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A particular framework for quantum gravity is the doubly special relativity (DSR) formalism that

introduces a new observer independent scale, the Planck energy. Our aim in this paper is to study the

effects of this energy upper bound in relativistic thermodynamics. We have explicitly computed the

modified equation of state for an ideal fluid in the DSR framework. In deriving our result we exploited the

scheme of treating DSR as a nonlinear representation of the Lorentz group in special relativity.
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I. INTRODUCTION

In recent years doubly special relativity (DSR) [1] has
created a lot of interest as a possible framework of quantum
fravity. This is mainly due to two basic tenets on which the
theory rests: (i) Appearance of a second observer indepen-
dent scale [1], which can be (Planck) length, (Planck)
energy or momentum, apart from the velocity of light,
common to special relativity (SR). Incidentally this gives
rise to the name DSR. (ii) A naturally emerging Non-
Commutative (NC) spacetime [1–4].1 Both of these fea-
tures are very close to quantum gravity ideas [6] or the
existence of a universal short distance scale that postulates
a generalized uncertainty principle [7]. All the models of
quantum gravity predict qualitatively different spacetime
beyond certain energy (length) scale, generally considered
to be the Planck energy (length). Also it is now established
[8] that a consistent marriage of ideas of quantum mechan-
ics and gravitation requires NC spacetime to avoid the
paradoxical situation of creation of a black hole for an
event that is sufficiently localized in spacetime. Quite
obviously one would like to have the numerical value of
this universal scale to be observer independent, as in DSR.

In this perspective it is very important to study the
effects of specific forms of NC spacetime that are relevant
to DSR, in particular, the �-Minkowski spacetime, studied
independently [9] and partly motivated by DSR ideas
[1,2,10,11]. So far only particle dynamics in DSR frame-
work has been studied, which has revealed many unusual
features [2,12]. Some field theory models in DSR space-
time have also been attempted [13]. On the other hand, to
our knowledge not much work has been done in studying
DSR effects (especially the fact that there exists an upper
bound of energy) in the exciting areas of relativistic ther-
modynamics and eventually in cosmology. In the present

paper we have initiated a study along the direction of
relativistic thermodynamics in the DSR framework.
Our aim is to follow the prescription of Weinberg [14]

where one postulates an explicit form of the energy-
momentum tensor (EMT) for a perfect fluid in the
Lagrangian framework. The first nontrivial task that we
face is the construction of the DSR-covariant EMT.
Fortunately we have a powerful tool at our disposal: DSR
kinematics is a manifestation of a nonlinear realization of
SR kinematics [3,11,15]. Throughout the present paper we
exploit this principle to develop the fluid EMT for DSR and
subsequently study the consequences of the EMT in ther-
modynamic context. As expected our expressions have a
smooth commutative (or equivalently SR) limit, that is, all
results reduce to SR results when �, the effective NC
parameter (the energy upper bound) goes to infinity.
The paper is organized as follows: In Sec. II we will

provide the explicit nonlinear mapping between the NC
DSR variables (expressed as small letters) and commuting
(or more precisely canonical) degrees of freedom (ex-
pressed as capital letters). The latter obey canonical phase
space algebra and SR Lorentz transformations whereas the
former satisfy NC �-Minkowski phase space algebra and
DSR-Lorentz transformations. In Sec. III we will construct
the DSR compatible EMT. This is one of our main results.
In Sec. IV we will explicitly reveal effects of DSR regard-
ing relativistic thermodynamics which constitutes the other
major result. We will conclude in Sec. V.

II. NONLINEAR REALIZATION OF LORENTZ
GROUP

It has been pointed out by Amelino-Camelia [1] that
there is a connection between the appearance of an ob-
server independent scale and the presence of nonlinearity
in the corresponding spacetime transformations. Recall
that Galilean transformations are completely linear and
there are no observer independent parameters in
Galilean/Newtonian relativity. With Einstein relativity
one finds an observer independent scale—the velocity of
light—as well as a nonlinear relation in the velocity addi-
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tion theorem. In DSR one introduces another observer
independent parameter, Planck energy or length, and ush-
ers another level of nonlinearity in which the Lorentz
transformation laws become nonlinear. These generalized
Lorentz transformation rules, referred to here as DSR-
Lorentz transformation, are derivable from basic DSR
ideas [1] or in a more systematic way, from integrating
small DSR transformations in an NC spacetime scheme
[3,16]. Another elegant way of derivation is to interpret
DSR laws as a nonlinear realization of SR laws where one
can directly exploit the nonlinear map and its inverse, that
connects DSR to SR and vice-versa.2 Obviously to accom-
plish this one needs the map, which can be constructed by a
motivated guess [11,15] or constructed as a form of
Darboux map [3].

We are working in the DSR2 model of Magueijo and
Smolin [11]. Let us start with the all important map
[3,11,15],

FðX�Þ ! x�; F�1ðx�Þ ! X�: (1)

which in explicit form reads:

FðX�Þ ¼ x�
�
1� ðnpÞ

�

�
; FðP�Þ ¼ p�

ð1� ðnpÞ
� Þ

F�1ðx�Þ ¼ X�

�
1þ ðnPÞ

�

�
; F�1ðp�Þ ¼ P�

ð1þ ðnPÞ
� Þ ;

(2)

where n� ¼ ð1; 0; 0; 0Þ and we use the notation a�b
� ¼

ðabÞ, ðnpÞ ¼ p0, ðnPÞ ¼ P0. Note that upper case and
lower case letters refer to (unphysical) canonical SR var-
iables and (physical) DSR variables, respectively.

As a quick recapitulation let us rederive the DSR-
Lorentz transformations (LDSR), starting from the familiar
(linear) SR Lorentz transformations (LSR),

X00 ¼ LSRðX0Þ ¼ �ðX0 � vX1Þ;
X01 ¼ LSRðX1Þ ¼ �ðX1 � vX0Þ; X02 ¼ X2;

X03 ¼ X3 P00 ¼ LSRðP0Þ ¼ �ðP0 � VP1Þ;
P01 ¼ LSRðP1Þ ¼ �ðP1 � VP0Þ;
P02 ¼ P2; P03 ¼ P3

(3)

where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and the boost is along X1 direction

with velocity vi ¼ ðv; 0; 0Þ. Note that the second line of (3)
involves V but following our definition dXi

dX0 ¼ dxi

dx0
so that

V ¼ v. Now the DSR-Lorentz transformation LDSR is

formally expressed as,

x0� ¼ LDSRðx�Þ ¼ F � LSR � F�1ðx�Þ;
p0� ¼ LDSRðp�Þ ¼ F � LSR � F�1ðp�Þ:

(4)

In explicit form this reads as,

x00 ¼ LDSRðx0Þ ¼ F � LSR � F�1ðx0Þ

¼ F � LSR

�
X0

�
1þ P0

�

��

¼ F

�
�ðX0 � vX1Þ

�
1þ �

�
ðP0 � vP1Þ

��

¼ ��ðx0 � vx1Þ;
p00 ¼ �

�
ðp0 � vp1Þ;

(5)

where � ¼ 1þ ��1ðð�� 1ÞP0 � �vP1Þ. Similarly for
� ¼ 1 we have the following expressions:

x01 ¼ ��ðx1 � vx0Þ; p01 ¼ �

�
ðp1 � vp0Þ: (6)

It is important to realize that, in the present formulation,
noncommutative effects enter through these generalized
(nonlinear) transformation rules.
Note that, in contrast to SR laws (3), components of x�,

p� transverse to the frame velocity v are affected,

x0i ¼ �xi; p0i ¼ pi

�
; i ¼ 2; 3: (7)

There are two phase space quantities, invariant under DSR-
Lorentz transformation: ���p

�p�=ð1� p0=�Þ2 and

���x
�x�ð1� p0=�Þ2 with ��� ¼ diagð�1; 1; 1; 1Þ.

Writing the former as

m2 ¼ ���p
�p�=ð1� p0=�Þ2 (8)

yields the well-known Magueijo-Smolin dispersion rela-
tion. We interpret the latter invariant to provide an effective
metric ~��� for DSR:

d�2 ¼ ~���dx
�dx� ¼ ð1� p0=�Þ2���dx

�dx�: (9)

III. ENERGY-MOMENTUM TENSOR IN
�-MINKOWSKI SPACETIME

In this section our aim is to construct the energy-
momentum tensor of a perfect fluid, that will be covariant
in the DSR framework. Indeed, this will fit nicely in our
future programme of pursuing a DSR based cosmology.

A. Fluid in SR theory

A perfect fluid can be considered as a system of struc-
tureless point particles, experiencing only spatially local-
ized interactions among themselves. The idea is to consider
boosts in a passive transformation framework. In this way
one can ascertain the structure of energy-momentum tensor

2It needs to be stressed that even though there exists an explicit
map between SR and DSR variables, the two theories will not
lead to the same physics, (in particular upon quantization), due
to the essential nonlinearity involved in the map. According to
DSR the physical degrees of freedom live in a noncanonical
phase space and the canonically mapped phase space is to be
used only as a convenient intermediate step.
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in an arbitrary inertial frame (laboratory frame) by boost-
ing the expression valid in the fluid rest frame (comoving
frame). In a comoving Lorentz frame, from spherical sym-
metry, the energy-momentum tensor ~T�� of a perfect fluid
becomes diagonal and the components are explicitly writ-
ten as,

~T ii ¼ P; ~T00 ¼ D; ~T0i ¼ ~Ti0 ¼ 0: (10)

The thermodynamic quantities P and D represent pressure
and energy density of the fluid. The components of the
canonical energy-momentum tensor transform under SR
Lorentz transformation LSR as a second rank tensor and in
an arbitrary inertial frame it assumes the form [14]

T00 ¼ Lcð ~T00Þ ¼ �2ðDþ Pv2Þ;
Ti0 ¼ Lcð ~Ti0Þ ¼ �2ðDþ PÞvi

Tij ¼ Lcð ~TijÞ ¼ �2ðDþ PÞvivj þ P�ij:

(11)

The above set of equations can be integrated into a single
SR covariant tensor,

T�� ¼ ðPþDÞU�U� þ P��� (12)

where the velocity 4-vectorU� is defined asU0 ¼ �,Ui ¼
�vi with U�U� ¼ �1.

We can derive this result in another way, the so called
Lagrangian formalism, which will be useful later. Let us
treat the fluid as a collection of noninteracting particles, the
latter having in general, an energy-momentum tensor of the
form [14]

T�� ¼ X
i

P
�
i P

�
i

P0
i

�3ðX� XiÞ; (13)

where P�
i is the energy-momentum four-vector associated

with the i-th particle located at Xi. Once again in the
comoving frame it will reduce to the diagonal form:

~Tii ¼ P ¼ 1

3

X
i

P2
i

P0
i

�3ðX � XiÞ;

~T00 ¼ D ¼ X
i

P0
i �

3ðX� XiÞ;

~Ti0 ¼ ~T0i ¼ 0:

(14)

In the above relations Pi and P0
i respectively stand for the

momentum three-vector and the energy of the i-th fluid
particle. The thermodynamic quantities P and D represent
pressure and energy density of the fluid. The particle
number density is naturally defined as

N ¼ X
i

�3ðX� XiÞ: (15)

The Lorentz transformation equation for T�� is

T�� ¼ LSRð ~T��Þ ¼ �
�
���

	T
�	; (16)

where � is the Lorentz transformation matrix. For � ¼

� ¼ 0 we have

T00 ¼ ð�0
0Þ2 ~T00 þ ð�0

i Þ2 ~Tii ¼ �2 ~T00 þ �2v2 ~T11: (17)

We put the summation expressions for ~T00 and ~Tii from
(14) in the above equation instead of puttingD and P. Then
using the relation

T�
� ¼ �X

i

m2

P0
i

�3ðX � XiÞ ¼ �Dþ 3P (18)

we can easily verify that the final expression for T00 is
exactly the same as in (11). Similarly the other relations
will follow.

B. Fluid in DSR theory

In order to derive the expression for the DSR EMT (t��)
we shall exploit the same approach as above for SR EMT.
Spatial rotational invariance remains intact in DSR allow-
ing us to postulate a similar diagonal form for DSR EMT in
the comoving frame. The next step (in principle) is to apply
the LDSR to obtain the general form of EMT in DSR. We
first define the nonlinear mapping for the energy-
momentum tensor of a perfect fluid in a comoving frame.
In the second step we shall apply the Lorentz boost (LSR)
on our mapped variable and finally arrive at the desired
expression in the DSR spacetime through an inverse map-
ping. But wewill see that when we try to introduce the fluid
variables in the DSR EMT in arbitrary frame we face a
nontrivial problem unless we make some simplifying as-
sumptions, which, however, will still introduce DSR cor-
rections pertaining to the Planck scale cutoff.
As the spherical symmetry remains intact in the DSR

theory [3] we define the respective components of energy-
momentum tensor ~t�� in the NC framework analogous to
(14) and (15) as,

~tii ¼ p ¼ 1

3

X
i

p2
i

p0
i

�3ðx� xiÞ;

~t00 ¼ 
 ¼ X
i

p0
i �

3ðx� xiÞ;

n ¼ X
i

�3ðx� xiÞ;

(19)

where pi and p0
i are, respectively, the momentum three-

vector and the energy of the i-th fluid particle in the DSR
spacetime. Using (2) and using the scaling properties of
Dirac-� function we obtain the following results,

F�1ðpÞ ¼ 1

3

X
i

P2
i

P0
i ð1þ P0

i =�Þ4
�3ðX � XiÞ; (20)

F�1ð
Þ ¼ X
i

P0
i

ð1þ P0
i =�Þ4

�3ðX � XiÞ; (21)
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F�1ðnÞ ¼ X
i

N

ð1þ P0
i

� Þ3
�3ðX � XiÞ: (22)

In a combined form, we can write down the following
nonlinear mapping (and its inverse) as,

F�1ð~t��Þ ¼ X
i

P
�
i P

�
i

P0
i ð1þ P0

i =�Þ4
�3ðX� XiÞ;

Fð ~T��Þ ¼ X
i

p�
i p

�
i

p0
i ð1þ p0

i =�Þ4
�3ðx� xiÞ:

(23)

The way we have defined the DSR EMT it is clear that
comoving form of EMTalso receives DSR corrections. But
problem crops up when, in analogy to SR EMT [14], we
attempt to boost the ~t�� to a laboratory frame with an
arbitrary velocity v. Recall that for a single particle DSR
boosts involve its energy and momentum. Since p and 

(for ~t��) denote composite variables it is not clear which
energy or momentum will come into play. To proceed
further in the DSR boost we put in a single energy �p0

and momentum �pi that signifies the average energy and
momentum (modulus) of the whole fluid. In fact this
simplification is not very artificial since we are obviously
considering equilibrium systems (however see [17]). This
allows us to use the mappings:

F�1ðpÞ ¼ P

ð1þ �P0=�Þ4 ;

F�1ð
Þ ¼ D

ð1þ �P0=�Þ4 ;

F�1ðnÞ ¼ N

ð1þ �P0=�Þ4 :

(24)

In a covariant form the mapping and its inverse between
~t�� and ~T�� are,

F�1ð~t��Þ ¼ ~T��

ð1þ �P0=�Þ4 ; Fð ~T��Þ ¼ ~t��

ð1� �p0=�Þ4 :
(25)

Finally we can apply the definition of LDSR using (25) with
(11) to obtain the following expressions for energy-
momentum tensor with respect to an arbitrary inertial
frame in a DSR spacetime,

t00 ¼ LDSRð~t00Þ ¼ F � LSR � F�1ð~t00Þ

¼ F � LSR

� ~T00

ð1þ �P0=�Þ4
�
¼ F

�
�2ðDþ Pv2Þ

ð1þ �
� ð �P0 � v �P1ÞÞ4

�

¼ �2ð
þ pv2Þ
��4

;

ti0 ¼ LDSRð~ti0Þ ¼ �2ð
þ pÞvi

��4
;

tij ¼ LDSRð~tijÞ ¼ �2ð
þ pÞvivj

��4
þ p�ij:

(26)

It is very interesting to note that the above expressions can
also be combined into a single form which is structurally
very close to the fluid EMT in SR,

t�� ¼ ð1� �p0

� Þ2
��4

�
ðpþ 
Þu�u� þ p

���

ð1� �p0

� Þ2
�

¼ ð1� �p0

� Þ2
��4

ððpþ 
Þu�u� þ p~���Þ: (27)

where we have defined the four-velocity u� in the DSR
spacetime as:

u0 ¼ dx0=d� ¼ �

ð1� �p0=�Þ ;

ui ¼ dxi=d� ¼ �vi

ð1� �p0=�Þ :
(28)

Note that the DSR four-velocity u� is actually the mapped
form of the SR four-velocityU� since the parameter � does
not undergo any transformation. The other point to notice
is that ~��� of (9), (DSR analogue of the flat metric ~���),
appears in t�� making the final form of the DSR EMT
transparent. Indeed t�� in (27) reduces smoothly to T�� of
SR (12) in the large � limit. Incidentally, again in analogy
to the SR construction of many-body system for fluid [(13)
and (14)], this form of t�� is consistent with the micro-
scopic picture of DSR EMT for fluid that we have devel-
oped [(19)–(23)].

IV. EQUATION OF STATE

So far we have only provided the abstract form of DSR
EMT, relevant for a fluid, from purely kinematical consid-
erations. It is now time for application. Keeping an eye in
our cosmological motivation, in the present paper we will
take up the issue of equation of state for an ideal DSR fluid.

A. Equation of state in SR theory

In the standard SR version, one way of deriving [14] the
equation of state is to return to the microscopic picture (13)

and substitute the SR energy dispersion relation P0 ¼
ðP2 þm2Þ1=2 into (14) to get the following expression for
the equation of state,

P ¼ 1

3
D� 1

3

X
i

m2

P0
i

�3ðX� XiÞ: (29)

For a cool nonrelativistic gas we have P � m; so the

expression for the energy becomes: E ’ mþ P2

2m . Using

(14) and (15) one gets the equation of state

D�mN ¼ 3

2
P: (30)

For a hot ultrarelativistic gas since E ’ P � m using (14)
the equation of state becomes
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D ¼ 3P: (31)

B. Equation of state in DSR theory

Let us now we proceed to derive the ideal fluid equation
of state in the DSR scheme. We start with the Magueijo-
Smolin modified dispersion relation ([11]),

ð �p0Þ2 � �p2 ¼ m2

�
1� �p0

�

�
2
: (32)

We solve this equation for �p0 to Oð�Þ,

�p 0 ¼ ð �p2 þm2Þ1=2 �m2

�
: (33)

We substitute this expression in (19) and finally obtain,

p ¼ 1

3

� 1

3

X
i

m2

�p0
�3ðx� xiÞ þ 2m2n

�
: (34)

In the nonrelativistic regime �p0 ’ mþ �p2

2m � m2

� , using (19)

we have


�mn ¼ 3

2
p�m2n

�
: (35)

However something interesting occurs in the extreme rela-
tivistic scenario due to the Planck energy upper bound
�p0 � �. Referring once again to the Magueijo-Smolin
dispersion relation (32), we find that for �p0 ¼ � the SR
photon dispersion relation is recovered, �p0 ¼j �p j¼ � the
rest mass m does not appear in the consideration. (In fact
one can check that the energy ceiling � can only be reached
by a massless particle.) But this condition reduces the
equation of state to,


 ¼ 3p ¼ n�: (36)

These equations of state might prove to be important
signatures for quantum gravity effects if DSR happens to
be the proper framework to address quantum gravity
issues.

V. CONCLUSION AND FUTURE PROSPECTS

Doubly special relativity (DSR) is a generalization of
special relativity (SR) that can be relevant in the context of
quantum gravity since it possesses an observer invariant
energy upper bound, naturally assumed to be the Planck

energy. Also DSR is compatible with the �-Minkowski
form of noncommutative spacetime. DSR reduces to SR
for low energy regime as indeed it should. In this paper, for
the first time, we have tried to incorporate DSR effects in
an ideal fluid since eventually we aim to consider a DSR
based cosmology.
We generalize the conventional framework of deriving

the covariant energy-momentum tensor by boosting its
spherically symmetric form, where we exploit the DSR-
Lorentz transformations (instead of the special theory
transformations). We stress that effects of a noncommuta-
tive (in particular �-Minkowski) spacetime enters through
the DSR-Lorentz transformations. In the process we had to
resort to some simplifying assumptions in describing the
fluid as a many-body system (in the so called Lagrangian
description of fluid). One might treat this problem as a
more virulent form of the one we find even in SR if we try
to treat a multiparticle system in a relativistic way.We have
exploited the concept that DSR is a nonlinear realization of
SR so that one can use a canonical phase space as a tool for
obtaining DSR relations. We have demonstrated that, even
in this simplified situation, there are effects of DSR that
introduces the Planck scale in the equations of motion for
an ideal fluid. Below we list some of the open problems
that we plan to pursue in near future: (i) While boosting the
comoving form of energy-momentum tensor in DSR, we
had to utilize the average values of energy and momentum
modulus for the whole system while (DSR) boosting. We
require an improved way of applying the DSR boost keep-
ing the dependence of DSR boost on individual particles of
the fluid intact. (ii) Two of us are looking at the thermo-
dynamics of ideal fluid for DSR explicitly from the parti-
tion function [18]. In this formulation DSR effects will
appear from two sources, from the deformed mass-energy
dispersion relation of particles and from the high energy
cut off in the form of Planck energy. (iii) Generalization of
Cosmology in DSR framework is the next program that we
wish to take up.
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