
Evolution and stability of cosmic string loops with Y-junctions

Neil Bevis,1,* Edmund J. Copeland,2,† Pierre-Yves Martin,3,4,‡ Gustavo Niz,2,x Alkistis Pourtsidou,2,k

Paul M. Saffin,2,{ and D.A. Steer3,**
1Theoretical Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom
2School of Physics & Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

3APC, University Paris 7, 10, Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
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We study the evolution of a particular class of nonperiodic cosmic string loops containing Y-junctions,

such as may form during the evolution of a network of ðp; qÞ cosmic superstrings. We set up and solve the

Nambu-Goto equations of motion for a loop with junctions, focusing attention on a specific initially static

and planar loop configuration. After a given time, the junctions collide and the Nambu-Goto description

breaks down. We also study the same loop configuration in a Uð1Þ � Uð1Þ gauge field-theory model that

allows composite vortices with corresponding Y-junctions. We show that the field-theory and Nambu-

Goto evolution are remarkably similar until the collision time. However, in the field-theory evolution a

new phenomenon occurs: the composite vortices can unzip, producing in the process new Y-junctions,

whose separation may grow significantly, destabilizing the configuration. In particular, an initial loop with

two Y-junctions may evolve to a configuration with six Y-junctions (all distinct from each other). Setting

up this new configuration as an initial condition for Nambu-Goto strings, we solve for its evolution and

establish conditions under which it is stable to the decay mode seen in the field-theory case. Remarkably,

the condition closely matches that seen in the field-theory simulations, and is expressed in terms of simple

parameters of the Nambu-Goto system. This implies that there is an easy way to understand the instability

in terms of which region of parameter space leads to stable or unstable unzippings.

DOI: 10.1103/PhysRevD.80.125030 PACS numbers: 11.15.�q, 11.27.+d, 98.80.Cq

I. INTRODUCTION

Cosmic strings have long been known to arise in a wide
class of field theories [1–4], and recent work has indicated
that they may also arise in superstring/M-theory [5,6], for
example, in models of brane inflation [7–9]. This has
opened up the fascinating possibility that so-called cosmic
superstrings, formed after a period of inflation, could pro-
vide a unique window on string theory, via measurements
of their imprint on the cosmic microwave background
radiation [10–15], their lensing of distant galaxies [16–
18] or through their production of gravitational waves [19–
21] and massive particles [22,23].

When two cosmic strings intersect, the traditional lore
dictates that they intercommute (swap partners). For stan-
dard field-theory strings—essentially Abelian Higgs
strings close to the Bogolmonyi limit—this intercommu-
tation effectively occurs with unit probability [24–28].
However, for cosmic superstrings, the intercommutation
probability is reduced due to the presence of extra dimen-
sions and a small string coupling constant [29–32].

Furthermore, cosmic superstrings differ from conventional
cosmic strings in that they come in different varieties:
fundamental (F) strings, Dirchelet (D) strings, and also
ðp; qÞ composites of p F-strings and q D-strings.
Composites split into their more basic elements at Y-
shaped junctions, which are not present in the conventional
cosmic string scenarios. This can lead to very different
dynamics when strings collide, and a crucial outstanding
question is how these Y-junctions affect the properties of
the string network and its observational consequences.
However, this question is in fact not restricted to cosmic

superstrings. Even the Abelian Higgs model can have
stable composites and corresponding Y-junctions if the
gauge coupling is set sufficiently high. Junctions are also
generic in non-Abelian string networks. In this paper, we
use theUð1Þ � Uð1Þmodel [33] to explore the properties of
the Y-junctions it permits, focusing particularly on closed
string loops with junctions. It should be noted, however,
that the mass spectrum of bound states takes a specific
form for cosmic superstrings, and this is not reproduced in
the Uð1Þ � Uð1Þ model (or other field-theoretic models).
As a consequence, some of the results presented in this
paper will apply only toUð1Þ � Uð1Þ strings, and cannot be
extrapolated to the cosmic superstring case for which it is
only a toy model. We will comment on this in more detail
below.
The aim of this article is to compare two the different

approaches which have so far been adopted to describe the
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dynamics of strings containing Y-junctions. The first, de-
veloped by Copeland, Kibble, and Steer (CKS) [34,35], is
based on a modified Nambu-Goto action. The second con-
siders strings as composite objects in terms of an under-
lying classical field theory, whose equations of motion can
be solved for the string dynamics [33,36–43]. A similar
comparison of the two approaches has a well established
history for ordinary cosmic strings (with no Y-junctions),
where it was shown that the Nambu-Goto action for a
relativistic one-dimensional string is an excellent approxi-
mation to the dynamics of widely separated gauge cosmic
strings—provided the curvature is on scales far greater
than the microscopic string width (for a review see
[2,3]). How does the comparison fare for strings with
junctions, and particularly for closed loop configurations
with junctions? Recently Bevis and Saffin [43] showed that
the results obtained by CKS for the collision of straight
strings are consistent with those found using field-theory
simulations of the Uð1Þ � Uð1Þ model, once the composite
region grows to be much larger than the string width. This
is quite remarkable given the fact that the conditions for
Nambu-Goto applicability are breached in the region of the
Y-junction at all times (a related result was also shown for a
different field-theory model in [44]).

In order to study loop configurations with junctions, we
first extend the analysis of CKS to the multijunction case,
and then solve the resulting equations numerically. In this
way we can simulate the evolution of Nambu-Goto loops
with junctions. We then compare their dynamics to field-
theory dynamics of the same initial loop configuration.

If the Nambu-Goto evolution agrees well with the field-
theory evolution, this is an important result since then
further numerical simulations of the evolution of string
networks with Y-junctions could be based on the Nambu-
Goto equations, which are much less numerically costly
than their field-theoretic counterparts. Furthermore, no
known field-theory model yields the bound-state tension
spectrum of cosmic superstrings, while in the Nambu-Goto
case the tension of any string may be freely chosen. Ad-
ditionally, the lowered intercommutation probability of
cosmic superstrings may be trivially included in a
Nambu-Goto simulation, since then intercommutation is
dealt with by hand rather than being constrained by the
dynamical equations as in the field-theory case.

For simplicity, in this paper we compare the field-theory
and Nambu-Goto evolution of two initial loop configura-
tions, which are variants of the butterfly-shaped string
configuration shown in Fig. 1. While this loop resembles
the result of two coplanar loops colliding, we stress that it
is not intended to be representative of loops in a network. It
merely presents an interesting case with which we may
explore the properties of Y-junctions, including a new
feature, their stability to decomposition into three separate
Y-junctions.

In Sec. II, we discuss the Nambu-Goto approach and
describe our numerical technique, for loops with just two

junctions and also loops with multiple junctions. This is
followed in Sec. III with a description of the field-theoretic
simulations, and then in Sec. IV we present our results for
each of the approaches including the identification of an
instability in the field-theory case that is then seen for the
first time to also be present in the Nambu-Goto case, once
suitable initial conditions are chosen. We conclude in
Sec. V and finish with some appendices giving derivations
of some of the results used in the main paper, as well as
technical details of our numerical codes.

II. NAMBU-GOTO APPROACH

As discussed in the introduction, CKS developed a
formalism based on the Nambu-Goto action to study the
dynamics of three semi-infinite strings meeting at a junc-
tion. In this section we outline the extension of this ap-
proach to configurations consisting of multiple inter-
connected junctions, such as that shown in Fig. 1, but the
reader is directed to Appendix A for the full equations. We
label the junctions with an index J.
Following CKS we form the total action of the system as

the sum of the individual Nambu-Goto actions for each
string plus terms containing Lagrange multipliers which
constrain the strings to meet at the different junctions. Let
the world sheet of the ith string be denoted by x�i ðt; �iÞ. We
work in Minkowski space-time, in the standard conformal-
temporal gauge so that t is the background time and �i is
the invariant length along the i-th string. Thus an element
of string d�i carries energy �id�i, with �i the string
tension. The constraint equations are

_x 2
i þ x02

i ¼ 1; (1)

_x i � x0
i ¼ 0: (2)

When three semi-infinite strings meet at a junction [34],
one can always assign the coordinates �i such that they
increase toward the junction on all three strings. However,

FIG. 1 (color online). An example of a loop configuration with
multiple junctions: the butterfly configuration with a central
string of tension �0 and two arc strings of tension �1. The basic
butterfly configuration has just two junctions, but we find that
under certain situations these can decompose, as indicated by the
magnified region, with a single junction splitting into three
junctions that then continue to separate.
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this is no longer possible when strings are connected to
junctions at both ends. We therefore assign a parameter �J

i

to the string ends, such that if �i increases along string i
into junction J, then �J

i ¼ þ1, while �J
i ¼ �1 if �i de-

creases into the junction. Note that if junctions J and K are
connected by string i then �J

i ¼ ��K
i .

This sign difference complicates slightly the governing
equations, including the expression for energy conserva-
tion at the junction. As discussed in CKS, the rate of
creation of one string at a junction must be balanced by
the disappearance of one or both of the other strings that
meet there. Let sJi ðtÞ be the value of �i at junction J, whose
position is therefore

X JðtÞ ¼ xiðt; sJi ðtÞÞ ¼ xjðt; sJj ðtÞÞ ¼ xkðt; sJkðtÞÞ; (3)

where i, j, k are the indices of the three strings meeting at
J. As a result the invariant length of string i created in time
dt at this junction is �J

i _s
J
i ðtÞdt. Then it can be seen that

conservation of energy requires

�J
i �i _s

J
i þ �J

j�j _s
J
j þ �J

k�k _s
J
k ¼ 0; (4)

which is formally derived in Appendix A.
Another effect of the sign change relates to the identi-

fication of the waves along the string as ‘‘incoming’’ or
‘‘outgoing’’ from a junction. Away from any junction, the
strings satisfy the usual wave equation

€x i ¼ x00
i ; (5)

with general solution

x iðt; �iÞ ¼ 1
2½aiðuiÞ þ biðviÞ�; (6)

where ui ¼ �i þ t, vi ¼ �i � t and the gauge conditions
impose ja0ij ¼ jb0

ij ¼ 1. While in CKS�i always increased
towards the junctions and the incoming waves were always
given by bi, in the multijunction case outgoing waves at
junction J become incoming waves at the junctions to
which it is connected. We shall discuss the difficulties
related to this time-delayed coupling between junctions
when we find solutions to the dynamical equations, but
we must first generalize the CKS versions of those
equations.

The equation for the time evolution of _sJi as a function of
the incoming waves (along strings i, j and k) at junction J
becomes

1� �J
i _s

J
i ðtÞ ¼

�Mi½1� cJi ðtÞ�
�i

P
h

Mh½1� cJhðtÞ�
; (7)

where h takes values ði; j; kÞ and the incoming waves are
combined via

cJi ðtÞ ¼ Zj � Zk; (8)

plus cyclic permutations, with

Z i ¼
�þb0

iðsi � tÞ if �J
i ¼ þ1

�a0iðsi þ tÞ if �J
i ¼ �1:

(9)

Finally, we have the definitions: � � �i þ�j þ�k and

Mi � �2
i � ð�j ��kÞ2, plus cyclic permutations. Note

causality (j _XJj � 1) implies the triangle inequalitiesMj �
0, as shown in [34].
We additionally find that the expression for the outgoing

waves is

ð1þ �J
i _s

J
i ÞYi ¼ Zið1� �J

i _s
J
i Þ �

2

�

X
h

�hð1� �J
h _s

J
hÞZh;

(10)

where again h ¼ ði; j; kÞ and also

Y i ¼
�þa0iðsi þ tÞ if �J

i ¼ þ1
�b0

iðsi � tÞ if �J
i ¼ �1:

(11)

These then travel along the three strings and eventually
reach the junctions to which J is connected.
Given an arbitrary initial configuration ðxið0; �iÞ;

_xið0; �iÞÞ, we aim to solve for the full loop evolution and
hence ðxiðt; �iÞ; _xiðt; �iÞÞ for all t > 0. However, unless the
configuration is highly symmetric, this calculation is ana-
lytically intractable, except at early times. Indeed, once an
outgoing wave from one junction has reached another
junction (or even returned to the same junction via a
loop), then the incoming waves cannot be taken directly
from the initial conditions and the problem becomes non-
linear. Useful analytical progress can be made for the two
variants of our chosen initial conditions (see Fig. 1 and
below), which we present in Appendices C and D, but for
full solutions we employ numerical methods.

A. Numerical approach

We aim to follow the full evolution of relatively complex
initial loop configurations for which, as discussed above,
numerical methods are necessary. The procedure is the
following: For every string i connecting two junctions,
we work entirely with a0 and b0, reconstructing the closed
string position xðt; �iÞ and velocity _xðt; �iÞ only a few
times in the lifetime of the loop. The initial conditions
fix a0ið�iÞ and b0

ið�iÞ between all the junctions. First we
calculate the cJi ðt ¼ 0Þ, from which _sJi ðt ¼ 0Þ is deter-
mined using Eq. (7). Then at time �t, sJi ð�tÞ, uJi ð�tÞ and
vJ
i ð�tÞ can be calculated. The last step is to extend the

domain of definition of a0iðuÞ and b0
iðvÞ, which can be done

with Eq. (10). The time loop then continues.
Our simulation ends whenever the length of one string

goes to zero, and hence when two junctions meet. The
outcome of such a collision is not well understood for
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cosmic superstrings, and in any case is not included in the
Nambu-Goto description described above. However, the
field-theory simulations discussed in Sec. III can of course
continue beyond this time.

B. Initial conditions

We consider two closely related but different initial
conditions.

The first is the butterfly configuration shown in Fig. 1,
consisting of only two junctions (in other words, the small
triangle shown in the magnifying glass is not present in this
initial configuration). This planar loop consists of a straight
string with tension �0 and two circular arcs with equal
tensions �1. The strings are initially static: at the Y-
junctions this imposes _sj ¼ 0 or equivalently that the

vector sum of tensions at the junction J vanishes [see
Appendix A, Eq. (A5)]

X
j

�j�
J
j

x0
j

jx0
jj
¼ 0: (12)

Physically this corresponds to the fact that there can be no
change in momentum occurring within a small volume
surrounding the junction if the situation is static. Condition
(12) imposes a relationship between the string tensions, the
radius r of the two arcs making the butterfly ‘‘wings’’, and
the distance x of their centers from the straight string

�0

2�1
¼ x

r
� R: (13)

The second initial condition is a modification of the first
initial condition, in that we add, at each junction, the
triangular shape shown in the magnifying glass in Fig. 1.
Hence this initial configuration consists of 9 strings and 6
junctions, all of which are static. All the strings within the
small triangles are given the same tension �2, and all are
taken to be arcs of circles of size h, effectively the distance
between the junctions. (The free parameter hwill not affect
the general physical behavior, if initially small. The use of
arcs of circles is somewhat arbitrary but we believe that
this choice does not have any dramatic effect on the local
dynamics, since it is only the local curvature at t ¼ 0
around a given junction that really affects its evolution.
We will illustrate this in Sec. IVC, when studying the
stability of Y-junctions).

The reason for considering this second initial condition
is that our field-theory simulations of the simple butterfly
configuration (with initially only two junctions) will show
(see Sec. IVB) that the central straight string can be
dynamically unstable into splitting, in a configuration
very much like the one shown in Fig 1. As we discuss
below, this phenomenon only occurs for specific Uð1Þ �
Uð1Þ strings. However, this dynamical splitting cannot be
accounted for in the Nambu-Goto equations, and hence we
are forced to put it in by hand as an initial perturbation.

This point underlines the fact that the two types of
simulation are rather different. Whereas the field theory
is able to keep track of the topological windings of the
vortices without external input, the Nambu-Goto strings
know nothing of their composition, only their tension plays
a role. Similarly, when two vortices interact in field theory,
no external input is required. Nambu-Goto strings on the
other hand do not know how to behave when they interact,
and so boundary conditions must be added that preserve
the topological windings of the vortices they are model-
ling. By allowing for triangular perturbations at the junc-
tions, consistent with the topological demands of the field-
theory vortices, we are explicitly allowing the Nambu-
Goto strings to unpeel dynamically, in agreement with
charge conservation. Another way to see this is to think
of a Nambu-Goto string system as an evolving graph that,
left to its own devices, does not change its connectivity—
we need to add physical input to make such a system
accurate.

III. FIELD-THEORETIC APPROACH

A. The field-theory model

While the Nambu-Goto formalism is relatively easy to
analyze numerically, it does not necessarily give a com-
plete description of Y-junctions—for instance, one might
expect important interactions between the strings close to
and at the junctions, and these are not included in the
Nambu-Goto action. For that reason we also study the
butterfly configuration using the Uð1Þ � Uð1Þ model of
gauge strings [33], with Lagrangian density

L ¼ � 1

4
F��F

�� � ðD��Þ�ðD��Þ � �1

4
ðj�j2 � �2Þ2

� 1

4
F ��F �� � ðD�c Þ�ðD�c Þ

� �2

4
ðjc j2 � �2Þ2 þ �ðj�j2 � �2Þðjc j2 � �2Þ: (14)

Here, we follow the conventions of [33,43] and

D�� ¼ @��� ieA��; (15)

D �c ¼ @�c � igB�c ; (16)

while the antisymmetric field strength tensors are given by

F�� ¼ @�A� � @�A�; (17)

F �� ¼ @�B� � @�B�: (18)

Finally, � and � are constants that set the energy-scales of
the two halves of the model while �i and � are dimension-
less coupling constants.
For � ¼ 0 the two U(1)’s are uncoupled, and in the usual

way each admits Nielsen-Olesen vortex solutions with
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integer winding number. When � � 0 the U(1)’s are
coupled and, as shown in [33], for 0< �< 1

2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
, two

parallel strings from each U(1) can bind reducing the
potential energy of the system. Hence one can have Y-
junctions in this theory and their formation as a result of the
collision of two infinite straight strings was studied in
Ref. [43], while cosmological networks have been studied
in Ref. [41].

B. Numerical approach

The numerical approach employed for the field-theory
simulations is largely that of Ref. [43], but with a very
different set of initial conditions—namely the butterfly
loop initial condition described above. The reader is re-
ferred to [43] for further details of the numerical code,
while in Appendix B we discuss how to set up the initial
conditions such as those given in Fig. 2.

IV. RESULTS

For both the Nambu-Goto and field-theory simulations,
we have chosen to fix units such that the initial radius of the
circular arcs is unity. Furthermore, for the field-theory
simulations we take the standard [33,41,43] parameter
choice 2 ¼ �1 ¼ �2 ¼ 2e2 ¼ 2g2 and 0< �< 1 in order
for bound-states and Y-junctions to exist. We additionally
set � ¼ � so that there is complete symmetry between the
two halves of the model. Note that although the two
Abelian Higgs models are each individually in the
Bogomolnyi limit [45], with finite coupling between
them, the c field affects the energy per unit length of a
ðm; 0Þ string even though there is no winding in c and, for
example, (2, 0) strings are stable (see Table I).

In the field-theory simulation, we have set up the butter-
fly initial configuration in two cases:

(i) Case 1: a (1, 0) and a (0, 1) string forming the
‘‘wings,’’ with a (1, 1) bound-state string as the
central segment (see Fig. 4 below).

(ii) Case 2: a ð1;�1Þ and a (1, 1) string form the wings,
so that a (2, 0) bound-state string forms the central
segment (see Figs. 2 and 5)

In the Nambu-Goto simulations (see Fig. 1) the tension
of the wings is defined to be �1 while the tension of the
central segment is �0. These therefore need to be chosen
accordingly in order to compare with the field-theory
results. Table I gives the string tensions for infinite straight
strings (calculated via the method of [33]) for � ¼ 0:8 and
0.95.
From the definition of R in Eq.. (13), the relevant nu-

merical values are also given in Table I and we see that, the
smaller the value of R, the more stable the junction. In
case 1, R is never very small since most of the energy
actually stems from the covariant derivative term (which
cannot be greatly reduced even by increasing � to its
maximum value). A large binding energy exists in case 2
since this involves flux cancellation. Indeed, for � ¼ 0:95,
R ¼ 0:56, meaning that a (2, 0) is only slightly heavier
than a ð1;	1Þ string.

A. Direct comparison of field theory and Nambu-Goto
strings.

Before presenting our results it is useful to recall that a
circular Nambu-Goto loop of unit radius collapses to a
point in a time 	=2 
 1:57. This is also the collapse
time for those regions of the circular arcs on the butterfly
wings that remain causally disconnected from the
junctions.
For the initial condition given by case 1 with � ¼ 0:8,

the Nambu-Goto results shown in Fig. 3 (left) reveal that
the central bridge string collapses (and the junctions col-
lide) at t ¼ 1:12<	=2. Although it is not shown here, for
case 2 with � ¼ 0:95, the junctions collide later, at t ¼
1:56 & 	=2. In the right panel of Fig. 3 we have taken R ¼
0:5 (and hence �0 ¼ �1) for which the collapse time
* 	=2. In this way we can show (magnified in the figure)
the kink formed when parts of the arcs of circles in the
butterfly wings instantaneously collapse to a point—at this
time they travel at the speed of light. Something similar is
also seen in the numerical simulations, but of course the
field-theory vortices do not reach the speed of light.
A comparison of the field theory and Nambu-Goto re-

sults for case 1 with � ¼ 0:8 is shown in Fig. 4, while that
for case 2 with � ¼ 0:95 is shown in Fig. 5. The snap shots

(2,0)

(1,1) (1,−1)

FIG. 2 (color online). The � and c fluxes present in the
butterfly configuration for field-theory simulations of case 2:
ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ.

TABLE I. The energy per unit length of an infinite static
string, with parameters �1 ¼ �2 ¼ 2e2 ¼ 2g2 ¼ 2, � ¼ � and
two values of � as indicated. Note that an Abelian Higgs string
of unit winding would yield � ¼ 2	�2 [45]. R is defined in
Eq. (13).

� 0.80 0.95

�ð1;0Þ=2	�2 0.864 0.728

�ð1;1Þ=2	�2 1.452 1.133

�ð2;0Þ=2	�2 1.622 1.271

R½ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ� 0.840 0.778

R½ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ� 0.559 0.561
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are at equal time intervals, and hence additionally show the
velocity of the strings. The primary observation is that the
agreement between the field-theoretic and Nambu-Goto
results is excellent for the times shown, allowing us to
extend the results from Ref. [43] to strings with global
curvature rather than just straight strings with kinks, as was
previously considered.

In order to make a more detailed comparison, we plot in
Fig. 6 the physical length of the central bridge string as a
function of time for both the Nambu-Goto and field-theory
simulations. In the Nambu-Goto case, since this string is
stationary, its length is simply given by the difference

between s0ðtÞ at the two junctions and this value and this
value can be obtained analytically, as in Appendix C, as
well as being readily obtained from the simulations. In the
field-theory case, the measurement of the string length is
harder, though simplified because of the fact that the string
always lies along the y axis. For example, in case 2 it is
determined by the distance between the points where the
path of the c winding cuts the y axis.
Our results again show excellent agreement between the

Nambu-Goto and field-theoretic approaches, in fact right
up to the moment of bridge collapse. There is a small initial
transient departure, particularly in the ð1; 1Þ þ ð1;�1Þ !
ð2; 0Þ case, but this is largely due to the initial conditions
employed in the field-theory case, as well as the bridge

FIG. 4 (color online). The evolution of the butterfly configu-
ration ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ with � ¼ 0:8, shown at equally
spaced time intervals: t ¼ 0:000, 0.267, 0.533, 0.800, 1.067,
with larger configurations corresponding to earlier times. The
field-theory solution is shown as a bitmap, representing the
cumulative projection of its energy density onto the plane, while
the Nambu-Goto solution is shown as a solid black line. The
field-theory simulation had lattice spacing �x ¼ 0:5=�, with
� ¼ 90.

FIG. 5 (color online). As in Fig. 4 but for � ¼ 0:95 and
ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ.
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FIG. 6 (color online). The length of the central bridge string as
a function of time for the analytic Nambu-Goto solution (thin),
the numerical Nambu-Goto results (thick, dashed) and the field-
theoretic results (crosses). The collection of data with lower
bridge lengths is for the ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ case with � ¼
0:8 while higher bridge values correspond to ð1; 1Þ þ ð1;�1Þ !
ð2; 0Þ with � ¼ 0:95. The initial departure of the field-theoretic
results from the Nambu-Goto ones is due to the measurement
technique and is a transient effect.

t=0.0

t=0.53

t=1.12

t=0.0

t=0.8

t=1.57

FIG. 3 (color online). Results using the Nambu-Goto method
with tensions set to match a field-theory ð1; 0Þ þ ð0; 1Þ ! ð1; 1Þ
case with � ¼ 0:8 (left plot), and all tensions equal (right plot).
The later case corresponds to R ¼ 0:5 and includes a magnified
region showing a kink.
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length measurement technique (see Appendix C). The
initial disagreement in Fig. 6 is just the (0, 1) string
attempting to follow a smoother and less kinked route
across the junction and therefore moving outwards from
it, but then going too far and so undergoing a few low-level
oscillations. These oscillations can been seen in Fig. 5, in
which the two (1, 0) strings that compose the (2, 0) bridge
separate slightly near the junctions.

B. Stability of Y-junctions to decomposition
into multiple Y-junctions

When the initial butterfly configuration consists of the
case 2 scenario of ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ, the field-
theory simulation shows that the Y-junction itself can
decompose as illustrated in Fig. 7. The reason this occurs
is the following, and is specific to our Uð1Þ � Uð1Þ system:
The central (2, 0) string is a bound state of (1, 1) and
ð1;�1Þ, but it can also be constructed from two (1, 0)
strings. Whether this happens dynamically depends upon
the string tensions and the orientations of the external
strings. Let us define �2 to be the tension of the (1, 0)
string and construct the following ratios:

R ¼ �0

2�1

; R ¼ �1

2�2

: (19)

For the range of � chosen here 0:8 � � � 0:95, R is
approximately constant at 
 0:56 (see Table I). On the
other hand,R decreases from 0.86 to 0.78 as � is increased
across that range. As a result �2 becomes larger relative to
both �0 and �1, which themselves stay in approximate
proportion to each other. Hence, while case 2 with the high
� of 0.95, as already seen in Fig. 5, involves a large�2 and
no decomposition, with a lower � of 0.8 this decomposition
does indeed occur and the outcome of the simulation is
very different. In terms of � and c windings, the central

bridge string has peeled open to leave a system with two�
loops that sit at opposite ends of an elongated c loop, to
which they are each bound.
Our results for � ¼ 0:8 are shown in Fig. 8; those for

� ¼ 0:95 have already been presented in Fig. 5. In the
former case the intermediate (1, 0) strings form and grow
in the time-scale of the simulation. In the latter case, they
form but do not grow in the time scale of the simulation.
Indeed for � ¼ 0:8, the final state of the system is now very
different: the central bridge has decomposed and peeled
open to leave a system of two interconnected � loops
joined by c strings with four well-separated junctions.
Remarkably, we can also analyze this instability of the

Y-junctions to decomposition in the Nambu-Goto picture,
simply by changing the initial conditions and using the
second initial condition described in Sec. II B. This is
shown in Fig. 9 for the � ¼ 0:8 case (note though that
the junctions are so close in the first subfigure that they
cannot be resolved by eye). The snapshot for t ¼ 0:50,
however, clearly shows the new Y-junctions connected by
circular arcs whose length increase with time. The match-
ing with the field-theoretic results is surprisingly good. A
similar Nambu-Goto evolution for � ¼ 0:95 now shows
that the ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ junction is stable to the
breakup of junctions, again agreeing with the field-theory
results. The precise numerical results do differ for the
unstable case, since in the field-theoretic case there is a
considerable role of the small-scale microphysics in the
breakup of the junction and the breakup happens very
much faster than is seen in the Nambu-Goto case.
Additionally, the use of circular arcs here is artificial and
would not be expected to be wholly accurate. However, the
approximate matching of the critical value for � at which
the breakup occurs can be considered a success for the less
computationally intensive CKS approach, and crucially, as
we show below, it allows us to make a prediction based
purely on the Nambu-Goto results as to when a junction

FIG. 7 (color online). In the field-theory, this diagram shows
the possible decomposition of a ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ junc-
tion into three separate Y-junctions. For the Nambu-Goto simu-
lations this can be thought of as the second initial condition
(magnified region of the butterfly configuration shown in Fig. 1),
in which the Y-junction has split into three Y-junctions. In this
case, the angles shown would be determined by the tensions, h,
and the fact that the junctions are initially static.

FIG. 8 (color online). Results from a field-theoretic simulation
for ð1; 1Þ þ ð1;�1Þ ! ð2; 0Þ with � ¼ 0:8, showing the decom-
position of the initial Y-junctions. Snapshots are shown for times
t ¼ 0, 0.36, 0.8 and 1.24; each representing the cumulative
projection of energy density on the plane. The simulation had
lattice spacing �x ¼ 0:5=�, with � ¼ 90.

EVOLUTION AND STABILITY OF COSMIC STRING . . . PHYSICAL REVIEW D 80, 125030 (2009)

125030-7



will and will not be unstable to decomposition into many
junctions.

We reiterate that the Nambu-Goto string-junction sys-
tem cannot change its connectivity if it simply follows the
equations of motion. In order to model the physical system
of vortices we must add physical input as to how the strings
behave when they cross one another. Our approach has
been to set up configurations that mimic the field-theory
case just after the collision has occured. The nice result is
that given an initial setup we then appear to be able to say
with confidence what the outcome of the evolution will be,
in that the prediction from the Nambu-Goto case matches
closely the actual field-theory simulation.

C. Stability of Y-junctions in the Nambu-Goto
approach

Using the Nambu-Goto approach, the stability of Y-
junctions can be studied analytically, at least for small
times. In Appendix D, we describe this procedure in detail
for junction A1 in Fig. 7. We find that the initial perturba-
tion in the decomposed state grows or collapses according
to the sign of the angle 
 (see Fig. 7) given by


 ¼ 	

2
� cos�1ðRÞ � cos�1ðR� hÞ; (20)

where h is the size of the initial perturbation. Therefore, for
a given pair of tensions�0 and�1 there is a critical tension
�2 ¼ �crit (for a small fixed h), for which 
 ¼ 0. Below
and above this critical limit, there are two distinctive
behaviors: one in which the perturbation grows (as in
Fig. 9) and one in which it either does not grow signifi-

cantly or shrinks, and simply resembles the original butter-
fly (as in the field-theory simulation of Fig. 5). To illustrate
this, we can use the analytic results for _si and the evolution
of the vertex XA1

as a function of the right (and/or left

movers), which explicitly is given by (see Appendix D)

_X A1
¼ � 1P

j
�j

X
j

�jð1� _sjÞb0
j: (21)

To map the junction movement in real space, it is useful to
define the angle

tanð’Þ ¼
� _XA1

y

_XA1
x

�
; (22)

which shows the direction with respect to the x axis for t >
0. The explicit treatment of this angle is given in
Appendix D. The main result is that there exists a disconti-
nuity in ’ when going from 
 > 0 to 
 < 0, as Fig. 10
shows [46]. This shows how the evolution of the splitting
of the Y-junction in the original butterfly depends mainly
on the initial local curvature of the strings involved.
When 
 > 0 (see Fig. 7), strings 2 and 3 are ‘‘compet-

ing’’ in � space while the butterfly wing (string 1) is not
contributing much (note that for small times _s1 ¼ 0 to first
order in t). After some time and in real space, the vertex A1

moves downwards with an initial angle of ’ �
	þ tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
=RÞ (with the equality in the limit of


 ! 0) from the x axis, as can be seen in Fig. 10. In this
case the perturbation does not grow and, for a tension �2

big enough, it may even collapse faster than the central
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FIG. 9 (color online). Nambu-Goto evolution of the perturbed butterfly loop corresponding to the � ¼ 0:8 field-theory case of Fig. 8,
using a perturbation parameter h ¼ 0:01—the instability grows and the loop is unstable.
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bridge does. However, for 
 < 0 the local curvature is such
that the strings of the triangular perturbation grow in �
space. In real space, vertex A1 initially moves rapidly away
from the y axis and almost along the butterfly wing (string

1), which corresponds to an initial angle of ’ �
	� tan�1ðR=ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
Þ from the x axis. In Figs. 9

and 10, one can see this initial evolution. Later in the
evolution (when the angle ’ reaches 	), the segment
A1A2 changes from convex to concave, and the vertex A1

evolves like any other point on the big arc segment, hence
moving towards the center of the butterfly wing, as one can
see in the last two plots of Fig. 9. Therefore, for 
 < 0 the
perturbation grows for some time (which depends on how
negative 
 initially is), implying the original butterfly Y-
junction is unstable, leading to the criterion for stability
based on simply obtaining the value for 
.

V. DISCUSSION

The role of extended objects in the evolution of the
Universe has been studied for many years owing to their
intrinsically interesting properties, their crucial role in
string/M-theory, repeated appearance in grand unified the-
ory models and their presence in many condensed matter
systems. Here, we have extended previous studies on the
dynamics of cosmic strings to include the situations envi-
sioned in models of cosmic superstrings, namely, the ex-

istence of bound-state strings, and the junctions that join
them together [47]. While analytic studies of the super-
strings themselves have met with limited success [29,30],
the framework for numerical studies of field-theory defects
is well developed, and simple models of bound-state
strings [33] can be used to understand the large-scale
properties of networks [38–41], as well as more detailed
analyses on their individual collisions [43,44].
The great utility of Nambu-Goto dynamics is the huge

reduction in the degrees of freedom compared to field-
theory simulations, allowing for numerical computations
with far larger dynamic range. However, as is well known,
the Nambu-Goto dynamics break down as a description of
gauged cosmic strings when two vortices cross, loops
contract to a point, or when junctions collide. This is
well established for the case of the usual Abelian cosmic
strings, and algorithms have been developed (motivated by
the field-theory results) which nevertheless allow the
Nambu-Goto equations to be consistently used to model
the evolution of a network of cosmic strings (see [3] for
details). This same procedure has not yet been established
for the case of strings with junctions, and has been a key
goal of this paper. By comparing the modified Nambu-
Goto equations for such strings, with the field-theory evo-
lution for similar strings we have been able to establish
how well they follow each other, and where differences
emerge. By concentrating on a simple loop configuration,
that nevertheless encapsulates important dynamics, we
have been able to explore various properties and directly
probe the relationship between these two approaches, an-
swering questions such as: What happens when junctions
collide? What is the effect of loop collapse on the wings of
the butterfly loop? What can we say about the instability of
junctions as the bound states try to unzip [42]?
In terms of the general dynamics, we have seen that the

evolution of strings with junctions is remarkably well
modeled by the Nambu-Goto action [34,35,48], despite
the curvature at the junctions being high. However, the
field-theory approach has opened up a crucial new insta-
bility that is not present in the usual Nambu-Goto formal-
ism, namely, the breakup of a junction into three new
junctions and the corresponding unzipping of the compos-
ite string. In other words we still need the field theory to
understand the outcome of collisions of strings and colli-
sions of junctions.
Examining the field theory of strings with different

binding energies it became clear that for weakly-bound
composites the junctions could cause the strings to unzip,
care of the new instability. Once this was realized it be-
came possible to model this within the Nambu-Goto dy-
namics by introducing the potentially unstable triangular
configuration at the junctions, and solving for its evolution.
Remarkably, this then allowed us to predict in terms of the
angle 
 (or in terms of the string tensions) when a junction
would be unstable to this decay mode, and when it would
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FIG. 10 (color online). Numerical (solid lines) and analytic
(dashed red lines) evolution of the angle ’, for junction A1, for
two cases with 
 > 0 and two with 
 < 0; all close to the critical
value 
 ¼ 0 (blue lines are closer to the critical value). For 
 <
0 (bottom curves) the Y-junction is said to be unstable, since
vertex A moves along the butterfly wing until it reaches 180�,
and then it starts moving towards the center of the big arc, as
shown in Fig. 9. For 
 > 0 (top curves), vertex A moves down-
wards, leading to a stable Y-junction. The analytic approxima-
tions are calculated using R ¼ 0:561 and Eqs. (D1) and (D12),
which are linear truncations (in time), and only hold for small

times since ‘A1

minðtÞ � h. We choose h ¼ 0:01.
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remain stable, and the results agreed well with the field-
theory simulations. With this done there is again excellent
agreement between the Nambu-Goto simulations and the
field theory. Of course have chosen a very specific string
configuration to study, which is not representative of a
cosmological network of cosmic superstrings. The key
factor here is that given this understanding of the instabil-
ity, we believe it will again be possible to perform, with
confidence, large-scale cosmological simulations of cos-
mic superstrings using these modified Nambu-Goto
strings, in the same manner that it is possible to perform
simulations of ordinary cosmic strings using Nambu-Goto
equations.
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APPENDIX A: NAMBU-GOTO EQUATIONS OF
MOTION

This appendix presents details of the results given in
Sec. II. We work initially in the conformal gauge (and do
not impose the temporal gauge) since this enables the
equation for energy conservation to be obtained directly
from the action. Denote the induced metric on the world
sheet of the ith string by

�i
ab ¼ @x

�
i

@�a

@x�i
@�b

���; (A1)

where �0 ¼ �, �1 ¼ �i and ��� is the four-dimensional

Minkowski metric. In the conformal gauge �i
00 ¼ ��i

11

and �i
01 ¼ 0, the action for the whole string configuration

is

S ¼ �X
i

�
�i

Z
d�

Z
d�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x02i _x2i

q Y
JðiÞ

�ð�J
i fsJi ð�Þ � �igÞ

þX
JðiÞ

Z
d�fJ;i� fx�i ð�; sJi ð�ÞÞ � X

�
J ð�Þg

�
;

where JðiÞ implies that J takes on the values of the junc-
tions at either end of string i (although for semi-infinite
strings it would taken on just one value). The presence of
the � terms ensures contributions only for the allowed
range of � values while the Lagrange multipliers fJ;i�

ensure that the strings are coincident at the junction loca-
tions X

�
J .

Varying the action with respect to X
�
J for a single

junction gives

X
iðJÞ

fJ;i� ¼ 0; (A2)

where now iðJÞ implies that i takes on the indices of the
strings that meet at junction J. Then, varying the action

with respect x�i for a single string yields, in general €x�i ¼
x
�00
i but at the junctions this becomes

�i�
J
i ðx�0

i þ _sJi _x
�
i Þ ¼ f�i;J: (A3)

We now set the more restrictive gauge condition �00 ¼ 1
(giving � ¼ t and � as invariant length) while combining
Eqs. (A2) and (A3). This yields immediately the energy
conservation expression as the � ¼ 0 equation

�J
i �i _s

J
i þ �J

j�j _s
J
j þ �J

k�k _s
J
k ¼ 0; (A4)

which is reproduced from the main text, and as there i, j, k
are the indices of the three strings meeting at the junction.
In the new gauge and using the general solution of the

wave equation, as in Eq. (6), the spatial equations becomeX
iðJÞ

�i�
J
i ½ð1þ _siÞa0i þ ð1� _siÞb0

i� ¼ 0: (A5)

We then rewrite this using the new definitions of Eqs. (9)
and (11) asX

iðJÞ
�i½ð1þ �J

i _siÞYi þ ð1� �J
i _siÞZi� ¼ 0: (A6)

In addition the constraint that the three strings meet at the
junction is

2 _XJ ¼ ð1þ �J
i _s

J
i ÞYi � ð1� �J

i _siÞZi: (A7)

Now eliminating the outgoing waves Yi gives

� _XJ ¼ �X
iðJÞ

�ið1� �J
i _s

J
i ÞZi: (A8)

Furthermore, eliminating _XJ from Eqs. (A7) and (A8) we
can solve for the unknown outgoing waves

ð1þ �J
i _s

J
i ÞYi ¼ Zið1� �J

i _s
J
i Þ �

2

�

X
h

�hð1� �J
h _s

J
hÞZh;

which is reproduced from the main text. Squaring these
equations and using the gauge condition that jYij ¼ jZij ¼
1, then finally yields the result for _s given in the main text
as Eq. (7).

APPENDIX B: FIELD-THEORY INITIAL
CONDITIONS

We obtain the initial conditions required for the butterfly
configuration by first setting up the appropriate windings in
the scalar field and then applying a period of dissipative
evolution in order to relax the configuration to the mini-
mum energy configuration. That is, during this period there
is an extra term in each of the equations of motion that is
proportional to the first time derivative of the correspond-
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ing field and so removes energy from the system.
Additionally, we fix the modulus of the scalar field in the
region close to the desired center lines since otherwise the
configuration would simply contract to a point during the
dissipative evolution. We apply reflective boundary con-
ditions throughout the simulation.

The initial choice for the phases of the � field for a
planar loop of (1, 0) string is made as shown in Fig. 11. If a
site is above the plane of the loop then it is given the phase
	=2, if it is below the plane then it is given 3	=2, while if it
is in the plane of the loop then it is given either 	 if it is
outside the loop or zero if it is within it. This ensures the
correct winding structure of the field but it obviously yields
artificially high gradients on the plane of the loop. The
modulus of the scalar field is initially chosen so that the
field lies on the vacuummanifold, except close to the string
center lines, as will be explained momentarily. During the
dissipative evolution the gauge field, which is set to zero
initially, quickly grows to counter these phases gradients,
while the phase and modulus of � rapidly adjust them-
selves in order to minimize the energy. Obtaining a (0, 1)
loop can be achieved by simply swapping c for � in the
above argument, while a (1, 1) loop is obtained by setting
up the phases appropriately in both fields. Higher winding
numbers cannot be achieved by the direct application of the
above approach and will be discussed below.

The modulus of the scalar fields is set inside a tube
around the string centre line according to the solution for
an infinite straight string. For a winding 2	m in the phase
of� and 2	n in the phase of c , this has the following form
for small displacements r from the string center

�ðrÞ 
 Crm; (B1)

c ðrÞ 
 Drn: (B2)

The constants C and D, which depend on the choice of m
and n cannot be found analytically, but are solved for using

essentially the approach of Ref. [33]. Note that ifm is finite
but n is zero, then even though there is no winding in c , its
modulus is still less than � near the string as this lowers the
total potential term energy. However, jc j does remain
finite as r ! 0. In principle we could fix jc j close to the
string in this case also, but we choose not to since it would
not greatly aid the fixing of the string position and we wish
to minimize the artificial restrictions enforced.
The butterfly configuration illustrated in Fig. 2 can be

constructed by the superposition of a (1, 1) loop and a
ð1;�1Þ loop after a period of dissipation. Since the equa-
tions of motion are nonlinear there is no precise means to
do this, however a good approximation is simply to sum the
gauge fields from each loop Aþ

� and A�
� to give the total

A� ¼ Aþ
� þ A�

�; (B3)

where the þ and � refer to each loop. Then for the scalar
fields

�

�
¼ �þ

�

��
�

(B4)

results in a superposition of complex phases [24,26,28,49].
Furthermore, at distances far from any string setup in �þ
(such that the field is approximately constant and close to
its vacuum) the form of � is essentially that found in ��.
Using these equations, the time derivatives must then
superpose as

@tA� ¼ @tA
þ
� þ @tA

�
�; (B5)

�@t� ¼ �þ@t�� þ��@t�þ: (B6)

While the wings are largely unaffected by this process and
remain close to the minimum energy solution, a further
period of dissipation is required to relax the central region,
because of the significant interference between the two
loops. For the case illustrated in Fig. 2 this includes the
cancellation of the fluxes in c along the central string,
which greatly reduces the energy per unit length of that
segment.

APPENDIX C: ANALYTIC NAMBU-GOTO RESULT
FOR THE BUTTERFLY CONFIGURATION WITH

TWO VERTICES

As discussed in Sec. II, analytical progress is generally
not possible once junctions become causally connected.
However, in the case of the two-junction butterfly configu-
ration, the symmetry present ensures that the central string
is static and that it merely changes in length as time
proceeds. This enables us to readily perform analytical
calculations for this case that are valid in fact for all times
of interest.
The initial conditions are a string lying on the y axis

(string 0) and two arcs of unit circles (strings 1 and 2) in the
x-y plane. If is useful to introduce an angle � where, for a

α=π/2

α=π

α=3π/2

α=0

FIG. 11 (color online). The initial � phase choice for a planar
(1, 0) loop, ensuring a winding of 2	 in the desired locations.
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static initial configuration, cos� ¼ �R ¼ �0=ð2�1Þ. We
then have

x0ðt¼ 0;�0Þ ¼ ð0;�0;0Þ; j�0j< sin�;

x1ðt¼ 0;�1Þ ¼ ð�cos�þ cos�1; sin�1;0Þ; j�1j<�;

x2ðt¼ 0;�2Þ ¼ ðcos�� cos�2; sin�2;0Þ; j�2j<�:

(C1)

If we label the lower vertex as A and the upper one as B,
then�i increases toward junction B for all strings. Because
of symmetry it is sufficient to study one junction, say B.
Therefore, at t ¼ 0

a00 ¼ b0
0 ¼ ð0; 1; 0Þ;

a01 ¼ b0
1 ¼ ð� sin�1; cos�1; 0Þ;

a02 ¼ b0
2 ¼ ðsin�2; cos�2; 0Þ:

(C2)

Conservation of energy (4) implies that R _sB0 ¼ � _sB1 and

hence after integration we have

sB0 ðtÞ ¼ sin�� 1

R
ðsB1 ðtÞ � �Þ: (C3)

Thus, it is sufficient to determine the function sB1 ðtÞ. In this
case we have c1 ¼ c2 ¼ cosðsB1 � tÞ and c0 ¼ 2cos2ðsB1 �
tÞ � 1 and so it is useful to denote � ¼ t� sB1 , whose

derivative is _� ¼ 1� _sB1 . Therefore, Eq. (7) implies

_� ¼ 1� R2

1þ R cos�
: (C4)

This simple separable equation can be integrated to give

tsin2� ¼ � cos� sin�þ�� cos� sin�þ �: (C5)

Together with the definition of � and Eq. (C3), we now
have t, sB0 and sB1 specified as functions of the variable �.

Ordinarily the above results, which rely on the incoming
waves into the junctions taking the form specified by the
initial conditions, would cease to be valid for times after
the junctions come into causal contact. However, as noted
above, the symmetry means that string 0 is always static.
We therefore know trivially the waves emitted from the
junctions along this string, which take the same form as in
the initial conditions. Therefore, the above results are valid
even after the junctions are in causal contact via this central
route. Further, it can be shown that the central string al-
ways reaches zero length before communication is possible
via the arcs. Hence, the above results are actually valid for
all times of interest.

APPENDIX D: STABILITY OF Y-JUNCTIONS
USING THE NAMBU-GOTO APPROXIMATION

As long as we restrict ourselves to early times, we can
study the stability of the initial perturbation introduced in
the butterfly configuration. We will consider junction A1

(see Fig. 7), however this analysis can be equally applied to

any other junction. The angles shown in Fig. 7 are com-
pletely determined by the initial equilibrium conditions
and hence they are defined in terms of the tensions �1

and �2. The position of junction A1 in � space is

sA1

1 ð0Þ ¼ � ¼ 	� cos�1

�
�0

2�1

� h

�
;

sA1

2 ð0Þ ¼ � ¼ cos�1

�
�0

2�2

�
� ;

sA1

3 ð0Þ ¼ 
 ¼ �� � 	

2
;

(D1)

where  ¼ cos�1 �1

2�2
and h is the distance between junc-

tion A1 (or A2) and junction A3 in Fig. 7.
We will now analytically demonstrate that the behavior

of the perturbation (i.e. whether it grows or collapses)
depends on whether the angle 
 is positive or negative.
For that we will consider both cases and study the behavior

of _sA1

i and _XA1 . We will drop the junction index (A1) from
now on for simplicity.
Case I: 
 < 0
The initial configuration comprises of three strings with

tensions �1, �2 and

b0
1ðt ¼ 0; �1Þ ¼ ðsin�1; cos�1; 0Þ;

b0
2ðt ¼ 0; �2Þ ¼ ð� sin�2; cos�2; 0Þ;

b0
3ðt ¼ 0; �3Þ ¼ ð� cos�3; sin�3; 0Þ:

(D2)

At a later time t the incoming waves at junction A are

b0
1ðt; s1ðtÞÞ ¼ ðsinðs1ðtÞ � tÞ; cosðs1ðtÞ � tÞ; 0Þ;

b0
2ðt; s2ðtÞÞ ¼ ð� sinðs2ðtÞ � tÞ; cosðs2ðtÞ � tÞ; 0Þ;

b0
3ðt; s3ðtÞÞ ¼ ð� cosðs3ðtÞ � tÞ; sinðs3ðtÞ � tÞ; 0Þ:

(D3)

Taylor expanding si we get siðtÞ ¼ sið0Þ þ �it
2 þ . . . (re-

member _si ¼ 0 initially), and using the relations between
the angles we find (to first order in t)

c1 ¼ cosð2þ 2tÞ;
c2 ¼ � cos;

c3 ¼ � cosðþ 2tÞ:
(D4)

Now, using Eq. (7), linearizing in t and defining R ¼
cos ¼ �1

2�2
(which is always less than unity due to the

triangle inequalities) we find

_s 1 ¼ � _s3 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

p t; _s2 ¼
�
2R� 1

1�R2

�
t: (D5)

Case II: 
 > 0
In this case, the initials conditions can be written as

b0
1ðt ¼ 0; �1Þ ¼ ðsin�1; cos�1; 0Þ;

b0
2ðt ¼ 0; �2Þ ¼ ð� sin�2; cos�2; 0Þ;

b0
3ðt ¼ 0; �3Þ ¼ ð� cos�3;� sin�3; 0Þ:

(D6)
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Following the same procedure we find

_s 1 ¼ 0; _s2 ¼ � _s3 ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

p

1þR
t: (D7)

Having the analytic expressions for _si (which of course can
be extended further than first order in t) we can easily find
the analytical expression for _X using Eqs. (A5) and (A7),
to obtain the expression

_X ¼ � 1P
j
�j

X
j

�jð1� _sjÞb0
j: (D8)

In order to study the motion of the vertex in real space, we
define the angle

tanð’Þ ¼
� _Xy

_Xx

�
: (D9)

Since the expression for this angle is very complicated, one
can take the limit in which the perturbation size h tends to
zero, and also consider small deviations from the 
 ¼ 0
case, either with positive or negative 
. The critical tension
�2 which leads to 
 ¼ 0 is obtained by setting (20) to zero
and solving for �2, resulting in

�crit ¼ �1

2 cosðcos�1ðR� hÞ � 	=2Þ : (D10)

Therefore, in the limit h ! 0 and �2 ¼ �crit Eq. (D8)
reduces to

_Xy

_Xx

¼ � R

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

þ �1þ 3R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

R2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
� 2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
Þ t (D11)

for 
 < 0, and

_Xy

_Xx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

R
� 2þ R2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

2R4
t (D12)

for 
 > 0. Notice that, as one should expect, in the critical
tension limit R drops out from the expressions, and only
R ¼ �0

2�1
appears. For both cases (
 > 0 and 
 < 0), _Xx is

initially positive, so it is the y direction which changes. For

 > 0, the vertex A1 moves with an initial angle of

’ ¼ 	þ tan�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p

R

�
(54)

in the critical limit (�2 ¼ �crit), and bigger angles for
�2 >�crit; therefore the perturbation does not grow. In
contrast, for 
 < 0, the vertex A1 moves away from the y
axis, with an initial angle of

’ ¼ 	� tan�1

�
R

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
�
; (D14)

which is practically along the butterfly wing. In this case,
the junctions separate initially from each other and the
butterfly configuration is unstable.
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