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The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic

equations whose applicability to processes in the hot and expanding early universe is questionable. The

approximations implied by the state-of-the-art description can be tested in a first-principle approach based

on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym

formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects

increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times

larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases.

Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are

only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that

it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In

particular, this means that the structure of the equations automatically ensures that the asymmetry

vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects

that can be studied in the framework of nonequilibrium field theory.
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I. INTRODUCTION

The almost complete absence of antimatter on Earth, in
the solar system and in hadronic cosmic rays suggests that
the universe is baryonically asymmetric. This conclusion is
confirmed by experimental data on the abundances of the
light elements [1] and precise measurements of the cosmic
microwave background spectrum [2,3].

The baryon asymmetry of the universe can be generated
dynamically provided the three Sakharov conditions [4]
are fulfilled in the early universe: violation of baryon (or
baryon minus lepton) number; violation of C and CP; and
deviation from thermal equilibrium. In the standard model
supplemented by heavy right-handed Majorana neutrinos,
these conditions are naturally satisfied for leptons. The
Majorana mass term violates lepton number by two units.
Complex Yukawa couplings of the right-handed neutrinos
to leptons and the Higgs doublet induce CP violation. The
rapid expansion of the universe causes a deviation from
thermal equilibrium. Finally, the generated lepton asym-
metry is converted to the observed baryon asymmetry by
sphalerons [5,6]. In other words the generation of the
baryon asymmetry—baryogenesis—proceeds via the gen-
eration of a lepton asymmetry—leptogenesis [7].

Many aspects of leptogenesis have been extensively
investigated. In particular, it has been shown that the
CP-violating parameter and the efficiency of leptogenesis

are affected by the flavor structure of the neutrino Yukawa
couplings [8–16]. In [17,18] it was demonstrated that the
CP-violating parameter is resonantly enhanced if two of
the heavy neutrinos have mass differences comparable to
their decay widths. Medium effects have also been ad-
dressed. In the hot and dense plasma the deviation of the
CP-violating parameter and the thermal masses from their
vacuum values plays an important role [19,20]. In state-of-
the-art calculations Boltzmann equations are used to com-
pute the asymmetry. Their applicability in the hot and
expanding early universe can be checked using a first-
principle approach like the Schwinger-Keldysh/Kadanoff-
Baym formalism. Some aspects of leptogenesis have been
investigated within this framework at different levels of
approximation in Minkowski space [21–25]. These studies
were motivated by the expectation that in the expanding
universe filled with hot and dense plasma quantum effects,
which are neglected in the canonical treatment, might play
a crucial role.
In this paper we investigate leptogenesis, and in particu-

lar the vertex contribution to the CP-violating parameter
within the framework of nonequilibrium quantum field
theory. Using the Kadanoff-Baym formalism as the starting
point of our analysis, we derive quantum-corrected
Boltzmann equations. We explicitly take medium correc-
tions to the CP-violating parameter as well as the expand-
ing background into account. The Kadanoff-Baym
approach to the analysis of nonequilibrium systems is
technically considerably more involved than the canonical
Boltzmann ansatz. For this reason, before applying it to
realistic models of leptogenesis, here we study a simple toy
model containing one complex and two real scalar fields. It

*mathias.garny@ph.tum.de
†andreas.hohenegger@mpi-hd.mpg.de
‡alexander.kartavtsev@mpi-hd.mpg.de
xmanfred.lindner@mpi-hd.mpg.de

PHYSICAL REVIEW D 80, 125027 (2009)

1550-7998=2009=80(12)=125027(28) 125027-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.125027


is defined by the Lagrangian

L ¼ 1
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�b �bþLrest;

i ¼ 1; 2; (1)

where �b denotes the complex conjugate of b. Despite its
simplicity, the model incorporates all features relevant for
leptogenesis. The real scalar fields imitate the (two light-
est) heavy right-handed neutrinos, whereas the complex
scalar field models the baryons. TheUð1Þ symmetry, which
we use to define toy-baryon number, is explicitly broken by
the presence of the last two terms, just as the B� L
symmetry is explicitly broken by Majorana mass terms in
phenomenological models. Thus the first Sakharov condi-
tion is fulfilled. The couplings gi model the complex
Yukawa couplings of the right-handed neutrinos to leptons
and the Higgs. By rephasing the complex scalar field at
least one of the couplings gi can be made real. If argðg1Þ �
argðg2Þ the other one remains complex and there is CP
violation, as is required by the second Sakharov condition.
In vacuum the vertex contribution to the CP-violating
parameter is given by

�vaci ¼ � 1
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jgjj2
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�
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i

M2
j

�
; (2)

see Appendix A. Just as in realistic models, the required
deviation from thermal equilibrium is caused by the rapid
expansion of the universe. Thus the third Sakharov condi-
tion is fulfilled as well. Finally, the quartic self-interaction
term in (1) plays the role of the Yukawa and gauge inter-
actions in established models—it brings the toy-baryons to
equilibrium. The renormalizability of the theory requires
the presence of some additional terms, which are ac-
counted for by Lrest. By appropriately choosing the corre-
sponding coupling constants we can always make the
contributions of these terms negligibly small. Since the
physically interesting range for the generation of the asym-
metry is 0:1Mi & T & 10Mi, where Mi is the mass of the
lightest heavy particle, the running effects cannot make
these couplings large during the relevant period.

Apart from the vertex contribution [7] to the
CP-violating parameter discussed above, there is also a
self-energy contribution [26–28]. In the Kadanoff-Baym
formalism the analysis of the former is rather independent
from the analysis of the latter. For this reason, in this paper,
we consider only the vertex contribution, whereas the self-
energy contribution will be addressed in [29]. To make the
discussion more transparent we give the technical details in
the appendices, whereas in the main body of the paper we
discuss qualitative features of the employed approach and
present the results.

(i) As we argue in Sec. II, the formalism is free of the
double-counting problem typical for the canonical
Boltzmann approach. In other words the structure of
the equations automatically ensures that the asym-
metry vanishes in thermal equilibrium and no need
for the real intermediate state (RIS) subtraction
arises.

(ii) Our result for the vertex contribution to the
CP-violating parameter, presented in Sec. III, differs
from that obtained in the framework of equilibrium
thermal field theory by replacing the zero-
temperature propagators with finite temperature
propagators in the matrix elements of the
Boltzmann equation [19,20]—the medium correc-
tions are only linear in the particle number densities.
For scalars the medium effects always increase the
CP-violating parameter, which in turn leads to an
enhancement of the generated asymmetry.

(iii) By comparing the CP-violating parameters obtained
by using the Maxwell-Boltzmann (MB) and Bose-
Einstein (BE) statistics, we find that quantum statis-
tical effects play a considerable role. As we argue in
Sec. III, the medium effects increase the
CP-violating parameter by a factor of at most two
in the Maxwell-Boltzmann approximation. At high
temperatures, the increase is up to an order of mag-
nitude larger when Bose enhancement is taken into
account.

In Sec. IV we present numerical solutions of the quantum-
corrected Boltzmann equations, and discuss the quantita-
tive impact of medium effects on the final asymmetry
within the toy model. Finally, in Sec. V, we summarize
our results and present our conclusions.

II. NONEQUILIBRIUM DYNAMICS

To calculate the asymmetry generated at the epoch of
leptogenesis one usually employs generalized Boltzmann
equations for the one-particle distribution functions of the
different particle species [1]:

p�D�fc ðX; pÞ ¼ 1

2

Z
d�3

ad�
3
b . . .d�

3
i d�

3
j . . . ð2�Þ4

� �ðpþ pa þ pb . . .� pi � pjÞ
� ½jMj2iþjþ���!cþaþb...fifj . . . ð1� faÞ
� ð1� fbÞð1� fc Þ
� jMj2cþaþb...!iþjþ���fafbfc . . .

� ð1� fiÞð1� fjÞ . . .�: (3)

The fifth line in Eq. (3) describes the decrease in number of
species c due to the scattering (or decay) process c þ
aþ b . . . ! iþ jþ � � � and is usually referred to as the
loss term. The third line describes the increase in the
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number of c due the process iþ jþ � � � ! c þ aþ b . . .
and is referred to as the gain term. The Dirac � function in
the second line enforces energy-momentum conservation
in each individual process, whereas the invariant phase-
space elements d�3 ensure that the resulting expression is
a Lorentz scalar. The probabilities of the decay and scat-
tering processes are usually calculated in vacuum, which is
inconsistent with the nonzero particle number densities.
Moreover the canonical approach is plagued with the
double-counting problem. For instance, in the canonical

approach, the scattering process ‘h ! ~c i ! �‘ �h is equiva-

lent to the inverse decay (‘h; �‘ �h ! c i) of the heavy

Majorana neutrino followed by the decay (c i ! ‘h; �‘ �h )

if the intermediate heavy neutrino ~c i is on-shell. That is,
the same contribution is counted twice. As a consequence,
a nonzero asymmetry is generated even in thermal equi-
librium. The problem is accounted for by the real inter-
mediate state subtraction procedure. Since the scattering
amplitude is calculated in vacuum, one cannot assign a

distribution function to the heavy neutrino ~c i. For this
reason the resulting collision terms are difficult to interpret.
Only by assuming Maxwell-Boltzmann statistics and by
integrating the resulting Boltzmann equations can one
derive rate equations that manifestly lead to zero asymme-
try in equilibrium.1

Boltzmann equations rely on the concept of on-shell
particles with constant mass. The spectral function
G�ðX; pÞ of a particle whose mass does not change as it

propagates along a geodesic is orthogonal to its four-
momentum [30]:

p�D�G�ðX; pÞ ¼ 0: (4)

For a pointlike on-shell particle the spectral function is
zero off-shell and diverges on-shell:

G�ðX; pÞ ¼ 2� sgnðp0Þ�ðp�p� �M2Þ: (5)

Instead of using one-particle distribution functions, as the
quantities describing the statistical properties of the sys-
tem, we can use the statistical propagator GFðX; pÞ:

GFðX; pÞ �
�
fc ðX; pÞ þ 1

2

�
G�ðX; pÞ: (6)

Written in terms of G�ðX; pÞ and GFðX; pÞ, a Boltzmann

equation takes the form

p�D�GFðX; pÞ ¼ 1

2
½�<ðX; pÞG>ðX; pÞ

�G<ðX; pÞ�>ðX; pÞ�; (7)

where G_ � GF � 1
2G�. Comparing Equations (7) and (3)

we see that the quantities �_ correspond to the loss and
gain terms.
The transformations made so far simply seem to amount

to a change of notation. However, the situation changes
when one realizes that Eqs. (4) and (7) coincide with the
equations that can be derived in a certain approximation
from the system of Kadanoff-Baym equations and that the
quantities �_ can be identified with the self-energies.
Despite the close similarity there is an important differ-
ence: the self-energies calculated in the framework of the
Kadanoff-Baym formalism differ from the gain and loss
terms obtained in the canonical approach. As we will show
in the following, the self-energies consistently take me-
dium effects into account and the resulting equations are
free of the double-counting problem.
The Kadanoff-Baym formalism may be viewed as top-

down approach: starting from the complete evolution equa-
tions for the two-point functions, it is possible to derive
kinetic equations in a systematic way by applying a num-
ber of well-known approximations [31–34]. We will refer
to these equations as quantum-corrected Boltzmann equa-
tions. Within the Kadanoff-Baym formalism, both the
overall structure of the equations as well as the scattering
and decay rates are derived self-consistently from a com-
mon starting point based on the in-in or Schwinger-
Keldysh description of nonequilibrium quantum fields. In
contrast to that, within the canonical bottom-up approach,
the scattering and decay rates are extracted from the
S matrix (i.e. based on the in-out formalism), and are
then inserted into Boltzmann equations. We expect that
both approaches are equivalent in the zero-temperature/
zero-density and small coupling limit, where the mean-free
path is large compared to the microscopic interaction
length scales. In this regime, it may be considered that
the top-down approach discussed here adds support to the
usual bottom-up formalism. Additionally, as mentioned
above, the top-down approach is free of the double-
counting problem and allows one to explore the medium
effects within nonequilibrium quantum field theory. This is
especially relevant for the CP-violating terms, since these
contain loop diagrams.

A. Kadanoff-Baym equations

The system of Kadanoff-Baym equations for the spectral
function and the statistical propagator is usually formu-
lated in coordinate space. For the complex scalar field b,
which corresponds to baryons in our model they read (see

1Strictly speaking, the system (3) is incorrect in general if it
involves unstable particles, because the matrix elements, com-
puted in perturbation theory, do not necessarily meet the require-
ments for transition amplitudes in systems of Boltzmann
equations. In cases such as the present (leptogenesis) subtle
modifications (RIS subtraction) are necessary to obtain consis-
tent results.
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Appendix B)

½hx þm2ðxÞ�DFðx; yÞ ¼
Z y0

0
D4z�Fðx; zÞD�ðz; yÞ

�
Z x0

0
D4z��ðx; zÞDFðz; yÞ; (8a)

½hx þm2ðxÞ�D�ðx; yÞ ¼
Z y0

x0
D4z��ðx; zÞD�ðz; yÞ: (8b)

As is clear from the terminology, the spectral function D�

contains information about spectral properties of the sys-
tem, whereas the statistical propagator DF contains infor-
mation about its state. The spectral and statistical self-
energies,�� and�F, as well as the effective massm2ðxÞ ¼
m2 þ�locðxÞ, which contains the local self-energy, carry
information about the interactions in the system. They
describe scattering and mean-field effects, respectively.
The invariant volume element,

D 4z � ffiffiffiffiffiffiffi�g
p

d4z; g � detg��;

ensures that the Kadanoff-Baym equations (8) can be
applied to the analysis of out-of-equilibrium dynamics
not only in Minkowski, but also in a general curved
space-time. Particularly interesting for our purpose is the
case of the expanding early universe [35].

Let us list some of the qualitatively important features.
First of all, Eqs. (8) are written in terms of resummed
propagators, i.e. they take into account the full series of
daisy and ladder diagrams (see e.g. [36]). Second, the
characteristic memory integrals on the right-hand side
integrate over the full time history of the evolution. In
other words the Kadanoff-Baym equations are non-
Markovian, i.e. are not local in time. It is very important
that the Kadanoff-Baym equations do not rely on the
concept of quasiparticles and their collisions in the plasma.
In other words, they are free of any possible uncertainties
associated with definition of quasiparticle excitations in the
hot plasma of the rapidly expanding universe. This prop-
erty makes the Kadanoff-Baym equations a prime candi-
date for the analysis of leptogenesis. If the quasiparticle
picture is applicable, they account for the time-dependence
of the quasiparticle parameters. In particular, an effective
time-dependent mass and width induced by the interactions
of the system can be extracted from the Wigner transform
of the spectral function [37]. Finally, for weakly coupled
systems close to thermal equilibrium the Kadanoff-Baym
equations can be reduced to the Boltzmann equation [31–
34], which we have briefly discussed above.

The Kadanoff-Baym equations for a system of n real
scalar fields read [29,30]

½hx þM2
i �Gij

F ðx; yÞ ¼
Z y0

0
D4z�ik

F ðx; zÞGkj
� ðz; yÞ

�
Z x0

0
D4z�ik

� ðx; zÞGkj
F ðz; yÞ; (9a)

½hx þM2
i �Gij

� ðx; yÞ ¼
Z y0

x0
D4z�ik

� ðx; zÞGkj
� ðz; yÞ; (9b)

where the propagators and self-energies are now n-by-n
matrices. The off-diagonal components of the propagators
and self-energies describe the mixing of the fields.
Equations (8) and (9) are valid for a system of one

complex and n real scalar fields with arbitrary interactions.
Here, we consider n ¼ 2. The information about the par-
ticular form of the interactions is encoded in the corre-
sponding self-energies �ðx; yÞ and �ijðx; yÞ. The latter
ones can be derived by functional differentiation of the
two-particle-irreducible (2PI) effective action, �2½G;D�,
with respect to the two-point correlation functions
Dðy; xÞ and Gjiðy; xÞ, see [30] and Appendix B for more
details. The effective action is given by the sum of all 2PI
diagrams with vertices as given by the interaction
Lagrangian and internal lines representing the complete
connected two-point functions [38]. Of course the number
of 2PI diagrams contributing to the effective action is
infinite in any theory and the infinite summust be truncated
in a suitable way. To obtain a qualitative similarity between
the toy model and the established models, we must take
into account processes which generate and wash out the
asymmetry. The minimal set of relevant 2PI contributions
is presented in Fig. 1. Clearly, after cutting any two lines of
the diagrams [Figs. 1(a)–1(d)] they still remain connected.
To understand which physical processes are described by
the above diagrams in the Boltzmann approximation one
has to discriminate between local and nonlocal contribu-
tions. The local diagram [1(a)] generates the mean-field
correction �locðxÞ to the effective mass m2ðxÞ of the field:

�locðxÞ ¼ �Dðx; xÞ: (10)

The nonlocal diagrams [Figs. 1(b)–1(d)] describe scatter-
ing and decay processes, which can be identified by cutting
the diagrams into two pieces by drawing a connected line
in all possible ways as indicated in Fig. 2 (see also [39]).
Cutting diagram 1(b), we obtain squares of tree-level am-

(a) (b) (c) (d)

FIG. 1. Relevant two- and three-loop contributions to the 2PI
effective action.
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plitudes of bb ! bb and b �b ! b �b scattering processes.
Analogously, cutting diagram 1(c), we get squares of the
tree-level amplitudes of c i ! bb and c i ! �b �b decay
processes. In the canonical approach the decays of the
heavy real scalars are CP-conserving at tree-level. To
leading order the vertex CP-violating parameter � is gen-
erated by interference of the tree-level and one-loop vertex
decay amplitudes. In the Kadanoff-Baym formalism the
leading vertex CP-violating contribution is described by
diagram 1(d). Cutting it in the way presented in Fig. 3, we
obtain the product of the tree-level and one-loop vertex
amplitudes.2

Instead of calculating the spectral and statistical compo-
nents of the self-energies, it is easier to calculate the
Wightman components �_ðx; yÞ � �Fðx; yÞ � i

2 ��ðx; yÞ.
These can be identified with the gain and loss terms, as
mentioned earlier in this section. After some simple but
tedious algebra (see Appendix C for more details), we
obtain the self-energies corresponding to the diagrams in
Fig. 1:

�ðbÞ
_ ðx; yÞ ¼ � 1

2
�2D_ðx; yÞD_ðx; yÞD+ðy; xÞ; (11a)

�ðcÞ
_ ðx; yÞ ¼ �gig

�
jG

ij
+ðy; xÞD+ðy; xÞ; (11b)

�ðdÞ
_ ðx; yÞ ¼ �gigjg

�
mg

�
n

Z
D4vD4u½DRðy; vÞDFðu; vÞD+ðu; xÞGij

R ðy; uÞGmn
_ ðx; vÞ

þDRðy; vÞDAðu; vÞD+ðu; xÞGij
F ðy; uÞGmn

_ ðx; vÞ þDFðy; vÞDRðu; vÞD+ðu; xÞGij
R ðy; uÞGmn

_ ðx; vÞ
þD+ðy; vÞDFðu; vÞDAðu; xÞGij

+ðy; uÞGmn
R ðx; vÞ þD+ðy; vÞDAðu; vÞDFðu; xÞGij

+ðy; uÞGmn
R ðx; vÞ

þD+ðy; vÞDRðu; vÞDAðu; xÞGij
+ðy; uÞGmn

F ðx; vÞ þDRðy; vÞD_ðu; vÞDAðu; xÞGij
+ðy; uÞGmn

_ ðx; vÞ
þD+ðy; vÞD+ðu; vÞD+ðu; xÞGij

R ðy; uÞGmn
R ðx; vÞ�: (11c)

Diagrams Fig. 1(b) and 1(c) induce contributions �ðbÞ and
�ðcÞ which contain only the Wightman two-point correla-
tion functions D_ and Gij

_. As we will show later, in the
Boltzmann approximation these correspond to the on-shell
initial and final states. To write the last term in compact
form, we have introduced the retarded and advanced propa-
gators, DRðx; yÞ � 	ðx0 � y0ÞD�ðx; yÞ and DAðx; yÞ �

�	ðy0 � x0ÞD�ðx; yÞ, respectively. The first six terms3 of
�ðdÞ describe the one-loop correction to the decay width.
The combinations of the statistical, retarded and advanced
propagators in Eq. (11c) correspond to the three internal
lines in the loop, whereas the _ components again corre-
spond to the on-shell initial and final states.
Since we do not consider quartic interactions of the real

scalar fields, there are no local corrections to their masses.
It is for this reason that Eqs. (9) contain only the bare

FIG. 3. Interference of the tree-level and one-loop vertex de-
cay amplitudes.

FIG. 2. Processes described by the 2PI diagrams in Fig. 1.

2In addition, there are two other ways to cut this diagram,
which are denoted by the ellipses in Fig. 2. They describe
scattering processes bb ! �b �b , b �b ! c ic j and c ib ! c jb.
Note that the three-loop 2PI diagram only describes the inter-
ference of the s, t and u-channel scattering amplitudes:Mst,Msu,
Mtu. The missing topologies, which generate the Mss, Mtt, and
Muu terms, appear only upon use of the extended quasiparticle
approximation. This analysis is beyond the scope of this paper
and will be presented in [29].

3The seventh term in (11c) describes the scattering process
c ib ! c ib. This is clear from the fact that it contains one D_
and two G_ two-point functions, i.e. one ‘‘external’’ complex
scalar and two ‘‘external’’ real scalars. Similarly, the eighth term
of Eq. (11c) describes the scattering process bb ! �b �b , because
it contains three D_ two-point functions, i.e. three ‘‘external’’
complex scalars.
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masses M2
i of the fields. The first nonlocal term �ðcÞ describes the decay of the heavy scalar at tree-level:

�ðcÞij
_ ðx; yÞ ¼ � 1

2
gig

�
jD

2
_ðx; yÞ �

1

2
g�i gjD2

+ðy; xÞ; (12a)

�ðdÞij
_ ðx; yÞ ¼ � 1

2
gigjg

�
mg

�
n

Z
D4vD4u½Gmn

F ðv; uÞD_ðx; vÞD_ðx; uÞDRðy; vÞDRðy; uÞ
þGmn

R ðv; uÞD_ðx; vÞD_ðx; uÞDRðy; vÞDFðy; uÞ þGmn
A ðv; uÞD_ðx; vÞD_ðx; uÞDFðy; vÞDRðy; uÞ

þGmn
F ðv; uÞDRðx; vÞDRðx; uÞD+ðy; vÞD+ðy; uÞ þGmn

R ðv; uÞDRðx; vÞDFðx; uÞD+ðy; vÞD+ðy; uÞ
þGmn

A ðv; uÞDFðx; vÞDRðx; uÞD+ðy; vÞD+ðy; uÞ þGmn
+ ðv; uÞD_ðx; vÞDRðx; uÞDRðy; vÞD+ðy; uÞ

þGmn
_ ðv; uÞDRðx; vÞD_ðx; uÞD+ðy; vÞDRðy; uÞ�

� 1

2
g�i g�jgmgn

Z
D4vD4u½Gmn

F ðv; uÞD+ðv; xÞD+ðu; xÞDAðv; yÞDAðu; yÞ þ � � ��: (12b)

The first six terms4 in each of the two square brackets of
�ðdÞ describe the one-loop corrections to the scattering
width. Their structure is very similar to that of the first
six terms of Eq. (11c) and the combinations of the statis-
tical, retarded and advanced propagators again correspond
to the three internal lines in the loop.

The Kadanoff-Baym equations (8) and (9) together with
the expression for the self-energies (11) and (12) form a
closed system of integro-differential equations. Its solu-
tions carry full information about the spectral and statisti-
cal properties of the system, including information about
the generated asymmetry at each instant of time.

B. Quantum-corrected Boltzmann equations

Despite all advantages, the full Kadanoff-Baym equa-
tions are relatively rarely used for the analysis of out-of-
equilibrium processes, partially because of the complexity
of the numerical solution.5 In this section we derive kinetic
equations starting from the above Kadanoff-Baym equa-
tions by applying a gradient expansion and a quasiparticle
approximation [31–34,39,49,50]. The resulting quantum-
corrected Boltzmann equations can be directly compared
to the canonical equations and are easier to solve
numerically.

The quantum-corrected Boltzmann equations are appli-
cable to weakly coupled systems of (quasi)particles that
have a width which is small compared to their mass and
that evolves slowly compared to the microscopic interac-
tion time scales. We expect that these conditions are sat-
isfied for thermal leptogenesis, where the deviations from
equilibrium are moderate in general. In thermal equilib-
rium the two-point correlation functions Dðx; yÞ and
Gijðx; yÞ depend only on the relative coordinate, s � x�

y, and are independent of the center coordinate,6 X � 1
2 �ðxþ yÞ. Having these equilibrium considerations in mind,

we trade the variables x and y for the new arguments X and
s: Dðx; yÞ ! DðX; sÞ. Out of equilibrium the two-point
functions depend on both the relative and center coordi-
nate. If, however, the deviation from equilibrium is small,
one can perform a gradient expansion of the correlation
functions and the self-energies in the vicinity of X keeping
only the leading terms. This results in a system of equa-
tions describing the slow, X-dependent dynamics of the
statistical properties of the system, see Appendix B for
more details. Performing the gradient expansion, which is
the first step in the derivation of the Boltzmann equation,
we replace the non-Markovian evolution equations by a
system of Markovian ones. Therefore, when truncating at
first order in the gradient expansion, we neglect the mem-
ory effects. The fast dynamics associated with the relative
coordinate is responsible for the spectral properties of the
system, which are conveniently described in the momen-
tum representation. Performing the Wigner transformation
(see Appendix B), we trade the relative coordinate s for a
coordinate p in momentum space: DðX; sÞ ! DðX; pÞ. To
perform the Wigner transformation we have to send the
initial time to minus infinity which means that we neglect
the effects of initial correlations. The next step in the
derivation of Boltzmann equations is the Kadanoff-Baym
ansatz. It relates the statistical propagator and the spectral
function by a generalized fluctuation-dissipation relation,

DFðX; pÞ ¼
�
fðX; pÞ þ 1

2

�
D�ðX; pÞ; (13)

4The seventh and eighth terms of Eq. (12b) describe the
scattering processes c ib ! c jb and b �b ! c ic j.

5See e.g. [40–48].

6The above definitions of the relative and center coordinates
are valid only in Minkowski space-time. In a general space-time
the center coordinate is defined as coordinates of the center (&X)
of the geodesic connecting x and y, X� � 
�ð&XÞ, whereas the
relative coordinate is proportional to the length of the geodesic
between the two points, s� � u�ð&XÞð&x � &yÞ [51].
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where fðX; pÞ is the one-particle distribution function. In
the equilibrium limit, the Kubo-Martin-Schwinger (KMS)
condition [52,53] ensures that fðX; pÞ converges towards a
Bose-Einstein distribution function. The final step is the
quasiparticle approximation, where one replaces the exact
smooth spectral function by a Dirac � function peaked on
the mass-shell of the quasiparticles. The resulting
Boltzmann-like equation, which describes the time evolu-
tion of the particle distribution function, reads

½p�D�fðX; pÞ�D�ðX; pÞ ¼ 1

2
½D<ðX; pÞ�>ðX; pÞ

�D>ðX; pÞ�<ðX; pÞ�: (14)

The analogous equation for antiparticles is given by

½p�D�
�fðX; pÞ� �D�ðX; pÞ ¼ 1

2
½ �D<ðX; pÞ ��>ðX; pÞ

� �D>ðX; pÞ ��<ðX; pÞ�; (15)

where �D_ðX; pÞ � D+ðX;�pÞ, ��_ðX; pÞ � �+ðX;�pÞ.
Note again that by making the approximations which

have led to (14) and (15) we have neglected the memory
effects and the effects of the initial correlations. As a result,
the quantum-corrected Boltzmann equations are
Markovian, i.e. local in time.

To obtain a closed system of quantum-corrected
Boltzmann equations, we must also Wigner-transform the
self-energies (11) (see Appendix D for more details). The
latter encode the scattering and decay rates including
quantum nonequilibrium effects. By employing the rela-
tions

D<ðX; pÞ ¼ fðX; pÞD�ðX; pÞ;
D>ðX; pÞ ¼ ½1þ fðX; pÞ�D�ðX; pÞ;

which follow directly from Eq. (13), we can then rewrite
Eqs. (14) and (15) in a way resembling the usual form of
Boltzmann equations, including the correct quantum sta-
tistical factors.

Within the 2PI three-loop approximation, we find that
there are two physically distinct contributions to the self-

energy. The first one, corresponding to �ðbÞ, describes
CP-conserving two body scatterings, bb ! bb, at tree-
level:

��
_ðX; pÞ ¼ � 1

2
�2

Z
d�p1

d�p2
d�p3

ð2�Þ4�gðpþ p1

� p2 � p3ÞD+ðX; p1ÞD_ðX; p2ÞD_ðX; p3Þ;
(16)

where the invariant volume element in momentum space is
defined by

d�p � 1ffiffiffiffiffiffiffi�g
p

X

d4p

ð2�Þ4 ; (17)

and �gðpÞ � ffiffiffiffiffiffiffi�g
p

�ðpÞX is the covariant generalization of

the � function [30].

The second contribution, given by the sum of �ðcÞ and
�ðdÞ, describes decay processes c i ! bb and c i ! �b �b at
tree- and one-loop level:

�\
_ðX; pÞ ¼ �jgij2

Z
d�p1

d�p2
ð2�Þ4�gðp1 � p2 � pÞ

� ½1þ�i
bðX; p1; p2Þ�Gii

_ðX; p1ÞD+ðX; p2Þ:
(18)

The newly introduced function �i
bðX; p1; p2Þ takes into

account the one-loop corrections to the decay width and
is given by

�i
bðX; p1; p2Þ ¼ jgjj2

�gig�j
g�i gj

�Z
d�k1d�k2d�k3ð2�Þ4

� �gðp1 þ k1 þ k2Þð2�Þ4
� �gðk2 � k3 þ p2Þ½DAðX; k1ÞDFðX; k2Þ
�Gjj

A ðX; k3Þ þDAðX; k1ÞDRðX; k2Þ
�Gjj

F ðX; k3Þ þDFðX; k1ÞDAðX; k2Þ
�Gjj

A ðX; k3Þ� þ c:c: (19)

Proceeding in the same way, we derive quantum-corrected
Boltzmann equations for the distribution functions of the
real scalar fields, which is a two-by-two differential matrix
equation. The off-diagonal components of the correlation
functions are generated dynamically by the exchange of
two complex scalars and are therefore of order g2. The one-
loop vertex terms, which generate the CP-violating pa-
rameter, are proportional to the fourth power of the cou-
pling constant. Therefore the contribution of the off-
diagonal terms to the vertex CP-violating parameter is of
the order of g6. Here, we limit ourselves to terms of at most
fourth power in the coupling constant and therefore we can
neglect the off-diagonal terms in the corresponding matrix
equation. The resulting equations coincide then with those
derived in [30]:

½p�D�fc i
ðX; pÞ�Gii

�ðX; pÞ ¼ 1

2
½Gii

<ðX; pÞ�ii
>ðX; pÞ

�Gii
>ðX; pÞ�ii

<ðX; pÞ�:
(20)

Note that we have in fact used this diagonal approximation
in Eqs. (18) and (19). The Wigner-transform of the self-
energy (12) is given in the same approximation by

�\ii
_ ðX;pÞ ¼�1

2
jgij2

Z
d�p1

d�p2
ð2�Þ4�gðp1þp2�pÞ

� f½1þ�i
c ðX;p;p2Þ�D_ðX;p1ÞD_ðX;p2Þ

þ ½1þ ��i
c ðX;p;p2Þ� �D_ðX;p1Þ �D_ðX;p2Þg:

(21)
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The second line of (21) describes the process c ! bb. The
one-loop correction to this process is given by

�i
c ðX; p; p2Þ ¼ jgjj2

�gig�j
g�i gj

�Z
d�k1d�k2d�k3ð2�Þ4

� �gðpþ k1 þ k2Þð2�Þ4�gðk2 � k3 þ p2Þ
� ½DRðX; k1ÞDRðX; k2ÞGjj

F ðX; k3Þ
þDRðX; k1ÞDFðX; k2ÞGjj

A ðX; k3Þ
þDFðX; k1ÞDRðX; k2ÞGjj

R ðX; k3Þ� þ c:c:

(22)

The third line of (21) describes c ! �b �b process and the
corresponding one-loop contribution is related to (22) by
��i
c ðX; p1; p2Þ � �i

c ðX;�p1;�p2Þ.
A very important feature of the expressions for the self-

energies, Eqs. (18) and (21), is that the loop corrections �i
b

and �i
c appear as overall factors on the right-hand sides of

the corresponding quantum-corrected Boltzmann equa-
tions. Therefore, when using the conventional approxima-
tions and integrating Eqs. (14) and (15), we obtain the
structure7

@tðnb; n �bÞ / ð1� �iÞðni � neqi Þ . . . : (23)

To obtain an equivalent result in the canonical approach
one explicitly needs to apply the RIS subtraction proce-
dure. This means that, here, the structure of the equations
automatically ensures that no asymmetry is generated in
thermal equilibrium. Stated differently, the Kadanoff-
Baym formalism is free of the double-counting problem
and no need for RIS subtraction arises.

In the homogeneous and isotropic early universe the
canonical Boltzmann equations conserve the linear combi-
nation 2nc i

þ nb þ n �b of particle numbers in a comoving

volume. However, the conservation of this quantity is
accidental, i.e. not guaranteed by a symmetry of the under-
lying Lagrangian. It is not conserved by the full Kadanoff-
Baym equations8 (see [47] for another example). This is
also true for the quantum-corrected Boltzmann equations
which we have derived from the Kadanoff-Baym equa-
tions. To see this one should add Eqs. (14) and (15) as well
as Eq. (20) multiplied by two and use the explicit expres-

sions for the self-energies (18) and (21). Although the
expressions for the loop corrections (19) and (22) are
similar, they are not equal. This results in a small time-
dependence of the quantity mentioned above (see also
Appendix G).
The system of Boltzmann equations (14), (15), and (20)

together with the Wigner-transforms of the self-energies
(16), (18), and (21) form a closed system of differential
equations that can be solved numerically. The solutions
describe the phase-space distributions of quasiparticle ex-
citations at each instant of time t ¼ X0.

III. CP-VIOLATING PARAMETER

Comparing the Boltzmann equations for particles and
antiparticles, (14) and (15), we see that the dynamical
generation of the CP asymmetry is only possible if

�_ðX; pÞ � ��_ðX; pÞ. Since ��_ðX; pÞ � �+ðX;�pÞ, in
the diagonal approximation, this is equivalent to the re-
quirement that �i

bðX; p1; p2Þ � �i
bðX;�p1;�p2Þ. The

CP-violating parameter can then be defined as

�iðX; p1; p2Þ � 1

2
½�i

bðX; p1; p2Þ � �i
bðX;�p1;�p2Þ�:

(24)

Using properties of theWigner transforms of the statistical,
retarded and advanced propagators, we find that in a me-
dium that is (approximately) baryosymmetric9 it is given
by

�iðX;p1;p2Þ¼ jgjj2Im
�gig�j
g�i gj

�Z
d�k1d�k2d�k3ð2�Þ4

��gðp1þk1þk2Þð2�Þ4�gðk2�k3þp2Þ
�½D�ðX;k1ÞDFðX;k2ÞGjj

h ðX;k3Þ
þfk1 $ k2gþDhðX;k1ÞDFðX;k2ÞGjj

� ðX;k3Þ
þfk1 $ k2gþD�ðX;k1ÞDhðX;k2ÞGjj

F ðX;k3Þ
�fk1 $ k2g�; (25)

where DhðX; pÞ � ReDRðX; pÞ ¼ ReDAðX; pÞ and Gh is
defined analogously. The quasiparticle approximation to-
gether with the Kadanoff-Baym ansatz enforces the spec-
tral functions and the statistical propagators to be on mass-
shell. On the contrary, the real parts of the retarded propa-
gators, Dh and Gh, vanish on-shell (see Appendix B for
more detail). In other words, in the processes contributing
to the CP-violating parameter, two of the intermediate

7For the numerical analysis we use the full Boltzmann equa-
tion, since the approximations required to obtain integrated rate
equations are not appropriate within the toy model (see Sec. IV).
Note, however, that the latter in fact contain averaged effective
CP-violating parameters (see Sec. III and Appendix F), �i !h�ii.

8It is important to note that the 2PI approximation scheme
guarantees that the total energy-momentum tensor (including
‘‘potential’’ energy due to interactions in the system) is cova-
riantly conserved [33,54]. In other words, the nonconservation of
the total number of particles does not violate the fundamental
conservation laws.

9We will see later that the CP-violating parameter, defined in
this way, is different for particles and antiparticles if the corre-
sponding distribution functions are different. Since the expected
asymmetry is small, this is only a second order effect and can be
neglected in the present work. The condition of almost zero
asymmetry is certainly satisfied if the CP-violating parameter is
calculated in vacuum, as it is the case in the canonical approach.
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lines are on-shell and one line is off-shell; this is shown in
Fig. 4. It is also interesting to note that in each term on the
right-hand side of (25) only one of the internal lines is
‘‘thermal,’’ i.e. explicitly depends on the one-particle dis-
tribution function. In other words the medium corrections
are only linear in the particle number densities. One could
come to this conclusion even without explicitly calculating
the CP-violating parameter. The self-energy (11c) is a
product of five two-point correlation functions. As far as
the decay is concerned, two of them describe on-shell
(external) states. The two integrals over the space-time
coordinates, u and v, turn two other functions into retarded
and (or) advanced propagators, which do not explicitly
depend on the particle number densities. The remaining
function turns out to be given by the corresponding statis-
tical propagator and explicitly depends on the particle
number density.

Typically, one is interested only in the total generated
asymmetry and solves rate equations for the total particle
number densities. They are obtained by integrating the left-
and right-hand sides of the Boltzmann equations (14) and
(15) over phase space. In the corresponding gain and loss
terms,

Z
d�pd�p1

d�p2
ð2�Þ4�gðp1 � p2 � pÞ

� ½1� �iðX; p1; p2Þ�Gii
_ðX; p1ÞD+ðX; p2ÞD+ðX; pÞ;

(26)

we can perform the transformation p $ p2 and take a sum
of the initial and final expressions, so that in Eq. (26):

�iðX; p1; p2Þ ! 1

2
½�iðX; p1; p2Þ þ �iðX; p1; pÞ�: (27)

In �iðX; p1; pÞ, we transform the variables k1 $ k2 and
k3 ! �k3 in addition. The spectral function of a real scalar
field is antisymmetric: Gii

�ðX;�k1Þ ¼ �Gii
�ðX; k1Þ.

Collecting all the terms, we find that due to the antisym-
metry only the first two terms (in the third and fourth lines)
in (25) contribute to the right-hand side of (27), whereas
the other terms cancel out. In other words, only the first two
terms of (25) contribute to the total CP asymmetry,
whereas the other four terms do not. An explicit calculation
shows that (at least in the homogeneous and isotropic
universe) these four terms also do not contribute to the
gain and loss terms. Diagrammatically this means that only
decays followed by a scattering contribute to the
CP-violating parameter, see Fig. 4(a).

As we have already mentioned, it is important that the
CP-violating parameters �i are identical

10 for the gain and
the loss terms: this means that the structure of the quantum-
corrected Boltzmann equation automatically ensures that
the asymmetry vanishes in thermal equilibrium. Let us also
note that there is a clear distinction between the initial,
final and intermediate states: the former ones are described
by the Wightman functions D_ and G_, whereas the latter
ones are described by the retarded, advanced and (or)
statistical components of the two-point functions.
Applying the quasiparticle approximation and the

Kadanoff-Baym ansatz in Eq. (25), we obtain the following
expression for the CP-violating parameter which is one of
our central results:

�iðp1; p2Þ ¼ � 1

8�

jgjj2
M2

i

Im

�gig�j
g�i gj

�Z d�

4�

� 1þ �fðEk1Þ þ �fðEk2Þ
M2

j =M
2
i þ 1

2 ð1þ cos	Þ ; (28)

where Ek1;2 are the energies of the intermediate toy-baryons

as a function of p1; p2 and the angle variables, and we have
omitted the time-space coordinate X to shorten the nota-
tion. The CP-violating parameter is a sum of vacuum and
medium contributions. Integrating the vacuum contribu-
tion over the solid angle, we obtain the standard expression
for the CP-violating parameter, see Eq. (2). The thermal
contributions are proportional to the one-particle distribu-
tion function, which is positive. Hence, for scalars the
CP-violating parameter is always enhanced by the medium
effects.
Because of the fact that the intermediate toy-baryons

propagate with respect to the rest frame of the thermal bath,
the CP-violating parameter depends in each individual
decay on the phase-space distribution of the decaying
particle and the decay products. Using results of
Appendix E, we obtain for the energy of the intermediate
complex scalars:

Ek1;2 ¼
1

2
½E1 þ jp1jðsin	cos’cos�0 � cos	 sin�0Þ�; (29)

where 	 and ’ are elements of the solid angle � and the
angle �0 depends on momenta of the initial and final states:
sin�0 ¼ ðjp3j � jp2jÞ=jp1j.
In the limit of almost equal one-particle distribution

functions of particles and antiparticles, f and �f, the
CP-violating parts of �i

c do not contribute to the

Boltzmann equations for the real scalars, just as in the
canonical approach. For this reason, we do not consider
it here.

(a) (b) (c)

FIG. 4. Graphical representation of the terms in Eq. (25).

10It is important to note that the transformation properties under
C, P and T of the self-energies obtained from the Schwinger-
Keldysh/Kadanoff-Baym formalism cannot be identified with
those of the S-matrix elements appearing in the canonical in-
out formalism.
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In order to estimate the size of the medium corrections,
we consider the hierarchical limit of the heavy scalar mass
spectrum, M1 	 M2. As in standard leptogenesis, we as-
sume that the asymmetry is predominantly generated by
the decay of the lighter scalar. By expanding Eq. (28) in
M2

1=M
2
2, we obtain a simplified expression for the relevant

CP-violating parameter �1,

�1ðp1; p2Þ ¼ �vac1

�
1þ

Z d�

4�
f �fðEk1Þ þ �fðEk2Þg

�
; (30)

where �vac1 is the CP-violating parameter in vacuum given
in Eq. (2). Exploiting the k1 $ k2 symmetry and integrat-
ing over the full solid angle we find that the asymmetry
depends on the absolute value of p1 only. That is
�1ðp1; p2Þ ¼ �1ðjp1jÞ, where

�1ðjpjÞ ¼ �vac1

�
1þ 2

rjpj
Z Emax=2

Emin=2

�fðEÞdE
�
; (31)

and Emax ¼ E1 þ rjpj and Emin ¼ E1 � rjpj are the larg-
est and smallest kinematically allowed energies of the light

scalars produced in the decay c 1 ! bb. Here E1 ¼ ðM2
1 þ

p2Þ1=2 and jpj denote the energy and momentum of c 1 in
the rest frame of the medium, respectively. Furthermore,
we have also included a nonzero toy-baryon mass m for

completeness, which enters via the parameter r �
ð1� 4m2=M2

1Þ1=2.
The medium correction depends on the one-particle

distribution function of the light scalars (toy-baryons)
and the masses of the particles. As expected they vanish
if �f � 0. We emphasize that the upper expression is valid
even if the light scalars were out of equilibrium.
Nevertheless, since we expect the light scalars to be close
to kinetic equilibrium at all times, we insert a Bose-
Einstein distribution function. For comparison we also
consider the case of a Maxwell-Boltzmann distribution.
Then we obtain

�1ðjpjÞ
�vac1

¼ 1þ 2T

rjpj�
8><
>:
lnð1�expð�Emax�2�

2T Þ
1�expð�Emin�2�

2T ÞÞ BE;

e�ðEmin�2�Þ=2T �e�ðEmax�2�Þ=2T MB:

(32)

The resulting expression depends on time t ¼ X0 via the
temperature T and chemical potential � of the toy-
baryons. For the rest of this section we assume j�j 	 T,
as in realistic scenarios of leptogenesis, for the purpose of
illustration.11 The temperature and momentum depen-

dence of the medium correction in the range of typical
momenta jpj 
 T is shown in the shaded areas in Fig. 5 for
the BE and MB cases, respectively. It is instructive to
consider the nonrelativistic (NR) regime (T, jpj 	 M1)
and the ultrarelativistic (UR) regime (T * jpj � M1). In
the NR limit, the BE and MB cases coincide, and the
medium correction is exponentially suppressed,

�1ðjpjÞ=�vac1 ! 1þ 2 exp

�
�M1

2T

�
: (33)

Furthermore, it is independent of the momentum jpj. In the
UR limit, the medium correction for the BE and MB cases
behaves quite differently: In the MB case the medium
correction saturates at �1=�

vac
1 & 3. In the BE case, it is

logarithmically enhanced12 (see Fig. 5),

�1ðjpjÞ=�vac1 ! 1þ 2T

rjpj ln
�

4Tjpj
M2

1 þ ½8p2m2=M2
1ð1þ rÞ�

�
:

(34)

FIG. 5 (color online). Effective CP-violating parameter
�1ðjpjÞ in medium obtained from the Kadanoff-Baym formalism.
The shaded areas correspond to the range 0:25 � jpj=T � 4 of
momenta jpj of the decaying particle c 1 ! bb= �b �b with respect
to the rest frame of the medium. Here we assumed a thermal
Bose-Einstein (BE) and Maxwell-Boltzmann (MB) distribution
for b= �b with vanishing chemical potential for illustration. In the
low-temperature limit (NR), the vacuum value is approached. In
the high-temperature limit (UR), the CP-violating parameter is
enhanced for bosons. We also show the thermally averaged
CP-violating parameter h�1i for the BE (red long-dashed line)
and MB (blue dashed line) cases, as well as the result that would
be obtained in thermal field theory (green dotted line).

11In realistic scenarios, the leptons and Higgs fields are in
equilibrium with gauge bosons such that � ¼ � ��. The small-
ness of the asymmetry then ensures the smallness of the chemi-
cal potentials, j�j=T ¼ j ��j=T 
 10�10. Within the toy model,
due to the absence of gauge interactions, it is possible to have
j�j ’ j ��j 
 T while the asymmetry remains small. It turns out
that this is even necessary to obtain consistent numerical solu-
tions within the present scenario, see Sec. IV.

12Note that the logarithmic enhancement at high energies is cut
off for extremely high energies (jpj � M2

1=m) in the UV due to
the second summand of the denominator inside the logarithm.
Since we assume that m 	 M1=10, we can neglect this term in
the relevant temperature range M1=T > 0:1.
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This effect is due to Bose enhancement. Thus, we find that
the quantum statistics is important for the medium correc-
tion. In the following section, we will see that the loga-
rithmic enhancement at high energies is also suppressed by
the inclusion of sizable negative chemical potentials
(which is necessary within the toy model, see below). In
Fig. 5, we also show the CP-violating parameter h�1i
obtained from averaging Eq. (32) over the momentum jpj
(see Appendix F). As expected, h�1i 
 �1ðjpj 
 TÞ.

Before discussing the impact of the medium correction
quantitatively, we would like to comment on the relation
between the Kadanoff-Baym (top-down) and the canonical
(bottom-up) approach. As has been mentioned before, in
vacuum, the top-down result Eq. (28) for the CP-violating
parameter coincides with the canonical result Eq. (2).
Nevertheless, we emphasize again that the structure of
the Boltzmann equations differs between the two ap-
proaches, i.e. the former are free of the double-counting
problem. Furthermore, it is also important to note that the
size of the medium correction differs between the top-
down and the bottom-up approach. Within the latter, the
medium corrections have been discussed by replacing
�vaci ! �thi in the canonical Boltzmann equations. Hereby
�thi involves the vertex loop calculated within thermal field
theory (see e.g. [19,20]). For the toy model, �thi is given in
Eq. (A5) of Appendix A. It involves an additional term
compared to the top-down result (28), which is quadratic in
the particle distribution function. In Fig. 5 we show that the
medium correction would be significantly overestimated in
the canonical thermal field theory approach within the toy
model.

For realistic models of leptogenesis, the vertex loop
contains scalar and fermionic lines in general. In contrast
to the scalars, the latter tend to decrease the size of the
CP-violating parameter. Therefore the results shown here
can only be used indirectly to make statements for phe-
nomenology. For the standard scenario of thermal lepto-
genesis with hierarchical right-handed neutrino spectrum,
it has been observed in [19] that, within thermal field
theory, the effects of Bose enhancement and Pauli blocking
tend to cancel each other. However, since the medium
corrections differ within the Kadanoff-Baym formalism,
this cancellation may no longer occur. Therefore one might
expect that the medium correction is underestimated in this
case, contrary to the situation encountered within the toy
model discussed here.

Note that we have neglected the effect of thermal masses
here for simplicity. Their impact on leptogenesis has been

studied e.g. in [20] within the framework of thermal field
theory. For the toy model considered here, it is consistent to
neglect thermal masses due to the absence of gauge inter-
actions. We stress, however, that it is also possible to
include time-dependent effective masses systematically
within the Kadanoff-Baym formalism. One of the effects
caused by the thermal masses of the complex field is the
cutoff of the logarithmic enhancement of the CP-violating
parameter at high energies. In addition, in an asymmetric
medium the effective masses of the particles and antipar-
ticles are not equal, which leads to an effective CP viola-
tion. This effect is studied in [55]. The medium corrections
to the masses of the heavy real fields can be important in
the case of the degenerate mass spectrum, which we in-
vestigate in [29].
Since the quantum statistic is important for the

CP-violating parameter in medium, we also have to in-
clude the quantum statistical terms in the gain and loss
terms of the Boltzmann equations for consistency. This
will be discussed in the following section.

IV. NUMERICAL RESULTS

To obtain the three Boltzmann equations for f, �f and
fc 1

, we integrate each of Eqs. (14), (15), and (20) over p0

(left- and right-hand side) and choose the positive energy
solution [30]. In agreement with the cosmological princi-
ple, we solve the system of Boltzmann equations with
spatially homogeneous and momentum isotropic distribu-
tion functions in (flat and radiation dominated) Friedman-
Robertson-Walker (FRW) space-time. In this case the left-
hand side of the Boltzmann equation is given by

L½f�ðjpjÞ � p�D�fðjpjÞ ¼ p0

�
@

@t
� jpjH @

@jpj
�
fðjpjÞ;

(35)

where H � _a=a is the Hubble parameter. Since in the
quasiparticle approximation the spectral functions are pro-
portional to �ðp2 �m2Þ, the integration over the time
components of the quasiparticle’s four-momenta can be
performed trivially in each of the corresponding self-
energies. After the integration the volume element d�p

is replaced by d�3
p � d3p=ð2�Þ3=2E, where E is energy

of the on-shell quasiparticle.
With these modifications, the network of quantum-

corrected Boltzmann equations takes the form:

L½f�ðjpjÞ ¼ Cbb$bb½f�ðjpjÞ þ Cb �b$b �b½f; �f�ðjpjÞ þ Cbb$c 1
½f; fc 1

�ðjpjÞ; (36a)

L½ �f�ðjpjÞ ¼ C �b �b$ �b �b½ �f�ðjpjÞ þ C �bb$ �bb½ �f; f�ðjpjÞ þ C �b �b$c 1
½ �f; fc 1

�ðjpjÞ; (36b)

L½fc 1
�ðjpjÞ ¼ Cc 1$bb½fc 1

; f�ðjpjÞ þ Cc 1$ �b �b½fc 1
; �f�ðjpjÞ; (36c)

where the different collision terms for the transition between two states i and f are denoted by Ci$f. Note that, due to the
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isotropy of the FRW universe, the collision terms also depend only on the absolute value of the momenta. For the 2-2
scattering processes in (36a) we find

Cbb$bb½f�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
d�3

p4
ð2�Þ4�ð4Þðpþ p2 � p3 � p4Þ 12�

2f½1þ fðjpjÞ�½1þ fðjp2jÞ�fðjp3jÞfðjp4jÞ
� fðjpjÞfðjp2jÞ½1þ fðjp3jÞ�½1þ fðjp4jÞ�g; (37a)

Cb �b$b �b½f; �f�ðjpjÞ ¼
1

2

Z
d�3

p2
d�3

p3
d�3

p4
ð2�Þ4�ð4Þðpþ p2 � p3 � p4Þ�2f½1þ fðjpjÞ�½1þ �fðjp2jÞ� �fðjp3jÞfðjp4jÞ

� fðjpjÞ �fðjp2jÞ½1þ �fðjp3jÞ�½1þ fðjp4jÞ�g: (37b)

The corresponding terms in the equation for �b can be obtained by replacing f with �f in (37a) and (37b). If the generated
asymmetry is small, as we assume here, then f 
 �f. In this case the CP-violating contributions to the right-hand side of
(36c) cancel out and we obtain:

Cc 1$bb½fc 1
; f�ðjpjÞ þCc 1$ �b �b½fc 1

; �f�ðjpjÞ ’ 1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ð4Þðp�p2 �p3Þ12 jg1j

2ðf½1þ fc 1
ðjpjÞ�fðjp2jÞfðjp3jÞ

� fc 1
ðjpjÞ½1þ fðjp2jÞ�½1þ fðjp3jÞ�g þ f½1þ fc 1

ðjpjÞ� �fðjp2jÞ �fðjp3jÞ
� fc 1

ðjpjÞ½1þ �fðjp2jÞ�½1þ �fðjp3jÞ�gÞ: (38)

The collision terms for the (inverse) decay of the heavy particle into a bb or �b �b pair explicitly contain the CP-violating
parameter � defined in Eq. (31):

Cbb$c 1
½f; fc 1

�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ð4Þðp2 � p� p3Þjg1j2½1þ �1ðjp2jÞ�f½1þ fðjpjÞ�½1þ fðjp3jÞ�fc 1

ðjp2jÞ
� fðjpjÞfðjp3jÞ½1þ fc 1

ðjp2jÞ�g (39a)

C �b �b$c 1
½ �f; fc 1

�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ð4Þðp2 � p� p3Þjg1j2½1� �1ðjp2jÞ�f½1þ �fðjpjÞ�½1þ �fðjp3jÞ�fc 1

ðjp2jÞ
� �fðjpjÞ �fðjp3jÞ½1þ fc 1

ðjp2jÞ�g: (39b)

The factors 1=2 associated with the couplings in (37a) and
(38) correctly account for the symmetrization of collision
integrals which include integration over the momenta of
two identical particles in the initial/final state. They have
been consistently obtained in the derivation from the
Kadanoff-Baym equations. We would like to stress again
that the structure of (39) differs from the usual structure
obtained in the conventional bottom-up approach. In par-
ticular, we do not need to include collision terms for the
processes bb $ �b �b (not even the RIS part of it) because
our collision terms for the processes bb $ c 1 and �b �b $
c 1 do not suffer from the generation of an asymmetry in
equilibrium. The network of Boltzmann equations (36)
should be understood in the generalized sense: the ‘‘am-
plitudes’’ differ from the usual perturbative matrix ele-
ments and do not have their symmetry properties.

To stay consistent in our model we also keep the quan-
tum statistical factors for bosons. The implications of this
new structure for a phenomenological theory of leptogen-
esis will be discussed elsewhere. To study the effect of the
quantum corrections, we compare the results obtained by
integrating the network of Boltzmann equations with
quantum-corrected �1ðjpjÞ to those which are obtained
after replacing �1ðjpjÞ with �vac1 . This means that we keep
here the new structure of the Boltzmann equations and
study corrections which arise from the quantum-corrected

�1 only. In the vacuum limit the structure of Eq. (36)
corresponds to the one which has been assumed implicitly
in [56] if the quantum statistical factors and the symmet-
rization factor are replaced accordingly.
In both cases we start at sufficiently high temperatures

so that all species, including c 1 with mass M1 ¼
1010 GeV, have relativistic initial abundances which cor-
responds to the most frequently discussed case.13 Because
of the presence of the statistical factors we need to start
with sufficiently negative chemical potentials as to avoid
Bose-Einstein condensation of the different species during
their evolution.14 We choose them such that they are
related by �c 1

¼ 2�b ¼ 2� �b, i.e. the system is in chemi-

cal equilibrium.

13Another scenario, which is frequently discussed in the litera-
ture, is that the Majorana neutrinos could have zero initial
abundance. In this case we would expect the differences in the
time evolution of the asymmetry to be larger in general.
However, this can have an effect on the final asymmetry only
if the asymmetry, produced in the intermediate step of thermal-
ization, is not washed out again before the Majorana neutrinos
decouple, i.e. for small washout factor � & 1.
14In this regime it would not be appropriate to describe the
system by conventional Boltzmann kinetic equations. Since we
are interested in scenarios that are qualitatively similar to real-
istic models of leptogenesis here, we do not consider this case.
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The coupling � can be adjusted such that the rates of the
2-2 interactions (37) are much larger than those of the
decays and inverse decays (38) and (39) at all times.15

This keeps b and �b close to kinetic equilibrium, just as
Higgs particles and leptons are kept in equilibrium by rapid
gauge interactions in the standard scenario. The distribu-
tion functions for these species are therefore given by their
equilibrium form throughout the entire evolution. This
means that they can be described in terms of four parame-
ters �b, Tb and � �b, T �b. The interactions (37) enforce the
relation T �b ¼ Tb between the parameters. Therefore, it is
sufficient to study the evolution of f and �f in terms of the
remaining three parameters (see Appendix G). The evolu-
tion of c 1, however, is studied in terms of the complete
distribution function discretized on a grid with 400 mo-
mentum modes. Our computation, therefore, includes clas-
sical nonequilibrium effects in the decay of c 1. Such
effects have been studied recently in [56–58]. All integrals
are evaluated numerically including all quantum statistical
factors for stimulated emission.

We define the generated toy-baryon asymmetry as

�ðM1=TÞ ¼ nbðM1=TÞ � n �bðM1=TÞ
sðM1=TÞ : (40)

Here nb and n �b, the number densities of species b and �b
respectively [compare (G7)], are computed in the presence
of the quantum-corrected �1, and s is the standard entropy

density [1]. The analogous asymmetry computed with �vac1

is denoted by �vacðM1=TÞ.
Figure 6 shows the numerical value of the ratio h�1i=�vac1

for various values of the washout parameter � �
�=HðM1Þ ¼ jg1j2mpl=ð4:5� 16�

ffiffiffiffiffi
g�

p
M3

1Þ. The flattening

for small M1=T as compared to the thermal equilibrium
result in Fig. 5 is due to the finite chemical potential of �b.
This shows that larger corrections could be obtained if
additional interactions for b and �b are introduced which
would allow one to start with smaller chemical potentials
and hence lead to a stronger enhancement.
The buildup of the asymmetry with and without quan-

tum corrections as a function of the inverse temperature is
depicted in Figs. 7 and 8. Comparing these figures one can
verify the enhancement of the asymmetry at intermediate

×

×

×

FIG. 7 (color online). The asymmetry �ðM1=TÞ with quantum
corrections included. In the weak washout regime (case a) the
asymmetry is produced at smaller temperatures and it is not
necessarily larger than for larger washout factors (compare a and
b).

×

×

×

FIG. 8 (color online). The asymmetry �vacðM1=TÞ without
quantum corrections.

FIG. 6 (color online). The ratio h�1i=�vac1 . The shape of the
curves differs from that of the corresponding graph in Fig. 5,
mainly because its computation involves a finite chemical po-
tential (which depends on M1=T) here. Similar graphs can be
obtained by including a finite chemical potential in Eq. (32).

15As we will show in Appendix G in this case there is no need
to compute the collision integrals for 2-2 scattering explicitly
and we can use perturbative values for � for most of the relevant
range of jgj2 assuming that it is sufficient to demand that the rate
for b �b $ b �b is at least 103 times larger than that of bb $ c 1.
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stages for larger washout factors (case d). Note also that
due to the medium contribution to the CP-violating pa-
rameter the generated asymmetry is not a monotonous
function of the washout parameter �.

The dependence of the resulting final asymmetries � ¼
�ðM1=T ! 1Þ and �vac ¼ �vacðM1=T ! 1Þ as well as
the ratio ð�� �vacÞ=�vac on the washout parameter is
presented in Fig. 9. The asymmetry is always larger
when quantum corrections are taken into account com-
pared to the results without corrections (compare
Sec. III). The asymmetry � has a maximum for moderate
washout factors � ’ 0:059 in contrast to the usual result
which has its maximum in the limit of zero washout factor.
Our interpretation of this result is as follows: For large
washout factors the enhancement of �1 due to the quantum
corrections enhances the asymmetry generated by the de-
cays only at intermediate stages, because the same pro-
cesses diminish the asymmetry in particular at late times
where the averaged asymmetry drops to smaller values
(compare Fig. 6). For small � the particles decay late,
and the backreaction is largely suppressed so that the
washout is ineffective. However the interval of integration
in Eq. (31) is located at relatively large momenta since the

mass increasingly dominates E1 ¼ ðM2
1 þ p2Þ1=2 as the

momenta are redshifted to smaller values. This means
that the integration is over an interval in which the distri-
bution �f becomes smaller and smaller. This explains why
the quantum corrections tend to zero for small �. For the
same reasons the relative effect of the quantum corrections
peaks at a moderate � ’ 0:34 with about 26%.

We note again that the size and the sign of the correc-
tions depend on the quantum statistics of the particles in

the vertex loop and will be different in a phenomenological
scenario. Further plots and details about the numerical
algorithm can be found in Appendix G.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied leptogenesis in a simple
toy model consisting of one complex and two real scalar
fields in a top-down approach, using the Schwinger-
Keldysh/Kadanoff-Baym formalism as the starting point.
This treatment, based on nonequilibrium quantum field
theory techniques, is motivated by the fact that it allows
a unified description of two key ingredients of leptogene-
sis, namely deviation from thermal equilibrium and loop-
induced CP violation. It has several important advantages
in comparison to the canonical bottom-up (Boltzmann)
approach. In particular, the full Kadanoff-Baym equations
do not rely on the concept of quasiparticles and their
collisions in the plasma. However, if the quasiparticle
picture is applicable, as we have assumed here, the
Kadanoff-Baym formalism consistently accounts for the
dependence of the quasiparticles’ properties as well as
scattering and decay rates on the state of the medium.
The out-of-equilibrium dynamics of the quasiparticles is

described by a system of approximate self-consistent ki-
netic equations—quantum-corrected Boltzmann equa-
tions—which we have derived here starting from the full
system of the Kadanoff-Baym equations. We find that the
structure of the quantum-corrected Boltzmann equations
automatically ensures that no asymmetry is produced in
thermal equilibrium. In other words there is no need for the
real intermediate state subtraction, i.e. the formalism is
free of the double-counting problem typical for the canoni-
cal approach.
One of the key quantities in leptogenesis is the

CP-violating parameter. Earlier studies have shown that
there are two sources of CP violation: self-energy and
vertex contributions. In this work, we have concentrated
on the latter one. We have found that for scalar fields the
medium effects increase the vertex contribution to the
CP-violating parameter. At high temperatures it is up to
an order of magnitude larger than in vacuum and asymp-
totically approaches the vacuum value as the temperature
decreases. This result can be traced back to a Bose en-
hancement of the vertex loop correction. In the Maxwell-
Boltzmann approximation, the corresponding
CP-violating parameter is increased at most by a factor
two. We would also like to note that, in the vacuum limit,
the CP-violating parameter obtained via the Kadanoff-
Baym formalism agrees with the value obtained within
the canonical formalism, as expected.
It is interesting that, contrary to the results obtained

earlier in the framework of thermal field theory by replac-
ing the zero-temperature propagators with finite tempera-
ture propagators in the matrix elements of the Boltzmann
equation, the medium corrections depend only linearly on

FIG. 9 (color online). The final asymmetries and the ratio
ð�� �vacÞ=�vac over washout factor �. The cases a, b, c, d,
e, f correspond to washout factors 0.01, 0.1, 0.366, 1, 10, 100.
Case c is close to the maximum relative excess of the quantum-
corrected results at � ’ 0:34. In contrast to the usual results the
final asymmetry does not take its maximum value for the small-
est washout factor. Instead, the asymmetry � peaks at � ’ 0:059.

M. GARNY et al. PHYSICAL REVIEW D 80, 125027 (2009)

125027-14



the particle number densities. Stated differently, ‘‘only one
of the internal lines in the vertex loop is ’thermal’.’’
Moreover, the medium corrections to the vertex
CP-violating parameter depend only on the density of
the toy-baryons and are independent of the density of the
‘‘Majorana’’ particles. Since the decaying heavy particles
as well as the intermediate on-shell states propagate with
respect to the thermal bath’s rest frame, the CP-violating
parameter in each individual decay depends on the mo-
menta of the initial and final states.

We have solved the system of the quantum-corrected
Boltzmann equations numerically. Because of the medium
corrections to the CP-violating parameter the asymmetry
reaches its maximum value at a small but finite value of the
washout parameter �, rather than for � ! 0, as it is the
case in the canonical approach. To avoid the regime of
Bose-Einstein condensation we have to assume that the
species have rather large chemical potentials initially. This
decreases the medium correction to the CP-violating pa-
rameter. As a result the generated asymmetry differs from
its value in the canonical formalism by approximately
26%. However, in a scenario in which the chemical poten-
tials are close to zero the deviation could reach the 100%
level. As has been mentioned above, our results differ from
the results of the calculations performed in vacuum and in
the framework of thermal field theory. Therefore, we argue
that one should use the quantum-corrected Boltzmann
equations (or the full Kadanoff-Baym equations). On the
other hand, to obtain order of magnitude approximations, it
seems safe to use the canonical approach in the present
scenario.

The techniques described in this work can also be used
to study quantum nonequilibrium effects within phenome-
nological scenarios of leptogenesis. In particular, the tech-
nical advantages of the Kadanoff-Baym formalism
demonstrated above, like the absence of double-counting
problems, are quite generic and therefore should not de-
pend on the details of the model. Furthermore, we expect
that the difference in the size of the medium corrections,
obtained from the Kadanoff-Baym formalism and thermal
field theory respectively, persists if our approach is applied
to such scenarios.

We would like to stress again that, in this paper, we have
considered only the vertex contribution to the CP-violating
parameter. The self-energy contribution is comparable to
the vertex contribution or, in the case of resonant lepto-
genesis, considerably larger than the vertex contribution.
We will study it in a forthcoming paper [29]. In addition in
[55] we plan to investigate the influence of a nonzero
asymmetry on the CP-violating parameter. Furthermore,
for phenomenological models, thermal masses can become
relevant. These can also consistently be described within
the Kadanoff-Baym formalism. Finally, we note that it
would also be interesting to investigate numerical solutions
of the full set of Kadanoff-Baym equations without further

approximations as some of their properties cannot be in-
cluded in Boltzmann-like equations for principle reasons.
This is however beyond the scope of the present work.
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APPENDIX A: CP-VIOLATING PARAMETER IN
THE BOTTOM-UP APPROACH

In this appendix, we review the calculation of the vertex
contribution to the CP-violating parameter in vacuum,
�vaci � ð�c i!bb � �c i! �b �bÞ=ð�c i!bb þ �c i! �b �bÞ, in the

conventional in-out formalism. It is generated by the inter-
ference of the tree-level and one-loop amplitudes (see
Fig. 3),

M ð0Þ
c i!bb ¼ �ig�i ;

Mð1Þ
c i!bb ¼ igig

�
jg

�
j

1

16�2
C0ðM2

i ; 0;M
2
j Þ:

(A1)

In the limit of massless toy-baryons, the scalar 1-loop
vertex three-point function C0 is given by [59,60]

C0ðp2
1; p

2
2;M

2
j Þ ¼

Z ði�2Þ�1d4q

ðq2 �M2
j Þðqþ p2Þ2ðqþ p2 � p1Þ2

;

(A2)

where p1 and p2 are momenta of the decaying heavy
particle and of one of the decay products, respectively.
The tree-level and one-loop amplitudes of the decay pro-
cess c ! �b �b differ from (A1) only by conjugation of the
couplings. Therefore, at leading order, we obtain for the
CP-violating parameter:

�vaci ¼ jgjj2
8�2

Im

�gig�j
g�i gj

�
ImC0ðM2

i ; 0;M
2
j Þ: (A3)

Substituting the result for the three-point function,

C0ðM2
i ; 0;M

2
j Þ ¼

1

M2
i

�
Li2

�
1þM2

i

M2
j

�
� �2

6

�
; (A4)

(with dilogarithm Li2 as defined in [60]) into Eq. (A3), we
obtain Eq. (2). The same calculation can be performed
within thermal quantum field theory by using thermal
propagators in Eq. (A2). The result is [19,53]

�thi ðp1; p2Þ ¼ � 1

8�

jgjj2
M2

i

Im

�gig�j
g�i gj

�Z d�

4�

� 1þ �fth1 þ �fth2 þ 2 �fth1
�fth2

M2
j =M

2
i þ 1

2 ð1þ cos	Þ þ � � � ; (A5)
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where �fthi ¼ ½expððEki ��Þ=TÞ � 1��1, see Eq. (29). The

ellipsis denote similar contributions involving the distribu-
tion function of the heavy scalar. These are suppressed in
the hierarchical limit.

APPENDIX B: KADANOFF-BAYM FORMALISM
FOR THE COMPLEX SCALAR FIELD

Here, we derive the Kadanoff-Baym and quantum-
corrected Boltzmann equations for the complex scalar
field.

1. Schwinger-Dyson equation

Our starting point is the generating functional for
Green’s functions [61]:

Z ½J; K� ¼
Z

DbD �b exp½iðSþ J �bþ �Jbþ �bKbÞ�;
(B1)

where the field and the external sources are defined on the
positive and negative branches of the Schwinger-Keldysh
closed real-time contour shown in Fig. 10 [31,62–66]. The
scalar products of the local and bilocal sources JðxÞ and
Kðx; yÞ and the field are defined as invariant configuration
space integrals [30,67]. Furthermore, we use the compact
notation of Ref. [31] for contour integrals over the closed
real-time path. Note that the sources are now complex
functions. The requirement that the last term in (B1) be
real implies that Kðx; yÞ ¼ K�ðy; xÞ.

The functional derivatives of the generating functional
for connected Green’s functions,

W ½J; K� ¼ �i lnZ½J; K�; (B2)

with respect to the external sources read

@W ½J; K�
@JðxÞ ¼ �BðxÞ; (B3a)

@W ½J; K�
@Kðx; yÞ ¼ 1

2
½Dðy; xÞ þ �BðxÞBðyÞ�: (B3b)

B andD denote the expectation value and the propagator of
the field respectively. The derivative of W with respect to
�J is just the complex conjugate of (B3a).
Performing a Legendre transform of the generating

functional for connected Green’s functions, we obtain the
effective action

�½D;B� � W ½J; K� � J �B� �JB� tr½KD� � �BKB:

(B4)

Making use of the chain rule and Eqs. (B3), we find for
functional derivatives of the effective action

��½D;B�
� �BðxÞ ¼ �JðxÞ �

Z
D4zKðx; zÞBðzÞ; (B5a)

��½D;B�
�Dðx; yÞ ¼ �Kðy; xÞ: (B5b)

Next, we shift the complex field by its expectation value
b ! bþ B. Since the integration measure in the path
integral is translationally invariant, the effective action
can be rewritten in the form

�½D;B� ¼ �i ln
Z

DbD �b exp½iðSþ �Jbþ J �bþ �bKbÞ�
þ Scl½B� � tr½KD�: (B6)

Now, we tentatively write the effective action in the form
[61]

�½D;B� � Scl½B� þ i ln det½D�1� þ i tr½D�1D�
þ �2½D;B�; (B7)

thus defining the functional �2.
The third term on the right-hand side of (B7) is given by

a convolution of the field propagatorD and the free inverse
propagator D�1. Its differentiation with respect to Dðy; xÞ
gives [30]

D�1ðx; yÞ ¼ iðhx þm2Þ�gðx; yÞ: (B8)

The functional derivative of the second term on the right-
hand side of (B7) can be obtained upon use of

Z
D4zD�1ðx; zÞDðz; yÞ ¼ �gðx; yÞ; (B9)

and is given by �iD�1ðy; xÞ. Consequently, we obtain
��½D;B�
�Dðx; yÞ ¼ �iD�1ðy; xÞ þ iD�1ðy; xÞ þ ��2½D;B�

�Dðx; yÞ
¼ �Kðy; xÞ: (B10)

Physical reality corresponds to vanishing sources.16

Therefore, Eq. (B10) can be rewritten in the form

D�1ðx; yÞ ¼ D�1ðx; yÞ � �ðx; yÞ; (B11)

where the self-energy is defined by

�ðx; yÞ � i
��2½D;B�
�Dðy; xÞ : (B12)

t init tmax

t

FIG. 10. Closed real-time path C.

16To be precise, within nonequilibrium field theory, this is only
true for times x0; y0 > tinit. The local and bilocal sources sup-
ported at x0 ¼ y0 ¼ tinit formally encode the information about
the (Gaussian) initial state (see e.g. [38]). However, these
sources do not appear explicitly in the Kadanoff-Baym equa-
tions, and therefore we omit them here.
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Note that the factor two in the definition of the self-energy
[30,47] is absent, just as one would expect for a complex
field.

2. Kadanoff-Baym equations

Convolving the Schwinger-Dyson equation (B11) with
D from the right and using Eq. (B9), we obtain

i½hx þm2�Dðx; yÞ ¼ �gðx; yÞ þ
Z

D4z�ðx; zÞDðz; yÞ:
(B13)

Next, following the usual procedure, we represent the time-
ordered propagator as a linear combination of the statistical
propagator and spectral function:

Dðx; yÞ ¼ DFðx; yÞ � i

2
sgnCðx0 � y0ÞD�ðx; yÞ; (B14)

where sgnC denotes the signum function with respect to
time ordering along the closed time path, and

DFðx; yÞ � 1

2
h½bðxÞ; �bðyÞ�þi; (B15a)

D�ðx; yÞ � ih½bðxÞ; �bðyÞ��i; (B15b)

where the subscripts ‘‘þ’’ and ‘‘�’’ denote the anticom-
mutator and the commutator of the fields.

To find out how DF and D� behave under complex

conjugation let us introduce

D>ðx; yÞ � hbðxÞ �bðyÞi ¼ Tr½PbðxÞ �bðyÞ�; (B16a)

D<ðx; yÞ � h �bðyÞbðxÞi ¼ Tr½P �bðyÞbðxÞ�: (B16b)

Using the Hermiticity of the density matrix P and the
cyclic invariance of the trace, we obtain

D�
>ðx; yÞ ¼ D>ðy; xÞ; D�

<ðx; yÞ ¼ D<ðy; xÞ: (B17)

Consequently

D�
Fðx; yÞ ¼ DFðy; xÞ; D�

�ðx; yÞ ¼ �D�ðy; xÞ: (B18)

Analogous relations also hold for the spectral and statisti-
cal components of the self-energy.

The local part of the self-energy is proportional to the
Dirac � function and can be absorbed in the effective mass
of the field, m2ðxÞ � m2 þ�locðx; xÞ, whereas the remain-
ing part of the self-energy can be split into a spectral part
�� and a statistical part�F in a complete analogy to (B14).

Because of the sign function, the action of the Laplace-
Beltrami operator on (B14) gives rise to a product of
g00�ðx0; y0Þ and rx

0D�ðx; yÞ. Upon use of the definition

of the spectral function and canonical commutation rela-
tions for a complex scalar field this product reduces to the
generalized � function �gðx; yÞ [30], which cancels the �
function on the right-hand side of (B13).

Separating spectral and statistical components in
Eq. (B13), we obtain a system of Kadanoff-Baym equa-
tions very similar to that for the real scalar field [30]:

½hx þm2ðxÞ�DFðx; yÞ ¼
Z y0

0
D4z�Fðx; zÞD�ðz; yÞ

�
Z x0

0
D4z��ðx; zÞDFðz; yÞ;

(B19)

½hx þm2ðxÞ�D�ðx; yÞ ¼
Z y0

x0
D4z��ðx; zÞD�ðz; yÞ:

(B20)

One should, however, keep in mind that the functions in
(B19) and (B20) are complex. That is, we get four equa-
tions for the real and imaginary components of the spectral
function and the statistical propagator. The complete in-
formation about the (Gaussian) initial state specified at the
initial time tinit � 0 enters via the initial conditions of the
two-point functions DF, @x0DF, @y0DF and @x0@y0DF eval-

uated at x0 ¼ y0 ¼ tinit. The corresponding initial condi-
tions for the spectral function are fixed by the equal-time
commutation relation of the complex field, as for the real
case [38].
We note that the proper renormalization of the

Kadanoff-Baym equations (B19) and (B20) would require
one to also take non-Gaussian correlations of the initial
state into account [68,69]. However, the derivation of
quantum-corrected Boltzmann equations considered here
involves the limit tinit ! �1, and therefore the initial
correlations should have a negligible effect.

3. Quantum kinetics

The Kadanoff-Baym equation for the statistical propa-
gator (spectral function) can be rewritten in terms of the
advanced and retarded propagators, DR and DA:

½hx þm2ðxÞ�DFð�Þðx; yÞ ¼ �
Z

D4z	ðz0Þ
� ½�Fð�Þðx; zÞDAðz; yÞ
þ�Rðx; zÞDFð�Þðz; yÞ�:

(B21)

Because of (B18), the retarded and advanced propagators
are related by

DRðx; yÞ � 	ðx0 � y0ÞD�ðx; yÞ ¼ �	ðx0 � y0ÞD�
�ðy; xÞ

¼ D�
Aðy; xÞ: (B22)

Therefore, after interchange of x and y in (B21) and com-
plex conjugation of the resulting equation, we find

½hy þm2ðyÞ�DFð�Þðx; yÞ ¼ �
Z

D4z	ðz0Þ
� ½DRðx; zÞ�Fð�Þðz; yÞ
þDFð�Þðx; zÞ�Aðz; yÞ�:

(B23)
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Since (B23) has been obtained from (B21) by reversible
transformations, a solution of (B21) is also a solution of
(B23). Consequently, it is also a solution of the sum (which
will be referred to as constraint equation) and the differ-
ence (which will be referred to as kinetic equation) of
(B21) and (B23).

To analyze the constraint and kinetic equations it is
convenient to introduce the center and relative coordinates,
X and s [51]. In terms of the center and relative coordinates
relations (B18) can be rewritten in the form

D�
FðX; sÞ ¼ DFðX;�sÞ; D�

�ðX; sÞ ¼ �D�ðX;�sÞ:
Consequently, even in the case of a complex scalar field,
the Wigner transforms of the spectral function and statis-
tical propagator,

DFðX; pÞ ¼ ffiffiffiffiffiffiffi�g
p

X

Z
d4seipsDFðX; sÞ; (B24a)

D�ðX; pÞ ¼ �i
ffiffiffiffiffiffiffi�g

p
X

Z
d4seipsD�ðX; sÞ; (B24b)

are real-valued functions. The Wigner transforms of the
retarded and advanced propagators are defined analogously
to (B24a). From (B22) it then follows that relation

DAðX; pÞ ¼ D�
RðX; pÞ (B25)

also holds for a complex scalar field. Another very useful
relation,

DRðX; pÞ �DAðX; pÞ ¼ iD�ðX; pÞ; (B26)

results from the definitions (B22) and (B24) and the equal-
ity 	ðs0Þ þ 	ð�s0Þ ¼ 1. Equations (B25) and (B26) in
particular imply that

DRðAÞðX; pÞ ¼ DhðX; pÞ � i

2
D�ðX; pÞ; (B27)

where DhðX; pÞ � ReDRðX; pÞ has been introduced. A
similar relation also holds for the retarded and advanced
self-energies.

Let us now subtract (B23) from (B21) and then Wigner
transform the left- and right-hand sides of the resulting
equation. Furthermore, we send the initial time to the
infinite past, tinit ! �1, i.e. we drop the functions 	ðz0Þ
on the right-hand sides of Eqs. (B21) and (B23).
Physically, this means that we neglect the effects of initial
correlations. Additionally, we perform a gradient expan-
sion with respect to the central coordinate X. Proceeding as
in [30], we obtain a kinetic equation for the spectral
function. To linear order in the gradients it reads

f!ðX; pÞ; D�ðX; pÞgPB ¼ f��ðX; pÞ; DhðX; pÞgPB; (B28)

where we have introduced

!ðX; pÞ � g��p�p� �m2ðXÞ � �hðX; pÞ; (B29)

and the Poisson brackets are defined by [30]

fAðX; pÞ; BðX; pÞgPB � @

@p�

AðX; pÞD�BðX; pÞ

�D�AðX; pÞ @

@p�

BðX; pÞ:
(B30)

Wigner transforming the sum of (B23) and (B21), we
obtain the constraint equation for the spectral function. To
linear order in the gradients it is an algebraic equation:

!ðX; pÞD�ðX; pÞ ¼ ��ðX; pÞDhðX; pÞ: (B31)

To close the system and to analyze the spectrum, we also
need the equations for the retarded and advanced propa-
gators. They can be obtained from (B21) and (B23) upon
use of the definitions of DR and DA and the canonical
commutation relations:

½hx þm2ðxÞ�DRðAÞðx; yÞ ¼ �gðx; yÞ
�

Z
D4z�RðAÞðx; zÞDRðAÞðz; yÞ;

(B32)

½hy þm2ðyÞ�DAðRÞðx; yÞ ¼ �gðx; yÞ
�

Z
D4zDAðRÞðx; zÞ�AðRÞðz; yÞ:

(B33)

Wigner transforming the difference of (B32) and (B33) and
subtracting (B28), we obtain the kinetic equation for real
part of the retarded and advanced propagators:

f!ðX; pÞ; DhðX; pÞgPB ¼ � 1

4
f��ðX; pÞ; D�ðX; pÞgPB:

(B34)

Wigner transforming the sum of (B32) and (B33) and
subtracting (B31), we obtain the second constraint equa-
tion:

!ðX; pÞDhðX; pÞ ¼ �1� 1

4
��ðX; pÞD�ðX; pÞ: (B35)

The solution of the system of constraint equations (B31)
and (B35) reads

D�ðX; pÞ ¼
���ðX; pÞ

!2ðX; pÞ þ 1
4 �

2
�ðX; pÞ

; (B36a)

DhðX; pÞ ¼ !ðX; pÞ
��ðX; pÞD�ðX; pÞ: (B36b)

As can be checked by substitution, solution (B36) is also
solution of the kinetic equations (B28) and (B34). In other
words, to linear order in the gradients we have analytic
expressions for the spectral function and retarded (ad-
vanced) propagators. The spectral function has a sharp
peak on the mass shell, i.e. for !ðX; pÞ ¼ 0. The height
and exact shape of the peak are time-dependent.
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Proceeding in a similar way, we can derive the kinetic

f!ðX; pÞ; DFðX; pÞgPB ¼ f�FðX; pÞ; DhðX; pÞgPB
þDFðX; pÞ��ðX; pÞ
� �FðX; pÞD�ðX; pÞ; (B37)

and the constraint,

!ðX; pÞDFðX; pÞ ¼ 1

4
f�FðX; pÞ; D�ðX; pÞgPB

þ 1

4
fDFðX; pÞ;��ðX; pÞgPB

þ �FðX; pÞDhðX; pÞ (B38)

equations for the statistical propagator. The constraint
equation is no longer algebraic and cannot be, generally
speaking, solved analytically. However, if the system is in
thermal equilibrium, then all the quantities are constant in
time and space and the Poisson brackets in (B38) vanish
identically. The solution of the resulting equation reads

Deq
F ðpÞ ¼ �FðpÞ

��ðpÞD
eq
� ðpÞ: (B39)

That is, we have obtained the fluctuation-dissipation rela-
tion from the constraint equation (B38). As can be checked
by substitution, in equilibrium (B39) is indeed a solution of
(B37). Furthermore, using (B14) and the KMS periodicity
condition we find [38]

Deq
F ðpÞ ¼

�
feqðpÞ þ 1

2

�
Deq

� ðpÞ; (B40)

where fðeqÞ is the Bose-Einstein distribution function.

4. Quantum-corrected Boltzmann equations

The spectral function for the complex scalar field (B36a)
has a Breit-Wigner shape and peaks at ! ¼ 0. The height
of the peak is inversely proportional to the spectral self-
energy and tends to infinity in the limit of vanishing
coupling constant. Since, furthermore, the area under
D�ðX; pÞ is constant [30] to a first approximation it can

be replaced by a Dirac � function:

D�ðX; pÞ ¼ 2� sgnðp0Þ�ðg��p
�p� �m2Þ: (B41)

Equation (B41) is referred to as quasiparticle
approximation.

Strictly speaking, the quasiparticle approximation is
sufficient only for the analysis of lowest-order processes.
In the model under consideration this includes the tree-
level decay and tree-level scattering processes, which are
obtained at the order Oðg2Þ) and Oð�2Þ, respectively (see
Fig. 2). To ensure the consistency of the description beyond
leading order one should use the so-called extended qua-
siparticle approximation [70–75]. The extended quasipar-
ticle approximation for the complex scalar field would

allow us, for instance, to describe c b ! b ! c b scatter-
ing processes, which are of order Oðg4Þ. In this paper we
are primarily interested in the three-loop vertex diagram,
whose contribution to the effective action contains the
fourth power of the coupling g. Using the quasiparticle
approximation for the propagators in the vertex diagram
thus induces contributions which are already of order
Oðg4Þ. Consequently, the extended quasiparticle approxi-
mation would additionally induce contributions of higher
order in the coupling constants. Therefore, the calculation
of the leading order contribution to the vertexCP-violating
parameter does not require us to go beyond the quasipar-
ticle approximation.
As has been argued in [30], in the same approximation

one can also neglect the Poisson brackets in the kinetic
equations, which physically corresponds to the
Stosszahlansatz of Boltzmann. This leads to a simple ki-
netic equation for the spectral function:

p�D�D�ðX; pÞ ¼ 0: (B42)

Let us note that the quasiparticle approximation for the
spectral function (B41) is consistent with (B42).
Neglecting the Poisson brackets on the right-hand side

of (B37), we obtain the Boltzmann equation for the statis-
tical propagator:

p�D�DFðX; pÞ ¼ 1

2
½DFðX; pÞ��ðX; pÞ

� �FðX; pÞD�ðX; pÞ�: (B43)

Motivated by the fluctuation-dissipation relation (B40), we
trade the statistical propagator for the one-particle number
density:

DFðX; pÞ ¼
�
fðX; pÞ þ 1

2

�
D�ðX; pÞ: (B44)

In view of (B42), we can then rewrite (B43) as an equation
for the phase-space distribution function fðX; pÞ:

½p�D�fðX; pÞ�D�ðX; pÞ ¼ 1

2
½�>ðX; pÞD<ðX; pÞ

�D>ðX; pÞ�<ðX; pÞ�;
(B45)

where we have introduced

D_ðX; pÞ ¼ DFðX; pÞ � 1

2
D�ðX; pÞ: (B46)

Equation (B45) is very similar to the Boltzmann equation
for a real scalar field [30]. There is, however, an important
difference. For negative values of p0 the distribution func-
tion f describes antiparticles:

fðX;�pÞ � �½ �fðX; pÞ þ 1�: (B47)

In other words, Eq. (B45) describes the time evolution of
both particles and antiparticles. One can obtain an explicit
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equation for �f by changing the sign of p0:

½p�D�
�fðX; pÞ�D�ðX; pÞ ¼ 1

2
½ ��>ðX; pÞ �D<ðX; pÞ

� �D>ðX; pÞ ��<ðX; pÞ�;
(B48)

where we have introduced ��_ðX; pÞ � �+ðX;�pÞ and
taken into account that in the quasiparticle approximation
D�ðX;�pÞ ¼ �D�ðX; pÞ.

APPENDIX C: CALCULATION OF THE
SELF-ENERGIES

The 2PI effective action is given by the sum of all 2PI
diagrams with vertices as given by the interaction
Lagrangian and internal lines representing the complete
connected propagators [38]. The structure of the terms of
the effective action can be read off the diagrams in Fig. 1:

i�ðaÞ
2 ¼ � i

2
�
Z
x
D2ðx; xÞ; (C1a)

i�ðbÞ
2 ¼ � 1

8
�2

Z
xy
D2ðx; yÞD2ðy; xÞ; (C1b)

i�ðcÞ
2 ¼ � 1

4
gmg

�
n

Z
xy
Gmnðx; yÞD2ðx; yÞ

� 1

4
g�mgn

Z
xy
Gmnðx; yÞD2ðy; xÞ; (C1c)

i�ðdÞ
2 ¼ 1

4
gigjg

�
mg

�
n

Z
xyvu

Gijðx; yÞGmnðv; uÞDðy; vÞ
�Dðx; vÞDðy; uÞDðx; uÞ; (C1d)

where, to shorten the notation, we have introduced

Z
x1...xn

�
Z

D4x1 . . .D4xn:

The self-energies of the complex scalar field are obtained
by functional differentiation of the effective action with
respect to the two-point correlation function:

�ðx; yÞ � i
��2½D;G�
�Dðy; xÞ : (C2)

Differentiating the individual contributions to the effective
action, we obtain

�ðaÞðx; yÞ ¼ �i�gðx; yÞ�Dðx; xÞ; (C3a)

�ðbÞðx; yÞ ¼ � 1

2
�2D2ðx; yÞDðy; xÞ; (C3b)

�ðcÞðx; yÞ ¼ �gig
�
jG

ijðy; xÞDðy; xÞ; (C3c)

�ðdÞðx; yÞ ¼ gigjg
�
mg

�
n

Z
vu

Gmnðx; vÞGijðy; uÞDðy; vÞ
�Dðu; vÞDðu; xÞ: (C3d)

The components of the self-energy of the system of real
scalar fields are obtained upon functional differentiation of

the effective action with respect to the components of the
correlation function:

�ijðx; yÞ � 2i
��2½D;G�
�Gjiðy; xÞ : (C4)

The result of the differentiation reads

�ðcÞ
ij ðx; yÞ ¼ � 1

2
gig

�
jD

2ðx; yÞ � 1

2
g�i gjD2ðy; xÞ; (C5a)

�ðdÞ
ij ðx; yÞ ¼

1

2

Z
vu

Gmnðv; uÞ½gigjg�mg�nDðx; vÞ
�Dðx; uÞDðy; vÞDðy; uÞ þ g�i g�jgmgnDðv; xÞ
�Dðu; xÞDðv; yÞDðu; yÞ�: (C5b)

The next step is to derive the spectral and statistical com-
ponents of the self-energies (C3) and (C5). Upon use of the
decomposition (B14) and of the analogous decomposition
of the propagators of the real scalar field, one easily obtains

a corresponding decomposition of the self-energies �ðbÞ,
�ðcÞ and �ðcÞ into the statistical and spectral components.
Linear combinations of the resulting expressions are pre-
sented in Eqs. (11a), (11b), and (12a). The calculation of

the spectral and statistical components of �ðdÞ and �ðdÞ,
which contain two integrations over space-time, is more
involved (see also [39]). Decomposing the two-point cor-
relation functions in Eq. (C3d) into the statistical and
spectral components, we get 32 terms. Each of the terms
must be integrated over the closed time path C, see Fig. 10.
It is helpful to use relations like the following,

Z
C
du0 sgnCðx0 � u0Þ sgnCðu0 � y0ÞD�ðx; uÞD�ðu; yÞ

¼ 2 sgnCðx0 � y0Þ
Z x0

y0
du0D�ðx; uÞD�ðu; yÞ: (C6)

One then finds that ten terms vanish upon integration over
the contour: one term which does not contain any sgnC
functions; five terms which contain only one sgnC function;
two terms which contain a product of two sgnC functions
both depending only on one of the integration variables, u
or v; and finally two terms which contain a product of three
sgnC functions but depend only on one of the external
arguments, x or y. For the remaining terms integration
over the contour C reduces to a ‘‘single time’’ integration
over a combination of the six regions in Fig. 11. Note that
the upper limits of the integration never exceed the largest
time argument (x0 in Fig. 11) which ensures the causality
of the Kadanoff-Baym equations. In most cases integration
over a part of the uv plane can be easily represented as
integration over the whole plane, 0< u, v <1, if two of
the spectral functions are replaced by the corresponding
retarded and (or) advanced propagators. There are, how-
ever, two exceptions: if the resulting integral is only over
region (e) or region (f) in Fig. 11. Using the identities
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Z
ðeÞ

¼
Z
ðaþcþeÞ

þ
Z
ðbÞ

�
Z
ðaþbþcÞ

; (C7a)

Z
ðfÞ

¼
Z
ðbþdþfÞ

þ
Z
ðaÞ

�
Z
ðaþbþdÞ

; (C7b)

and the definitions of the retarded and advanced propaga-
tors, we can represent the corresponding contributions as
combinations of integrals over the whole uv plane.
Collecting all the terms, we obtain expressions presented
in Eqs. (11c) and (12b).

APPENDIX D: WIGNER TRANSFORMATION

To calculate the self-energies entering the Boltzmann
equations, we have toWigner transform products of several
two-point functions. Using the definitions (B24), we obtain
for the Wigner transform of a product of n functions of the
same arguments [30]:

f1ðx; yÞ . . . fnðx; yÞ !
Z

d�p1
. . . d�pn

ð2�Þ4�gðp� p1

� � � �pnÞfðX; p1Þ . . . fðX; pnÞ:
(D1)

Equation (D1) allows us to Wigner transform the self-
energies (11a), (11b), and (12a). The self-energy (11c)
has a more complicated structure:

fðx; yÞ ¼
Z
vu

f1ðy; vÞf2ðu; vÞf3ðu; xÞf4ðy; uÞf5ðx; vÞ:
(D2)

We will now calculate the Wigner transform of (D2) in the
Boltzmann approximation. That is, in each fn we will
neglect the deviation of the corresponding center coordi-
nate from X � Xxy. For instance:

f1ðy; vÞ ! f1ðXyv; syvÞ ! f1ðXxy; syvÞ: (D3)

In this approximation the integration over u and v induces

two conditions on the momenta: pv ¼ pu ¼ 0, where
pu ¼ p2 þ p3 � p4 and pv ¼ p1 þ p2 þ p5. Integration
over the relative coordinate s, see Eq. (B24a), induces an
additional constraint: p ¼ ps, where ps ¼ 1

2 �ðp5 � p4 � p3 � p1Þ. Thus, in the Boltzmann approxima-
tion the Wigner transform of (D2) takes the form:

fðX; pÞ ¼
Z

d�p1
. . . d�p5

ð2�Þ4�gðpuÞð2�Þ4�gðpvÞ
� ð2�Þ4�gðp� psÞf1ðX; p1Þ . . . f5ðX; p5Þ:

(D4)

As far as decays are concerned, two of the momenta in
(D4) correspond to the initial and final states, whereas
three of the momenta correspond to the internal lines of
the loop. The Dirac � functions in (D4) ensure conserva-
tion of four-momentum in each vertex of the loop.
The self-energy (12b) has the structure

fðx; yÞ ¼
Z
vu

f1ðv; uÞf2ðx; vÞf3ðx; uÞf4ðy; vÞf5ðy; uÞ:
(D5)

Proceeding in the same way, we again obtain (D4) but now
with pv ¼ p1 � p2 � p4, pu ¼ p1 þ p3 þ p5 and ps ¼
1
2 ðp2 þ p3 � p4 � p5Þ. This completes the calculation of

the Wigner transforms of the self-energies.

APPENDIX E: KINEMATICS OF THE DECAY

In this appendix, we discuss the kinematics of the decay
c i ! bb in the rest (in the early universe-comoving)
frame of the thermal bath and in the rest frame of the
decaying heavy particle. For simplicity, we assume that
the masses of the toy-baryons are negligibly small in
comparison with the mass of the heavy real scalar. Let us
first consider the decay in the rest frame of the thermal
bath. Energy-momentum conservation tells us that the
momentum p1 of the decaying particle and the momenta
p2, p3 of the decay products must lie in the same plane.
The latter depend on the scattering angle #, see Fig. 12(a).
Denoting the angle between the bisectrix of the scattering

FIG. 12. Decay of the heavy scalar in the rest frame of the
plasma and in the rest frame of the decaying particle (see also
Fig. 4 for the assignment of the different momenta).

FIG. 11. The integration plane in the case x0 > y0.
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angle and the momentum p1 of the decaying particle by �
we obtain

# ¼ 2 arccos

�jp1j
E1

cos�

�
: (E1)

The angles between the momentum of the decaying parti-
cle and those of the decay products are given by � ¼
#=2þ � and 
 ¼ #=2� �. If � ¼ 0 then � ¼ 
. If � !
� �

2 , then � ! � and 
 ! 0 and vice versa. Energy-

momentum conservation implies, that the energies of the
decay product are related to the angle � by

E2;3 ¼ E1

2

�
1� jp1j sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
1 � jp1j2cos2�

q
�
: (E2)

If p1 ¼ 0, then the energy is equally distributed between
the decay products. This is also the case if p1 � 0 but � ¼
0. In any other case the energy is distributed unequally. In
particular if � ! �

2 , then E2;3 ¼ 1
2 ðE1 � jp1jÞ, so that in

the ultrarelativistic limit one of the decay products has
almost zero energy, whereas the other receives almost all
energy of the decaying particle.

As follows from Eq. (25), to calculate the CP-violating
parameter, we need to evaluate the distribution functions
associated with the statistical propagators contributing to
the vertex loop. As discussed in Sec. III, only those two
terms of (25) for which both intermediate toy-baryons are
on-shell, whereas the real scalar is off-shell, contribute to
the CP-violating parameter [see Fig. 4(a)]. Since both
momenta k1 and k2 of the internal toy-baryon lines are
on-shell, the kinematics of these intermediate states is the
same as the kinematics of the decay products. However,
due to the presence of the intermediate off-shell real scalar,
the corresponding scattering angle does not need to be
equal to # and the angle between the two scattering planes
can differ from zero. It is somewhat easier to perform the
simultaneous analysis of the intermediate and final states’
kinematics in the rest frame of the decaying particle. The
Lorentz transformation between the two frames reads

�̂ ¼ 1

M

E1 �jp1j
�jp1j E1

� �
: (E3)

As follows from Eq. (E1), in the new frame the scattering
angle is # 0 ¼ � for both intermediate and final states,
whereas Eq. (E2) implies that the energies are equal to
M=2. Using the fact that components of the momentum
orthogonal to the direction of the boost are invariant under
transformation (E3), we can calculate the angle � in the
new frame:

sin�0 ¼ E1 sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 � jp1j2cos2�

q ¼ ðjp3j � jp2jÞ=jp1j: (E4)

It then follows that �0 > � since the denominator of (E4) is
smaller than E1.

For a homogeneous and isotropic system the one-
particle distribution functions depend only on the
Lorentz-invariant product ku, where k is the particles’
momentum and u is the four-velocity of the thermal bath’s
rest frame with respect to the chosen frame of reference. In
particular in thermal equilibrium:

feqðkÞ ¼ ½expððku��Þ=TÞ � 1��1: (E5)

In the rest frame of the gas u ¼ ð1; 0; 0; 0Þ, and we recover
the usual Bose-Einstein distribution. Applying the Lorentz
transformations (E3), we can deduce u in the rest frame of
the decaying particle

u ¼ M�1ðE1;�p1Þ: (E6)

Introducing an orthogonal coordinate system, as is de-
picted in Fig. 12, we can then express the arguments of
the distribution functions in the form:

uk1;2 ¼ 1

2
½E1 þ jp1jðsin	 cos’ cos�0 � cos	 sin�0Þ�;

(E7)

where ’ is the angle between the scattering planes of the
intermediate and final states (not depicted in Fig. 12).

APPENDIX F: THERMAL AVERAGE OF THE
CP-VIOLATING PARAMETER

The CP-violating parameter in vacuum is momentum-
independent due to Lorentz invariance. Since the surround-
ing medium defines a preferred frame (its rest frame), the
effective CP-violating parameter in medium depends ex-
plicitly on the momenta of the participating particles (see
Fig. 4). In order to investigate the order of magnitude of the
medium corrections, we consider the thermally averaged
CP-violating parameter:

h�ii ¼
R
d�3

p1
d�3

p2
d�3

p3
wðp1; p2; p3Þ�iðp1; p2ÞR

d�3
p1
d�3

p2
d�3

p3
wðp1; p2; p3Þ

; (F1)

where �iðp1; p2Þ ¼ �vaci þ ��med
i ðp1; p2Þ and w represents

the gain or loss term (they are equal in equilibrium). For the
decay processes:

wðp1; p2; p3Þ ¼ ð2�Þ4�ðE1 � E2 � E3Þ�ðp1 � p2 � p3Þ
� fðp2Þ �fðp3Þ½1þ fc i

ðp1Þ�: (F2)

In the hierarchical limit M1 	 M2, the CP-violating pa-
rameter �1 only depends on jp1j, see Eq. (31). Furthermore,
we setm ! 0 here. Integrating in (F1) over momenta of the
final states, we find in this approximation:

h�1i ¼
R1
0 dq!ðqÞ�1ðqÞR1

0 dq!ðqÞ ;

where q ¼ jp1j. To calculate the weighting function !ðqÞ
we insert thermal distributions characterized by a common
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temperature T and zero chemical potential. We consider
two cases:

(i) In the first case we insert Bose-Einstein (BE) distri-
butions for f and fc i

in (F2);

(ii) In the second case we insert Maxwell-Boltzmann
(MB) distribution for f and neglect fc i

in (F2).

The resulting expressions for the weighting function read:

wðqÞ ¼
� 2q

Eqsinh
2ðEq2TÞ

lnðsinhððEqþqÞ=4TÞ
sinhððEq�qÞ=4TÞÞ BE;

q2 expð� Eq

T Þ MB;
(F3)

where Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ q2
q

.

APPENDIX G: NUMERICAL DETAILS

To solve the system of Boltzmann equations (36), we
introduce the transformed variables x ¼ aðtÞ and ki ¼
SaðtÞjpij for time and momentum. The constant factor S

is chosen such that Sx ¼ T�1 ¼ ð2� 1:66
ffiffiffiffiffi
g�

p
=MPltÞ1=2.

The distributions as functions of the transformed momenta
are then well represented, in some sense, in the range
ki ’ 0:025–50:0.17 In addition, we introduce the trans-

formed on-shell energies and masses,mi ¼ SxMi and k
0
i ¼

ðk2i þm2
i Þ1=2 ¼ Sxðjpij2 þM2

i Þ1=2. In these coordinates
the Liouville operator for Robertson-Walker space-time

takes the form L½f�ðjpjÞ ! S�1Hk01@
~fðk1Þ=@x, where

~fðk1Þ is the transformed one-particle distribution function

dependent on k1 and x. Defining ~L½~f�ðk1Þ � @~fðk1Þ=@x,
the Boltzmann equations can be written in the form ~L½~f��
ðk1Þ ¼ ~C½:~f:�ðk1Þ with transformed collision integral
~C½:~f:�.
Homogeneity and isotropy can be exploited to simplify

the collision integrals significantly. In [76], it has been
shown how the various collision terms for decays, inverse
decays and 2-2 scattering can be reduced to lower dimen-
sional integrals in general. Here, we transform the integrals
to the new coordinates at the same time. In particular, the
collision integrals for a scattering process 12 $ 34 (here
b �b $ b �b, bb $ bb and �b �b $ �b �b ) can be reduced to a
twofold integral:

~C12$34½:~f1:�ðk1Þ ¼ 1

SHx2
1

64�3k01

ZZ k3dk3
k03

k4dk4
k04

� 	ðk02 �m2ÞD12$34f½1þ ~f1ðk1Þ�
� ½1þ ~f2ðk2Þ�~f3ðk3Þ~f4ðk4Þ � ~f1ðk1Þ~f2
� ðk2Þ½1þ ~f3ðk3Þ�½1þ ~f4ðk4Þ�g; (G1)

where k02 ¼ k03 þ k04 � k01 and k2 ¼ ½ðk02Þ2 �m2
2�1=2. The

integrated scattering kernel D12$34 for a constant
(momentum-independent) amplitude A and for massless
species 1, 2, 3 and 4 is given by

D12$34ðk1; k2; k3; k4Þ ¼ A
2k1

	ðk3þ k4�jk1� k2jÞ
�	ðk1þ k2�jk3� k4jÞ
� ðk3þ k4�jk3� k1j� jk4� k1jÞ:

(G2)

Similarly, the collision integrals for a particle created in
inverse decays, 1 $ 23 (here c 1 $ bb and c 1 $ �b �b ),
can be reduced to a single integral:

~C1$23½:~f1:�ðk1Þ ¼ S

H

1

32�k01

Z k3dk3
k03

	ðk02 �m2Þ

�D1$23f½1þ ~f1ðk1Þ�~f2ðk2Þ~f3ðk3Þ
� ~f1ðk1Þ½1þ ~f2ðk2Þ�½1þ ~f3ðk3Þ�g;

(G3)

where k02 ¼ k01 � k03 and k2 ¼ ½ðk02Þ2 �m2
2�1=2. The inte-

grated scattering kernel D1$23 is given by

D1$23ðk1; k2; k3Þ ¼ 2A
k1

	ðk1 � jk2 � k3jÞ
� 	ððk2 þ k3Þ � k1Þ: (G4)

Finally, the collision integrals for a particle created in
decays, 12 $ 3 (here bb $ c 1 and �b �b $ c 1), can be
reduced to the single integral

~C12$3½:~f1:�ðk1Þ ¼ S

H

1

32�k01

Z k3dk3
k03

	ðk02 �m2Þ

�D12$3f½1þ ~f1ðk1Þ�½1þ ~f2ðk2Þ�~f3ðk3Þ
� ~f1ðk1Þ~f2ðk2Þ½1þ ~f3ðk3Þ�g; (G5)

where k02 ¼ k03 � k01 and k2 ¼ ½ðk02Þ2 �m2
2�1=2. The inte-

grated scattering kernel D12$3 is given by

D12$3ðk1; k2; k3Þ ¼ 2A
k1

	ðk3 � jk1 � k2jÞ
� 	ððk1 þ k2Þ � k3Þ: (G6)

Number density and energy density corresponding to the

distribution ~f in transformed coordinates read

n½~f� ¼ 1

2�2

�
1

Sx

�
3 Z ðk1Þ2 ~fðk1Þdk1;

�½~f� ¼ 1

2�2

�
1

Sx

�
4 Z ðk1Þ2k01 ~fðk1Þdk1:

(G7)

For massless particles these are the second and third mo-
ment of the distribution, respectively. As outlined in

17In particular we require that the approximate numerical value
of the moments (G7) are close to their true values for close-to-
equilibrium distributions. Also we demand that particles created
in decays are not produced with momenta outside of this range to
a significant extent so that total number densities show the
expected behavior.
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Sec. IV, we assume that the interactions bb $ bb, �b �b $
�b �b and b �b $ b �b are rapid enough to keep the distribution
functions of b and �b very close to their equilibrium dis-
tributions, parametrized by a0, a1, �a0 and �a1:

feqa ðk1Þ ¼ ½expða0 þ a1k1Þ � 1��1;

�feqa ðk1Þ ¼ ½expð �a0 þ �a1k1Þ � 1��1:
(G8)

Assuming that b �b $ b �b alone is much faster than the
inverse decays into c 1, the evolution of f and �f can
therefore be described by means of three parameters a0,
�a0 and a1. The equations for the evolution of these pa-
rameters are obtained by forming the moments n½:� of Eqs.
(36a) and (36b)18:

n½ ~L½feqa �� ¼ da0
dx

n

�
@feqa

@a0

�
þ da1

dx
n

�
@feqa

@a1

�
¼ n½ ~Cbb$c 1

�;

n½ ~L½ �feqa �� ¼ d �a0
dx

n

�
@ �feqa

@ �a0

�
þ da1

dx
n

�
@ �feqa

@a1

�
¼ n½ ~C �b �b$c 1

�:
(G9)

Here, we used n½ ~Cbb$bb½f�� ¼ n½ ~C �b �b$ �b �b½ �f�� ¼ 0 and

n½ ~Cb �b$b �b½f; �f�� ¼ n½ ~C �bb$ �bb½ �f; f�� ¼ 0. The third equa-
tion is obtained by forming the moment �½:� of the sum
of Eqs. (36a) and (36b), i.e.

�½ ~L½feqa ��þ�½ ~L½ �feqa �� ¼ da0
dx

�

�
@feqa

@a0

�
þ d �a0

dx
�

�
@ �feqa

@a0

�

þ da1
dx

�

�
@feqa

@a1

�
þ da1

dx
�

�
@ �feqa

@a1

�

¼ �½ ~Cbb$c 1
� þ�½ ~C �b �b$c 1

�; (G10)

where we used �½ ~Cb �b$b �b½f; �f�� þ �½ ~C �bb$ �bb½ �f; f�� ¼ 0.
The derivatives of feqa with respect to the parameters ai
can be rewritten as

@feqa ðk1Þ
@ai

¼ �ðk01Þi½1þ feqa ðk1Þ�feqa ðk1Þ; i ¼ 0; 1:

(G11)

An analogous relation holds for the derivatives of �feqa with
respect to �a0 and a1. Solving Eqs. (G9) and (G10) for
da0=dx, d �a0=dx and da1=dx, we find the differential equa-
tions for the three parameters:

da0
dx

¼ � _a1n½k01ð1þ feqa Þfeqa � þ n½ ~Cbb$c 1
�

n½ð1þ feqa Þfeqa � ;

d �a0
dx

¼ � _a1n½k01ð1þ �feqa Þ �feqa � þ n½ ~C �b �b$c 1
�

n½ð1þ �feqa Þ �feqa � ;

da1
dx

¼ �ððn½ ~Cbb$c 1
��f þ n½k01ð1þ feqa Þfeqa ��CÞ

� n½ð1þ �feqa Þ �feqa ��½ð1þ feqa Þfeqa � þ ðn½ ~C �b �b$c 1
��f

þ n½k01ð1þ �feqa Þ �feqa ��CÞn½ð1þ feqa Þfeqa �
� �½ð1þ �feqa Þ �feqa �Þ=hþ �C=�f; (G12)

where we have defined

h ¼ �fðn½ð1þ feqa Þfeqa �n½ð1þ �feqa Þ �feqa ��f

þ n½k01ð1þ �feqa Þ �feqa �n½ð1þ feqa Þfeqa ��½ð1þ �f
eq
a Þ �feqa �

þ n½k01ð1þ feqa Þfeqa �n½ð1þ �feqa Þ �feqa ��½ð1þ feqa Þfeqa �Þ;
(G13)

as well as

�f ¼ ��½k01ð1þ feqa Þfeqa � � �½k01ð1þ �feqa Þ �feqa �;
�C ¼ �½ ~Cbb$c 1

� þ �½ ~C �b �b$c 1
�: (G14)

As stated in the main text, we need to start with finite
chemical potentials as to avoid the occurrence of Bose-
Einstein condensation. We choose the minimal acceptable
value a0 ¼ �a0 ¼ 0:5, corresponding to �b ¼ � �b ¼
�0:5T0 and �c 1

¼ 2�b. The initial value a1 ¼ 1 corre-

sponds to the initial cosmological temperature T0. We
checked that the results do not depend on T0 as long as
T0 � M1. The heavy species c 1 is subject to relatively
weak interactions only, so that its distribution function can
deviate from kinetic equilibrium. Therefore, we solve the
full Boltzmann equation for c 1,

~L½fc 1
�ðk1Þ ¼ ~Cc 1$bb½fc 1

; f�ðk1Þ þ ~Cc 1$ �b �b½fc 1
; �f�ðk1Þ;
(G15)

along with the integrated ones for b and �b.
Because of the integration of the equations for the

massless species all collision terms for 2-2 scattering
drop out of the system. In order to verify that the rates
for these processes are much larger than the ones of the
decays and inverse decays we have computed the rates for
these processes numerically. The maximum (during the
full evolution) of the ratio of �bb$c 1

and �b �b$b �b is exem-

plarily presented in Fig. 13 (the rates for the other 2-2
processes are similar). It shows that we can choose �
 1
or smaller for most of the relevant range of jgj2 if we
demand that �b �b$b �b=�bb$c 1

* 103 as criterion that b

and �b are in kinetic equilibrium at all times. Here the
equilibrium shape of f and �f is not distorted by the
expansion since we are dealing with massless particles.

18Here and in the following we use the abbreviations ~Cbb$c 1
¼

~Cbb$c 1
½feqa ; fc 1

� and ~C �b �b$c 1
¼ ~C �b �b$c 1

½ �feqa ; fc 1
�. Also note

that f, �f and fc 1
are functions of the transformed coordinates,

here.
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In addition, it can be argued that the 2-2 processes are
meant to model rapid gauge interactions with different
particles which would have the same effect of equilibrating
b and �b. In this sense we could even formally tolerate
nonperturbative values of �.

To turn the equations into a system of ordinary differ-
ential equations (ODEs) the distribution functions were
discretized on a grid of dimension 400 with linearly in-
creasing spacings in the range k1 ’ 0:025 . . . 50:0 to ac-
count for the characteristic behavior of close-to-
equilibrium distributions at small and large momenta. All
integrals were approximated by Riemann sums on this
grid. The system of Boltzmann equations behaves numeri-
cally stiff. This means that it is advisable to use an implicit
method for its numerical solution to achieve acceptable
step sizes (and hence acceptable execution times and nu-
merical errors). Here CVODE with its backward differentia-

tion formula with Newton iteration was used as ODE
solver. The full Jacobian was computed analytically in
every external step. A relative tolerance of 10�8 was
attributed to every momentum mode. Because of the im-
plicit method all solutions were computed inOð103Þ steps.
Since the global systematic error due to the discretiza-

tion cannot be computed within the method the proper
behavior of the system was tested by successive refinement
of the grid and comparison of some of the macroscopic
quantities with the theory predictions. For this purpose, we
present two examples of the number densities nx, the
energy densities �x and the entropy densities for the wash-

×

×

×

×

FIG. 15 (color online). Energy densities of the various species
as functions of M1=T for � ’ 0:366 (case c). The ratio of the
total energy density �b þ � �b þ �c and the total cosmological

energy density � is not constant. This feature is due to the
different scaling behavior of relativistic and nonrelativistic spe-
cies. For this reason the ratio �c =� increases slightly before the

particles start to decay. This is more pronounced for smaller
washout factors (see Fig. 19).

×

×

×

×

FIG. 14 (color online). Number densities of the various species
and the generated asymmetry � as functions of M1=T for � ’
0:366 (case c). The total number density is approximately
conserved.

FIG. 13 (color online). The maximum value of the ratio of the
rates for bb $ c and b �b $ b �b over washout factor �.

FIG. 16 (color online). Entropy densities of the various species
and the total entropy density ðsb þ s �b þ sc Þ=s as functions of

M1=T for � ’ 0:366 (case c).

SYSTEMATIC APPROACH TO LEPTOGENESIS IN . . . PHYSICAL REVIEW D 80, 125027 (2009)

125027-25



out factors � ’ 0:366 (case C in Fig. 14–16) and � ’ 0:01
(case A in Fig. 18–20). The total number density ðnb þ
2nc 1

þ n �bÞ=s is almost conserved (as discussed in

Sec. IV). The ratio ð�b þ �c 1
þ � �bÞ=� is not constant

(see Fig. 15). This behavior is expected for a system
involving nonrelativistic massive particles and is also ob-
served for the bottom-up equations. The ratio is much
smaller than one so that it is justified to neglect the back-
reaction on the curvature. Finally, the total entropy density
is steadily increasing as it should. Figures 17 and 21 show
the deviation of the distribution function fc 1

from kinetic

equilibrium ones for which the curves would be straight
lines. The deviation from equilibrium is larger for smaller
values of � and increases at late times, as expected.

FIG. 20 (color online). Entropy densities of the various species
and the total entropy density ðsb þ s �b þ sc Þ=s as functions of

M1=T for � ’ 0:01 (case a).

FIG. 21 (color online). Deviation of the distribution function
fc 1

from equilibrium for washout factor � ’ 0:01 (case a).

FIG. 17 (color online). Deviation of the distribution function
fc 1

from equilibrium for washout factor � ’ 0:366 (case c).

×

FIG. 19 (color online). Energy densities of the various species
and the total energy density ð�b þ � �b þ �c Þ=� as functions of

M1=T for � ’ 0:01 (case a).

×

×

×

×

FIG. 18 (color online). Number densities of the various species
and the generated asymmetry � as functions of M1=T for � ’
0:01 (case a).
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