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Axions in gauge mediation
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In supersymmetric theories, the presence of axions usually implies the existence of a noncompact,
(pseudo)moduli space. In gauge-mediated models, the axion would seem a particularly promising dark
matter candidate. The cosmology of the moduli then constrains the gravitino mass and the axion decay
constant; the former cannot be much below 10 MeV; the latter cannot be much larger than 10'3 GeV.
Axinos, when identifiable, are typically heavy and do not play an important role in cosmology.
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I. INTRODUCTION

The strong CP problem, as presently understood, re-
quires either an axion, a massless u quark, or spontaneous
breaking of CP at some high energy scale. Lattice gauge
calculations appear to rule out a massless u# quark [1]; at
least in the widely explored landscape framework, the
spontaneous CP solution seems unpromising [2]. So in
many ways, the axion solution to the strong CP problem
seems the most likely of the three to be realized in nature.
From astrophysics, there is a lower bound on f, of order
10° GeV. If cosmology is conventional (in particular, if the
universe was in thermal equilibrium up to some very high
temperature, and not allowing for possible anthropic se-
lection effects), the axion decay constant is less than about
10'3 GeV. In unconventional cosmologies [3-6], or allow-
ing for anthropic selection [7-9], it may be larger.

One can attempt to implement the Peccei-Quinn (PQ)
solution of the strong CP problem in a variety of frame-
works: string theory, low-energy effective field theory, and
models with or without supersymmetry (SUSY). Some of
the issues involved in each of these possibilities are sur-
veyed in [2]. In this paper, we focus on models of low-
energy supersymmetry, with gauge interactions as the
messengers of supersymmetry-breaking. Unlike intermedi-
ate scale (“‘supergravity’’) breaking, there is no particular
compelling dark matter candidate, so the axion seems
worthy of study. In this context, the scale of PQ breaking,
fa» 1s necessarily far larger than the scale of supersymme-
try breaking. So the axion lies in a supermultiplet, with a
scalar field known as the saxion, and a fermion, the axino.
As we will see, there is always a modulus in such models
which determines the value of f,, but this modulus need
not be the saxion.

In gauge-mediated models, theoretical considerations
constrain the underlying scale of supersymmetry breaking,

|F|, to lie roughly between about 10° GeV and
10° GeV.' The light modulus associated with PQ symme-

'One will sometimes hear it said that /|F| as large as 10! is
allowed. We are assuming here that the underlying microscopic
theory does not even approximately conserve CP, or any ap-
proximate flavor symmetries.
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try breaking is subject to significant cosmological con-
straints [10,11]. In this paper we will argue, first, that this
particle is unacceptable unless the axion multiplet couples
directly to the messengers and/or the sector responsible for
supersymmetry breaking. If the axion is to be the dark
matter, even this is unacceptable unless the scale of super-
symmetry breaking lies to the high end of the allowed
range, 10% GeV or so.

In the rest of this paper, we will explore models in which
SUSY-breaking dynamics and the couplings to messengers
determine f, and the mass of the superpartners of the
axion. We will construct a variety of models which illus-
trate the issues we have outlined above. In one class, the
saxion is a pseudomodulus; in another, the saxion is rela-
tively heavy, with another field determining the value of f,.
In these models, we can explore the cosmological issues in
a sharp fashion. Another issue which will concern us is the
origin of the hierarchy between the PQ scale and the scale
of SUSY breaking. We will explore whether this “PQ
hierarchy” might arise through small couplings or through
tuning, or dynamically.

The rest of this paper is organized as follows. In Sec. II,
we note that gauge-mediated models typically possess an
approximate R symmetry, which must be spontaneously
broken. It is natural to ask whether the Goldstone boson of
that symmetry, the R-axion, might be the QCD axion. We
explain why the answer is almost certainly no.

In Sec. 111, we present models in which the Peccei-Quinn
symmetry is broken at tree level, but there is a pseudomo-
duli space on which f, varies. In one example, the saxion is
itself a pseudomodulus. In a second, the ““R-saxion” (the
light modulus in the Goldstino multiplet) is the pseudomo-
dulus which determines f,. The axino and saxion are
already massive at tree level. At one loop, the mass of
the pseudomodulus is estimated. In Sec. IV, we discuss the
cosmological constraints on gauge-mediated models under
the assumption that the axion is the dark matter. The most

2Scales similar to those considered here are an integral part of
the F theory GUT program of [12,13]. The underlying pictures,
however, are quite different, so this convergence of scales is
remarkable.
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severe arises from coherent production of the lightest
pseudomodulus. We demonstrate that in a generic infla-
tionary model, the saxion starts a distance of order f, from
its minimum. As a result, it comes to dominate the energy
density of the Universe around the time of nucleosynthesis,
with problematic consequences for cosmology, unless its
mass is large enough. This translates, in turn, into a lower
bound on the supersymmetry-breaking scale as a function
of f,. We argue that, as a result, in such a framework,
messenger masses are likely to be of order f,. In a broad
range of circumstances, the axino is short-lived on cosmo-
logical time scales, and does not pose additional problems.
Moreover, from this consideration alone, f, cannot be too
large; f,’s significantly larger than 10" GeV seem unac-
ceptable. If the axion is not dark matter, the cosmological
constraint arising from pseudomoduli is weaker or even
nonexistent.

In the models of Sec. III, the hierarchy between the
supersymmetry-breaking scale and f, is simply put in by
hand, the result of a large ratio of masses in the underlying
Lagrangian. One might hope to avoid this in either of two
ways. First, the parameters themselves might arise through
“retrofitting,” i.e. they might be dynamically determined
by other interactions. Alternatively, and more economi-
cally, given that the saxion is a pseudomodulus, with a
potential varying only logarithmically over large regions of
the field space, it would seem that such a potential could
naturally have a minimum at a hierarchically large value of
fa- We explore this possibility in Sec. V, and find that this
can be achieved only in a restricted set of circumstances.

Lurking in the background in all of this discussion is the
question of whether unknown high energy effects spoil the
Peccei-Quinn solution of the strong CP problem. As is well
known, this question can be organized in terms of higher
dimension, CP-violating operators [14]. Even with a rela-
tively low scale of supersymmetry breaking and Peccei-
Quinn symmetry breaking, it iS necessary to suppress
operators up to rather high dimensions. Assuming that
the Peccei-Quinn symmetry is an accidental consequence
of a discrete Zy symmetry, for example, would seem to
require, in the models developed here, a huge value of N
[15-18]. As discussed in [2], imposing a constraint that the
axion constitute the dark matter, in these types of models,
can almost account for the quality of the PQ symmetry. If
we do not require that the axion be the dark matter, the
required values of N are more modest, but still rather large
and now would simply appear a peculiar accident. We
discuss this issue in Sec. VI. In our concluding section,
we summarize what we view as the principle lessons of this
work, and ask what features of the models considered here
are likely to be robust.

II. THE R-AXION AS THE QCD AXION

A theorem of Nelson and Seiberg [19] asserts that
generic theories which break supersymmetry possess an
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approximate R symmetry. In any realistic model, this must
be spontaneously broken.> The corresponding Goldstone
boson is conventionally called the R-axion. By way of
nomenclature, we will refer to the pseudomodulus that
accompanies the R-axion as the *“R-saxion.”

In any case, it is usually said that the R-axion gains mass
when one couples the system to supergravity [20]. This is
because it is necessary, in order to (nearly) cancel the
cosmological constant, to ensure that the expectation value
of the superpotential takes a certain value of order m; /ZM%.
This is typically achieved by including a constant in the
superpotential, which is then suitably tuned. This constant
breaks any would-be (discrete or continuous) R symmetry.
But one might hope, instead, that the R symmetry is
spontaneously broken by some dynamics.”

Upon careful consideration, however, this possibility
does not appear promising. The issue is a mismatch of
scales. In models of dynamical breaking, one might expect
that

Wy=A" (F)= A% (1

In order to cancel the cosmological constant, one needs,
instead a hierarchy—a huge hierarchy—between the scale
of R breaking and the scale of supersymmetry breaking;
the scale of R breaking, it would seem, should be of order
the Planck scale, so f, ~ 10'® GeV. It is hard to see how
this could be achieved consistent with the constraints from
cosmology and a high-quality axion.

III. MODELS WITH HIERARCHICAL BREAKING
OF THE PECCEI-QUINN SYMMETRY

As we build models, we will first impose a global,
continuous Peccei-Quinn symmetry. Our viewpoint will
be that this must eventually be accounted for as an acci-
dental consequence of an underlying discrete symmetry (or
perhaps a continuous gauge symmetry). One of us has
discussed this issue in the past [16], and we will comment
further on this question in the concluding section.

To outline the basic issues, consider, first, a theory with
fields S+ carrying PQ charge *=1, and a neutral field, y.
Take for the superpotential:

W= x(S+S- — u?). 2

Supersymmetry is unbroken in this theory. The Peccei-
Quinn symmetry is broken, and there is a moduli space,
which can be understood in terms of the ““complexification
of the symmetry group’:

S, = petAln, 3)

31t is necessary to break the R symmetry to give mass to the
gauginos.

“In a landscape, there might be a large set of theories with a
distribution of (W) accounting for the value of the cosmological
constant.
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f, in this model is a function of A

fa=AIS: P+ IS~ “)

A is naturally referred to as the axion supermultiplet.

A. Model in which the saxion is a pseudomodulus

We want to complicate this model so that supersymme-
try is broken, at a scale much less than u ~ f,. We will
consider, first, O’Raifeartaigh models, postponing (lim-
ited) discussion of dynamical breaking of supersymmetry
and/or the Peccei-Quinn symmetry until later. There are
various strategies we might adopt. In our first model, we
simply add modules to that of Eq. (2), which break super-
symmetry, fix A (f,), and act as messengers. We will
suppose that, in addition to the Peccei-Quinn symmetry,
the model possesses an R symmetry, as required by the
theorem of Nelson and Seiberg [19] to break supersymme-
try in a generic fashion. Examples of sectors which break
supersymmetry and the R symmetry are provided by the
models of [21-23]. For definiteness, we take this sector to
consist of fields X, with R charge 2, and ¢, ¢_;, ¢3,
where the subscripts denote the R charges of the fields, and
with superpotential

Wi =MX(p1d_y — F) + mp? + myp_1d5. (5

All of the fields in Eq. (5) are taken neutral under the PQ
symmetry. As shown in [21], in this model, there is a range
of parameters for which the R symmetry is broken, and

(X) = x + 0°F (©6)

with x ~ m;. Note, in particular, that a hierarchy between x
and F is possible.

We will take S to have R charge 0. In order to fix A in
Eq. (3), rather than couple S+ directly to X, we couple
these to another set of fields which do couple to X. The
resulting model has a two-dimensional (pseudo) moduli
space, one direction associated with breaking the R sym-
metry, the other with breaking the PQ symmetry. The
additional fields a,, a,, a,, a,, by, by, by, by do not trans-
form under the gauge symmetries. We take the additional
contribution to the superpotential to be

Wy = x(S4S_ — u?) + hS,a @ +yS_byb,
+ X(a;a; + bb;). (7)
We have not labeled the various independent couplings of
X to the a;’s, and b;’s to avoid cluttering formulas un-
necessarily. Also, to avoid cluttering the formulas, we have
not used the subscripts to label the R or PQ charges, but this

Lagrangian is consistent with both symmetries. For ex-
ample, denoting R and PQ charges as (R, PQ) we can take:

a(1, —1),a,(—1,1); a(—1,0), a,(1, 0);
b(1,1),b,(—1, —1); by(—1,0), by(1, 0).
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The superpotential of Eq. (7) is not the most general
consistent with the symmetries. For example, we can add
aterm €XS, S_; this is easily seen not to qualitatively alter
the behavior of the model discussed below, at least for
small e. Similarly for other possible terms.

In the model as it stands, the scales f, ~ u and x ~ m;
are independent. When we study cosmological issues in
Sec. IV, however, we will see that cosmological consider-
ations require that they be comparable. We can write for S ;.
and S_:

h
S, = M‘/%eqﬁ/#, S = M\/;e_((f’/ﬂ) 9)

then in the limit of small F and for /Ayux~! not too large,
the minimum of the one-loop potential for the saxion (real
part of ¢) is at ¢ = 0. The saxion acquires a mass

» L F 2
ms e ek (10)

The axino mass is parametrically lighter, by the square
root of a loop factor. We will see shortly that this is not
generic; the axino can easily be—and arguably typically
will be—heavier than the lightest pseudomodulus.

We need one final module; it is important that the
Peccei-Quinn symmetry be anomalous, and that supersym-
metry breaking be transmitted to the fields of the minimal
supersymmetric standard model (MSSM). We accomplish
this by coupling X and S to a set of fields filling out two 5
and 5’s of the standard model:

Ws = X(q,4, + €,€) + S4q2g, + S_€6,. (1)

The fields ¢;, G;. £,, €, act as messengers. The fields ¢,
etc., gain mass as a result of the S. expectation values,
giving rise to the coupling of the axion supermultiplet, A,
to the gauge fields of the standard model (MSSM). Within
this model, the masses of messengers and the scale f, are
in principle independent. One can contemplate more in-
tricate messenger sectors, implementing general gauge
mediation [24,25]. But the most important point about
this structure is that, given our argument in the next section
that f, ~ x, messenger masses are likely to be of order f,,
in implementations of the Peccei-Quinn symmetry within
gauge mediation.

To summarize the spectrum, we have two pseudomoduli
multiplets in this model. At the minimum of the Coleman-
Weinberg potential:

(1) Superpartners of ordinary fields of the MSSM have

masses given by standard model loop factors times
F/x, as in conventional gauge mediation.
(2) For f, ~ x the saxion mass is of order

( 1 )1/2 |F| (12)
ng, = V)
$ 1677 fa
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i.e. in terms of loop counting, larger than that of the
MSSM particles.

(3) The axino mass is the same loop order as those of
the MSSM particles:

1 |F|

o~ A 13
Ma T 6m2 ¥, (13)

though it is further suppressed if R symmetry break-
ing is small. If |x| < f,, the suppression is
O(x/f,). In this situation, in order to obtain suitable
gaugino masses, there must be additional messen-
gers which couple to X but not to S.

(4) The “R-axion” is massless, as is the Goldstino. The
“R-saxion” gains mass at one loop similar to that of
the saxion.

B. Models in which the *R-saxion” determines f,

In the model of the previous section, there were two
pseudomoduli, one responsible for determining f,,, one for
determining f,, the decay constant of the ““R-saxion.”” This
arose because of our “modular” structure: by setting cer-
tain couplings to zero, it was possible to decouple the
sector which broke supersymmetry from the sector which
broke the PQ symmetry. In the absence of supersymmetry
breaking, the broken PQ symmetry implies the existence of
a moduli space (associated with the “complexification” of
the symmetry group); the requirement that supersymmetry
is broken in the other, decoupled, sector implies the exis-
tence of an R-axion, according to the theorem of Nelson
and Seiberg. In this section, we construct models in which
the symmetry breakings cannot be decoupled. The
“R-saxion” in these models determines f,; the saxion is
not a pseudomodulus at all, and is parametrically much
more massive than the R-saxion. The axino is massive
already at tree level, so much more massive than the light-
est pseudomodulus.

The model, again, contains fields S+, y, with quantum
numbers as before. In addition, there are fields X, Y with
R-charge 2 and PQ charge =2, respectively. There are
additional fields, ¢, ¢_; with the following (R, PQ)
charges:

$1(1L0), i (-1, =20 $1(1,0)d-1(=1,2). (14)
For the superpotential of the model we take:
W= x(§:5_ — u?) +X(p¢p_; — 1,52)
+Y(1doy = 1,87) + mei +mdl. (15

Again, we have set some couplings to one to avoid clutter-
ing formulas; our discussion is readily modified if these are
allowed to vary. This superpotential is the most general
(renormalizable) one consistent with the global symme-
tries and a discrete Z, symmetry under which the tilde
fields change sign. Consider the limit of very small A; =
Ay = A, u ~ m. In this limit (assuming that X, Y ~ m, ),
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one linear combination of S+ combines with y to form a
massive field. The other linear combination is fixed, but
lighter. Classically, there is a one-parameter moduli space,
satisfying X — Y = 0. The modulus is the field ﬁ(X +7Y);

this is the R-saxion. The R-axion is the imaginary part of
this field, and the Goldstino is the corresponding fermion.
For large X + Y, the field X — Y is the saxion supermulti-
plet. Because of the constraint, it is not a pseudomodulus,
and indeed, the real scalar and the axino are massive
already at tree level, with mass of order Au. The one-
loop Coleman-Weinberg calculation yields a stationary
point for the modulus, X + Y. Its mass is of order

1 F?

= 167> x*

N

(16)

where x ~m, m, and F ~ )l/.Lz. In this region of the
parameter space, the hierarchy between F and f, is deter-
mined by the small couplings A.

It is interesting to write the effective field theory for
small A, integrating out the massive fields. Writing S, =
m+ 685, S = pu+ 6S_ the massive fields (mass ~u)
are

1
V2

This leaves the light fields (m = 0 or m ~ Ap):

Y. H=—=(85, +85_). (17)

Xty 65, — 85, _X—Y

A T A N
(18)

Z is the Goldstino supermultiplet. Its fermion is the gold-
stino; the imaginary part of the scalar is the R-axion, and
the real part the R-saxion (the lightest pseudomodulus). To
obtain the effective Lagrangian for the light fields, one
needs to solve the heavy field equations of motion.
Solving the equation dW/0H = 0 yields y = +2AZ +
O(u™'), which substituted back in W gives

Z

W = —AN2u>Z + V2ZA* — 2uAB) + O(n™1). (19)

This is an O’Raifeartaigh model. It possesses an R sym-
metry, but the PQ symmetry is explicitly broken in the
effective theory. The masslessness of the axion, at the level
of the low-energy Lagrangian, appears as a consequence of
tuning of the parameters. For small Z, the axion is princi-
pally A, while for large Z, as expected, it is principally B.
There is no light axino.

For small Z, the saxion is a massive field, with mass of
order A?u?. For large Z, the field A is heavy, while B is
light, with mass of order A>u*/Z?%. The real part of Z, the
R-saxion, is still lighter by a loop factor. B is naturally
described as the saxion; it is not a pseudomodulus. For
intermediate values of Z, the saxion and axion are different
linear combinations of B and A, and so are not precisely
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aligned; there is not a sharp notion of what one means by
the saxion in these cases.

To generate the coupling of the axion to FF, it is
necessary to couple the fields X, Y to messengers. A
coupling of the form Xgg, for example, generates a cou-
pling of both the axion multiplet and the R-axion multiplet
to W2. This is relevant not only for the axion, but for the
light modulus (moduli). We will discuss the cosmological
issues raised by these models in the next section. As in
conventional gauge mediation, there are one-loop dia-
grams contributing mass for gauginos and two-loop dia-
grams contributing mass to squarks and sleptons.

So far, we have not contemplated coupling X to fields
other than messengers, so one might think that the quarks
and leptons should be neutral under the PQ symmetry.
However, once one attempts to solve the w problem,
some coupling of messenger fields to fields which couple
to ordinary fields is required. So generically, one expects
that the quarks, leptons and Higgs will carry PQ charges.
Knowledge of these charges is required to fully determine
the couplings of the axion to ordinary fields; this bears on
the question of axion detection.

IV. SAXION/AXINO/AXION COSMOLOGY

A priori, the mass scale of the messengers responsible
for transmitting supersymmetry breaking, and f,, are in-
dependent. We have asserted, however, that in practice the
relation between these scales is subject to cosmological
constraints. In this section, we treat the scale of the mes-
sengers (and thus the scale of supersymmetry breaking)
and f, as independent, and make a preliminary examina-
tion of the consequences. We will see that over much of the
interesting parameter range, unless the messenger scale is
within 2 orders of magnitude of f,, the pseudomodulus is
very long-lived and dominates the energy density shortly
after nucleosynthesis.

In models of the type we are considering here, the most
serious cosmological issues are posed by the lightest
modulus, which we will denote by P. Recall that the
mass of P is of order

F
mp = 4/loop factor]T

a

F 1012 GeV
~1073 GeV( )( 07 Ge

10" GeV fa

(mp is the mass of P, as opposed to the Planck mass, which
we denote M ).

During inflation, there is no reason for the lightest
pseudomodulus to sit at the minimum of its potential;
indeed, we expect it to sit a distance of order f, from its
flat-space, zero temperature minimum. For example, in the
first of the models we considered, during inflation, one
expects that the potential contains these additional terms
(and many others):

) (20)
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SV = (alS. |2 + b|S_|?)H? 1)

where H is the Hubble constant during inflation; if H < f,
the potential has a minimum at

A =P~ % In(b/a). 22)

Similar remarks hold for the second model (in which the
saxion is not the pseudomodulus). In the class of models
where the saxion is a pseudomodulus, P decays principally
to an axino and a gravitino; in the class where the lightest
modulus is the partner of the Goldstino, P decays to a
gravitino pair. In either case, the decay width is of order

1omd (102 GeVY2(  mp
[p=—-L~10" =
167 f2 fa 1073 GeV

)3 GeV.
(23)

After inflation, P will be frozen at this point until H ~ mp,
at which time P starts to oscillate about its minimum. P’s
energy density at that time is of order m3 f2. It constitutes a
fraction of the energy density of order f2/ Mlz,. It behaves
like matter, so its fraction of the energy density grows with
the scale factor. So, e.g., if f, = 1012 GeV, it represents a
part in 107 !2 of the energy density initially. If its mass is,
say, 1073 GeV, it starts to oscillate when T ~ 107> GeV,
and dominates the energy density for 7 ~ 30 KeV. Its
lifetime is of order 10'° seconds, so there is a long period
of matter domination before the normal time of matter-
radiation equality. This is followed by a long period in
which the universe is dominated by relativistic gravitinos.
If the mass is closer to 1 GeV, on the other hand, the decay
occurs before nucleosynthesis, just when the modulus is
coming to dominate the energy density. A significant frac-
tion of the decay products will include hadrons, so nucleo-
synthesis will be problematic.

So quite generally, we seem to want the saxion mass (for
fa = 10'2 GeV) to be significantly greater than 1 GeV. As
we have remarked above, if all of the messengers have
masses of order f,, the saxion will readily satisfy this
bound. The situation is potentially problematic, however,
if some messengers are light compared to f,. For f, =
102 GeV and the loop factor 1073, for example, one
requires +/F > 1073 GeV. This is not much below the
scale required if the messenger mass is of order f, (F =
1033 GeV), so it seems most reasonable to suppose that the
messengers have scale f,.

For f, ~ 10° GeV, there is no significant cosmological
constraint arising from the pseudomodulus.

For many of the models we consider here, the axino is
quite massive, and not problematic (or even interesting)
cosmologically. This seems likely to be generic if f, is
comparable to the messenger scale. Conceivably there are
situations where the axino mass might be suppressed, and
then the axino may significantly constrain, e.g. the reheat-
ing temperature after inflation [26]. Under such circum-
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stances, it could constitute a significant fraction of the dark
matter.

The cosmology of the pseudomoduli requires a more
thorough analysis than we have presented here. There may
well be windows of low messenger scale which are cosmo-
logically allowed. But it would seem from this discussion
that the most elegant possibility is that the PQ scale is
comparable to the messenger mass. This does preclude,
however, very low-scale gauge mediation.

V. OBTAINING A LARGE HIERARCHY
DYNAMICALLY

In the model of the previous sections, a large ratio of
scales in the underlying Lagrangian led to a large hierarchy
between the f, and JF. This could arise dynamically in a
model with “retrofitted” parameters [27]. One of us will
explore this question elsewhere [28], but one might hope
that it could arise in a somewhat different way. Given that
the saxion is necessarily a pseudomodulus, and that its
potential varies only logarithmically for large values of
the modulus, PQ breaking would seem highly susceptible
to such large hierarchies. In this section, we explore strat-
egies to models of this type.

A. Models without new gauge fields

To build simple models, one might introduce a field, S,
carrying PQ charge and coupled to messengers.
Classically, the potential in the S direction vanishes. The
coupling to messengers leads to a potential for S at one
loop. (Similar models, but in which the S field is not a
pseudomodulus, have been considered in proposals to
understand the w term [29,30]). Specifically, we write

X(/\IMIMI + /\2M2M2) + ySMlMZ (24)

where X, as before, is a field with (X) = x + 62F, and the
M’s are messengers, taken to transform, say, as 5 + 5 of
SU(5). This model admits a Peccei-Quinn symmetry with
SU(3) and SU(2) anomalies (under which X transforms as
well), so the dynamics responsible for supersymmetry
breaking must respect this symmetry. One can take as
transformation laws:

S — elag: M, — e *My; X — X, (25)

all other fields being neutral.

Consider, now, the potential for S. At small S, as dis-
cussed in [29,30], the quadratic terms vanish. But we are
interested in the behavior at large S. This behavior is
logarithmic. If the coefficient of the log were negative,
and if there were higher dimension terms which respected
the symmetry, then one might get a hierarchically large
breaking of the PQ symmetry. The coefficient of the loga-
rithmic term is easily found to be

y2

vis) = 1672

log(STS)F1F. (26)
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So we do not find the desired behavior. This is readily seen
to be quite general, in a theory with chiral fields only. The
relevant contribution to the potential at second order in F?
is

1
1672

14 ] d*0Tr(MtMlog(MTM)).  (27)
The computation simplifies, as we are only looking for the
logarithmic behavior for large values of the fields. One can
always define a single field, X, to have an F' component,
with other fields, ¢;, having zero F' components. Then it is
straightforward to show that the term in TrM M propor-
tional to XTX is always positive. Allowing for large x,
corresponding to a large breaking of the R symmetry,
does not alter the situation. Such models do not produce
the desired hierarchy. The same remains true in the models
discussed by Shih [21], in which there are fields with R #
0, 2, which yield R symmetry breaking. The potential still
grows logarithmically for large values of the fields.

As an alternative, one can consider models (again like
those of [21] which exhibit runaway behavior in certain
regions of the field space. One might then hope to stabilize
the field through higher dimension operators. The difficulty
with this approach is that typically the higher dimension
terms give rise to a supersymmetric minimum. This is not
surprising. In the runaway directions, supersymmetry be-
comes better and better as the fields become larger. As
follows from the analysis of [25], the effective theory with
the higher dimension operator typically has a superpoten-
tial of the type

1 ¢n+3

— + :
¢ M

(28)

This has a supersymmetric minimum. Stabilization can be
achieved in a local minimum if, say, the leading allowed
operator has the form

1 X n+2
ol ]“Z (29)
P

for some other field X.

B. Models with additional gauge interactions

With additional gauge interactions (beyond those of the
standard model), one might hope to find runaway behavior
in the Coleman-Weinberg calculation. It is well known that
the gauge corrections to the potential tend to be negative
for large values of charged fields. If some of the charged
fields also carry Peccei-Quinn charge, one might obtain the
desired structure. The potential, at large fields, might be
stabilized by higher order corrections (understood through
the renormalization group, as in [31,32]) or through higher
dimension operators in the superpotential. We have found
that it is possible to realize this possibility, but that the
resulting models are rather complicated.

125023-6



AXIONS IN GAUGE MEDIATION

Take a simple example, the model of Refs. [22,23], with
fields ¢+, Z., etc. Add fields S(i’), i =1, 2, which are
assumed to transform, as well, under a PQ symmetry:

SY — eriagl, (30)
For the superpotential, we take
W=AZy(dpsd- — ) + M\Zip_ + MrZ_ by, (31)

The S fields do not appear in the superpotential at the
renormalizable level. For sufficiently large u, ¢+ obtain
expectation values. If A is not too small, the fields Z,, Z.
obtain vanishing expectation values. The fields S(ii) can
obtain large expectation values, constrained only by the

U(1) D term. Adding higher dimension operators of the
type

Yi

ey (SUSOy (32)

oW =
respects both the gauge and PQ symmetries, and can
stabilize the potential. Both symmetries are spontaneously
broken by large amounts (proportional to a fractional
power of M). There are a number of fields, in addition to
those in the axion multiplet, with masses of order F/f,,
times loop factors. It is necessary, of course, to couple the
S@ fields to messengers, and to impose, say, discrete
symmetries which account for this structure. The models
are quite baroque, but at least provide an existence proof
that this sort of model building is possible.
An alternative, closer in spirit to Witten’s inverted hier-
archy [31], invokes a new, non-Abelian (SU(2)) gauge
group. Consider the following superpotential:

W= AX(TH{p, ¢ 1 p?) — mTZd ]~ a¥ TH{$2 ]
(33)

The fields ¢, Z are in the adjoint of SU(2) while X and Y
are singlets. The PQ charges of ¢ . are =1, while Z and Y
have PQ charge 1 and —2 respectively.  and m are mass
parameters. X, Y, Z have R-charge 2 while ¢. have 0
R-charge.

At the minimum of the potential all the adjoints fields
commute and their vacuum expectation values can be
simultaneously diagonalized. SU(2) is broken to U(1),
and the pseudomoduli space is three-dimensional and in-
cludes the axion and the R-axion. Exploiting the R and PQ
symmetries to set X, ¥ € R, we have

Z=vYo, v=x32 (34)
2a
sm

G- =sd., b = 2_0'3 (35)
o

where s is determined in function of the parameters of the
model as follows:

PHYSICAL REVIEW D 80, 125023 (2009)

2 2)\2 2
sQa? + 522 =228 (36)
m
The potential at the minimum is
2 4 2 +3 2/\2
V = |F|2 = s(a—s)m4' 37)

4a? )2

For large X, the tree-level spectrum is comprised of:

(1) fields which are mostly combinations of ¢, ¢_
with masses of order AX;

(2) the rest of the fields charged under the unbroken
U(1) with masses of order gY;

(3) three massless scalars: the axion, the R-axion and
the R-saxion; a massless fermion: the goldstino; one
massless gauge boson for the unbroken U(1) with its
gaugino;

(4) all the remaining fields neutral under the unbroken
U(1) get masses of order ;—2

The R-saxion and the U(1) gaugino receive masses by
quantum effects which we estimate in the following.

For X > u, m the R-saxion potential dependence on X
is obtained by replacing the parameters in the tree-level
potential with their values at the scale X. The RG equations
are such that for o >%g? the effective potential is in-
creasing. There is an IR fixed point at o = 5A? = 12 g?
while in the UV «a and A are either asymptotically free or
both diverge. In the latter case by choosing the initial
conditions with a? < § g% and decreasing potential a mini-
mum will be generated for larger values of X.

It is not hard to achieve the required hierarchy between

X and \/m with all the couplings remaining well in the
perturbative regime for the range of X of interest. One
example of the resulting potential and RG running is shown
in Fig. 1 for g = 1. The R-saxion typically acquires a mass
of order 75 % as does the gaugino for the unbroken U(1).

We can now couple the singlet Y to messengers in 5, 5 of
SU(5). Provided that the coupling to the messengers is not
too large, the potential will still develop a minimum. There
is a small kinetic mixing € arising from three-loop effects
between the hidden unbroken U(1) and the EMU(1). As a
result all of the fields charged under the former acquire EM
charges of order €. As all fields charged under the unbro-
ken U(1) have masses of the order of the PQ breaking scale
f, in order to avoid cosmological constraints [33,34] we
need f, > €*10'5 GeV.

This model indicates that it is possible, in principle, to
account for the large value of f, relative to \/I—I:"—I through an
inverted hierarchy. But the model is complex, and intro-
duces new, possibly undesirable, light degrees of freedom
(such as the massless gauge bosons of the extra U(1)). In
the end, models such as those we have discussed which
account for the PQ hierarchy through small parameters are
perhaps more plausible.
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FIG. 1 (color online). Plot for the potential in function of log(X). AV = V(X) — V(Xnin). Also plotted are u = Cg’—f, v= 2—; and % asa
function of log(X).

VI. AXION QUALITY yielding contributions to the potential of order
The most troubling feature of the axion solution to the 5 fa\13 14 4
strong CP problem is the requirement that the PQ symme- falF l( M ) <1077 GeV™. (40)
try be of extraordinarily high quality. In [2], the quality, Q, r

was defined by writing the axion potential as In the present paper, we have argued that F ~ 10'7 GeV? is
a natural scale; correspondingly we require n > 13!
v, = 0f cos( a 00). (38) Ignoring the 9cosmological issues we ’have raised, even
fa with f, = 10° GeV and the smallest F’s we can contem-

plate in gauge mediation, we require n > 9. If the Peccei -
In order that the axion solve the strong CP problem, one  Quinn symmetry results from, say, an underlying discrete

requires Q < 107%2if £, = 10'? GeV. Zy symmetry, we need N > 9 or N > 13 to have a viable
Adopting the language of the “landscape,” states (or  axion solution to the strong CP problem.

theories) with such a high-quality PQ symmetry are not In a landscape framework, one might expect that such

likely generic; one can ask what might select for them.  Jarge discrete symmetries are extremely rare [35]. On the

Since the laws of nuclear physics are hardly sensitive to 6, other hand, in gauge mediation, the axion is a particularly

the only plausible answer we can see is that there might be  plausible dark matter candidate. Again, as described in [2],
classes of theories (states) for which axions are a generic  selecting for such states gives a very flat potential, but not
form of dark matter, and that something close to the quite flat en()ugh to solve the strong CP problem, except
presently observed dark matter density is a requirement  forlarge f,,. For f, = 10'2 GeV, for example, selecting for
for a hospitable universe [7-9]. In string theory (and/or in  axion dark matter requires n > 11. In other words, the dark

higher dimension theories) we understand how a nonli-  matter requirement comes close, but whether this is close
nearly realized PQ symmetry can arise in the four-  enough is not clear. (With supersymmetry broken at an
dimensional theory as an accidental consequence of fea-  intermediate scale as in “gravity mediation,” dark matter
tures of the microscopic theory. As explained in Ref. [2],  does not seem a persuasive criterion, as there are other dark
selecting for dark matter in such settings may well account  matter candidates which seem less expensive,s)
for the requisite Q. One might argue that a nongeneric superpotential, per-
In gauge mediation the situation is different. As we have  haps plausible due to the nonrenormalization theorems and
stressed here, and as discussed also in [2], if gauge media-  to experience with string theory [37], could account for the

tion is the origin of supersymmetry breaking, and an axion  absence of such superpotential couplings. However, sig-

is responsible for the absence of strong CP violation, thena  nificant PQ violating terms are likely to appear in the
sensible cosmology requires that any “‘stringy moduli” be Kahler potential,

fixed at very high energies (supersymmetrically), and the
Peccei-Quinn symmetry must be broken within the low- K = ] 0 ¢T( o} )" @1

energy field theory, as in the models discussed in this paper. M,
Within field theory models, the sensitivity to unknown . .
high-energy effects is particularly troubling [14]: in some and hence yield a constraint
range of energy, the theory must exhibit a linearly realized fa\
global symmetry of extremely good quality. |FIIF T|(M_a) <107'* GeV*. (42)
To appreciate the severity of the problem, note that PQ P
violating operators can arise in the superpotential In our standard case where F ~ 10'7 GeV? and f, =
¢\ e
oW = ¢3(—) (39 °Some discussion of axions in gravity mediation, from a
M, different point of view, appears in [36].
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10'? GeV, we must have n > 8. Looking at the Kahler
potential we see that this corresponds to a Zy of 8, a
modest improvement over the superpotential constraint.

VII. CONCLUSIONS

One of the great successes of (critical) string theories is
that they yield Peccei-Quinn symmetries which hold to a
high degree of accuracy [38,39]; these PQ symmetries can
often be thought of as an accidental consequence of higher
dimensional gauge symmetries. They are good symmetries
to all orders of perturbation theory, but fail nonperturba-
tively. Provided that the high-energy nonperturbative ef-
fects are sufficiently small, these theories seem a suitable
setting to implement the axion solution of the strong CP
problem. As discussed in [2], one faces at least two issues
with such models. First, f, is likely to be large; one needs
to reconcile this with cosmological constraints, perhaps
along the lines of [3—6] or [7-9]. Second, one has to ask
why, once moduli are fixed, there is an axion sufficiently
light (a PQ symmetry of sufficient guality) to solve the
strong CP problem. As discussed in Ref. [2],one possibil-
ity—perhaps the only one—is that there is a selection for
axion dark matter. For f, > 10'% GeV, this can account for
the quality of the QCD axion. If low-energy supersymme-
try plays no role in nature, or with intermediate scale
breaking supersymmetry breaking,6 this might provide an
adequate understanding of the strong CP problem. In
gauge mediation, we have seen that the requirement of
axionic dark matter selects for a very good PQ symmetry,

SAs we have remarked, in the intermediate scale case, it may
be hard to understand why the axion is a more generic form of
dark matter than the conventional neutralino.
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but perhaps not quite good enough (unless, again, f, is
uncomfortably large).

We can ask what features of the model of Eq. III might

be expected to be generic. Among these:

(1) f, not much larger than 10'3 GeV. This seems
forced by the challenges of saxion cosmology; oth-
erwise, the decay of the saxion is very late, for any
plausible scale of supersymmetry breaking.

(2) Messenger masses of order the Peccei-Quinn scale:
again, this seems forced by the challenges of saxion
cosmology. If another solution is found to this prob-
lem, these conditions might be relaxed.

(3) Axinos with mass typically as large or larger than
that of the lightest pseudoscalar: this seems generic,
as a consequence of the first point, which forces the
R symmetry breaking scale to be comparable to f,,.

In the end, the axion solution to the strong CP problem,

within the framework of gauge mediation, seems highly
constrained. The Peccei-Quinn and messenger scales are
likely to be similar. If supersymmetry is discovered at the
LHC, and if evidence accumulates for a gauge-mediated
supersymmetric spectrum, this could well point to a de-
tectable axion as the dark matter, with the next-to-lightest
supersymmetric particle decaying well outside of the
detector.
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