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We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed

by a Dirichlet circular cylinder, where the wedge is formed by �-function potentials, so-called semi-

transparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the

presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be

derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions.

Numerical results are obtained which are closely analogous to those recently found for a magnetodi-

electric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods

are developed for annular regions with radial semitransparent potentials, based on reduced Green’s

functions for the angular dependence, which allows calculations using the multiple-scattering formalism.

Numerical results corresponding to the torque on the radial plates are likewise computed, which

generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in

separable geometries are derived.
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I. INTRODUCTION

The Casimir effect [1], which was originally conceived
as the attraction between parallel perfectly conducting
plates, may be regarded as due to the fluctuations of the
electromagnetic field in the quantum vacuum. In the past
six decades, this phenomenon has been generalized to
many different types of fields and to a variety of geometries
and topologies. Recent reviews of the Casimir effect in-
clude Refs. [2–6].

In this paper we will illustrate some new features that
arise, for example, in cylindrical geometries in which the
cylindrical symmetry is broken. In the past three decades
there have been many works on problems possessing cy-
lindrical symmetry, starting with the calculation of the
Casimir energy of an infinitely long perfectly conducting
cylindrical shell [7]. The more physical but also signifi-
cantly more involved case of a dielectric cylinder was
considered more recently [8–14]. Particularly germane to
the present work is the calculation of the Casimir effect for
a scalar field interior and exterior to a cylindrical
�-function potential, a so-called semitransparent cylinder
[15]; in the weak-coupling limit, both the semitransparent
cylinder and the dielectric cylinder have vanishing Casimir
energy.

The infinite wedge is closely related to the cylindrical
geometry. This problem was first considered in the late
seventies [16,17] as part of the still ongoing debate about

how to interpret various divergences in quantum field
theory with sharp boundaries and whether self-energies
of objects have any physical significance. Since then,
variations on this idea of the wedge have been treated by
several authors [18–22], and reviewed in Ref. [23]. A
wedge with a coaxial cylindrical shell was considered by
Nesterenko et al. [24,25], and the corresponding local
stresses were investigated by Saharian and collaborators
[26–30]. The interaction of an atom with a wedge was
studied in Refs. [31–35]; this geometry is that of the
experiment by Sukenik et al. carried out more than 15 years
ago [36]. Recently, Brevik, Ellingsen, and Milton [37]
calculated the Casimir energy of a magnetodielectric cyl-
inder intercut by a perfectly reflecting wedge filled with
magnetodielectric material. In all of these studies the as-
sumption was made that the wedge be bounded by per-
fectly conducting walls.
Although wedges defined by perfect conductors or

Dirichlet boundaries break cylindrical symmetry, they do
so in an easily understood way. When cylindrical symme-
try is present, the azimuthal quantum number � ranges
from �1 to 1 by integer steps. With a perfect conductor,
which forces the tangential electric field to vanish on the
surface, � takes on values which are related to the opening
angle � of the wedge, � ¼ �m=�, where m is an integer.
But what if the wedge boundaries are not perfect?
Recently, Ellingsen, Brevik, and Milton [38] considered
just such a case, where the wedge was defined by the
interface between two magnetodielectric media, where
the interior sector of the wedge had permittivity "1 and
permeability �1, while the exterior sector had permittivity
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"2 and permeability �2. The geometry was completed by
inserting a perfectly conducting circular cylinder of radius
a centered on the wedge axis. To ensure a finite result, as
well as separability of the problem, the further assumption
was made there that the speed of light in both media was
the same: "1�1 ¼ "2�2. In this case the azimuthal quan-
tum number had to be determined by a transcendental
equation, which was implemented in the calculation
through use of the so-called argument principle [39], which
is just the residue theorem.

In this paper, we further illustrate this nontrivial azimu-
thal dependence by considering a similar wedge geometry,
in which the infinite wedge is formed by two planar
�-function potentials, making a dihedral angle � 2
½0; ��, closed by a coaxial Dirichlet circular cylinder of
radius a. See Fig. 1. We calculate the Casimir energy of a
massless scalar field subject to these boundary conditions.
Because that energy is divergent, we compute the energy
relative to that when the radius of the cylinder is infinite,
and when neither or only one of the wedge boundaries is
present. Thus, we are computing the energy of mutual
interaction between the three boundaries. The results,
which are rather easily found numerically, are very similar
to those found for the electromagnetic field in a perfectly
conducting cylinder with a magnetodielectric wedge, as
considered in Ref. [38]. We describe the geometry in terms
of cylindrical coordinates ð�; �; zÞ with the origin lying
along the cylinder axis.

Because the interest in this problem largely lies in the
angular dependence, it is natural to approach the problem
in an unconventional way, in which the reduced Green’s
function refers to the azimuthal, not the radial, coordinate.
Technically, that approach requires consideration of an
annular region, which we describe in Sec. IV. This ap-
proach also allows use of the multiple-scattering technique,
and should have application to more complicated geome-
tries, such as the interaction between hyperboloids. We can
think of the radial planes between the concentric cylinders

as forming an annular piston, and we have computed
numerically the Casimir attractive torque between those
planes. An alternative approach to the determination of the
Casimir energy for any such angular potential is described
in Sec. V. The radial functions encountered in these wedge
problems are modified Bessel functions of imaginary or-
der; since these are rather infrequently described in the
literature, we collect some relevant properties in
Appendix B. Required integrals over the squared radial
functions may be evaluated using identities described in
Appendix A.

II. SEMITRANSPARENT WEDGE

In this paper we consider a massless scalar model, in
which the wedge is described by a �-function potential,
Vð�; �Þ ¼ vð�Þ=�2,

vð�Þ ¼ �1�ð�� �=2Þ þ �2�ð�þ �=2Þ: (2.1)

This has the diaphanous property of preserving the speed
of light both within and outside the wedge. This wedge is
superimposed on a coaxial circular cylindrical shell, of
radius a, on which the scalar field 	 vanishes. To calculate
the Casimir energy, we can use the formula [2]

E ¼ 1

2i

Z 1

�1
d!

2�

Z
ðdrÞ2!2Gðr; r;!Þ; (2.2)

where G is the Green’s function for the situation under
consideration, satisfying

ð�r2 þ Vð�; �Þ �!2ÞGðr; r0;!Þ ¼ �ðr� r0Þ: (2.3)

We can solve this cylindrical problem in terms of the
two-dimensional Green’s function G,

G ðr; r0;!Þ ¼
Z 1

�1
dkz
2�

eikzðz�z0ÞGð�; �;�0; �0Þ; (2.4)

which satisfies�
� 1

�

@

@�
�

@

@�
þ 
2 � 1

�2

@2

@�2
þ vð�Þ

�2

�
Gð�; �;�0; �0Þ

¼ 1

�
�ð�� �0Þ�ð�� �0Þ; (2.5)

where 
2 ¼ k2z �!2. This separates into two equations,
one for the angular eigenfunction ��ð�Þ,�

� @2

@�2
þ vð�Þ

�
��ð�Þ ¼ �2��ð�Þ; (2.6)

where we have assumed that the azimuthal eigenfunctions
are normalized according toZ �

��
d���ð�Þ��

�0 ð�Þ ¼ ���0 ; (2.7)

orthogonality of the eigenfunctions follows from the
Sturm-Liouville nature of the problem. Now the two-
dimensional Green’s function can be constructed as

α

FIG. 1. A Dirichlet cylinder intersecting with a coaxial wedge
made of semitransparent plates.

MILTON, WAGNER, AND KIRSTEN PHYSICAL REVIEW D 80, 125028 (2009)

125028-2



Gð�; �;�0; �0Þ ¼X
�

��ð�Þ��
�ð�0Þg�ð�; �0Þ: (2.8)

The radial reduced Green’s function satisfies

�
� 1

�

@

@�
�

@

@�
þ 
2 þ �2

�2

�
g�ð�; �0Þ ¼ 1

�
�ð�� �0Þ:

(2.9)

The latter, for a Dirichlet circle at � ¼ a, has the familiar
solution,

g�ð�; �0Þ ¼ I�ð
�<ÞK�ð
�>Þ � I�ð
�ÞI�ð
�0ÞK�ð
aÞ
I�ð
aÞ ;

�; �0 < a; (2.10a)

g�ð�; �0Þ ¼ I�ð
�<ÞK�ð
�>Þ � K�ð
�ÞK�ð
�0Þ I�ð
aÞ
K�ð
aÞ ;

�; �0 > a: (2.10b)

The azimuthal eigenvalue � is determined by Eq. (2.6).
For the wedge �-function potential (2.1) it is easy to
determine � by writing the solutions to Eq. (2.6) as linear
combinations of e�i��, with different coefficients in the
sectors j�j<�=2 and � � j�j>�=2. Continuity of the
function, and discontinuity of its derivative, are imposed at
the wedge boundaries. The four simultaneous linear homo-
geneous equations have a solution only if the secular
equation is satisfied:

0 ¼ Dð�Þ

¼ sin2�ð�� �Þ �
�
1� 4�2

�1�2

�
sin2��

�
�
�

�1

þ �

�2

�
sin2��: (2.11)

Because we recognize that the reflection coefficient for a
single �-function interface is ri ¼ ð1þ 2i�=�iÞ�1, imply-
ing that

Re ðr�1
1 r�1

2 Þ ¼ 1� 4�2

�1�2

; Imðr�1
1 r�1

2 Þ ¼ 2�

�1

þ 2�

�2

;

(2.12)

we see that this dispersion relation coincides with that
found in Ref. [38] when the reflection coefficient is purely
real. Note that the � ¼ 0 root of Eq. (2.11) is spurious and
must be excluded; unlike for the magnetodielectric wedge,
there are no � ¼ 0 modes for the semitransparent wedge.

Now using the general formula (2.2) we compute the
Casimir energy per length from

E ¼ 1

2i

Z 1

�1
d!

2�
2!2

Z 1

�1
dk

2�

X
�

Z 1

0
d��g�ð�; �Þ:

(2.13)

Note that we do not need to know the eigenfunctions ��,
only the eigenvalues �.
The apparent difficulty, that the eigenvalue condition for

� cannot be explicitly solved, may be resolved through
enforcing the eigenvalue condition by the argument prin-
ciple [39–44], which gives a sum over nonexplicit eigen-
values in terms of a contour integral around the real line,

X
�

fð�Þ ¼ 1

2�i

Z
�
d�

�
d

d�
lnDð�Þ

�
fð�Þ: (2.14)

The contour of integration � is illustrated in Fig. 2. Thus,
we have the expression after making the Euclidean rota-
tion, ! ! i� , and converting to polar coordinates,

� ¼ 
 cos’; k ¼ 
 sin’; (2.15)

E ¼ � 1

8�2i

Z 1

0
d

3

Z
�
d�

�
d

d�
lnDð�Þ

�

�
Z 1

0
d��g�ð�; �Þ: (2.16)

This formal expression is rather evidently divergent. We
are seeking the mutual interaction energy due to the three
boundaries, the two sides of the wedge and the circular arc.
Therefore, we first must subtract off the free radial Green’s
function without the circle at � ¼ a, which then implies

Z 1

0
d��g�ð�; �Þ ! a

2


d

d
a
ln½I�ð
aÞK�ð
aÞ�: (2.17)

(The familiar form of this expression is quite general, as
illustrated in Appendix A.) We further want to remove the
term present without the wedge potential:

FIG. 2. Contour of integration � for the argument principle
(2.14). Shown also are singularities of the integrand (2.16) along
the real and imaginary � axes.
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Dð�Þ ! ~Dð�Þ ¼ �1�2

4�2

Dð�Þ
sin2��

: (2.18)

The resulting energy is still not finite. The reason is that it
contains the self-energy of a single �-function potential
crossed by the circular cylinder.

Therefore, we still must remove that part of ~D due to a
single potential, which may be obtained by setting �2 (or

�1) equal to zero:

~D 1ð�Þ ¼ 1� �1

2�
cot��; (2.19)

so the final form of the dispersion function is obtained by
replacing

~Dð�Þ ! D̂ð�Þ ¼ ~Dð�Þ
~D1ð�Þ ~D2ð�Þ

¼ �1�2sin
2�ð�� �Þ=sin2��þ 4�2 � �1�2 � 2�ð�1 þ �2Þ cot��

ð2�� �1 cot��Þð2�� �2 cot��Þ : (2.20)

(Although the spurious � ¼ 0 root is still present, it may be
checked that this gives rise to an irrelevant divergent
constant in the energy.)

It is now easy to see that the integrand in the expression
for the energy falls off exponentially fast for large � in the
right-half complex � plane, except along the real � axis,
where an exponential convergence factor may be inserted.

In particular, for � ¼ i,  � 1, D̂ðiÞ differs only ex-
ponentially from unity:

D̂ðiÞ � 1� �1�2

ð2þ �1Þð2þ �2Þ e
�2�: (2.21)

Then it is permissible to unfold � and convert the contour
to one running parallel to the imaginary axis as shown in
Fig. 3. For imaginary �, � ¼ i, the dispersion functions
become

~D 1ðiÞ ¼ 1þ �1

2
coth�; (2.22)

and

D̂ðiÞ ¼ ��1�2sinh
2ð�� �Þ=sinh2�þ 42 þ �1�2 þ 2ð�1 þ �2Þ coth�

ð2þ �1 coth�Þð2þ �2 coth�Þ : (2.23)

Because of Eq. (2.21), the resulting expression for the
Casimir energy is manifestly convergent. This can be
further simplified by noting that d

d lnD̂ðiÞ is odd, which
eliminates the K� in Eq. (2.17), and then yields the ex-
pression

E ¼ 1

8�2a2

Z 1

0
dxx2

Z 1

0
d

�
d

d
lnD̂ðiÞ

�

� d

dx
arctan

KiðxÞ
LiðxÞ ; (2.24)

in terms of

K�ðxÞ ¼ � �

2 sin��
½I�ðxÞ � I��ðxÞ�; (2.25a)

L�ðxÞ ¼ i�

2 sin��
½I�ðxÞ þ I��ðxÞ�; (2.25b)

where both LiðxÞ and KiðxÞ are real for real  and x, and

IiðxÞ ¼ sinh�

�
½LiðxÞ � iKiðxÞ�: (2.26)

We should further note that the arctangent appearing in
Eq. (2.24) is not the principal value, but rather the smooth
function in which the phase is accumulated. (Some prop-

erties of the modified Bessel functions of imaginary order
are collected in Appendix B.)
Now we turn to the numerical evaluation of this

expression.

FIG. 3. Contour of integration for the  integral in Eq. (2.24).
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III. NUMERICAL EVALUATION OF CASIMIR
ENERGY FOR THE SEMITRANSPARENT WEDGE

It is actually quite easy to evaluate Eq. (2.24), because

the d
d logD̂ function is strongly peaked for small , except

for extremely small values of the dihedral angle �. The
difficulty numerically is thatKiðxÞ=LiðxÞ is an extremely

oscillatory function of x for x < , becoming infinitely
oscillatory as x ! 0. For x > , the ratio of modified
Bessel functions of imaginary order monotonically and
exponentially approaches zero. (For incomplete asymp-
totic information about Bessel functions of imaginary or-
der see Refs. [45,46]; see also Appendix B.) The function

hðÞ ¼
Z 1

0
dxx2

d

dx
arctan

KiðxÞ
LiðxÞ ; (3.1)

however, is very smooth. (It vanishes at  ¼ 0, so the
spurious zero mode should not contribute.) To evaluate
the double integral, we compute h at a finite number of
discrete points, form a spline approximation which is in-
distinguishable from h, and then evaluate the function

eð�Þ ¼
Z 1

0
dhðÞ d

d
lnD̂ðiÞ; (3.2)

numerically. (This strategy is similar to that employed in
Ref. [38].) The integrand here is quite strongly peaked in a
neighborhood of the origin. The Casimir energy, with the
indicated subtractions, is

E ¼ 1

8�2a2
eð�Þ: (3.3)

The results found by this strategy are shown in Figs. 4 and
5.

These graphs are very reminiscent of those found in
Ref. [38] for the magnetodielectric wedge. In particular,
we note that the energies are finite for all �, but as � ! 1,
the limit corresponding to a Dirichlet boundary, the energy

diverges as � ! 0 or 2�; the same phenomena was ob-
served in Ref. [38] for the perfectly conducting wedge
limit, treated previously in Ref. [37]. This energy should
be observable as a torque on the two semitransparent
plates, �ð�Þ ¼ � @

@� Eð�Þ, which is, as expected, attractive.
(The divergence associated with the apex of the wedge has
been subtracted.)

IV. ALTERNATIVE CALCULATION OF CASIMIR
ENERGY FOR SEMITRANSPARENT WEDGE IN

AN ANNULUS

We start from the formula (2.2) for the Casimir energy in
terms of the Green’s function,

E ¼ 1

2i

Z d!

2�
2!2 TrðG � Gð0ÞÞ; (4.1)

where the trace denotes the integration over spatial coor-
dinates, and we have again subtracted out the vacuum
contribution. The Green’s function Gðr; r0Þ will satisfy
the equation

½�r2 �!2 þ VðrÞ�Gðr; r0Þ ¼ �ðr� r0Þ; (4.2)

while the free Green’s function Gð0Þ satisfies the same
equation with VðrÞ ¼ 0. Once again we specialize to the
cylindrical geometry, but now defined in an annulus.
Specifically, we require that the boundary conditions on
the Green’s function are that it vanishes at � ¼ a and � ¼
b with b > a; that is, it satisfies Dirichlet boundary con-
ditions on two concentric circles. (Wewill see the necessity
for both an inner and an outer boundary in the following.)
If the potential has the form VðrÞ ¼ vð�Þ=�2, then we can
use separation of variables to write the Green’s function as,
in terms of the separation constant ,

0 1 2 3 4 5 6

1.4

1.2

1.0

0.8

0.6

0.4

α

α
e

FIG. 5 (color online). Casimir energy for a semitransparent
wedge embedded in a Dirichlet cylinder, as a function of the
dihedral angle �. Shown in order from highest to lowest are the
energies (3.3) for �1 ¼ 1 and �2 ¼ 0:1 to 2.1, by steps of 0.5.

0 1 2 3 4 5 6

2.5

2.0

1.5

1.0

0.5

0.0

α

α
e

FIG. 4 (color online). Casimir energy for a semitransparent
wedge embedded in a Dirichlet cylinder, as a function of the
dihedral angle �. Shown in order from highest to lowest are the
energies (3.3) for �1 ¼ �2 ¼ 0:5 to 4.0, by steps of 0.5.
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Gðr; r0;!Þ ¼
Z 1

�1
dkz
2�

eikzðz�z0ÞX


Rð�;!; kzÞ

� Rð�0;!; kzÞgð�; �0Þ: (4.3)

The geometry we are considering is illustrated in Fig. 6.
Note that instead of expanding in eigenfunctions of � as in
Eq. (2.8), we have expanded in terms of radial eigenfunc-
tions. (This cannot be done without the inner boundary—
that is, this alternative separation works for an annulus but
not for a disk.) The R functions are normalized radial
eigenfunctions of the eigenvalue problem,�

��
d

d�
�

d

d�
� ð!2 � k2zÞ�2

�
Rð�;!; kzÞ

¼ 2Rð�;!; kzÞ; (4.4)

with boundary values Rða;!; kzÞ ¼ Rðb;!; kzÞ ¼ 0.

The g is the reduced Green’s function in the azimuthal

coordinates that satisfies the equation�
� d2

d�2
þ 2 þ vð�Þ

�
gð�; �0Þ ¼ �ð�� �0Þ; (4.5)

with periodic boundary conditions. Finally inserting
Eq. (4.3) into Eq. (4.1) we get an expression for the vacuum
energy

E ¼ 1

2i

Z 1

�1
d!

2�
2!2

Z 1

�1
dkz
2�

Z
dz
X


Z b

a
�d�

� R2
ð�;!; kzÞ

Z
d�½gð�; �Þ � gð0Þ ð�; �Þ�: (4.6)

We can simplify the result considerably if we now make a
Euclidean rotation from ! ! i� , make the substitution
�2 þ k2z ¼ 
2, and integrate out the angle in the �-kz plane
to get the expression for the energy per unit length

E ¼ � 1

4�

Z 1

0

3d


X


Z b

a
�d�R2

ð�;
Þ

�
Z

d�½gð�; �Þ � gð0Þ ð�; �Þ�: (4.7)

A. The radial eigenvalue problem

We see that we need an expression for the radial integralZ b

a
�d�R2

ð�;
Þ; (4.8)

where the R’s are the normalized eigenfunctions obeying

the differential equation (4.4). The normalization isZ b

a

d�

�
R2
ð�;
Þ ¼ 1: (4.9)

To evaluate this integral we will use the identity (A9).
The boundary conditions are that Rða;
Þ ¼ Rðb;
Þ ¼
0; this is only possible for discrete values of —namely,
this is an eigenvalue condition for . Let ~Rðr;
Þ be a

solution to Eq. (4.4) which satisfies ~Rða;
Þ ¼ 0 for all 

and 
. The normalized solution can then be written as

Rð�;
Þ ¼ 1

N
~Rð�;
Þ; (4.10)

where

N2 ¼
Z b

a

d�

�
~R2
ð�; 
Þ: (4.11)

Now writing Eq. (4.4) as�
� d

d�
�

d

d�
þ 
2�� 2

�
1

�

��
Rð�; 
Þ ¼ 0; (4.12)

we can see that 1
�
~R2
ð�;
Þ is a total derivative given by

Eq. (A9). (We replace 
 !  there.) The integral (4.11) is
now trivial to carry out. We see that the value at the lower
limit of integration is zero by our boundary condition that
~Rða;
Þ ¼ 0, and the second term on the right in Eq. (A9)

at the upper limit is zero by the eigenvalue condition
~Rðb;
Þ ¼ 0. This gives the normalization constant as

N2 ¼ b

2

@

@b
~Rðb;
Þ @

@
~Rðb;
Þ: (4.13)

Now by considering 
 rather than  as the parameter in
Eq. (4.12), we also have from Eq. (A9) that the desired
integrand in (4.8) is a total derivative,Z b

a
�d� ~R2

ð�; 
Þ ¼ � b

2


@

@b
~Rðb;
Þ @

@

~Rðb;
Þ:

(4.14)

So the desired integral given by Eq. (4.8) can be concisely
written as

Z b

a
�d�R2

ð�;
Þ ¼ �




@
@


~Rðb;
Þ
@
@

~Rðb;
Þ
: (4.15)

B. Argument principle

Now we again use the argument principle (2.14), which
we previously used for the angular eigenvalues; in this case

a
b

v(θ)

FIG. 6. The annular geometry considered.
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the sum is over the radial eigenvalues, and the eigenvalue
condition is given by DðÞ ¼ Rðb;
Þ. So we have occur-
ring in the energy (4.7) the formX


Z b

a
�d�R2

ð�;
Þ

¼ 1

2�i

Z
�
d

@
@

~Rðb;
Þ
~Rðb;
Þ

�
�




@
@


~Rðb;
Þ
@
@

~Rðb;
Þ
�

¼ � 1

2�i

Z
�
d






@

@

ln ~Rðb;
Þ: (4.16)

The expression for the Casimir energy per length (4.7) is
then given by

E ¼ 1

8�2i

Z 1

0

2d


Z
�
d

�
@

@

ln ~Rðb;
Þ

�

�
Z

d�ðgð�; �Þ � gð0Þ ð�; �ÞÞ: (4.17)

C. The radial solutions

The differential equation (4.12) is the modified Bessel
differential equation, of imaginary order. We need two
independent solutions of this equation, which we could
take to be Kið
�Þ and Lið
�Þ, given by Eq. (2.25). Now

we want to find the solution ~Rð�;
Þ that is zero for � ¼ a

for all values of  and 
. An obvious solution is

~Rð�;
Þ ¼ Kið
aÞ~Iið
�Þ � ~Iið
aÞKið
�Þ
¼ R�ð�; 
Þ; (4.18)

where

~I � ¼ 1

2
ðI� þ I��Þ ¼ sin��

i�
L� (4.19)

is the function initially called L� in Ref. [38]; here this is a
more convenient choice, in that both K� and ~I� are even in
�.

D. Reduced Green’s function

We also need the reduced Green’s function in the angu-
lar coordinates. The free Green’s function is easily found to
be

gð0Þ ð�; �0Þ ¼ 1

2

�
� sinhj�� �0j

þ cosh�

sinh�
coshj�� �0j

�
: (4.20)

If we assume a single �-function potential vð�Þ ¼ ��ð��
�Þ, then the Green’s function is

gð�;�0Þ ¼ 1

2

�
� sinhj�� �0j þ 1

2 sinh�þ�cosh�

�
�
2cosh�coshj�� �0j � �

2sinh�
fcoshð2�þ 2�� �� �0Þ � cosh2�coshj���0jg

��
; (4.21)

which is defined for � and �0 in the interval ½�; 2�þ ��.
The quantity of interest, trðg� gð0ÞÞ, is thenZ 2�þ�

�
d�½gð�; �Þ � gð0Þ ð�; �Þ�

¼ ��ðsinh� cosh�þ �Þ
22 sinh�ð2 sinh�þ � cosh�Þ ; (4.22)

and this expression can be seen to be a total derivativeZ 2�þ�

�
d�½gð�; �Þ � gð0Þ ð�; �Þ�

¼ 1

2

@

@
ln

�
1þ �

2
coth�

�

¼ 1

2

@

@
lnð1þ �gð0Þ ð�;�ÞÞ; (4.23)

which agrees with the result stated in Eq. (2.22). It is
precisely of the expected form (A11).

E. Casimir energy

The final form for the Casimir energy for a single radial
�-function potential in the annular region is

E ¼ 1

16�2i

Z 1

0

2d


Z
�
d

�
@

@

ln½Kið
aÞ~Iið
bÞ

� ~Iið
aÞKið
bÞ�
��

@

@
ln

�
1þ �

2
coth�

��
:

(4.24)

This result may also be obtained by the multiple-
scattering formalism [47], which says that

E ¼ � 1

2i
Tr lnGGð0Þ�1 ¼ 1

2i
Tr lnð1þGð0ÞVÞ; (4.25)

the latter form being a useful form for a single potential.
We see that Eq. (4.24) exactly corresponds to this if we
integrate by parts on  and 
:
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E ¼ 1

8�2i

Z 1

0
d



Z
�
d

�
@

@
ln½Kið
aÞ~Iið
bÞ

� ~Iið
aÞKið
bÞ�
�
ln½1þ �gð0Þð�;�Þ�: (4.26)

We can check this result by taking the limit as a and b
get very large, but with fixed distance between the circles.
In this limit this result should reproduce the case of a single
semitransparent plane between two parallel Dirichlet
planes, as illustrated in Fig. 7. The energy in that case
should be

E ¼ � 1

8�

Z 1

0

3d


X1
n¼1

1

~

@

@~
ln

�
1þ

~�

2~

�
; (4.27)

where ~2 ¼ 
2 þ ðn�=ðb� aÞÞ2. If we use the argument
principle we can write it as

E ¼ � 1

16�2i

Z 1

0

3d


Z
�
d~

�
�
@

@~
ln

�
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~2 � 
2

p ðb� aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~2 � 
2

p ��

�
�
1

~

@

@~
ln

�
1þ

~�

2~

��
: (4.28)

The square root divided out in the logarithm is present to
remove the spurious square-root singularity. It should be
noted that both of these expressions (4.24) and (4.28) are
divergent, but the divergence is simply the self-energy
divergence always present with a single plane.

It is straightforward to prove that Eq. (4.24) reduces to
Eq. (4.28) in the appropriate limit. The second logarithm in
the former becomes, in the limit  ! 1, simply lnð1þ
�=2Þ, so that suggests the correspondence

~ ¼ 

a
; ~� ¼ �

a
: (4.29)

And the leading uniform asymptotic expansion of the
modified Bessel functions [45,46] gives

Ki

�


a



�
~Ii

�


b



�
� Ki

�


b



�
~Ii

�


a



�

� 1

2
tðzaÞ1=2tðzbÞ1=2 sin½ðfðzaÞ � fðzbÞÞ�; (4.30)

where za ¼ 
a=, zb ¼ 
b=, tðzÞ ¼ ð1� z2Þ�1=2, and

fðzÞ ¼ ln

�
1þ tðzÞ�1

z

�
� 1

tðzÞ ; f0ðzÞ ¼ � 1

ztðzÞ :
(4.31)

(The function f is a continuation of a function usually
called, but we have already used that symbol repeatedly.)
This result holds true for z < 1, but an equivalent form,
obtained by analytic continuation, holds for z > 1. (See
Appendix B.) Then the derivative with respect to 
 term in
Eq. (4.24) becomes

@

@

lnðK~I � ~IKÞ � @

@

ln

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � ð
aÞ2p
� sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð
aÞ2

q b� a

b

��
; (4.32)

so with the substitutions (4.29), and the observation that

@

@
Fð2 � 
2Þ ¼ �




@

@

Fð2 � 
2Þ; (4.33)

we exactly recover the Casimir energy for a semitranspar-
ent plate between two Dirichlet plates (4.28).
It is also easy to check that the energy (4.24) agrees with

the expression for the energy given by the more conven-
tional approach described in Sec. II. The latter is

E ¼ � 1

16�2i

Z 1

0

2d


Z
�
d�

�
@

@�
ln

�
1� �

2�
cot��

��

� @

@

ln½I�ð
aÞK�ð
bÞ � I�ð
bÞK�ð
aÞ�: (4.34)

This equivalence may be easily shown by seeing that the
integrand is odd in �, because

a

b b − a

v(θ)

b − a

v(θ)

FIG. 7. Large radius limit of annular geometry. For large annular radii a and b, with b� a fixed, the annular boundaries become
indistinguishable from parallel planes.
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I�ð
aÞK�ð
bÞ � I�ð
bÞK�ð
aÞ
¼ ~I�ð
aÞK�ð
bÞ � ~I�ð
bÞK�ð
aÞ; (4.35)

and then rotating the contour � from that shown in Fig. 2 to
that in Fig. 3, which may then be transformed to that shown
in Fig. 8, by changing � to �� on the negative imaginary
axis. Thus the contour � in the � plane is transformed to �
in the  plane appearing in Eq. (4.24) (except traversed in
the opposite sense), and the equivalence is established.

F. Interaction between two semitransparent planes

If we want to look at an explicitly finite quantity we will
need to look at the interaction energy between two semi-

transparent planes. The geometry is illustrated in Fig. 9. We
will use a slightly different form of the energy for this,
based on the multiple-scattering formalism [47]:

E ¼ 1

2i

Z 1

�1
d!

2�
Tr lnð1� Gð1ÞV1Gð2ÞV2Þ: (4.36)

The subscripts on the V’s represent the potentials V1ðrÞ ¼
�1�ð�Þ=�2, and V2ðrÞ ¼ �2�ð�� �Þ=�2. The Green’s
functions with superscript ðiÞ represent the interaction
with only a single potential Vi. By using Eq. (4.3), we
can greatly simplify the interaction energy to

E ¼ 1

4�

Z 1

0

d


X


lnð1� trgð1Þ v1g
ð2Þ
 v2Þ: (4.37)

We already have an expression for gðiÞ , given in Eq. (4.21).
Using the latter we can write

tr gð1Þ v1g
ð2Þ
 v2 ¼ �1�2cosh

2ð�� �Þ
ð2 sinh�þ �1 cosh�Þð2 sinh�þ �2 cosh�Þ : (4.38)

This exactly agrees with Eq. (2.23).
Using the argument principle to replace the sum we then get the Casimir energy of two semitransparent plates in a

Dirichlet annulus, the immediate generalization of the Casimir energy (4.26) for a single plate,

E ¼ 1

8�2i

Z 1

0

d


Z
�
d

�
@

@
ln½Kið
aÞ~Iið
bÞ � ~Iið
aÞKið
bÞ�

�

� ln

�
1� �1�2cosh

2ð�� �Þ
ð2 sinh�þ �1 cosh�Þð2 sinh�þ �2 cosh�Þ

�
: (4.39)

A limiting case when a, b ! 1, b� a fixed, should be two perpendicular semitransparent planes, a distance d apart,
sandwiched between Dirichlet planes, similar to the single plate situation treated in the subsection above. A similar
formula should then be

E ¼ 1

8�2i

Z 1

0

d


Z
�
d~

�
@

@~
ln

�
sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~2 � 
2
p ðb� aÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~2 � 
2
p ��

ln

�
1�

~�1
~�2e

�2~d

ð2~þ ~�1Þð2~þ ~�2Þ
�
: (4.40)

FIG. 8. Transformed contour of integration for the � integral in
Eq. (4.34).

v1 (θ)

v2 (θ)

α

FIG. 9. Two semitransparent plates in an annulus.
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As in the case of a single plate, this limiting form is
immediately obtained from Eq. (4.39).

Finally, we verify that we obtain the expression (2.24)
for the wedge geometry. To do this, we must include the
modes exterior to the outer cylinder (with the wedge ex-
tended to infinity as in Fig. 1) and subtract the energy
present if the outer cylinder were not present. This means
that the radial dispersion function determining the azimu-
thal eigenvalues  becomes

R̂ ðb;
Þ ¼ ðKið
aÞ~Iið
bÞ � ~Iið
aÞKið
bÞÞ

� Kið
bÞ
Kið
aÞ : (4.41)

The extended annular energy is then given by Eq. (4.39)

with ~Rðb;
Þ ! R̂ðb;
Þ. We now can distort the contour

� to one lying along the imaginary axis as shown in Fig. 3,
i ! � [because the second logarithm in Eq. (4.39) falls
off exponentially fast for Re> 0], and then using the
small argument expansion, for real �,

K�ðxÞ � �ðj�jÞ
2

�
x

2

��j�j
;

~I�ðxÞ � sinj�j�
�

�ðj�jÞ
2

�
x

2

��j�j
; x ! 0:

(4.42)

This means for small a and real � the first logarithm in
Eq. (4.39) is lnI�ð
bÞK�ð
bÞ, which is just what was
encountered in Eq. (2.17). We then fold the � integral to
encircle the positive real axis as in Fig. 8 and integrate by
parts in 
 and �. In this way the form (2.16) is reproduced

(with D ! D̂), which leads to the final expression (2.24).

G. Numerical evaluation of the Casimir energy for two
Dirichlet planes in an annulus

The Casimir energy in Eq. (4.37) is a quickly converging
function so it should be easy to evaluate. However, it can be
difficult to evaluate the  eigenvalues, which become
functions of the wave number 
 and a natural number m.
We can get around this problem, again, by exploiting the
argument principle in order to get a contour integral in the
complex plane, as in Eq. (4.39). We cannot integrate along
the real line because of the poles introduced when we use
the argument principle, and unlike with the wedge we
cannot open along the imaginary axis, because the integral
then becomes divergent. So a simple choice is then to let
the integration run along the angles of �=4 and ��=4 in
the complex  plane. Identifying Rðb; 
Þ from Eq. (4.18),

and writing trgð1Þ v1g
ð2Þ
 v2 ¼ AðÞ, we have

E ¼ 1

4�2

Z 1

0

d


Z 1

0
d�

�
ReR ffiffi

i
p

�@�ReR
ffiffi
i

p
� þ ImR ffiffi

i
p

�@�ImR ffiffi
i

p
�

jR ffiffi
i

p
�j2

arctan

�
ImAð ffiffi

i
p

�Þ
1� ReAð ffiffi

i
p

�Þ
�

� ReR ffiffi
i

p
�@�ImR ffiffi

i
p

� � ImR ffiffi
i

p
�@�ReR

ffiffi
i

p
�

2jR ffiffi
i

p
�j2

lnð1� 2ReAð ffiffi
i

p
�Þ þ jAð ffiffi

i
p

�Þj2Þ
�
: (4.43)

Here we have used the property that R� ¼ R�
, and

Að�Þ ¼ A�ðÞ. The value of R ffiffi
i

p
�ðb; 
Þ is obtained as a

numerical solution to the differential equation. Using this
technique we can obtain a numerical energy in about 1 cpu
second. The results of this calculation are found in Fig. 10.

Again we would like to compare to known results, so
Fig. 11 is a graph of the ratio of the energies of an annular
piston to a rectangular piston of similar dimension. The
rectangular piston is constructed so it has the same finite
width b� a as the annular piston, and the separation
distance is the mean distance between the annular plates,

d ¼ bþ a

2
2 sin

�
�

2

�
: (4.44)

The results make a certain amount of physical sense. The
energy of the annular piston is greater than that of the
rectangular piston for small separation because the inner
edge of the annular piston is closer, and will contribute
more to the energy. However as the annular piston gets
farther away, the other side of the piston will start to
contribute and lower the overall energy. In addition we
see that the small piston is much closer to the rectangular

piston for small separations than a larger piston, and in the
plateau region for small separations, Eann=Erect 	 1:004
for b=a ¼ 1:1 vs Eann=Erect 	 1:23 for b=a ¼ 2. These
numbers are quite closely reproduced by the ratio of the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.10

0.08

0.06

0.04

0.02

0.00

α

E

L
a2

b a 5

b a 2

b a 1.1

FIG. 10. This figure shows the energy per length vs the angle
between Dirichlet plates. The energy is scaled by the inner radius
a. The three lines represent three different ratios of inner to outer
radius b

a ¼ 1:1, b
a ¼ 2, and b

a ¼ 5.
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proximity force approximate value of the energy for tilted
plates to the energy for parallel plates (ignoring the side-
walls) for small tilt angles,

EPFA

Ek
¼ 1

16

b2

a2

�
1þ a

b

�
4
: (4.45)

V. THETA DEPENDENT POTENTIALS

Instead of considering, as usually done, spherically or
cylindrically symmetric potentials, in this paper we have
been examining potentials depending on the angles. In
particular, in two dimensions, in order for separation of
variables to work, we have been considering the operator

L ¼ �r2 þ 1

�2
vð�Þ

¼ � @2

@�2
� 1

�

@

@�
� 1

�2

@2

@�2
þ 1

�2
vð�Þ; (5.1)

with vð�Þ given in Eq. (2.1). The advantage of this potential
is that a closed form for the secular equation can be given
[see Eq. (2.11)]. But what can be said for other potentials
vð�Þ? The relevant equations for the two-dimensional
Green’s function are still Eqs. (2.5), (2.6), (2.7), (2.8),
(2.9), (2.10a), and (2.10b). In particular, for the angular
eigenfunctions we still have

0 ¼ �00ð�Þ þ ð�2 � vð�ÞÞ�ð�Þ; (5.2)

where � is the separation constant. The separation constant
is determined from the boundary condition in �. For vð�Þ
being a smooth potential, one imposes periodic boundary
conditions, and this is what we concentrate on for
concreteness.

Note that the only information from Eq. (5.2) that enters
Eq. (2.9) for the radial reduced Green’s function is the
separation constant �. From Eq. (5.2) its square can be
considered the eigenvalue of

L� ¼ � @2

@�2
þ vð�Þ (5.3)

with periodic boundary conditions. For a nontrivial poten-
tial vð�Þ no explicit form of � will be known. But also in
general a transcendental equation determining the eigen-
values can be obtained; we follow Ref. [48]. In order to
formulate this equation letHð�Þ be the fundamental matrix

of Eq. (5.2). That is, let uð1Þ� ð�Þ and uð2Þ� ð�Þ be two linearly

independent solutions of Eq. (5.2). With wðiÞ
� ð�Þ ¼

duðiÞ� ð�Þ=d�, the fundamental matrix is

Hð�Þ ¼ uð1Þ� ð�Þ uð2Þ� ð�Þ
wð1Þ

� ð�Þ wð2Þ
� ð�Þ

 !
; (5.4)

where we choose the normalizations such that Hð0Þ ¼
12�2. With these definitions and normalizations, the equa-
tion determining the eigenvalues reads

0 ¼ Dð�Þ
¼ ð1� uð1Þ� ð2�ÞÞð1� wð2Þ

� ð2�ÞÞ � uð2Þ� ð2�Þwð1Þ
� ð2�Þ:

(5.5)

The solutions to this equation have to be used in Eq. (2.9).
The Casimir energy expressions (2.16) and (2.17) then
remain valid, once the appropriate radial reduced Green’s
function is used and Dð�Þ given in Eq. (5.5) is substituted.
Once vð�Þ is specified this allows, in principle, for a
numerical evaluation of the Casimir energy when suitable
subtractions are performed.
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APPENDIX A: AN INTEGRAL THEOREM

It may be useful to see explicitly how the trace of the
subtracted reduced Green’s function turns into a derivative
of a logarithm, as in Eq. (2.17). Consider a Green’s func-
tion g
ðx; x0Þ for a one-dimensional problem described by

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

Eann

Erect

b a 2

b a 1.1

FIG. 11. This figure shows the ratio of the energies of an
annular Dirichlet piston to a rectangular Dirichlet piston of
similar dimension vs average separation distance between the
plates. The variable x is the separation distance scaled by the
finite size of the piston b� a, x ¼ d=ðb� aÞ. The two lines
represent two ratios of inner to outer radius b

a ¼ 1:1, and b
a ¼ 2.

For the latter case, only the region � 2 ½0; �� is shown.
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the differential equation�
� d

dx
pðxÞ d

dx
� 
2rðxÞ þ qðxÞ þ pðxÞVðxÞ

�
g
ðx; x0Þ

¼ �ðx� x0Þ; (A1)

where V is a �-function potential,

VðxÞ ¼ ��ðx� cÞ: (A2)

The problem is defined on the interval a < c < b, where at
the boundaries g
 satisfies Dirichlet boundary conditions,

g
ða; x0Þ ¼ g
ðb; x0Þ ¼ 0: (A3)

If the potential V ¼ 0, let the corresponding Green’s func-

tion be denoted by gð0Þ
 .
Let us solve this problem in terms of two independent

solutions of the homogeneous equation�
� d

dx
pðxÞ d

dx
� 
2rðxÞ þ qðxÞ

�
u
ðxÞ ¼ 0: (A4)

Let A
 be such a solution that vanishes at the left boundary,
A
ðaÞ ¼ 0, and B
 be an independent solution that van-
ishes at the right boundary, B
ðbÞ ¼ 0, and let them be
normalized so that the Wronskian is

W½A
; B
�ðxÞ 
 A
ðxÞB0

ðxÞ � B
ðxÞA0


ðxÞ ¼ � 1

pðxÞ :
(A5)

Then the ‘‘free’’ Green’s function is

gð0Þ
 ðx; x0Þ ¼ A
ðx<ÞB
ðx>Þ; (A6)

and the full Green’s function has the form

g
ðx; x0Þ ¼ gð0Þ
 ðx; x0Þ þ
�
�A
ðxÞA
ðx0Þ; a < x; x0 < c;
�B
ðxÞB
ðx0Þ; c < x; x0 < b:

(A7)

Now, it is easy to prove that

� ¼ �B2

ðcÞ

�A
ðcÞB
ðcÞ þ 1
; � ¼ �A2


ðcÞ
�A
ðcÞB
ðcÞ þ 1

:

(A8)

It is immediate that any two solutions of the differential
equation (A4) u
 and w
 satisfy

@

@x

�
pðxÞ

�
@

@x
u
ðxÞ @

@

w
ðxÞ � u
ðxÞ @

@


@

@x
w
ðxÞ

��
¼ 2
rðxÞu
ðxÞw
ðxÞ; (A9)

and therefore the following indefinite integral follows:Z
dxrðxÞu2
ðxÞ ¼ pðxÞ

2

u
ðxÞu0
ðxÞ @

@

ln
u
ðxÞ
u0
ðxÞ ; (A10)

where u0
ðxÞ 
 @
@x u
ðxÞ.

Now we can evaluate the trace of the interaction part of
the Green’s function,

trðg� gð0ÞÞ 

Z b

a
dxrðxÞ½gðx; xÞ � gð0Þðx; xÞ�

¼ �

�A
ðcÞB
ðcÞ þ 1

�
B2

ðcÞ

Z c

a
dxrðxÞA2


ðxÞ þ A2

ðcÞ

Z b

c
dxrðxÞB2


ðxÞ
�

¼ �pðcÞ
2


�A2

ðcÞB2


ðcÞ
�A
ðcÞB
ðcÞ þ 1

�
A0

ðcÞ

A
ðcÞ
d

d

ln
A0

ðcÞ

A
ðcÞ �
B0

ðcÞ

B
ðcÞ
d

d

ln
B0

ðcÞ

B
ðcÞ
�

¼ d

d
2
ln½1þ �A
ðcÞB
ðcÞ� ¼ d

d
2
ln½1þ �gð0Þðc; cÞ�: (A11)

This is the expected expression. As shown in Sec. IVE, this
is just the expected multiple-scattering result. In the
Dirichlet limit � ! 1, this agrees with the Bessel function
result (2.17), where pðxÞ ¼ rðxÞ ¼ x; although in that case
the boundary condition is not Dirichlet at the origin,
pð0Þ ¼ 0.

APPENDIX B:MODIFIED BESSEL FUNCTIONSOF
PURE IMAGINARY ORDER

In this work we encountered the following differential
equation, �

x
@

@x
x
@

@x
� x2 þ 2

�
c ðxÞ ¼ 0; (B1)

which is the modified Bessel equation, with the wrong sign

for the order parameter 2. The solutions are then obvi-
ously modified Bessel functions of imaginary order. So we
might choose as the independent pair of solutions the
modified Bessel function of the first kind, of positive and
negative pure imaginary order IiðxÞ and I�iðxÞ. However
the Ii’s are not numerically satisfactory functions; their

values for real x are complex, and the phase is x dependent.
A standard pair of functions can be defined as

K�ðxÞ ¼ �

2 sin��
ðI��ðxÞ � I�ðxÞÞ; (B2a)

L�ðxÞ ¼ i�

2 sin��
ðI�ðxÞ þ I��ðxÞÞ: (B2b)

The K�ðxÞ is the standard modified Bessel function of the
second kind, also called the Macdonald function. Both
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KiðxÞ and LiðxÞ are real for real values of  and x. For a

fixed , both K and L oscillate with relatively constant
amplitude for x < , and they die or grow exponentially
for x > , respectively. The limiting behaviors are given in
this appendix; see Refs. [45,46]. Although this definition of
L� is convenient in Sec. II, for the considerations of
Sec. IV, the sin�� in Eq. (B2b) introduces spurious singu-
larities, and it is more convenient there to simply use

~I �ðxÞ ¼ 1

2
ðI�ðxÞ þ I��ðxÞÞ ¼ sin��

i�
L�ðxÞ; (B3)

also called L� in Ref. [38]. In the following wewill give the
behaviors of Ki and ~Ii.

1. Small argument

For fixed > 0, in the limit as x ! 0þ,

KiðxÞ ¼ �
�

�

 sinh�

�
1=2
�
sin

�
 ln

x

2
�	

�
þOðx2Þ

�
;

(B4a)

~IiðxÞ ¼
�
sinh�

�

�
1=2
�
cos

�
 ln

x

2
�	

�
þOðx2Þ

�
;

(B4b)

where 	 is given by

	 ¼ arg½�ð1þ iÞ�: (B5)

2. Large argument

For fixed > 0 and large argument jxj ! 1 we have

KiðxÞ ¼
�
�

2x

�
1=2

e�x½1þOðx�1Þ�; j argxj � 3�

2
� �;

(B6a)

~IiðxÞ ¼
�

1

2�x

�
1=2

ex½1þOðx�1Þ�; j argxj � �

2
� �;

(B6b)

for arbitrary � > 0.

3. Uniform asymptotic expansion

The uniform asymptotic expansions are for both large
order and argument. For fixed z > 0 we have for the lead-
ing behavior

KiðzÞ � �e��=2

1=3

�
4�

1� z2

�
1=4

Aið�2=3�Þ; (B7a)

~IiðzÞ � e�=2

2�1=3

�
4�

1� z2

�
1=4

Bið�2=3�Þ; (B7b)

where the AiðxÞ and BiðxÞ are the Airy functions of the first
and second kinds, respectively, and � is given by the
relation

2

3
�3=2 ¼ fðzÞ; fðzÞ ¼ ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
:

(B8)

For z < 1 we can use the behavior of the Airy functions for
large negative argument to simplify the expressions,

KiðzÞ �
ffiffiffiffiffiffiffi
2�



s
e��=2

ð1� z2Þ1=4 cos

�
fðzÞ � �

4

�
; (B9a)

~IiðzÞ � �
ffiffiffiffiffiffiffiffiffiffi
1

2�

s
e�=2

ð1� z2Þ1=4 sin

�
fðzÞ � �

4

�
: (B9b)

If we choose the branch cut for Eq. (B8) such that � is a
continuous real function of z, then for z > 1 we can sim-
plify the expressions to read

KiðzÞ �
ffiffiffiffiffiffi
�

2

s
e��=2

ðz2 � 1Þ1=4 e
�gðzÞ; (B10a)

~IiðzÞ �
ffiffiffiffiffiffiffiffiffiffi
1

2�

s
e�=2

ðz2 � 1Þ1=4 e
gðzÞ; (B10b)

where gðzÞ is the natural extension of fðzÞ

gðzÞ ¼ �arcseczþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
: (B11)
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[32] S. C. Skipsey, G. Juzeliūnas, M. Al-Amri, and M. Babiker,

Opt. Commun. 254, 262 (2005).
[33] S. C. Skipsey, M. Al-Amri, M. Babiker, and G. Juzeliūnas,
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