depends only on the instantaneous properties
of the oscillon, writing !nlðtÞ ¼ !nlð0Þ in Eq. (B2) will
still yield the correct radiation rate at t ¼ 0. Combining
Eqs. (B1) and (B2) and taking the unitary cosine transform
of Ac, we have

MARCELO GLEISER AND DAVID SICILIA PHYSICAL REVIEW D 80, 125037 (2009)

125037-12



F ð!Þ ¼
ffiffiffiffi
2

�

s Z 1

0
cosð!tÞAcðtÞdt

¼
ffiffiffiffi
2

�

s Z 1

0
cosð!tÞ cosð!nlð0ÞÞ AðtÞ

1þ �
dt; (B3)

where in the second step we have multiplied AðtÞ by AoscðtÞ
in Eq. (B2) and dropped all terms except the one propor-
tional to cosð!nltÞAðtÞwhich will create a finite width peak
centered at the oscillon frequency (all others are irrelevant
and do not contribute to the radiation rate). We can rewrite
Eq. (B3) as

F ð!Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

0
½cosð!þtÞ þ cosð!�tÞ� AðtÞ

1þ �
dt;

(B4)

where !þ � !nl þ! and !� � !nl �!. Since each of
the two cosine terms above will contribute an identical
peak (one centered atþ!nl and the other at�!nl) and both
will contribute identically to the radiation rate, we can
simply drop the one centered on �!nl and multiple by
two, yielding

F ð!Þ ¼
ffiffiffiffi
2

�

s Z 1

0
cosð½!nl �!�tÞ AðtÞ

1þ �
dt: (B5)

Now, since an oscillon’s amplitude AðtÞ tends to a finite
value, denoted A1, as t ! 1, we define A� � AðtÞ � A1
and write

F ð!Þ ¼
ffiffiffiffi
2

�

s Z 1

0
cosð½!nl �!�tÞ ðA� þ A1Þ

1þ �
dt

¼
ffiffiffiffi
2

�

s Z 1

0
cosð½!nl �!�tÞ A�

1þ �
dt; (B6)

where we have dropped the transform of the A1 term since
it will produce a delta function centered at !nl which will
not in anyway affect F ð!Þ in the region of interest (the
radiation zone).

To proceed, we use the fact (found by performing suc-
cessive integration by parts) that, for a function fðxÞ which
tends to zero as x ! 1,

Z 1

0
cosðsxÞfðxÞdx ¼ X1

n¼1

ð�1Þn f
ð2n�1Þð0Þ
s2n

; (B7)

where fðmÞ is themth derivative of the function f. We apply
Eq. (B7) to Eq. (B6) and note that, for a long-lived oscillon,
the flatness of AðtÞ implies that, for s in the tail, we need
only keep the first term, yielding

F ð!Þ ’ �
ffiffiffiffi
2

�

s
_A

1þ �

1

ð!nl �!Þ2 ; (B8)

where we have switched the evaluations at t ¼ 0 to a
general time t, since the above calculation can be applied

to any physical time. Equation (B8) essentially states that
when a peak associated with a decaying function has a very
small width then the tail goes like ð!nl �!Þ�2.
It will be useful to note that F ð!Þ in Eq. (B6) will be a

peak whose width, denoted �A, scales as

�A �
�

A�

1þ �

��1 d

dt

�
A�

1þ �

���������t¼t0
¼

_A

A� A1
:; (B9)

where we have used that � is a constant, A� � A� A1,
and A1 is a constant.

APPENDIX C: OVERLAP FUNCTION

Consider the overlap function �ð!Þ in Eq. (17),

�ð!Þ ¼ �F ð!Þbð!Þ � F ð!Þ~bð!Þ: (C1)

Since�ð!Þ has dimension of amplitude per unit frequency

[see Eq. (16)], as does F ð!Þ, it follows that ~bð!Þ is

dimensionless. Therefore, one can interpret ~bð!Þ as a
dimensionless coupling factor which modulates the distri-
bution F ð!Þ. If the oscillon couples weakly to a certain

mode, ~bð!Þ will be small at that value of !, etc.

Now, ~bð!Þ, which is proportional to the linear radiation
distribution, will be a peak whose frequency of maximum
coupling !max is found by

d~b

d!

��������!¼!max

¼ 0: (C2)

Consider now that the largest-amplitude radiation wave
which can be created by a driving force of frequency !>
!mass will be produced by driving at the frequency !max.
However, the largest-amplitude radiation wave which can
be created by a given driving force will have an amplitude
on the order of the driving force itself (never larger).
Therefore, at frequencies near !max, the amplitude of the
radiation wave�will be roughly equal to the amplitude of
the ‘‘driving force’’ F . In other words, �ð!maxÞ ’
F ð!maxÞ, implying that ~bð!maxÞ ’ 1 from Eq. (C1). This
leads to

� ’ 1

bð!maxÞ ; (C3)

which, when combined with Eqs. (17) and (B8), yields

�ð!Þ ’ �
ffiffiffiffi
2

�

s
_A

1þ �

1

ð!nl �!Þ2
bð!Þ

bð!maxÞ : (C4)

For example, in the system given by Eq. (1), where bð!Þ
is given by Eq. (6), !max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2=R2

p
. This leads to � ¼

e1=2R=
ffiffiffi
2

p
and, when combined with Eq. (17), gives

�ð!Þ ¼ � Rffiffiffiffi
�

p _A

1þ �

ð!2 � 2Þð1=2Þ
ð!nl �!Þ2 eð1=2Þ�ððR2Þ=4Þ:ð!2�2Þ:

(C5)

GENERAL THEORY OF OSCILLON DYNAMICS PHYSICAL REVIEW D 80, 125037 (2009)

125037-13



This function is plotted in the inset of Fig. 5 for typical
values of the parameters in the system given by Eq. (1) in
d ¼ 3. Equation (C5) gives the distribution (amplitude per
unit frequency) of the radiation wave emitted by the oscil-
lon in the vicinity of a time t. Its integral with respect to
frequency gives the total amplitude of the radiation wave
emitted by the oscillon, denoted A.

Given an expression for �ð!Þ, � and !rad can then be
given by

�0ð!radÞ ¼ 0;
1

2
� ¼

�Rð!�!radÞ2�ð!Þd!R
�ð!Þd!

�ð1=2Þ
;

(C6)

where the prime denotes a derivative with respect to !.

APPENDIX D: DYNAMICAL EXPONENTS

The time dependence of the oscillon and all of the
various parameters which describe it is due to a single
physical mechanism, namely, the emission of radiation.
If the radiation rate is high (low), all parameters will
change rapidly (slowly). In other words, the general nature
of the time dependence of a parameter will follow that of
any other parameter.

In analogy with Eq. (B9), define

�X / _X

X � X1
(D1)

which can be interpreted as the decay width for the pa-
rameter X. Now consider the generic parameters XðtÞ and
YðtÞ (which could represent amplitude, radius, frequency,
etc.). Intuitively, we can say that the time scales �X and �Y

associated with the rates of change of the parameters XðtÞ
and YðtÞ, respectively, are to be proportional,

�X / �Y (D2)

for any parameters XðtÞ, YðtÞ (i.e., if XðtÞ slows down by a
factor of 2, then so will every other parameter). We can
then write, quite generally, �X / �E for any parameter X,
where E denotes energy. Combining this with Eq. (D1),
yields

_X

XðtÞ � X1
¼ �X

_E

EðtÞ � E1
; (D3)

where �X denotes the proportionality constant. Integrating
both sides of Eq. (D3), yields

½XðtÞ � X1� ¼ 	X½EðtÞ � E1��X ; (D4)

where 	X is the constant of integration.
We will now derive an expression for the general ex-

ponent �X. First, define the new variable


X � lnðX� X1Þ; (D5)

which we will henceforth employ in this Appendix, instead
of X, to describe the oscillon. When combined with

Eq. (D3), this gives

�X ¼ d
X

d
E

: (D6)

During the evolution of an oscillon, the change in the
coordinate 
X is given by

d
X ¼ r
X 
 d ~
; (D7)

where d ~
 is a differential vector which lies tangent to the
trajectory of the oscillon in ~
 space and r
X is the vector
gradient of 
X whose direction lies perpendicular to the
‘‘level’’ curves associated with 
X. To calculate d ~
, we
note that, by virtue of the attractorlike nature of oscillons,
the oscillon will evolve according to a trajectory which
runs perpendicular to the level curves associated with the
radiation rate. Mathematically, we can write

r
 _E � d ~
 ¼ 0: (D8)

To proceed, we will make use of our initial assumption in
Eq. (B1) that the oscillon (and hence any oscillon parame-
ter X or 
X) can be taken to be a function of 2 degrees of
freedom. These 2 degrees of freedom can be arbitrarily
chosen to be any two independent oscillon parameters.
Choosing the coordinate pair ~
 ¼ ð
E; 
AÞ, Eq. (D8) be-
comes

@
 _E

@
E
d
A � @
 _E

@
A

d
E ¼ 0: (D9)

Combining this with Eq. (D7) and dividing by d
E, we
have

d
X

d
E

¼
@
 _E

@
E

@
X

@
E
þ @
 _E

@
A

@
X
@
A

@
 _E

@
E

: (D10)

Combining Eqs. (24) and (D6), we have

� _E ¼ 2� 2�A þ �� ¼ d

d
E

ð2
E � 2
A þ 
�Þ

¼ d

d
E


 _E; (D11)

which implies that, up to a constant, 
 _E ¼ 2
E � 2
A þ

�. Substitution of this expression for 
 _E into Eq. (D10)

and combining with Eq. (D6), yields the desired result:

�X ¼ ð2þ @
�
@
E

Þ @
X@
E
þ ð@
�@
A

� 2Þ @
X

@
A

ð2þ @
�
@
E

Þ : (D12)

APPENDIX E: DERIVATION OF STABILITY
FUNCTION

From Eq. (D4) it can be shown by differentiating that,

_X / ðX � X1Þa; (E1)

where a � 1þ g
�X
. By further differentiating, it can be
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shown that

XðmÞ

XðnÞ /
� _X

X � X1

�
m�n ¼ �m�n

X ; (E2)

where XðmÞ denotes the mth derivative of X with respect to
time. Now, from Eq. (39),

� � 
n � 
nþ1


n

¼ 1� 
nþ1


n

: (E3)

From Eq. (B7) we have,


n


nþ1
¼ s2

fð2nþ1Þ=fð2n�1Þ ¼
ð!�!nlÞ2

Að2nþ1Þ=Að2n�1Þ ; (E4)

where we have used Eq. (B8) and the fact that � is a
constant. Combining Eq. (E4) with Eq. (E2) (in the case
that X ¼ A), we have


n


nþ1
/
�
!�!nl

�nl

�
2 ¼ �

�
!�!nl

�nl

�
2
; (E5)

where� is a proportionality constant and we have used that
�nl ¼ �A. Combining Eq. (E5) with Eq. (E3), we have

� ¼ 1� 1

�

�
�nl

!�!nl

�
2
: (E6)

Equation (E6) is a function of !; to determine the
appropriate value of !, we note that, if �nl were to attain
its maximum value of �lin and if �lin ¼ !gap, the oscillon

would decay; therefore, � ¼ 0 when �nl ¼ �lin ¼ !gap.

This implies that �ð!�!nlÞ2 ¼ !2
gap. Substitution of this

into Eq. (E6) yields the desired result of

� ¼ 1�
�
�nl

!gap

�
2
: (E7)
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