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Casimir effect for a semitransparent wedge and an annular piston
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We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed
by a Dirichlet circular cylinder, where the wedge is formed by &-function potentials, so-called semi-
transparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the
presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be
derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions.
Numerical results are obtained which are closely analogous to those recently found for a magnetodi-
electric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods
are developed for annular regions with radial semitransparent potentials, based on reduced Green’s
functions for the angular dependence, which allows calculations using the multiple-scattering formalism.
Numerical results corresponding to the torque on the radial plates are likewise computed, which
generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in

separable geometries are derived.
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L. INTRODUCTION

The Casimir effect [1], which was originally conceived
as the attraction between parallel perfectly conducting
plates, may be regarded as due to the fluctuations of the
electromagnetic field in the quantum vacuum. In the past
six decades, this phenomenon has been generalized to
many different types of fields and to a variety of geometries
and topologies. Recent reviews of the Casimir effect in-
clude Refs. [2-6].

In this paper we will illustrate some new features that
arise, for example, in cylindrical geometries in which the
cylindrical symmetry is broken. In the past three decades
there have been many works on problems possessing cy-
lindrical symmetry, starting with the calculation of the
Casimir energy of an infinitely long perfectly conducting
cylindrical shell [7]. The more physical but also signifi-
cantly more involved case of a dielectric cylinder was
considered more recently [8—14]. Particularly germane to
the present work is the calculation of the Casimir effect for
a scalar field interior and exterior to a cylindrical
o-function potential, a so-called semitransparent cylinder
[15]; in the weak-coupling limit, both the semitransparent
cylinder and the dielectric cylinder have vanishing Casimir
energy.

The infinite wedge is closely related to the cylindrical
geometry. This problem was first considered in the late
seventies [16,17] as part of the still ongoing debate about
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how to interpret various divergences in quantum field
theory with sharp boundaries and whether self-energies
of objects have any physical significance. Since then,
variations on this idea of the wedge have been treated by
several authors [18-22], and reviewed in Ref. [23]. A
wedge with a coaxial cylindrical shell was considered by
Nesterenko et al. [24,25], and the corresponding local
stresses were investigated by Saharian and collaborators
[26-30]. The interaction of an atom with a wedge was
studied in Refs. [31-35]; this geometry is that of the
experiment by Sukenik e? al. carried out more than 15 years
ago [36]. Recently, Brevik, Ellingsen, and Milton [37]
calculated the Casimir energy of a magnetodielectric cyl-
inder intercut by a perfectly reflecting wedge filled with
magnetodielectric material. In all of these studies the as-
sumption was made that the wedge be bounded by per-
fectly conducting walls.

Although wedges defined by perfect conductors or
Dirichlet boundaries break cylindrical symmetry, they do
so in an easily understood way. When cylindrical symme-
try is present, the azimuthal quantum number v ranges
from —oo to o by integer steps. With a perfect conductor,
which forces the tangential electric field to vanish on the
surface, v takes on values which are related to the opening
angle a of the wedge, v = wm/a, where m is an integer.
But what if the wedge boundaries are not perfect?
Recently, Ellingsen, Brevik, and Milton [38] considered
just such a case, where the wedge was defined by the
interface between two magnetodielectric media, where
the interior sector of the wedge had permittivity &; and
permeability w;, while the exterior sector had permittivity
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&, and permeability u,. The geometry was completed by
inserting a perfectly conducting circular cylinder of radius
a centered on the wedge axis. To ensure a finite result, as
well as separability of the problem, the further assumption
was made there that the speed of light in both media was
the same: €, = &, ,. In this case the azimuthal quan-
tum number had to be determined by a transcendental
equation, which was implemented in the calculation
through use of the so-called argument principle [39], which
is just the residue theorem.

In this paper, we further illustrate this nontrivial azimu-
thal dependence by considering a similar wedge geometry,
in which the infinite wedge is formed by two planar
o-function potentials, making a dihedral angle o €
[0, 7], closed by a coaxial Dirichlet circular cylinder of
radius a. See Fig. 1. We calculate the Casimir energy of a
massless scalar field subject to these boundary conditions.
Because that energy is divergent, we compute the energy
relative to that when the radius of the cylinder is infinite,
and when neither or only one of the wedge boundaries is
present. Thus, we are computing the energy of mutual
interaction between the three boundaries. The results,
which are rather easily found numerically, are very similar
to those found for the electromagnetic field in a perfectly
conducting cylinder with a magnetodielectric wedge, as
considered in Ref. [38]. We describe the geometry in terms
of cylindrical coordinates (p, 6, z) with the origin lying
along the cylinder axis.

Because the interest in this problem largely lies in the
angular dependence, it is natural to approach the problem
in an unconventional way, in which the reduced Green’s
function refers to the azimuthal, not the radial, coordinate.
Technically, that approach requires consideration of an
annular region, which we describe in Sec. IV. This ap-
proach also allows use of the multiple-scattering technique,
and should have application to more complicated geome-
tries, such as the interaction between hyperboloids. We can
think of the radial planes between the concentric cylinders

FIG. 1. A Dirichlet cylinder intersecting with a coaxial wedge
made of semitransparent plates.
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as forming an annular piston, and we have computed
numerically the Casimir attractive torque between those
planes. An alternative approach to the determination of the
Casimir energy for any such angular potential is described
in Sec. V. The radial functions encountered in these wedge
problems are modified Bessel functions of imaginary or-
der; since these are rather infrequently described in the
literature, we collect some relevant properties in
Appendix B. Required integrals over the squared radial
functions may be evaluated using identities described in
Appendix A.

II. SEMITRANSPARENT WEDGE

In this paper we consider a massless scalar model, in
which the wedge is described by a §-function potential,

Vip, 0) = v(8)/p?,

v(60) = A,8(0 — a/2) + 1,8(0 + a/2). @.1)

This has the diaphanous property of preserving the speed
of light both within and outside the wedge. This wedge is
superimposed on a coaxial circular cylindrical shell, of
radius a, on which the scalar field ¢ vanishes. To calculate
the Casimir energy, we can use the formula [2]

1 (o d

=—.f b f(dr)2w2§(r, r; w),
20 J-w 2

where G is the Green’s function for the situation under

consideration, satisfying

(=V2+V(p,0) — )G, v;w) = 6(r — 1').

We can solve this cylindrical problem in terms of the
two-dimensional Green’s function G,

o dk, . )
G, l‘/;w)=[7 Z—;e’k«’(Z*Z)G(p, 0;p',0'),

(2.2)
(2.3)

(2.4)

which satisfies

[ 1a 9
———p—tkK
pop dp

—~5(p — p)5(6 ~ 0,
p

1 0> v
2+ 222G, 0,0, O
iy pz](p p.0)

(2.5)

where k?> = k> — w?. This separates into two equations,
one for the angular eigenfunction 0,(6),
82
[— 2 v(a)](oy(e) — 20,0, (26)
where we have assumed that the azimuthal eigenfunctions
are normalized according to
/” 00,(0)0%,(0) = 5,,,; 2.7
orthogonality of the eigenfunctions follows from the

Sturm-Liouville nature of the problem. Now the two-
dimensional Green’s function can be constructed as
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G(p, 0;p',0") = Y 0,(0)0,(0)g,(p,p). (28

The radial reduced Green’s function satisfies

[ 1 9 5
———p—tK +t—

PP pe ]gy(p, ’)——5(p p').

2.9)

The latter, for a Dirichlet circle at p = a, has the familiar
solution,

K
g(p, p') = L(kp)K,(kp=) — 1,(kp)I,(kp’) IV((KG),
v(ka)
PP <a (2.10a)
I
gv(p, p') = 1, (kp)K,(kp>) = KV(KP)KV(KP')#,
»(Kka)
p.p'=>a. (2.10b)

The azimuthal eigenvalue » is determined by Eq. (2.6).
For the wedge &-function potential (2.1) it is easy to
determine v by writing the solutions to Eq. (2.6) as linear
combinations of e*?, with different coefficients in the
sectors |0] < a/2 and 7 = |6| > a/2. Continuity of the
function, and discontinuity of its derivative, are imposed at
the wedge boundaries. The four simultaneous linear homo-
geneous equations have a solution only if the secular
equation is satisfied:

0= D(v)

4 2
= sin’v(a — 7) — (1 - )sinzﬂ'v

v v\ .
— (— + —) sin27rv.
Al Ay

Because we recognize that the reflection coefficient for a

(2.11)

single 8-function interface is r; = (1 + 2iv/A;)~!, imply-
ing that
4p? 2 2
Re(rilrsl)y=1- v Im(rytry! Sl il
A1, AL A
(2.12)

we see that this dispersion relation coincides with that
found in Ref. [38] when the reflection coefficient is purely
real. Note that the » = 0 root of Eq. (2.11) is spurious and
must be excluded; unlike for the magnetodielectric wedge,
there are no » = 0 modes for the semitransparent wedge.

Now using the general formula (2.2) we compute the
Casimir energy per length from

=%fw277 [ Z[ dppg.(p, p).

(2.13)
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Note that we do not need to know the eigenfunctions ©®,
only the eigenvalues v.

The apparent difficulty, that the eigenvalue condition for
v cannot be explicitly solved, may be resolved through
enforcing the eigenvalue condition by the argument prin-
ciple [39—44], which gives a sum over nonexplicit eigen-
values in terms of a contour integral around the real line,

Zmbﬁ fy dv(div lnD(V))f(V).

(2.14)

The contour of integration vy is illustrated in Fig. 2. Thus,
we have the expression after making the Euclidean rota-
tion, w — i{, and converting to polar coordinates,

{ = kcosg, k = ksing, (2.15)
1 00 d
£=- dKK f d (—1 D )
87T2i/;) KK , v\, In (v)
X [0 dppg.(p, p). (2.16)

This formal expression is rather evidently divergent. We
are seeking the mutual interaction energy due to the three
boundaries, the two sides of the wedge and the circular arc.
Therefore, we first must subtract off the free radial Green’s
function without the circle at p = a, which then implies

[ dppesto. ) = 5l (k) k)] 217
(The familiar form of this expression is quite general, as
illustrated in Appendix A.) We further want to remove the
term present without the wedge potential:

FIG. 2. Contour of integration vy for the argument principle
(2.14). Shown also are singularities of the integrand (2.16) along
the real and imaginary » axes.
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A] )lz D(V)
2

D(v) — D(v) = (2.18)

42 sin’my’
The resulting energy is still not finite. The reason is that it
contains the self-energy of a single §-function potential
crossed by the circular cylinder.

Therefore, we still must remove that part of D due to a

single potential, which may be obtained by setting A, (or

D(v) — D) = D)

_ MAgsin?p(a — ar)/sinfvar + 4v2 — A Ay — 2v(A) + Ay) cotvar
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A;) equal to zero:
(2.19)

- A
D,(v)=1- Z1 cotvr,
2v

so the final form of the dispersion function is obtained by
replacing

D\(»)Dy(v)

(Although the spurious » = 0 root is still present, it may be
checked that this gives rise to an irrelevant divergent
constant in the energy.)

It is now easy to see that the integrand in the expression
for the energy falls off exponentially fast for large » in the
right-half complex » plane, except along the real v axis,
where an exponential convergence factor may be inserted.
In particular, for » = in, n > 1, D(in) differs only ex-
ponentially from unity:

Ay

_ e—27]a
27+ A)27n + Ay)

D(in) ~ 1

(2.21)

D(in) =

(2v — A, cotrm)(2v — A, cotvar)

— A Aysinh®n(a — ) /sinh®>nar + 492 + A4, + 21(A, + A,) cothnrr

(2.20)

[

Then it is permissible to unfold y and convert the contour
to one running parallel to the imaginary axis as shown in
Fig. 3. For imaginary v, v = in, the dispersion functions
become

(2.22)

- A
D, (in) = 1 + =L cothnm,
27

and

Because of Eq. (2.21), the resulting expression for the
Casimir energy is manifestly convergent. This can be
further simplified by noting that % InD(im) is odd, which
eliminates the K, in Eq. (2.17), and then yields the ex-
pression

1 0 0 d A
fo b [ [l 2 i)
8772612_/;) XX 0 ndn n (”7)

d Kin(x)
X I arctanLin o’ (2.24)
in terms of
K, () = —3 Si:;w [1,(x) = 1_,(x)] (2.25a)
L,(x) = 2si’:7w [1,(0) + I_,(x)] (2.25b)

where both L;, (x) and K, (x) are real for real 1 and x, and

sinhnr

Lin(x) = [Liy(x) = iKip(x)]: (2.26)

T
We should further note that the arctangent appearing in
Eq. (2.24) is not the principal value, but rather the smooth
function in which the phase is accumulated. (Some prop-

(2m + Ay cothnm)(2m + A, cothnyr)

(2.23)

|
erties of the modified Bessel functions of imaginary order
are collected in Appendix B.)

Now we turn to the numerical evaluation of this
expression.

FIG. 3. Contour of integration for the 7 integral in Eq. (2.24).
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III. NUMERICAL EVALUATION OF CASIMIR
ENERGY FOR THE SEMITRANSPARENT WEDGE

It is actually quite easy to evaluate Eq. (2.24), because
the di logD function is strongly peaked for small 7, except
n

for extremely small values of the dihedral angle «. The
difficulty numerically is that K, (x)/L;,(x) is an extremely
oscillatory function of x for x < 7, becoming infinitely
oscillatory as x — 0. For x > 5, the ratio of modified
Bessel functions of imaginary order monotonically and
exponentially approaches zero. (For incomplete asymp-
totic information about Bessel functions of imaginary or-
der see Refs. [45,46]; see also Appendix B.) The function

Kin(x)
Lin(-x) ’

however, is very smooth. (It vanishes at 7 = 0, so the
spurious zero mode should not contribute.) To evaluate
the double integral, we compute & at a finite number of
discrete points, form a spline approximation which is in-
distinguishable from /%, and then evaluate the function

0 d
h(n) = / dxx*— arctan 3.1)
0 dx

00 d AL
el) = ["anhtn)  wbm. G2

0 dm
numerically. (This strategy is similar to that employed in
Ref. [38].) The integrand here is quite strongly peaked in a
neighborhood of the origin. The Casimir energy, with the
indicated subtractions, is

1

The results found by this strategy are shown in Figs. 4 and
5.

These graphs are very reminiscent of those found in
Ref. [38] for the magnetodielectric wedge. In particular,
we note that the energies are finite for all @, butas A — oo,
the limit corresponding to a Dirichlet boundary, the energy

e (o)

FIG. 4 (color online). Casimir energy for a semitransparent
wedge embedded in a Dirichlet cylinder, as a function of the
dihedral angle «. Shown in order from highest to lowest are the
energies (3.3) for A; = A, = 0.5 to 4.0, by steps of 0.5.
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FIG. 5 (color online). Casimir energy for a semitransparent
wedge embedded in a Dirichlet cylinder, as a function of the
dihedral angle . Shown in order from highest to lowest are the
energies (3.3) for A; = 1 and A, = 0.1 to 2.1, by steps of 0.5.

diverges as a — 0 or 27; the same phenomena was ob-
served in Ref. [38] for the perfectly conducting wedge
limit, treated previously in Ref. [37]. This energy should
be observable as a torque on the two semitransparent
plates, 7(a) = — %S(a), which is, as expected, attractive.
(The divergence associated with the apex of the wedge has
been subtracted.)

IV. ALTERNATIVE CALCULATION OF CASIMIR
ENERGY FOR SEMITRANSPARENT WEDGE IN
AN ANNULUS

We start from the formula (2.2) for the Casimir energy in
terms of the Green’s function,

1 dw

E=— | —22Tr(G — G©
2i ) 277 MG =6

4.1)
where the trace denotes the integration over spatial coor-
dinates, and we have again subtracted out the vacuum
contribution. The Green’s function G(r,r’) will satisfy
the equation

[-V? - 0>+ V(D)]G(r, 1) = 8(r — 1)), (4.2)

while the free Green’s function G satisfies the same
equation with V(r) = 0. Once again we specialize to the
cylindrical geometry, but now defined in an annulus.
Specifically, we require that the boundary conditions on
the Green’s function are that it vanishes at p = a and p =
b with b > a; that is, it satisfies Dirichlet boundary con-
ditions on two concentric circles. (We will see the necessity
for both an inner and an outer boundary in the following.)
If the potential has the form V(r) = v()/p?, then we can
use separation of variables to write the Green’s function as,
in terms of the separation constant 7,

125028-5
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FIG. 6. The annular geometry considered.

dk,

s f’>ZR (p: @, k)

Grriw) = [

X R,(p"; o, kz)gn(ﬁ, 9. 4.3)

The geometry we are considering is illustrated in Fig. 6.
Note that instead of expanding in eigenfunctions of # as in
Eq. (2.8), we have expanded in terms of radial eigenfunc-
tions. (This cannot be done without the inner boundary—
that is, this alternative separation works for an annulus but
not for a disk.) The R functions are normalized radial
eigenfunctions of the eigenvalue problem,

[_ 4.4
P

= 7°R,(p; o, k),

(02— k§>p2]Rn<p; o, k)
(4.4)

with boundary values R,(a;w,k;) = R,(b;w, k,) = 0.
The g, is the reduced Green’s function in the azimuthal
coordinates that satisfies the equation

[ affgz + 7 v(ﬁ)]gn(ﬁ 0)=25806-10) (4.5)

with periodic boundary conditions. Finally inserting
Eq. (4.3) into Eq. (4.1) we get an expression for the vacuum

energy
1 [ dow o dk b
E=y " 02w [T 55 [a3 [ pa
20 J - 27 ¢ ,[—oo 2 Z% a pap

X Ry(piank) [ dols,0.0) = 0,01 (46)
We can simplify the result considerably if we now make a
Euclidean rotation from w — i{, make the substitution
£? + k? = k2, and integrate out the angle in the {-k, plane
to get the expression for the energy per unit length

1

E=— il 3dKZ[ pdpR2(p; k)

x [ asls,(6.0) ~ 570,001 @7
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A. The radial eigenvalue problem

We see that we need an expression for the radial integral

b 2
f pdpR;(p; k),

where the R,)’s are the normalized eigenfunctions obeying
the differential equation (4.4). The normalization is

d
f pRz(p k) = 1.
a P

To evaluate this integral we will use the identity (A9).
The boundary conditions are that R, (a; k) = R, (b; k) =
0; this is only possible for discrete values of n—namely,
this is an eigenvalue condition for 7. Let ﬁn(r; K) be a
solution to Eq. (4.4) which satisfies Ié,,(a; k) = 0 for all 5
and «. The normalized solution can then be written as

(4.8)

4.9)

1
Ry (p: 1) = Ry (pi k), (4.10)

where

bdp -
N2=f 7’)13%7(,), K). 4.11)

Now writing Eq. (4.4) as
d d 1
——p—+Kp— 2(—)]R LK) =0, (412
[dppdp o (0, K) (4.12)

we can see that 1 R3(p; ) is a total derivative given by
Eq. (A9). (We replace k — n there.) The integral (4.11) is
now trivial to carry out. We see that the value at the lower
limit of integration is zero by our boundary condition that
R’n(a; k) = 0, and the second term on the right in Eq. (A9)
at the upper limit is zero by the eigenvalue condition
I?n(b; k) = 0. This gives the normalization constant as

b 9

N:=_—_—R 2 (b K)

4.13
2nm b (413)

J =
%Rn(b, K).

Now by considering « rather than 7 as the parameter in
Eq. (4.12), we also have from Eq. (A9) that the desired
integrand in (4.8) is a total derivative,

b . a
[ pdpR2(p, k) = —
a

(b K) R (D K).

b

2k b
(4.14)

So the desired integral given by Eq. (4.8) can be concisely

written as

b 2L R_(b;
f pdpR2(p; k) = —ﬂ%. (4.15)
a K W (

B. Argument principle

Now we again use the argument principle (2.14), which
we previously used for the angular eigenvalues; in this case

125028-6
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the sum is over the radial eigenvalues, and the eigenvalue
condition is given by D(n) = R, (b; k). So we have occur-
ring in the energy (4.7) the form

b 2
Z[ pdpR3(p: k)
m Ja

1 SRy (bik) (o LR, (bik)
] (? n( )

T 2w y R, (b k) %Rn b; k)
1 n o . ~
=—— | dn—— InR,(b; k). 4.16
2 /7 Mok (b k) (4.16)

The expression for the Casimir energy per length (4.7) is
then given by

1 0 0 -
24 dn|— InR(b; )
87721',/; K K_/;n n(é)ic n 7'( )

X f d6(g,,(6,0) — g6, 0)).

E =

(4.17)

C. The radial solutions

The differential equation (4.12) is the modified Bessel
differential equation, of imaginary order. We need two
independent solutions of this equation, which we could
take to be K;,(kp) and L;,(kp), given by Eq. (2.25). Now

1
2y sinhn + Acoshnm

1
g,(0,0") = —(— sinhn|6 — 0| +
27

X I:choshnwcoshnle -0 — —
2sinh

which is defined for # and €' in the interval [a, 27 + «].
The quantity of interest, tr(g — g©), is then

f T 46,6, 6) — (6, 6)]

— A(sinhn 7 coshnym + n)

=—— . , (422
27? sinhn (27 sinhn7 + A coshn)

and this expression can be seen to be a total derivative

/ T d6lg,(6.0) — g0(6, 0)]

1 9
=— — ln(l +— COthT]’?T)
2m dn
1

d 0
=30 m In(1 + AgWV(a, a)),

which agrees with the result stated in Eq. (2.22). It is
precisely of the expected form (All).

(4.23)

PHYSICAL REVIEW D 80, 125028 (2009)

we want to find the solution R, (p; «) that is zero for p = a
for all values of 1 and k. An obvious solution is
R 2(ps k) = K,-U(Ka)fl-,,(;cp) - ii,,(Ka)K,-n(Kp)
= R_,(p, K), (4.18)
where

sinvr

- 1

I, =§(I,,+I_,,) = L, (4.19)
is the function initially called L, in Ref. [38]; here thisis a
more convenient choice, in that both K, and /, are even in
v.

D. Reduced Green’s function

We also need the reduced Green’s function in the angu-
lar coordinates. The free Green’s function is easily found to
be

1
¢, 0" = —<— sinhnl6 — 0/]
2

h
4 coshn7r

coshn|6 — 6’|). (4.20)

sinhnm

If we assume a single S-function potential v(0) = A8(0 —
«), then the Green’s function is

A
———{coshn(27 +2a — 8 — 0') — cosh2nmcoshny |6 — H’I}]), 4.21)
nm

E. Casimir energy

The final form for the Casimir energy for a single radial
o-function potential in the annular region is

1 ) 9 y
&= 1677'21"[0 KZdKLdﬂ<a In[K;,(ka)l;, (kD)

- i,.,,(Ka)K,.,,(Kb)])(% ln[l + % cothm'r:l).

(4.24)

This result may also be obtained by the multiple-
scattering formalism [47], which says that

1 1
E=-5 TrinGGO~! = 5; Trin(l + GOv), (4.25)
i i
the latter form being a useful form for a single potential.

We see that Eq. (4.24) exactly corresponds to this if we
integrate by parts on 7 and «:

125028-7
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FIG. 7. Large radius limit of annular geometry. For large annular radii ¢ and b, with b — a fixed, the annular boundaries become

indistinguishable from parallel planes.

f dKK[d‘r]( In[K; (Ka)i,-n(Kb)

8771

im(Ka)Kin(Kb)]) In[1 + A2g9(a, @)]. (4.26)

We can check this result by taking the limit as @ and b
get very large, but with fixed distance between the circles.
In this limit this result should reproduce the case of a single
semitransparent plane between two parallel Dirichlet
planes, as illustrated in Fig. 7. The energy in that case
should be

1 [ S A
£ = ——/ KPdr Y — — ln(l +_~), 4.27)
87 Jo s /K 27

where 7> = k> + (n7/(b — a))*. If we use the argument
principle we can write it as

= K3d dan
& 16771,[ K_[ K

( In I:sm\/ﬁ — kXb — a)])
19 A
X (T 1+ f])
7 97 27
The square root divided out in the logarithm is present to
remove the spurious square-root singularity. It should be
noted that both of these expressions (4.24) and (4.28) are
divergent, but the divergence is simply the self-energy
divergence always present with a single plane.
It is straightforward to prove that Eq. (4.24) reduces to
Eq. (4.28) in the appropriate limit. The second logarithm in

the former becomes, in the limit n — oo, simply In(1 +
A/2m), so that suggests the correspondence

(4.28)

j=- A= (4.29)

And the leading uniform asymptotic expansion of the
modified Bessel functions [45,46] gives

Ka\ ~ kb Kb\ -~ Ka
Kol () = Kol Ym0
N\ /)"y N\ /)"y

~ % e 2122 sinlm(Fza) — f@)] (4.30)
where z, = ka/m, z;, = kb/m, 1(z) = (1 — 22)~'/2, and
IR RN , 1
@)= h‘(f) @ 79T Tae
4.31)

(The function f is a continuation of a function usually
called 5, but we have already used that symbol repeatedly.)
This result holds true for z < 1, but an equivalent form,
obtained by analytic continuation, holds for z > 1. (See
Appendix B.) Then the derivative with respect to « term in
Eq. (4.24) becomes

1

Vn? = (ka)?
X sin(“v2 — (ka)? b ; a):l’

so with the substitutions (4.29), and the observation that

. - d
9 In(KI — IK) ~ — 1n[
IK oK

(4.32)

d ) m 9

G PO =) = =

—F 2
o (n* = K2),

(4.33)
we exactly recover the Casimir energy for a semitranspar-
ent plate between two Dirichlet plates (4.28).

It is also easy to check that the energy (4.24) agrees with
the expression for the energy given by the more conven-
tional approach described in Sec. II. The latter is

1 00 J A
E=—-—= f szK[ dv(— ln[l - COtV7T:|)
16771 Jo v v 2v
0
X F In[1,(ka)K,(kb) — I,,(kb)K,(ka)]. (4.34)
K

This equivalence may be easily shown by seeing that the
integrand is odd in », because

125028-8
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FIG. 8. Transformed contour of integration for the » integral in
Eq. (4.34).

1,(ka)K,(kb) — I,(kb)K,(ka)

= I,(ka)K,(kb) — I(kb)K,(ka), (4.35)

and then rotating the contour vy from that shown in Fig. 2 to
that in Fig. 3, which may then be transformed to that shown
in Fig. 8, by changing v to —v on the negative imaginary
axis. Thus the contour 7y in the v plane is transformed to y
in the 7 plane appearing in Eq. (4.24) (except traversed in
the opposite sense), and the equivalence is established.

F. Interaction between two semitransparent planes

If we want to look at an explicitly finite quantity we will
need to look at the interaction energy between two semi-
|

. ,2

A Aycosh’n( — a)

PHYSICAL REVIEW D 80, 125028 (2009)

FIG. 9. Two semitransparent plates in an annulus.

transparent planes. The geometry is illustrated in Fig. 9. We
will use a slightly different form of the energy for this,
based on the multiple-scattering formalism [47]:

E=L [ * 4O 1 — GOV,GDV,). (4.36)
2i — 00 27

The subscripts on the V’s represent the potentials V;(r) =

1 8(0)/p?, and V,(r) = A,8(0 — a)/p>. The Green’s

functions with superscript (i) represent the interaction

with only a single potential V;. By using Eq. (4.3), we

can greatly simplify the interaction energy to

1 00
&= Ej;) KdK% In(1 — trg%l)vlg(nz)uz), (4.37)

We already have an expression for g%), given in Eq. (4.21).
Using the latter we can write

rgyvign'vy =

This exactly agrees with Eq. (2.23).

(2m sinhna + A, coshn)(27n sinhna + A, coshnr)’

(4.38)

Using the argument principle to replace the sum we then get the Casimir energy of two semitransparent plates in a
Dirichlet annulus, the immediate generalization of the Casimir energy (4.26) for a single plate,

1 00 0 - -
£= s fo kdic fy dn(% In[K, (ka)T () —zi,,(Ka)K,.n(Kb)])

A A cosh?y(r — )

X ln(l -

(2n sinhn7 + A, coshn)(27 sinhnm + A, coshnar)

). (4.39)

A limiting case when a, b — o0, b — a fixed, should be two perpendicular semitransparent planes, a distance d apart,
sandwiched between Dirichlet planes, similar to the single plate situation treated in the subsection above. A similar

formula should then be

E =

8

12i ]Ow i fy dﬁ% m[sin(\/f__f% - a»]) m(l 5

(4.40)

125028-9
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As in the case of a single plate, this limiting form is
immediately obtained from Eq. (4.39).

Finally, we verify that we obtain the expression (2.24)
for the wedge geometry. To do this, we must include the
modes exterior to the outer cylinder (with the wedge ex-
tended to infinity as in Fig. 1) and subtract the energy
present if the outer cylinder were not present. This means
that the radial dispersion function determining the azimu-
thal eigenvalues 1 becomes

R y(b: k) = (K (ka) (k) = T, (k@)K (b))

K, (kb)
K;,(ka)

(4.41)

The extended annular energy is then given by Eq. (4.39)
with Rn(b; K) — Rn(b; k). We now can distort the contour
v to one lying along the imaginary axis as shown in Fig. 3,
in — v [because the second logarithm in Eq. (4.39) falls
off exponentially fast for Ren > 0], and then using the
small argument expansion, for real v,

K, (x) ~ ) (f)flyl
v 5 \3)

re < AT LD ()

(4.42)

PHYSICAL REVIEW D 80, 125028 (2009)

This means for small a and real v the first logarithm in
Eq. (4.39) is Inl,(kb)K,(kb), which is just what was
encountered in Eq. (2.17). We then fold the v integral to
encircle the positive real axis as in Fig. 8 and integrate by
parts in x and v. In this way the form (2.16) is reproduced
(with D — D), which leads to the final expression (2.24).

G. Numerical evaluation of the Casimir energy for two
Dirichlet planes in an annulus

The Casimir energy in Eq. (4.37) is a quickly converging
function so it should be easy to evaluate. However, it can be
difficult to evaluate the 7 eigenvalues, which become
functions of the wave number « and a natural number m.
We can get around this problem, again, by exploiting the
argument principle in order to get a contour integral in the
complex plane, as in Eq. (4.39). We cannot integrate along
the real line because of the poles introduced when we use
the argument principle, and unlike with the wedge we
cannot open along the imaginary axis, because the integral
then becomes divergent. So a simple choice is then to let
the integration run along the angles of 7/4 and — /4 in
the complex 7 plane. Identifying R, (b, k) from Eq. (4.18),

and writing trg%l)vlg(,,z)vz = A(m), we have

1 00 o0 ReR ;,0,ReR s, + ImR f,0,ImR 1,
£E=— [ kdk f dv{ iy fiv iv i arctan(
a7* Jo 0 IR,
ReR f;,0,ImR ;, — ImR ;,0,ReR f,

ImA(+/iv) )

2 1 — ReA(W/iv)

(4.43)

2|R\/;V|2

Here we have used the property that R,- = R}, and
A(n*) = A*(n). The value of R ;,(b, ) is obtained as a
numerical solution to the differential equation. Using this
technique we can obtain a numerical energy in about 1 cpu
second. The results of this calculation are found in Fig. 10.
Again we would like to compare to known results, so
Fig. 11 is a graph of the ratio of the energies of an annular
piston to a rectangular piston of similar dimension. The
rectangular piston is constructed so it has the same finite
width b — a as the annular piston, and the separation
distance is the mean distance between the annular plates,
i=" er azsin(ﬁ).

5 (4.44)

The results make a certain amount of physical sense. The
energy of the annular piston is greater than that of the
rectangular piston for small separation because the inner
edge of the annular piston is closer, and will contribute
more to the energy. However as the annular piston gets
farther away, the other side of the piston will start to
contribute and lower the overall energy. In addition we
see that the small piston is much closer to the rectangular

In(1 — 2ReA(Wiv) + |A(\/;V)|2)}.

f

piston for small separations than a larger piston, and in the
plateau region for small separations, E,u,/FEq = 1.004
for b/a = 1.1 v8 Eyy/Eweeq = 1.23 for b/a = 2. These
numbers are quite closely reproduced by the ratio of the

0.00 —— R S aiste=r e :
F // > -
O
L )
—0.02 /o B
L i
1 .
b 1/
—0.04 + ! / i
£ 2 [ I J— bla=
—a | Ja=1.1
L F p !
—0,06: S ba=2
1l
[ L bla=5
[ - a=
-0.08 i
L '
[
L | ]'
_010 n PR 11 PR 1 1 - n 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

FIG. 10. This figure shows the energy per length vs the angle
between Dirichlet plates. The energy is scaled by the inner radius
a. The three lines represent three different ratios of inner to outer
radius % = 1.1, % =2, and % = 5.
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— 7T

FIG. 11. This figure shows the ratio of the energies of an
annular Dirichlet piston to a rectangular Dirichlet piston of
similar dimension vs average separation distance between the
plates. The variable x is the separation distance scaled by the
finite size of the piston b — a, x = d/(b — a). The two lines
represent two ratios of inner to outer radius g = 1.1, and g = 2.
For the latter case, only the region a € [0, 77] is shown.

proximity force approximate value of the energy for tilted
plates to the energy for parallel plates (ignoring the side-
walls) for small tilt angles,

(4.45)

V. THETA DEPENDENT POTENTIALS

Instead of considering, as usually done, spherically or
cylindrically symmetric potentials, in this paper we have
been examining potentials depending on the angles. In
particular, in two dimensions, in order for separation of
variables to work, we have been considering the operator

L=-V2+ )
p

9 1 9 1 92 N 1 ©)
AL A L )
ap> pap p*ao* p?

(5.1)

with v(6) given in Eq. (2.1). The advantage of this potential
is that a closed form for the secular equation can be given
[see Eq. (2.11)]. But what can be said for other potentials
v(0)? The relevant equations for the two-dimensional
Green’s function are still Egs. (2.5), (2.6), (2.7), (2.8),
(2.9), (2.10a), and (2.10b). In particular, for the angular
eigenfunctions we still have

0=0"0) + (¥ —v(0)0(), (5.2)

where v is the separation constant. The separation constant
is determined from the boundary condition in 6. For v(6)
being a smooth potential, one imposes periodic boundary
conditions, and this is what we concentrate on for
concreteness.

PHYSICAL REVIEW D 80, 125028 (2009)

Note that the only information from Eq. (5.2) that enters
Eq. (2.9) for the radial reduced Green’s function is the
separation constant v. From Eq. (5.2) its square can be
considered the eigenvalue of

92

Ly=— Py + v(0)
with periodic boundary conditions. For a nontrivial poten-
tial v(6) no explicit form of » will be known. But also in
general a transcendental equation determining the eigen-
values can be obtained; we follow Ref. [48]. In order to
formulate this equation let H(6) be the fundamental matrix
of Eq. (5.2). That is, let u'(6) and u'?(8) be two linearly
independent solutions of Eq. (5.2). With wg)(ﬂ) =
du'’(9) /d@, the fundamental matrix is

WDig) L
wo-(3, 56)

(5.3)

(5.4)

where we choose the normalizations such that H(0) =
1,%,. With these definitions and normalizations, the equa-
tion determining the eigenvalues reads

0= D(v)

=1 - ulP2m)1 — w?m) — u?mw 2m).
(5.5

The solutions to this equation have to be used in Eq. (2.9).
The Casimir energy expressions (2.16) and (2.17) then
remain valid, once the appropriate radial reduced Green’s
function is used and D(v) given in Eq. (5.5) is substituted.
Once wv(#) is specified this allows, in principle, for a
numerical evaluation of the Casimir energy when suitable
subtractions are performed.
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APPENDIX A: AN INTEGRAL THEOREM

It may be useful to see explicitly how the trace of the
subtracted reduced Green’s function turns into a derivative
of a logarithm, as in Eq. (2.17). Consider a Green’s func-
tion g, (x, x') for a one-dimensional problem described by

125028-11
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the differential equation

[_%p(x)dii_ K*r(x) + q(x) + p(x)V(x)]gK(x, x')

= 6(x — x), (A1)

where V is a §-function potential,

V(x) = A8(x — ¢). (A2)

The problem is defined on the interval a < ¢ < b, where at
the boundaries g, satisfies Dirichlet boundary conditions,

8«la, x') =g, (b, x') = 0. (A3)

If the potential V = 0, let the corresponding Green’s func-
tion be denoted by g(o).
Let us solve this problem in terms of two independent
solutions of the homogeneous equation
d d )
———p() = k°r(x) + q(x) |u(x) = 0. (A4)
dx dx
Let A, be such a solution that vanishes at the left boundary,
A,(a) =0, and B, be an independent solution that van-
ishes at the right boundary, B,(b) = 0, and let them be
normalized so that the Wronskian is
WIA,, B, ](x)

= A (0)B(x) = B ()A,(x) = —

RS

plx)’
(A5)

|
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Then the “free”” Green’s function is
80 (6, x') = A (x)B (=), (A6)
and the full Green’s function has the form

aA (DA, X),
BB (x)B,(x'),

a<xx <c,
c<xx'<b.

(A7)

gl x) = g0 1) + {

Now, it is easy to prove that

_ ABZ(c)
M, (0)B(c) + 1

AA(c)
M, (c)B(c) +1°
(A8)

It is immediate that any two solutions of the differential
equation (A4) u, and w, satisfy
)]

S peo( Lo
(A9)

B =

Jd d
ox K(x) - uK(x)ﬁ a_w

= 2Kr(X)uK(X)wK(X),

and therefore the following indefinite integral follows:

[a’xr(x)uz(x) p( ) u, Ex;

u (x)us (x )7 (A10)

where u!.(x) = L u,(x).
Now we can evaluate the trace of the interaction part of
the Green’s function,

(g — g©) = [ ? derg(e x) — §9(x, )]

. A
QA (c)B,(c) + 1
_ple)  AAZ(e)Bi(c)

Al(c) d A’ ' (c)

[BZ;(C) [ “ dxr(x)AL(x) + A2(0) f ’ dxr(x)Ba(x)]

2k AA(c)B,(c) + 1
ln[l + A, (c)B,(c)] =

This is the expected expression. As shown in Sec. [V E, this
is just the expected multiple-scattering result. In the
Dirichlet limit A — oo, this agrees with the Bessel function
result (2.17), where p(x) = r(x) = x; although in that case
the boundary condition is not Dirichlet at the origin,

p(0) = 0.

APPENDIX B: MODIFIED BESSEL FUNCTIONS OF
PURE IMAGINARY ORDER

In this work we encountered the following differential
equation,
a
(x—x——x +7 )lp(x):O, (B1)
X

which is the modified Bessel equation, with the wrong sign

A (c) dx A «(0)

BTG
B,(c) dk  B,(c)

i In[1 + 2g9(c, ¢)]. (A11)

for the order parameter 2. The solutions are then obvi-
ously modified Bessel functions of imaginary order. So we
might choose as the independent pair of solutions the
modified Bessel function of the first kind, of positive and
negative pure imaginary order /;,,(x) and /_, (x). However
the 7;,,’s are not numerically satisfactory functions; their
values for real x are complex, and the phase is x dependent.
A standard pair of functions can be defined as

K,(x) =

(I*I/('x) - I,,(X)),
— (1) + 1, ().

(B2a)

L,(x)= (B2b)

2s1

The K, (x) is the standard modified Bessel function of the
second kind, also called the Macdonald function. Both
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K;,(x) and L;,(x) are real for real values of % and x. For a
fixed 7, both K and L oscillate with relatively constant
amplitude for x < 7, and they die or grow exponentially
for x > m, respectively. The limiting behaviors are given in
this appendix; see Refs. [45,46]. Although this definition of
L, is convenient in Sec. II, for the considerations of
Sec. IV, the sinv7 in Eq. (B2b) introduces spurious singu-
larities, and it is more convenient there to simply use

T = 30,0 + 1, 0) = 07

L,(x),  (B3)

also called L, in Ref. [38]. In the following we will give the
behaviors of K;, and /;,.

1. Small argument

For fixed 7 > 0, in the limit as x — 0%,

L T 12r x 5
K, (x) = <—77 sinhnﬂ') [sm(nln2 d),,) + O(x )]
(B4a)
- sinhnm\1/2 X
() = ( . ) [cos<nlnE - ¢,,) + (o(xZ)],
(B4b)
where ¢, is given by
¢, =arg[I'(1 + in)] (B5)

2. Large argument

For fixed n > 0 and large argument |x| — oo we have

7\1/2 . B 37
Kin(x) = (Z_X) e [1+ Ox l)], |argx| < 7 -5,
(B6a)

N2 BN » -
Iin(x) - <ﬁ) e [1 + O(X )], |a_rgx| = 5 5’
(B6b)

for arbitrary 6 > 0.
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3. Uniform asymptotic expansion

The uniform asymptotic expansions are for both large
order and argument. For fixed z > 0 we have for the lead-
ing behavior

me T2 AL \UA .
Km("ﬂ)”v(l_—zz) Ai(=n*3¢),  (B7a)
. ez (A \1/4 5
: ~ (=5 i(—n2/3
.y(n2) 277771/3(1 ) Bt m)

where the Ai(x) and Bi(x) are the Airy functions of the first
and second kinds, respectively, and { is given by the
relation

1 -2~

(B8)

1+\/l—zz)_
Z

2 /2 o
201 = 1) f(z)—ln(

For z < 1 we can use the behavior of the Airy functions for
large negative argument to simplify the expressions,

o) —nm/2
Kin(”lz) ~ g(le_w COS(nf(Z) - g), (B9a)
- 1 nw/2 )
lin(mz) ~ — ﬁ(le—w sm(nf(z) - g) (B9b)

If we choose the branch cut for Eq. (B8) such that { is a
continuous real function of z, then for z > 1 we can sim-
plify the expressions to read

T e /2

~ 2= ,meld)
Kin02) =~ @ —yme " (B10D

. e

. ~ = T ,msle
Liy(nz) ren e (B10b)

where g(z) is the natural extension of f(z)

g(z) = —arcsecz +Vz> — 1. (B11)
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