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We investigate 1st order phase transitions in a general way, if not the single particle numbers of the

system but only some particular charges like e.g. baryon number are conserved. In addition to globally

conserved charges, we analyze the implications of locally conserved charge fractions, like e.g. local

electric charge neutrality or locally fixed proton or lepton fractions. The conditions for phase equilibrium

are derived and it is shown, that the properties of a phase transformation do not depend on the locally

conserved fractions but only on the number of globally conserved charges. Finally, the general formalism

is applied to the liquid-gas phase transition of nuclear matter and the hadron-quark phase transition for

typical astrophysical environments like in supernovae, protoneutron, or neutron stars. We demonstrate that

the Maxwell construction known from cold-deleptonized neutron star matter with two locally charge

neutral phases requires modifications and further assumptions concerning the applicability for hot lepton-

rich matter. All relevant combinations of local and global conservation laws are analyzed, and the physical

meaningful cases are identified. Several new kinds of mixed phases are presented, as e.g. a locally charge

neutral mixed phase in protoneutron stars which will disappear during the cooling and deleptonization of

the protoneutron star.
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I. INTRODUCTION

First order phase transitions play a crucial role in various
astrophysical systems like cold neutron stars, protoneutron
stars, collisions of compact stars, or supernovae. In all of
these systems, the equation of state (EOS) is one of the key
information for the understanding of the various phe-
nomena connected with them. For hydrodynamic and hy-
drostatic calculations the EOS has to be known, and
therefore the correct treatment of phase transitions is
essential.

In fact, plenty of phase transitions can occur in the
aforementioned systems: At densities below saturation
density and temperatures lower than �15 MeV, the well-
known liquid-gas phase transition of nuclear matter occurs,
leading to a dense more symmetric phase in coexistence
with a dilute nucleon gas [1–7]. At several times saturation
density, further phase transitions to exotic degrees of free-
dom like to quark matter in the chiral phase transition [8–
10] or to a kaon condensed phase [11–14] are possible. A
phase transition to a pion condensed phase [15–17] or to
hyperon matter [18] might also be of first order. Phase
transitions between different types of color superconduct-
ing quark matter were proposed in Refs. [10,19–21].

The inclusion of a phase transition to exotic degrees of
freedoms can substantially alter the stability of the star.
Usually, the phase transition leads to a softening of the
EOS and therefore lowers the maximum mass which can
be supported by the star. Thus, the theoretical predictions
can be confronted with real observations of neutron star
masses. Besides the mass, also other observables can be

linked to phase transitions in compact stars, e.g. gamma
ray bursts [22–25] or sudden spin ups during the rotational
evolution of young pulsars [26,27]. Furthermore, the ap-
pearance and the structure of mixed phases can have
important consequences for transport properties like the
thermal conductivity or the neutrino emissivities and opac-
ities [28]. Also, the shear modulus and the bulk viscosity
will be altered, affecting the glitch phenomena or r-modes
[29,30]. Consequently, the occurrence of mixed phases can
modify the thermal [31] and rotational evolution of com-
pact stars.
The description of 1st order phase transitions in cold,

deleptonized neutron stars is rather well understood and
extensively discussed in the literature. For bulk matter
there are two, in principle, different, possible treatments:
the Maxwell construction based on local charge neutrality
leading to a discontinuous phase transformation1 or the
Gibbs conditions for phase equilibrium where only global
charge neutrality is required [32]. For the latter case, which

1As in Ref. [6], we will distinguish between the term phase
transition and phase transformation. According to the Ehrenfest
classification, a phase transition is of first order, if one of the first
derivatives of the grand-canonical potential are discontinuous,
and of second order if the first derivatives are continuous, but the
second are not. The discontinuous first derivatives can serve as
an order parameter. In our terminology, the term ’phase trans-
formation’ refers to a specific path through the phase diagram,
characterized by a certain set of state variables (also called
control parameters) which are changed in a specific continuous
way. We note that phase transformations of a 1st order phase
transition can behave continuously as well as discontinuously.
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was first discussed in [33], the phase transformation be-
comes continuous and an extended mixed phase appears
inside the neutron star [34]. Still the phase transition is of
first order, as discussed in Ref. [6] and is not of second
order as stated in Ref. [34].

We note that the assumption of global charge neutrality
is in contradiction to the thermodynamic limit in a strict
sense, as the Coulomb energy would diverge for an infinite,
electrically charged system [35]. If one wants to go beyond
the bulk limit, finite-size effects in form of surface and
Coulomb energies need to be included, as was done in
[9,36–39] for a mixed phase of (hyperonic) hadronic mat-
ter and quark matter. Although Gibbs conditions are used
in most of the publications about the hadron-quark phase
transition in the bulk approximation, as e.g. in Ref. [40],
these detailed calculations show that the EOS of the phase
transition is in fact more similar to the Maxwellian case, if
Coulomb and surface contributions are included. Because
of large surface tensions and small Debye-screening
lengths, charge screening effects are large, and the phases
become almost charge neutral. Then also global properties,
like the mass-radius relation of cold neutron stars, re-
semble more the results of the Maxwell construction.
Already in [9] it was estimated, that for �>
70 MeV=fm2 the Maxwellian case is recovered, recently
validated by [38]. In [41], a first order phase transition to a
kaon condensed phase was studied and similar results are
found. For the case of nuclear mixed phases (liquid-gas
phase transition), the same charge screening effects are
observed, but much less pronounced because of the low
charge and baryon densities involved [42]. In this article,
we do not want to include any finite-size effects in the
mixed phases, but rather want to show how different physi-
cal situations can be properly described in the thermody-
namic limit by the choice of appropriate equilibrium
conditions. Hence, any possible surface and Coulomb con-
tributions are neglected here.

Recently, new works about the QCD phase transition in
core-collapse supernovae or in compact star mergers ap-
peared, as e.g. [43,44] or [45]. For the proper description of
these more complex dynamical scenarios, detailed numeri-
cal simulations are necessary. Within certain simplifica-
tions and/or model assumptions some interesting results
were found. For example, in Ref. [44], a successful ex-
plosion in spherical symmetry of a 15 M� progenitor star
was obtained due to an early appearance of a mixed phase
of quarks and nucleons.

For the early stages after the bounce in a supernova, one
can represent the evolution of the protoneutron star by
some typical static configurations, see e.g. [46,47]. Until
now, the conditions for phase equilibrium of matter in
supernovae and protoneutron stars were not discussed in
detail in the literature. If only global charge neutrality is
considered, the situation is clear and completely described
in [33]. However, in some cases the Gibbs conditions for

phase equilibrium cannot be fulfilled at all, or only the
simple Maxwell construction is wanted for physical rea-
sons or just for the sake of simplicity, as e.g. in
Ref. [10,48], because then no mixed phase is present. But
as will be shown in this article, the Maxwell construction
has some subtleties and the usual procedure for cold-
deleptonized neutron stars cannot be used for protoneutron
stars. The requirement of conservation of lepton and/or
proton number in addition to baryon number leads to
significant differences in the equilibrium conditions, which
was not taken into account in several previous publications,
like e.g. in [49–51]. The simple Maxwell construction (in
the sense that the mixed phase vanishes) is only possible if,
in addition to local charge neutrality, some other charges
are fixed locally, resulting in new special conditions for
phase equilibrium. Because of the additional conserved
charges involved, there is a large variety of different de-
scriptions of the phase transition, all of them representing
different physical scenarios. We note that one of the new
Maxwell constructions which we will present in this ar-
ticle, was already considered in the work by Lugones and
Benvenuto [52].
The structure of this article is as follows: In Sec. II, we

derive the equilibrium conditions for a general system of
two phases in which not the single particle numbers, but
only some global charges are conserved. In addition to
globally conserved charges, we also consider the case in
which some charge fractions are constrained locally. To
achieve a general description which can be applied to all
the combinations of global and local conservation laws, we
start with a formulation, in which all the charge fractions
are fixed locally. Then we derive the new equilibrium
conditions if some of these local constraints are lifted. In
Sec. III, we present the properties of phase transformations
depending on whether one has a single- or a multi-
component body (only one or multiple globally conserved
charges). While most of this was already discussed in [33],
we want to reformulate it by using consistently our formal-
ism and notations. Quite remarkably, we will show that
locally conserved fractions do not influence the qualitative
behavior of the mixed phase. In Sec. IV, the general results
will be applied to single and mixed phases of hadronic
matter and/or quark matter. We differentiate between iso-
thermal and adiabatic phase transformations. All relevant
possibilities of local and global conservation of the differ-
ent conserved charges will be analyzed and the correspond-
ing equilibrium conditions will be presented. We will use
the results of the previous sections and will show which
assumptions are necessary to achieve the simple Maxwell
construction even in the case of multiple conserved
charges. Some of the combinations of local and global
conservation laws have not been discussed in the literature
so far, leading to new conditions for chemical equilibrium
and new interesting properties of the mixed phase. In
addition, we discuss the role of neutrinos: We will show
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explicitly that also in a mixed phase the neutrinos can be
handled as an independent contribution to the EOS, as long
as the proton fraction is conserved. At the end, we will
discuss the role of the additional quantum number of
strangeness in strange matter, i.e. three-flavor quark matter
or hyperonic matter. In Sec. V, we will summarize the main
results and draw the conclusions. In this section, we will
also argue that local constraints can be used to simulate a
situation in which the system is out of equilibrium.

II. EQUILIBRIUM CONDITIONS

Consider a thermodynamic system with volume V and
temperature T composed of two different phases. The
numbers of the NI (NII) different particle species of phase
I (II) are denoted by NI

i (NII
j ). To distinguish the two

phases, we introduce the index k ¼ I, II. The thermody-
namic potential of the system is the Helmholtz free energy
FðT; V; Nk

i Þ.
In many cases, there exist some conserved charges, but

the single particle numbers are not conserved. Then it will
be more convenient to use these conserved charges as the
independent degrees of freedom for the description of the
state of the system, instead of specifying all the single
particle numbers. In this section, the equilibrium condi-
tions in terms of the chemical potentials of the particles
shall be derived.

Let us assume there are C conserved charges C�, � ¼
0; . . . ; C� 1 for which a conservation law of the following
form exists:

C�ðNI
i ; N

II
j Þ ¼ CI

�ðNI
i Þ þ CII

� ðNII
j Þ ¼ const;

Ck
�ðNk

i Þ ¼
X
i

�k
i�N

k
i ;

(1)

with �k
i� denoting the amount of charge C� carried by

particle i of phase k. The total conserved charge consists of
the charge in phase I and in phase II.

In addition to the C global conservation laws, we con-
sider additional local constraints, which depend only on the
particles in one of the two phases. To be more specific, we
require that some (denoted by the index �, � � 0) of the
local charge fractions of the globally conserved chargesC�

have to be equal in the two phases:

YI
� ¼ YII

� (2)

Yk
�ðNk

i Þ ¼
Ck
�

Ck
0

¼ 1

Ck
0

X
i

�k
i�N

k
i ¼ const; (3)

where Ck
0 is the local part of the conserved charge C0 and

Ck
� the local part of C�, which is one of the other globally

conserved charges. Ck
0 shall be a positive, nonvanishing

quantity so that it is suitable to characterize the size of the
phases in the mixture. If we introduce the global fraction
Y�,

Y� ¼ C�=C0 ¼ const; (4)

we find

Yk
� ¼ Y� ¼ const: (5)

Equation (5) is the reason why we can evaluate the local
constraint of Eq. (2) independently for the two phases.
To achieve a general description applicable for all kind

of local constraints, we will first use the two local parts Ck
0

of C0 and all the local charge fractions Y
k
� , � ¼ 1; . . . ; C�

1, as the state variables, i.e. we treat them as independent
degrees of freedom. In the following, we want to derive the
equilibrium conditions for the internal dependent degrees
of freedom Nk

i if only these state variables are specified
FðT; V; Nk

i Þ ¼ FðT; V; Nk
i ðT; V; Cl

0; Y
l
�Þ and are kept con-

stant. Thus

Ck
0 ¼ const: (6)

Yk
� ¼ const: (7)

Later, we connect these state variables with the real local
constraints, in which only some of the local fractions have
to be equal and C0 is conserved only globally.
From the first and second law of thermodynamics, we

get for the free energy F expressed by the particle numbers
Nk

i

0 ¼ dF ¼ X
i;k

@F

@Nk
i

��������Nk
j�i;N

�k
j

dNk
i ; (8)

if the volume and the temperature are kept constant. �k
denotes the phase different to k. As the temperature is
one of the state variables of the two phases it is set equal
by construction, so that thermal equilibrium between the
two phases is assured. Only the total volume V ¼ VI þ VII

is kept constant, but the two subvolumes can vary, leading
to pressure equality as the condition for mechanical equi-
librium:

pI ¼ pII: (9)

With

�k
i ¼

@

@Nk
i

��������Nk
j�i;N

�k
j

FðNl
jÞ; (10)

Equation (8) becomes
X
i;k

�k
i dN

k
i ¼ 0: (11)

The constraints of Eqs. (6) and (7) can be implemented by
the means of Lagrange multipliers �k

0, �
k
Y�
, by adding

�k
0dC

k
0 ¼ �k

0

X
i

�k
i0dN

k
i ¼ 0 (12)

and
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�k
Y�
dYk

� ¼ �k
Y�

1

Ck
0

ðdCk
� � Yk

�dC
k
0Þ ¼ 0

, �k
Y�

1

Ck
0

�X
i

�k
i�dN

k
i � Y�

X
i

�k
i0dN

k
i

�
¼ 0 (13)

to dF, where we used Eq. (5). This leads to

�k
i ¼ �k

0�
k
i0 þ

X
�

�k
Y�

1

Ck
0

ð�k
i� � Y��

k
i0Þ: (14)

dF can also be expressed as a function of ðCk
0; Y

k
�Þ:

0 ¼ dF ¼ X
k

@F

@Ck
0

��������C
�k
0
Yl
�

dCk
0 þ

X
k;�

@F

@Yk
�

��������Cl
0
;Y

�k
�;Y

k
���

dYk
�:

(15)

We introduce the chemical potential of the conserved
charges Ck

0,

�k
0 ¼

@

@Ck
0

��������C
�k
0Y

l
�

FðCl
0; Y

l
�Þ; (16)

and of the conserved fractions Yk
�:

�k
Y�

¼ @

@Yk
�

��������Cl
0
;Y

�k
�;Y

k
���

FðCl
0; Y

l
�Þ: (17)

Then it is easy to realize, that the Lagrange multipliers are
equal to the chemical potentials of the corresponding
charges: �k

0 ¼ �k
0, �

k
Y�

¼ �k
Y�
, so that

�k
i ¼ �k

0�
k
i0 þ

X
�

�k
Y�

1

Ck
0

ð�k
i� � Y��

k
i0Þ: (18)

It is interesting to see, that the chemical potentials of the
particles depend now directly on the value of the locally
fixed charge fractions and the unknown value of Ck

0. 1=C
k
0

appears because a change in Yk
� implies a change in the

particle numbers proportional to Ck
0. With

�k
Y�

¼ Ck
0

@F

@Ck
�

��������Cl
0
;Y

�k
�;Y

k
���

¼ Ck
0�

k
�; (19)

one can see that�k
Y�
is proportional to Ck

0 and the chemical

potential of the charge Ck
�. In fact, the local chemical

potentials of the particles can only depend on other local
intensive variables, so Ck

0 has to drop out of Eq. (18).

By using this result, we get the following expression for
the equilibrium conditions for the chemical potentials of
the particles:

�k
i ¼ �k

0�
k
i0 þ

X
�

�k
�ð�k

i� � Y��
k
i0Þ: (20)

The first two of the three terms simply state that the
chemical potential of particle ði; kÞ is given by the sum
over the amount of conserved charges that the particle
carries multiplied by the corresponding chemical poten-
tials. The term proportional to Y� appears only for particles

which contribute to Ck
0. It is due to the change in the charge

Ck
� implied by dCk

0 if Yk
� is kept constant. It would not

appear if instead of the fractions the charges were used for
the description of the state of the system. This shows the
importance in the definition of the chemical potentials of
which other quantities are kept constant.
It is important to realize that the local chemical poten-

tials �k
0, �

k
� will, in general, be different in the two phases,

leading to different chemical potentials of all particles.
Only particles of the same phase, which carry the same
quantum numbers, will have equal chemical potentials.
All together, there are 2Cþ NI þ NII þ 1 unknown

variables: the chemical potentials �k
0, �

k
�, �

k
i , and one of

the two subvolumes Vk. They can be determined from the
NI þ NII chemical equilibrium conditions (20), pressure
equilibrium (9), and the 2C conservation laws (6) and (7)
for the fixed state ðCk

0; Y
k
�Þ. If all the relations Nk

i ¼
Nk

i ðT; Vk; �k
jÞ are known, the system is determined

completely.
Equation (20) can also be applied for a single phase k, by

setting V
�k ¼ 0 for the other phase, equivalent to N

�k
i ¼ 0.

Then pressure equilibrium is not required any more, and
the whole system of equations can be solved and all
thermodynamic quantities can be determined, too. If the
number of conserved charges C is equal to the number of
particles Nk in this phase, then the conserved charges
directly fix all the Nk particle numbers Nk

i . If C<Nk,
Nk � C equilibrium conditions between the chemical po-
tentials of the particles will exist.
Next we want to understand the consequences if indeed

only C0 but not the Ck
0 are conserved and if besides the

global conservation of the other charges C�, � ¼
1; . . . ; C� 1 only for the L fractions Yk

� local constraints
of the form (2) exist. This means we want to connect the
chosen state variables to some particular set of local con-
servation laws. We will denote the only globally conserved
charge fractions by Y�, � ¼ 1; . . . ; G� 1, with the number

of globally conserved charges G. For the index � of the
locally conserved charge fractions Yk

� we then have � ¼
G; . . . ; C� 1 so that C ¼ Gþ L.
The global constraint for C0 can be written as

�0dC0 ¼ �0

X
i;k

�k
i0dN

k
i ¼ 0: (21)

All the global charge fractions Y� ¼ C�=C0 are also con-

served:

�Y�

1

C0

ðdC� � Y�dC0Þ ¼ 0

, �Y�

1

C0

�X
i;k

�k
i�dN

k
i � Y�

X
i

�k
i0dN

k
i

�
¼ 0: (22)

We already implemented the new Lagrange multipliers �0,
�Y�

.
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By comparing Eqs. (12) and (13) with (21) and (22), one
finds that the local conservation laws lead to the same
constraints (21) and (22) which are added to dF if we set:

�I
0 ¼ �II

0 ¼ �0; (23)

�I
Y�

CI
0

¼ �II
Y�

CII
0

¼ �Y�

C0

; (24)

which is equivalent to

�I
0 ¼ �II

0 ¼ :�0; (25)

�I
Y�

CI
0

¼ �II
Y�

CII
0

, �I
� ¼ �II

� ¼: ��; (26)

where we used Eq. (19) in the last line. Equations (25) and
(26) are the new additional equilibrium conditions for the
globally conserved charges in terms of the local chemical
potentials. To express the equality of these chemical po-
tentials, we introduced the variables �0, ��, which are the

global chemical potentials of the corresponding charges. If
a local conservation law is lifted, an additional condition
for chemical equilibrium between the two phases appears,
and the whole set of equilibrium equations can still be
solved. Equations (25) and (26) are the expected result
that local chemical potentials become equal in the two
phases when the corresponding local constraint is lifted.
Then the two local fractions can adjust to minimize the free
energy. After equilibrium is reached, the two phases can be
separated from each other without any changes arising.

If one of the globally conserved charges, denoted by C�

in the following, is actually not conserved any more, this
means that

@F

@C�
¼ 0 (27)

to minimize the free energy, leading to

�I
� ¼ �II

� ¼ 0: (28)

A nonconserved fraction gives two local constraints for the
chemical potentials. The two Eqs. (28) replace the equi-
librium condition (25). With this additional information,
the whole system can be determined, even without know-
ing the value of C� any more. This is in accordance with
our previous conclusion that all thermodynamic quantities
can be determined, independently of the number of con-
served charges C and the number of particles NI and NII.
We note that with the new information of Eq. (28), the
chemical potentials of the remaining conserved charges
can possibly be written in a different simplified form.

This procedure for nonconserved charges can also be
applied for a single phase k, in which only one chemical
potential �k

� exists, leading to

�k
� ¼ 0: (29)

All other conclusions are also analog to the mixed phase.
From Eq. (20), it follows immediately, that two particles

of the same phase have equal chemical potentials if they
carry the same quantum numbers:

�k
m ¼ �k

n if �k
m	 ¼ �k

n	: (30)

If particles m and n of two different phases carry the same

quantum numbers �k
m	 ¼ �

�k
n	, e.g. if some of the particles

in the two different phases are identical, this is no longer
true in general. The local chemical potentials of locally
fixed fractions will, in general, be different in the two
phases. Consequently, if a particle carries global and local
charges, its chemical potential will also be different in the
two phases. Only if they do not contribute to the locally
conserved charges, it follows from from Eqs. (20), (25),
and (26), that the chemical potentials of such particles are
equal:

�k
m ¼ �l

n: (31)

This means that, since such particles can be exchanged
freely between the two phases, in equilibrium always the
same amount of energy is needed when the number of
particles Nk

i is varied in one of the two phases. If no local
constraints are applied, the chemical potentials of all iden-
tical particles become equal, which are the well-known
Gibbs conditions for phase equilibrium.
For fixed temperature T, pressure p, and particle num-

bers Nk
i , the correct thermodynamic potential is the Gibbs

potential G, which is also called the Gibbs free enthalpy.
With Eqs. (20) and (25), we get the following relation
inside the mixed phase:

G ðT; p; Nk
i ðC0; Y�ÞÞ ¼

X
i;k

�k
i N

k
i ¼ �0C0

¼ �I
0C

I
0 þ�II

0 C
II
0 ; (32)

independently of which local constraints are applied. For a
single phase kwith Ck

0 ¼ C0 and V
k ¼ V, Eq. (20) leads to

G ðT; p; Nk
i ðC0; Y�ÞÞ ¼

X
i

�k
i N

k
i ¼ �k

0C0: (33)

In this case, in principle, the index k can also be suppressed
because only one single phase exists. These two relations
can also be used in other thermodynamic potentials or in
the fundamental relation of thermodynamics.

III. PROPERTIES OF THE PHASE
TRANSFORMATION

Depending on the number of globally conserved
charges, the properties of a phase transformation are quali-
tatively different. The differences between a single and a
multicomponent body were extensively discussed in [33]
for neutron stars. In the following, we will show that
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locally fixed charge fractions do not influence the qualita-
tive behavior of the phase transformation.

To discuss the properties of a phase transformation, we
have to specify the state variables (also called control
parameters) which are changed externally in a continuous
way. For numerical simulations of protoneutron stars and
supernovae, usually an equation of state in tabular form, as
e.g. [53–55], in terms of ðT; c0; Y�Þ, � ¼ 1; . . . ; C� 1, with
the density c0 ¼ C0=V is applied (in these EOSs the state
variables are the temperature, the baryon density, and the
proton fraction Yp). If the volume V (which is completely

arbitrary in the thermodynamic limit) is also taken as one
of the state variables, all the conserved charges C�, � ¼
0; . . . ; C� 1, are known, too, and the Helmholtz free en-
ergy becomes the appropriate potential: F ¼ FðT; V; C�Þ.
In the following, we want to discuss the properties of the
mixed phase for such an EOS in terms of ðT; V; C�Þ if only
V is varied and the other state variables C� and T are kept
constant, i.e. we are investigating an isothermal change of
c0 at constant Y�. As before, we assume that only L �
C� 1 of the fractions are fixed locally in the form: YI

� ¼
YII
� ¼ Y�. For the globally conserved fractions, we will

continue to use the index � instead. The number of glob-
ally conserved charges/fractions is then G ¼ C� L.

By analyzing further the condition for pressure equilib-
rium, one can make statements about the qualitative prop-
erties of the phase transformation and the possible
appearance of mixed phases. The pressure in each phase
can only depend on the local chemical potentials of the
particles in this phase:

pIðT;�I
i Þ ¼ pIIðT;�II

j Þ: (34)

We already argued before, that also for a single phase the
knowledge of the conserved charges, the temperature and
the volume V is sufficient to determine all thermodynamic
quantities. Obviously, the chemical potentials of the parti-
cles cannot depend on the size of the phase, so that they
have to be determinable by the local density ck0 and the

local fractions Yk
� alone:

pkðT;�k
i Þ ¼ pkðT; ck0; Yk

�Þ: (35)

Next, we can use �k
0 instead of ck0, and replace the un-

known local fractions of the fractions Y� which are con-

served only globally by their local chemical potentials:

pk ¼ pkðT;�k
0; �

k
�; Y

k
�Þ: (36)

According to Eqs. (25) and (26), the remaining chemical
potentials have to be equal in the two phases, and the
locally fixed fractions are equal, too (by construction).
Thus

pIðT;�0; ��; Y�Þ ¼ pIIðT;�0; ��; Y�Þ: (37)

This formulation, in which the chemical potentials of the
globally conserved charges are treated as known state
variables, is most convenient to discuss the properties of

the phase transition. Of course, the chemical potentials in
this equation are actually fixed by the values of the density
c0, the fractions Y� and the chosen local constraints.
First, we will analyze the case in which no other globally

conserved charges besides C0 exist, G ¼ 1. Equation (37)
then leads to a relation

�0 ¼ �coex
0 ðT; Y�Þ; (38)

which also fixes the coexistence pressure:

p ¼ pcoexðT; Y�Þ: (39)

This means that there is only one value of the pressure pcoex

and the chemical potential�coex
0 , where the two phases can

coexist. All other local intensive variables are also fixed by
the local constraints and the equilibrium conditions and
remain constant in the mixed phase, too. A simple way to
determine the phase transition pressure is to see where the
pkðT;�0; Y�Þ-curves of the two phases intersect. The tran-
sition from phase I to phase II occurs, when the pressure is
equal in the two phases.
The mixed phase will extend over a certain range in the

density c0, with the onset given by cI0ðT;�coex
0 ; Y�Þ and the

end by cII0 ðT;�coex
0 ; Y�Þ. Inside the mixed phase, the in-

tensive variables are independent of c0 and c0 is only used
to specify the volume fraction 0<X ¼ VII=V < 1 of the
two phases:

c0 ¼ ð1� XÞcI0ðT;�coex
0 ; Y�Þ þ XcII0 ðT;�coex

0 ; Y�Þ: (40)

All extensive variables change linearly with the volume
fraction in the same way, e.g.


0 ¼ ð1� XÞ
I0ðT;�coex
0 ; Y�Þ þ X
II0 ðT;�coex

0 ; Y�Þ: (41)

Therefore the calculation of the mixed phase becomes
trivial. After the coexistence pressure is found it is given
by a linear interpolation in the volume fraction between the
onset and endpoint of the mixed phase. This case corre-
sponds to the well-known Maxwell construction.
For G � 2 globally conserved charges, Eq. (37) is not

sufficient to determine all chemical potentials�0,��. This

equilibrium condition only allows to fix one of the chemi-
cal potentials, e.g. �0 ¼ �0ðT; Y�;��Þ and G� 1 chemi-

cal potentials remain unknown. But besides the
equilibrium conditions, also the total volume and the glob-
ally conserved charges have to have the correct value:

V ¼ VI þ VII

C� ¼ CI
�ðVI; T;�0; ��; Y�Þ þ CII

� ðVII; T;�0; ��; Y�Þ:
(42)

These Gþ 1 equations involve only two further unknowns
VI and VII so that the whole system of Eqs. (37) and (42)
can be solved for given (arbitrary) volume V, and all
thermodynamic variables can be determined. Conse-
quently, in this case, all quantities (including the pressure)
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will depend on the values of the densities c0 and c� ¼
C�=V. A change in the density c0 will also imply a change

in the pressure. Thus for G � 2, there will be an extended
range in pressure in which the two phases can coexist. The
simple Maxwell construction cannot be applied, as the
system does not behave linearly any more. Instead, it is
necessary to calculate the mixed phase at every point
ðT; V; C�Þ explicitly.

In both cases (G ¼ 1 or G � 2), an extended mixed
phase between the two phases forms for the chosen state
variables. At the onset of the mixed phase, the volume of
the newly appearing phase vanishes. Similarly, at the end
of the mixed phase, only the second phase remains (we
assume that the two EOSs of the single phases do not show
any discontinuities). Thus the mixed phase becomes iden-
tical to the neighboring single phases when approaching
the onset or end of the mixed phase. Inside the mixed
phase, the volume fraction changes continuously from 0
to 1, and consequently all global thermodynamic variables
up to first derivatives of the thermodynamic potential will
change continuously across the whole phase transforma-
tion. The second derivatives will, in general, be discon-
tinuous at the onset and endpoint of the mixed phase, as
they involve the derivative of the volume fraction.

The thermodynamic potential is the Helmholtz free
energy, which also changes continuously and which has
the following form inside the mixed phase:

F ¼ �pV þX
i;k

Nk
i �

k
i ¼ �pV þ�0C0; (43)

where we used Eq. (32). For G ¼ 1 in which the pressure
and the chemical potentials are constant, the free energy
changes linearly with the volume V.

Next, we want to use the different set of state variables
ðT; p; C�Þ, in which the volume is replaced by the pressure
and we want to analyze the properties of this different
phase transformation. Now, the Gibbs free enthalpy G ¼
GðT; p; C�Þ, already specified by Eq. (32), is the appro-
priate thermodynamic potential. These state variables are
especially important because they can directly be used for
the description of isothermal neutron stars. Under the
influence of gravity in a hydrostatic configuration of a
compact star, the pressure has to change continuously
and has to be strictly monotonic. In the following, we
only consider a change of the pressure p and keep all the
other state variables constant.

If G ¼ 1, the mixed phase collapses to one single point
at the coexistence pressure pcoex introduced above. There
is only a point of coexistence, but no extended mixed
phase. No mixed phase has to be calculated, only the
transition point has to be determined. In the previous
formulation, we showed that �0 is constant across the
mixed phase and continuous at the endpoints, thus one
gets that the potentials of the two phases are equal at the

transition point, G ¼ GI ¼ GII. The equality of �I
0 ¼ �II

0

leads to the equality of the Gibbs free enthalpy.
This equality can also be seen as the reason why the

volume fraction of the two phases remains arbitrary at the
coexistence point and cannot be determined from the equi-
librium conditions. Thus all extensive quantities but those
of the externally fixed state variables remain unspecified at
the coexistence point.
Because of mechanical, thermal, and (at least partial)

chemical equilibrium, the thermodynamic potential
changes continuously across the transition, even though
no extended mixed phase exists. For smaller or larger
pressures, the mixed phase disappears, and only the phase
with the lower Gibbs free enthalpy will be present. Despite
this, the phase transformation is not continuous, as e.g. the
volume behaves discontinuously due to the disappearance
of the mixed phase:

lim
p<!pcoex

@GI

@p

��������T;C�

¼ VI � VII lim
p>!pcoex

@GII

@p

��������T;C�

: (44)

Therefore the charge densities, defined by C�=V will
change discontinuously, too. Also the entropy jumps in
an analogous way at the phase transition, if T � 0. The
internal energy, given by E ¼ G � pV þ TS will also
behave discontinuously, in general. These discontinuities
appear in the first derivatives of the thermodynamic poten-
tial. The discussed scenario is the familiar case of the
Maxwell phase transition of a one-dimensional system (a
simple body), e.g. known from the liquid-gas phase tran-
sition of water.
For G � 2, the system is multidimensional (a complex

body). There will be an extended range in pressure in
which the two phases can coexist and an extended mixed
phase forms. As noted before, the simple Maxwell con-
struction cannot be applied. The mixed phase does not
behave linearly any more and thus it has to be calculated
explicitly for every single pressure. Now the equilibrium
conditions and the knowledge of the state variables become
sufficient to specify the volume fractions and all other
thermodynamic variables of the two phases. This case is
usually called the Gibbs construction in the context of
cold-deleptonized neutron stars with global charge neutral-
ity. The presence of a mixed phases with X ¼ 0 at the onset
and X ¼ 1 at the endpoint assures that all thermodynamic
variables (up to first derivatives) change continuously
across the phase transformation, as argued above.
As was shown, locally conserved charge fractions do not

influence the qualitative behavior of a phase transforma-
tion. It is only the number of globally conserved charges
which determines whether it is continuous or discontinu-
ous. Independent of any locally conserved charge fractions,
for G ¼ 1 the system is one-dimensional and behaves like
a simple body. By replacing globally conserved charges by
adequate local conservation laws, this allows one to reduce
the number G of globally conserved charges. In the next
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section, we will use this procedure for isothermal phase
transformations to arrive at a Maxwell construction, even if
in principle multiple conserved charges exist.

One can expect that the extension of the mixed phase
decreases with the number of local constraints applied.
When C0 remains as the only globally conserved charge,
the mixed phase will disappear completely inside a com-
pact star. Furthermore, the discontinuity of the second
derivatives will increase with the number of local con-
straints. For G ¼ 1 even the first derivatives become dis-
continuous then.

The situation becomes different, if we consider a phase
transformation in an adiabatic instead of an isothermal
process. To keep the entropy constant, necessarily the
temperature has to change across the transition with equal
temperatures in the two phases at each point of the mixed
phase. The change in temperature will lead to a change in
all other intensive variables, too. Thus even for G ¼ 1, the
Maxwell construction cannot be applied. If mechanical and
thermal equilibrium between the two phases is required,
the mixed phase does not vanish in a hydrostatic situation
under the influence of gravity, even if only one globally
conserved charge exists. This is an important result, espe-
cially for protoneutron stars which are very often described
by a constant ratio of entropy per baryon as a first approxi-
mation. Some other local constraints are needed (e.g.
locally fixed entropy per baryon) which will influence the
conditions for phase equilibrium in a nontrivial way.
Therefore we will discuss adiabatic phase transformations
at the end of this article separately.

IV. APPLICATION FOR MATTER IN
SUPERNOVAE, PROTONEUTRON STARS, AND

NEUTRON STARS

As an example, the general relations which were found
shall now be applied to the liquid-gas phase transition of
nuclear matter and the hadron-quark phase transition under
typical astrophysical conditions. The hadronic phases shall
consist of N	 neutrinos, Ne electrons, Np protons, and Nn

neutrons (net numbers, including antiparticles). The two-
flavor quark phase shall be composed of Ne electrons, N	

neutrinos, Nu up and Nd down quarks. Furthermore, at the
end of the section, we will discuss strange quark matter,
too, in which Ns strange quarks are also part of the system.

The baryon number NB ¼ Nn þ Np for hadrons, and

NB ¼ 1=3ðNu þ NdÞ for quarks, and the total electric
charge number NC ¼ Np � Ne, and NC ¼ 1=3ð2Nu �
NdÞ � Ne, always have to be conserved in a closed system.
Because of charge neutrality NC ¼ 0, but the concrete
values of the conserved charges are actually irrelevant for
the equilibrium conditions of the chemical potentials.
Furthermore, there are two additional conserved charges
possible, the lepton number NL ¼ Ne þ N	 and the proton
number Np. The latter in combination with baryon number

conservation is equivalent to the conservation of isospin or

of baryonic electric charge. Obviously, this is equivalent to
flavor conservation for up and down quark matter. Thus,
constant Np ¼ 1=3ð2Nu � NdÞ can be used to express iso-

spin conservation for both kind of phases. To achieve a
consistent description of quark and hadronic matter, we
will use the term proton number or proton fraction conser-
vation as a synonym for the conservation of isospin in the
two-flavor quark phase.
Usually instead of fixing ðNB;NC; NL; NpÞ, an intensive

formulation in terms of the proton and lepton fractions
Yp ¼ np=nB and YL ¼ ðne þ n	Þ=nB, the baryon number

density nB and charge density nC ¼ np � ne ¼ 0 together

with a fixed temperature T is used, like e.g. in Refs. [53–
55]. We will also apply this formulation in the following.
Instead of the electric charge per baryon YC ¼ 0 used
before, we can also take nC ¼ 0 to describe the state of
the matter. In the thermodynamic limit, the size of the
system becomes irrelevant, so that we can assume that
the volume V is also known. Obviously then it is com-
pletely equivalent to fix ðT; nB; nC; Yp; YL; VÞ instead of

ðT;NB; NC; Np;NL; VÞ.
Usually for fixed Yp, the neutrinos are not included in

the construction of the EOS but are treated separately. The
neutrino dynamics play a crucial role in supernovae and
protoneutron stars. To describe the evolution of such sys-
tems, it is necessary to handle the neutrinos with a detailed
dynamical transport scheme in which their emission, scat-
tering, and absorption is calculated. One could ask whether
it is possible at all to calculate the EOS independently of
the neutrinos. For a single homogeneous phase and a non-
interacting neutrino gas, this is rather trivial. Later, we will
show that the neutrinos also do not affect the equilibrium
conditions in mixed phases as long as the lepton fraction is
conserved globally.

A. Single homogeneous phases

In Table I, the chemical potentials of the conserved
charges NB, NC, Np, and NL are expressed in terms of

the chemical potentials of the particles of one phase if the
baryon number and all fractions are kept constant locally,
leading to the unusual form of �k

NB
. As long as only one

single homogeneous phase exists, local conservation laws
are identical to global ones. The index k can be suppressed
if we want to use Table I for one single homogeneous
phase.
The special form of the chemical potentials of the con-

served charges/fractions can be understood in a simple
way. �� gives the change of the free energy with the

change of the charge C� for constant proton and lepton

fraction and electric charge neutrality. The combination of
chemical potentials of the particles which is found for ��

corresponds to the change of the particle numbers induced
by the change of C� under the chosen constraints. We note

once more, that the form of a chemical potential depends
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on which other quantities are kept constant. For example,
the baryon chemical potential �k

NB
would be equal to �k

n

(for nuclear matter) if instead of the fractions the charges
themselves were used as the state variables. However, the
final equilibrium conditions are not (and cannot be) af-
fected by the choice of the state variables. Thus we can use
the description presented here, which is most convenient
for our purpose as it can be applied for single phases as
well as for all possible combinations of locally conserved
fractions inside mixed phases.

If all the four charges are conserved, this corresponds to
the situation of matter with completely trapped neutrinos,
but too short dynamical time scales to change the proton
number by weak reactions. Next, we will discuss the differ-
ent possibilities in which some of the charges are actually
not conserved any more. As was shown before, for every
charge becoming not conserved an additional equilibrium
condition appears. With the new information of Eq. (29),
then the chemical potentials of the remaining conserved
charges can possibly be written in a different simplified
form. We note that baryon number and electric charge
always have to be conserved.

For nonconserved lepton number from Eq. (29) and
Table I, �	 ¼ 0 follows. Neutrinos are completely un-
trapped/free streaming. If the proton number is still con-
served, weak reactions involving nucleons are assumed to
be completely suppressed. We will discuss the meaning of
the result �	 ¼ 0 in more detail later.

If neutrinos are completely trapped and there is enough
time for the weak reactions to become efficient, the lepton
number is conserved but the proton number is not. Then the
well-known weak-equilibrium conditions

�p ��n ��	 þ�e ¼ 0 (45)

for nuclear matter and

�u ��d ��	 þ�e ¼ 0 (46)

for quark matter are found.

If then at a later stage in the evolution the neutrinos
become completely untrapped, the lepton number is not
conserved any more. Only baryon number and electric
charge remain as conserved charges. Then two equilibrium
conditions are necessary to derive all particle numbers Ni.
Without lepton number conservation, �	 ¼ 0 and the neu-
trinos drop out in the �-equilibrium conditions

�e þ�p ��n ¼ 0 (47)

for nucleons and

�u ��d ��e ¼ 0 (48)

for quarks. For both sets of particles, �NC
¼ ��e. The

baryon chemical potential can also be expressed in a
simpler way: �NB

¼ �n for nucleons and �NB
¼ 2�d þ

�u for quarks.

B. Role of neutrinos

Before we continue, we want to show why neutrinos do
not have to be included in the construction of the non-
neutrino part of an equation of state in terms of ðT; nB; YpÞ,
i.e. if the proton number is conserved.
First we note, that for a single phase ðT; nB; YpÞ are

sufficient to fix all particle numbers but neutrinos. The
non-neutrino part of the EOS would also not change, if
neutrinos were not included as part of the thermodynamic
system right from the beginning. At the same time, the
neutrino contribution is also independent of the non-
neutrino EOS: If the lepton fraction is conserved, i.e. if
they are completely trapped, the neutrino density is directly
specified by n	ðT;�	Þ ¼ ðYL � YpÞnB. Without lepton

number conservation, �	 ¼ 0 also directly sets the neu-
trino contribution.
Neutrinos also do not have to be included in the con-

struction of a mixed phase if we only allow global lepton
number conservation. Then it always follows that �I

	 ¼
�II

	 (the only quantum number of the neutrino is the lepton
number so that Eq. (31) applies). In all cases, neutrinos can

TABLE I. The local chemical potentials of the baryon number NB, electric charge NC, proton number (or baryonic electric charge
number) Np, and lepton number NL in terms of the chemical potentials of the particles in one phases if the baryon number and all

fractions are fixed locally. The second column is for a hadronic phase composed of neutrons, protons, electrons, and neutrinos and the
third column for a phase of up and down quarks and electrons and neutrinos. The results also apply for strange quark matter, with
�d ¼ �s. For global baryon number conservation �I

NB
¼ �II

NB
follows. If some of the fractions are conserved only globally and are no

longer restricted by local constraints, the corresponding chemical potentials become equal, too: �I
� ¼ �II

� .

Conserved

charge

Chemical potentials

Hadrons Quarks

Nk
B �k

NB
¼ ð1� YpÞ�k

n þ Yp�
k
p þ Yp�

k
e þ ðYL � YpÞ�k

	 �k
NB

¼ ð2� YpÞ�k
d þ ð1þ YpÞ�k

u þ Yp�
k
e þ ðYL � YpÞ�k

	

Yk
C �k

NC
¼ �k

	 ��k
e �k

NC
¼ �k

	 ��k
e

Yk
p �k

Np
¼ �k

p ��k
n ��k

	 þ�k
e �k

Np
¼ �k

u ��k
d ��k

	 þ�k
e

Yk
L �k

NL
¼ �k

	 �k
NL

¼ �k
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be treated as ideal Fermi-gases, so that their contribution to
the EOS in the two phases is exactly the same. Thus it is
also sufficient to study the pressure equilibrium without
taking neutrinos into account.

When the lepton fraction is conserved globally, the
neutrino chemical potential can also always be taken out
of the chemical equilibrium conditions. Because the neu-
trino chemical potentials and all locally fixed fractions are
equal in the two phases, terms proportional to Y��

k
	 cancel

in the equilibrium conditions of other globally conserved
charges. One finds that the same conditions for chemical
equilibrium of the non-neutrino part are obtained, as if
neutrinos were not present at all. We conclude that neu-
trinos do not influence the phase equilibrium between the
two phases as they are distributed uniformly over the entire
system, if the lepton fraction is conserved globally. It is
sufficient to calculate an equation of state for protons,
neutrons, and electrons (or quarks and electrons) in terms
of ðT; nB; YpÞ and this equation of state can be used for all

possible conditions under which the neutrinos appear.
Instead, if Yp is not conserved, i.e. one has an EOS in

terms of ðT; nBÞ or ðT; nB; YLÞ the neutrinos influence the
rest of the matter via the condition for weak equilibrium.
The neutrino contribution needs to be taken into account
for the evaluation of the non-neutrino EOS. Thus the non-
neutrino EOS will also depend on whether lepton number
is conserved or not because the conditions for weak-
equilibrium Eqs. (45) and (46), are different from those
for beta equilibrium, Eqs. (47) and (48). In the former case,
the lepton number is conserved and the neutrinos are
determined by YL. In the latter case, neutrinos are com-
pletely untrapped and the neutrino contribution becomes
trivial, �	 ¼ 0. The same beta-equilibrium conditions
Eqs. (47) and (48) are found if neutrinos are not included
in the thermodynamic description. In general, the EOS
depends on the conditions under which the neutrinos ap-
pear, as soon as Yp is not conserved.

Let us now discuss the meaning and some interesting
consequences of the result �	 ¼ 0 for matter with neutri-
nos but without lepton number conservation. If a particle i
carries no conserved charges (�i�¼0 8�) with Eq. (20),

one finds immediately that its chemical potential is zero. If
neutrinos can be described as an ideal gas in equilibrium, it
follows that N	 ¼ 0, which means that the number of
neutrinos equals the number of antineutrinos. Only if T ¼
0 do both contributions vanish. Nonconserved YL would
correspond to the situation when the neutrino mean free
path is much larger than the size of the neutron star so that
neutrinos can leave the neutron star freely. Thus the energy
of the system is not conserved, but can be carried away by
neutrinos as long as they are abundant. As a logical con-
sequence, the neutron star would cool immediately to T ¼
0 if weak reaction rates were fast enough (infinitely large
emissivities) to allow one to describe the neutrinos as an
ideal gas as part of the thermodynamic description. In

reality, it takes some 105 years until the neutron star has
cooled to a core temperature of �10 keV and the photon
cooling era is reached. The neutrinos are far away from
equilibrium, their emissivities have to be calculated, and
the description of the cooling process requires detailed
numerical simulations [31].

C. Mixed phases

If a mixed phase exists, it is crucial whether a charge is
conserved globally or locally. In the following, we will
assume that each of the conserved charges is either con-
served globally, or its fraction is conserved locally with
equal values in the two phases, as before. Obviously, local
constraints in the form Ck

� ¼ 0 are equivalent to Yk
� ¼ 0,

i.e. we can interpret local electric charge neutrality as a
locally fixed charge fraction, too. Before we start to discuss
all relevant combinations of locally and globally conserved
charges, we will analyze the physical meaning of the
different local constraints.

1. Local charge neutrality

Already in [36], it was pointed out, that depending on
the surface tension and the Debye-screening length, local
charge neutrality might be the better approximation for
bulk matter. If a large surface tension drives the system to
sizes much larger than the Debye-screening length, only a
negligible small charged surface layer in the order of the
Debye-screening length remains and the bulk of the matter
becomes locally charge neutral. Most calculations for the
phase transition to quark matter indicate that this is, in-
deed, the case.
If instead the surface tension is small so that the typical

structures are smaller than the Debye-screening length,
global charge neutrality is the more reasonable assump-
tion. This applies to the liquid-gas phase transition of
nuclear matter, as the Debye-screening length is large.
Anyhow, we include the assumption of local charge neu-
trality for the nuclear phase transition in the following
discussion because it is instructive and the corresponding
equilibrium conditions can easily be devolved to other kind
of phase transitions of nuclear matter.
If one requires that both of the two phases have to be

locally charge neutral, two different local electric charge
chemical potentials appear in Eq. (20) leading to different
chemical potentials of all electrically charged particles
(electrons, quarks, and protons) in the two phases. If one
would do the full calculation including finite-size (surface
and Coulomb) effects and without the constraint of local
electric charge neutrality, the total chemical potential of
charged particles would be shifted by the local electric
potential, e.g. ~�I

p ¼ �I
p þ eVI leading to full chemical

equilibrium, ~�I
p ¼ ~�II

p , see [36]. In the present article,

we are discussing infinite matter without Coulomb forces,
so that the electric potential cannot be determined and the
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artificial inequality of the chemical potentials of charged
particles cannot be resolved.

2. Locally fixed Yp, YL, or nB

In general, there is no physical reason why the proton
fraction, the lepton fraction, or the baryon number density
should be conserved locally or should be equal in the two
phases, as there is no long range force between the two
phases which is associated with these charges. This would
imply that the readjustment of the local proton fraction,
lepton fraction, and/or baryon density does not take place.
It would occur only if the system can not lower its potential
by readjusting the local charges, as it is the case for
symmetric nuclear matter in the liquid-gas phase transition
without Coulomb energies. Besides this special case,
chemical equilibrium with respect to a locally conserved
charge is not established between the two phases. Thus,
local constraints can be used to simulate a nonequilibrium
situation, e.g. if the phase transition region is crossed
during a very small time scale. In the conclusion, we will
address this aspect further.

A nonvanishing locally fixed density (e.g. nIB ¼ nIIB ¼
nB) influences the condition for mechanical equilibrium so
that pressure equilibrium is not obtained from the first and
second law of thermodynamics any more. For these con-
straints, a change of the subvolumes would imply a change
of the local baryon numbers, too. Instead of pressure
equilibrium, only a combination of the local pressures
and the local chemical potentials are equal in the two

phases. Consequently, the pressure would change discon-
tinuously at the phase transition. Thus, we will not use
constraints of nonvanishing locally fixed densities.
The special assumptions of locally fixed Yp or YL might

also be wanted because they allow to achieve a Maxwell
construction of the mixed phase at the cost of only partial
chemical equilibrium. Because of the additional conserved
charges besides NB local charge neutrality alone is not
sufficient for that (as in the case of cold neutron stars)
and at least one other of the conserved charges needs to be
fixed locally. This is another motivation why to investigate
locally fixed Yp or YL and we will focus on this aspect

when discussing different scenarios in the following
subsections.

3. Discussion of different cases

In Tables II and III, all the relevant combinations of local
and global conservation laws of the conserved charges for
the construction of a mixed phase for isothermal matter in
supernovae, protoneurton stars, and cold neutron stars are
listed. We assume that the densities and fractions are either
conserved globally, or locally in a form YI

p ¼ YII
p ¼ Yp,

YI
L ¼ YII

L ¼ YL, n
I
C ¼ nIIC ¼ nC ¼ 0, nIB ¼ nIIB ¼ nB. The

final equilibrium conditions are expressed in terms of the
chemical potentials of the particles in the two phases, in
Table II for the liquid-gas phase transition and in Table III
for the hadron-quark phase transition.
Case I.—In case Ia, besides local charge neutrality the

proton and lepton fractions are fixed locally and the system

TABLE II. Equilibrium conditions for the liquid-gas phase transition of nuclear matter for fixed temperature T, baryon number
density nB, and charge density nC. The lepton fraction YL and proton fraction Yp are conserved in addition in some cases. These charge

densities/fractions are fixed locally (with equal values in the two phases) or globally. If Yp is not conserved weak equilibrium [Eqs.

(45) and (46)] is established in both phases. If YL is not conserved �I
	 ¼ �II

	 ¼ 0 is obtained, leading to the same equilibrium
conditions as if neutrinos were not included in the thermodynamic system.

Case Conserved densities/fractions Equilibrium conditions Construction of

mixed phase

Globally Locally

0 nB, ðYpÞ, ðYLÞ, nC - Direct

Ia nB Yp, YL, nC ð1� YpÞ�I
n þ Ypð�I

p þ�I
eÞ þ ðYL � YpÞ�I

	

¼ ð1� YpÞ�II
n þ Ypð�II

p þ�II
e Þ þ ðYL � YpÞ�II

	

Maxwell

Ib nB YL, nC �I
n þ YL�

I
	 ¼ �II

n þ YL�
II
	 Maxwell

Ic nB Yp, nC ð1� YpÞ�I
n þ Ypð�I

p þ�I
eÞ ¼ ð1� YpÞ�II

n þ Ypð�II
p þ�II

e Þ Maxwell

Id nB nC �I
n ¼ �II

n Maxwell

IIa nB, YL Yp, nC ð1� YpÞ�I
n þ Ypð�I

p þ�I
eÞ ¼ ð1� YpÞ�II

n þ Ypð�II
p þ�II

e Þ, �I
	 ¼ �II

	 Maxwell/Gibbs

IIb nB, YL nC �I
n ¼ �II

n , �
I
	 ¼ �II

	 Gibbs

IIIa nB, Yp YL, nC �I
n þ YL�

I
	 ¼ �II

n þ YL�
II
	 , �

I
p ��I

n ��I
	 þ�I

e ¼ �II
p ��II

n ��II
	 þ�II

e Gibbs

IIIb nB, Yp nC �I
n ¼ �II

n , �
I
p þ�I

e ¼ �II
p þ�II

e Gibbs

IV nB, YL, Yp nC �I
n ¼ �II

n , �
I
	 ¼ �II

	 , �
I
p þ�I

e ¼ �II
p þ�II

e Gibbs

V nB, YL, Yp, nC �I
n ¼ �II

n , �
I
	 ¼ �II

	 , �
I
p ¼ �II

p , �
I
e ¼ �II

e Gibbs
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has only one globally conserved charge, the baryon num-
ber. The only internal degree of freedom of the two phases
is the local baryon density. This case is relevant for super-
nova matter with trapped neutrinos and suppressed weak
reactions. However, the local constraints imply different
neutrino densities in the two phases. Thus this case is rather
academic and we only show it for completeness. For this
case, Table I expresses the local chemical potentials be-
longing to the conserved charges NB, NC, Np, and NL in

terms of the chemical potentials of the particles in the
phase.

There is only one global chemical potential with the
corresponding equilibrium condition:

�NB
¼ �I

NB
¼ �II

NB
: (49)

The condition which is shown in Table I expresses that
only combinations of particles can be exchanged which do
not change the local proton and lepton fractions and are
electrically charge neutral to maintain local charge neutral-
ity. Thus in the liquid-gas phase transition, only a combi-
nation of 1� Yp neutrons, Yp electrons and protons, and

YL � Yp neutrinos can be exchanged freely between the

two phases. In the hadron-quark phase transition only (1þ
Yp), up and (2� Yp) down quarks, Yp electrons, and YL �
Yp neutrinos can be exchanged.

As there is only one globally conserved charge NB, the
pressure is constant across the phase transformation. The
Maxwell construction can be used and all the results for
G ¼ 1 of Sec. III can be applied. The chemical potentials

of all particles are different in the two phases, as all
particles contribute to the locally conserved fractions.
We note that this case was already discussed in Ref. [52].

Equivalent equilibrium conditions were found and the
same conclusions about the disappearance of the mixed
phase in a compact star were drawn.
In the following, we will use the results of case Ia in

Table I to derive the equilibrium conditions for all other
cases. When a fraction is not conserved locally but only
globally, the two local chemical potentials specify the new
equilibrium conditions. In Eq. (26) it was deduced that by
conserving Y� instead of Yk

�, the two local chemical po-

tentials �k
� become equal. If one of the charges is actually

not conserved any more, this has to be seen as a global
criterion. To minimize the free energy with respect to this
charge, in Eq. (28) it was derived that a nonconserved
fraction leads to two new local constraints for the chemical
potentials �I

� ¼ �II
� ¼ 0, which replace the two locally

fixed fractions used before.
In case Ib Yp is no longer conserved, but neutrinos are

trapped, as e.g. in protoneutron stars. By setting �k
Np

¼ 0,

the weak-equilibrium conditions (45) respectively (46) of
Sec. IVA are obtained which now have to be fulfilled in
both phases. Case Ib leads to different neutrino densities in
the two phases, as case Ia. However, this case is the only
possibility to achieve a Maxwell construction if neutrinos
are trapped and in weak equilibrium. In Ic, the conserva-
tion of YL is lifted, leading to �I

	 ¼ �II
	 ¼ 0, which is

equivalent to the case that neutrinos are taken out of the
thermodynamic description, as discussed before. Thus Ic is
relevant for supernova matter. If both fractions are not

TABLE III. As Table II, but now for the hadron-quark phase transition. �d ¼ �s is valid if strangeness is in equilibrium.

Case Conserved densities/fractions Equilibrium conditions Construction of

mixed phase

Globally Locally

0 nB, ðYpÞ, ðYLÞ, nC - Direct

Ia nB Yp, YL, nC ð1� YpÞ�n þ Ypð�p þ�H
e Þ þ ðYL � YpÞ�H

	

¼ ð2� YpÞ�d þ ð1þ YpÞ�u þ Yp�
Q
e þ ðYL � YpÞ�Q

	

Maxwell

Ib nB YL, nC �n þ YL�
H
	 ¼ 2�d þ�u þ YL�

Q
	 Maxwell

Ic nB Yp, nC ð1� YpÞ�n þ Ypð�p þ�H
e Þ ¼ ð2� YpÞ�d þ ð1þ YpÞ�u þ Yp�

Q
e Maxwell

Id nB nC �n ¼ 2�d þ�u Maxwell

IIa nB, YL Yp, nC ð1� YpÞ�n þ Ypð�p þ�H
e Þ

¼ ð2� YpÞ�d þ ð1þ YpÞ�u þ Yp�
Q
e , �H

	 ¼ �Q
	

Maxwell/Gibbs

IIb nB, YL nC �n ¼ 2�d þ�u, �
H
	 ¼ �Q

	 Gibbs

IIIa nB, Yp YL, nC �n þ YL�
H
	 ¼ 2�d þ�u þ YL�

Q
	 ,

�p ��n ��H
	 þ�H

e ¼ �u ��d ��Q
	 þ�Q

e

Gibbs

IIIb nB, Yp nC �n ¼ 2�d þ�u, �p þ�H
e ¼ 2�u þ�d þ�Q

e Gibbs

IV nB, YL, Yp nC �n ¼ 2�d þ�u, �
H
	 ¼ �Q

	 , �p þ�H
e ¼ 2�u þ�d þ�Q

e Gibbs

V nB, YL, Yp, nC �n ¼ 2�d þ�u, �
H
	 ¼ �Q

	 , �p ¼ 2�u þ�d, �
H
e ¼ �Q

e Gibbs
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conserved any more as in case Id, the beta-equilibrium
conditions (47) respectively (48) are obtained. These re-
sults are independent of the other local or global conser-
vation laws. Thus we do not need to discuss the
nonconservation of lepton and/or proton fraction in the
following cases again.

In cases Ia to Id, the different conserved charges allow to
rewrite the equilibrium condition �I

NB
¼ �II

NB
in the sim-

plified forms presented in Tables II and III. Case Id de-
scribes a cold, deleptonized neutron star. Only global
baryon number conservation and local charge neutrality
are considered. The well-known result of the equality of
the neutron chemical potentials is found for the Maxwell
construction of the liquid-gas phase transition. In all other
Maxwell constructions, the equality of the baryon chemi-
cal potential �k

NB
takes a different form and involves addi-

tional particles besides the neutrons. Because of the
inequality of �k

NC
in the two phases, the chemical poten-

tials of the electrically charged particles always remain
different in the two phases in all cases Ia to Id.

Case II.—In case II, the lepton number and baryon
number are conserved globally. The second equilibrium
condition �I

NL
¼ �II

NL
from the global conservation of

lepton number leads to the equality of the neutrino chemi-
cal potentials, see Table I. Neutrinos are the only particles
which can be exchanged between the two phases, if the
baryon number, the electric charge, and the proton fraction
were kept constant in both phases.

Case IIa assumes locally fixed Yp and local charge

neutrality in addition. With fixed Yp, it gives a suitable

description of e.g. supernova matter which is not in weak
equilibrium. The same equilibrium condition as in case Ic
in which YL is not conserved is obtained for the non-
neutrino part of the EOS. Case IIa gives the same descrip-
tion of the non-neutrino EOS as case Ic. If one does not
include the neutrinos in the thermodynamic description at
all, the same condition as in Ic are found. Once more, this
shows explicitly that the non-neutrino EOS is independent
of the neutrino contribution. As discussed before, the
neutrinos can be calculated separately as long as Yp is

conserved and YL is not fixed locally. From this point of
view, the non-neutrino EOSs of cases with fixed Yp and

globally conserved YL are equivalent to fixed Yp and non-

conserved YL.
For the non-neutrino EOS G ¼ 1, and the mixed phase

without neutrinos can be calculated with the Maxwell
construction. The mixed phase would disappear under the
influence of gravity in a hydrostatic configuration. But the
inclusion of neutrinos leads to an interesting effect on the
mixed phase: The neutrino contribution is simply given by
n	ðT;�	Þ¼ ðYL�YpÞnB. Thus for increasing baryon den-

sity also the neutrino density has to increase. Therefore the
neutrino pressure is not constant across the phase transi-
tion, which is in agreement with our general result for G¼

2. If the pressure is used as the continuously varying
variable and is changed strictly monotonic (e.g. in a com-
pact star), a mixed phase appears only because of the
presence of neutrinos.
It is very interesting to see that all cases with local charge

neutrality in which Yp or YL are conserved globally will

lead to an extended mixed phase in a compact star. After
the star has cooled to T¼0 and has become completely
deleptonized, Yp and YL are no longer conserved, and

case Id will be reached. Consequently, the mixed phase
will disappear during the evolution of the star. We note that
such a scenario has not been considered in the literature so
far.
If we compare case IIa to case Ia, we see that the same

fractions and charges are conserved. In both cases, only the
Maxwell construction is needed, but in case IIa, the addi-
tional assumption of a locally fixed lepton fraction is not
used so that the neutrino densities become equal in the two
phases. This might be more realistic as the neutrino mean
free path is much larger than of the other particles. Thus
case IIa should be preferred instead of case Ia, if one is only
interested in the Maxwell construction.
We conclude that case IIa (or equivalently Ic for the non-

neutrino EOS) is the most convenient scenario which leads
for fixed Yp to the desired Maxwell construction of the

system without neutrinos. All other cases with conserved
proton fraction Yp involve more than one globally con-

served charge for the non-neutrino EOS and the explicit
evaluation of phase equilibrium is necessary. Because of
the additional global conservation of the proton fraction,
only with local charge neutrality a simple Maxwell con-
struction is not possible for matter in supernovae or proto-
neutron stars.
In case IIb, Yp is no longer conserved so that the sepa-

ration of the neutrino EOS is not possible. The Gibbs
construction has to be done with the inclusion of neutrinos.
Case IIb is physically meaningful, as local charge neutral-
ity is the only local conservation law, applied for a system
in weak-equilibrium with completely trapped neutrinos, as
e.g. in a protoneutron star.
Case III.—The proton fraction is conserved globally in

case III. The general equilibrium condition �I
Np

¼ �II
Np

shown by case IIIa in Tables II and III expresses that
only a proton and an electron can be moved from one
phase into the other, if at the same time a neutron and a
neutrino are converted backwards. All other combinations
of particles would change the local baryon number, the
electric charge, or the lepton fraction.
In case IIIa, the neutrino EOS cannot be separated from

the rest of the EOS, as the lepton fraction is conserved
locally so that the Gibbs construction has to be performed.
If one is only interested to achieve the Maxwellian case
(without further reasoning why locally fixed YL instead of
locally fixed Yp is assumed), the easier case IIa can be

applied instead. Furthermore, there is no reason why only
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the lepton concentration should be equal in the two phases,
but all other fractions and the baryon density can vary,
leading to different neutrino densities in the two phases.
Thus case IIIa is rather academic and included here only
for completeness.

In case IIIb, the proton fraction is fixed, i.e. weak
reactions are suppressed. Neutrinos are not taken to be
part of the thermodynamic system, as YL is not conserved.
Local charge neutrality is the only local conservation law.
Thus it gives the proper physical description of a phase
transition of supernova matter with sufficiently large sur-
face tension between the two phases. The equilibrium
conditions for the local baryon chemical potentials sim-
plify compared to Ic, in which the proton fraction was fixed
locally.

Case IV.—The non-neutrino constraints of case IV are
equivalent to those of case IIIb. Case IV gives the correct
description of locally charge neutral supernova matter with
completely trapped neutrinos as part of the thermodynamic
description, without any weak reactions taking place.

Case V.—In case V, local electric charge neutrality is not
required any more, so that all charges are conserved glob-
ally. Equation (31) applies now for all particles in the
liquid-gas phase transition of nuclear matter, and the
chemical potentials of all particles become equal in the
two phases. For the hadron-quark phase transition, the
hadronic chemical potentials directly fix the quark chemi-
cal potentials and vice versa.

YL and Yp are conserved globally in cases IV and V and

thus describing supernova matter. But the equilibrium
conditions remain the same if one or both of the fractions
are actually not conserved. However, every nonconserved
fraction gives rise to the two new stronger local constraints
as discussed before. They contain the information about
the chemical equilibrium between the two phases with
respect to this fraction, so that one of the equilibrium
conditions in Tables II and III becomes meaningless. If
YL is not conserved, one gets the disappearance of the
neutrinos and nonconserved Yp gives weak equilibrium

(e.g. in protoneutron stars, or in the core of a supernova).
If Yp and YL are both not conserved, the equilibrium

conditions for global charge neutrality in cold-
deleptonized neutron stars are recovered.

Case 0.—Finally, we want to discuss case 0 in which the
phase transition is somewhat constructed by hand. In
case 0, all state variables are fixed locally. No mixed phase
has to be calculated, as also the baryon density is fixed
locally: nIB ¼ nIIB ¼ nB. If conserved at all, the three con-
served fractions are fixed locally, too. In case 0, there are
no globally conserved charges so that no chemical equi-
librium condition between the two phases is obtained.
Thus, the two equations of state of the two phases can be
calculated completely separately and the phase transition
point is then set by one freely selectable condition.
However, it is possible that the chosen condition can not
be fulfilled at all so that no phase transition occurs.

If a phase transition point can be found, the subvolumes
of the two phases remain arbitrary there, similarly to the
Maxwell construction for the state variable p. Accordingly,
the extensive variables cannot be determined, too. On the
other hand, the local intensive variables remain indepen-
dent of the volumes of the two phases. Thus the chemical
potentials of the locally conserved charges, the local pres-
sure, and the local temperature remain well defined even
without knowing the two subvolumes. The two phases can
be treated as independent single homogeneous phases with
unknown volume.
If pressure equilibrium is taken as the criterion for the

determination of the phase transition point (which in this
case is not a consequence of the first and second law of
thermodynamics any more), the two phases can only coex-
ist at one special density ncoexB if the other state variables are
kept constant. No extended mixed phase appears, and all
thermodynamic quantities but the pressure and the chemi-
cal potentials of electrons for conserved Yp and neutrinos

for conserved Yp and YL change discontinuously across the

phase transition. If electrons and neutrinos can be treated
as ideal gases, �I

e ¼ �II
e follows from the conservation of

Yp and �I
	 ¼ �II

	 from the conservation of Yp and YL. If

instead of the baryon number density the pressure is used
as the continuous state variable no mixed phase forms,
either. At the transition point pressure and thermal equi-
librium are established, but at least chemical equilibrium
of the baryons is not. Most importantly, the thermodynamic
potential, the free energy F ¼ �pV þP

iNi�i, behaves
discontinuously. Because of the local constraints, the sumP

i�iNi will not be equal in the two phases. If the pressure
is used instead of the volume as one of the state variables,
the free enthalpy will also behave discontinuously when
the transition point is crossed. Thus the thermodynamic
potential cannot be used to determine which of the two
phases exists before and which one exists after the phase
transition. The second law of thermodynamics is violated
and thus some other additional criterion has to be consid-
ered for that.
Case 0 with pressure equilibrium as the additional con-

straint corresponds to the situation in which only thermal
and mechanical equilibrium is established, but no particles
can be exchanged between the two phases.
Besides pressure equilibrium every other possible coex-

istence condition can be applied. The conclusions remain
the same, and, in general, all the conditions will lead to a
discontinuous thermodynamic potential.
Instead, one can use the continuity of the corresponding

thermodynamic potential [the free energy F for ðT; V; C�Þ,
the free enthalpyG for ðT; p; C�Þ] as the phase coexistence
criterion. At the point where the two potentials are equal,
the phase transition occurs. Before and after the phase
transition, only the phase with the lower potential is
present. However, with this choice, the pressure (and all
other thermodynamic quantities but the state variables)
will behave discontinuously.
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We note that case 0 with fixed Yp would imply for the

liquid-gas phase transition, that actually no phase transi-
tion occurs, because the same particles appear with equal
densities in the two phases. Case 0 is only relevant if some
internal degrees of freedom remain which can be different
in the two phases.

D. EOS in ðS=NB; p; YL; nCÞ
Apart from numerical simulations, the EOS is usually

calculated for the state variables ðS=NB; p; YL; nCÞ. Such
an EOS can be used directly for the description of typical
representative configurations of protoneutron stars which
are characterized by a constant lepton to baryon ratio and a
constant entropy per baryon in a first approximation.

Because the pressure is chosen to be the independent
continuously changing variable, there exist only two pos-
sibilities: Either the phase transition occurs only at one
single pressure pcoex, or a mixed phase of the two phases
forms over an extended range in pressure. In the first case,
no mixed phase needs to be calculated. If thermal and
mechanical equilibrium are required, the direct phase tran-
sition point can be found where the temperatures of the two
phases become equal TI ¼ TII, with locally fixed S=NI

B ¼
S=NII

B ¼ S=NB, pI ¼ pII ¼ p, YI
L ¼ YII

L ¼ YL, nIC ¼
nIIC ¼ nC, and (arbitrary) globally conserved baryon num-

ber NB which can be shared by the two phases. Pressure
equilibrium is automatically given, as the pressure is one of
the state variables which is set to equal values in the two
phases.

This case is the adiabatic equivalence to case 0 of the
isothermal phase transformations, in which all state varia-
bles but the volume were fixed locally. Here, temperature
equilibrium is chosen as the constraint which determines
the coexistence point. Even though thermal equilibrium is
enforced, the thermodynamic potential, which is the en-
thalpy H ¼ TSþP

iNi�i, will change discontinuously at
the transition point. In contrast in theMaxwell construction
of the isothermal phase transformations of case I, the
coexistence pressure is determined by the proper equilib-
rium conditions of the chemical potentials. We showed that
this leads to continuous thermodynamic potentials.

There exists nothing similar for an adiabatic process to
the isothermal case IIa, which allows an easy construction
of the non-neutrino mixed phase but leads to an extended
mixed phase with the inclusion of neutrinos. As explained
before, the non-neutrino part of the EOS depends on the
neutrino fraction as soon as Yp is not conserved any more.

Thus it is not possible to construct the non-neutrino mixed
phase by means of an equal pressure Maxwell construction
and treat the neutrinos independently. In the adiabatic case,
in all scenarios (except for the direct phase transitions), the
Gibbs construction has to be used and the mixed phase has
to be calculated explicitly with the contribution of the
neutrinos.

The only physical meaningful local constraint when full
equilibrium is reached is local charge neutrality, corre-
sponding to the case of a large surface tension between
the two phases. Globally conserved ðS=NB; YLÞ is equiva-
lent to globally conserved ðS; NB;NLÞ for constant (arbi-
trary) baryon numberNB. Thus the conditions for chemical
equilibrium are the same as in case IIb. As Yp is not

conserved, weak equilibrium is established in the two
phases. Only neutrinos and neutrons can be exchanged
independently between the two phases in the liquid-gas
phase transition. For the hadron-quark phase transition two
down and one up quark can be converted into a neutron.
The possibility of a locally charge neutral extended

mixed phase does not exist for cold-deleptonized neutron
stars. So far, such a kind of a mixed phase was not studied
in the literature. We analyze the properties of this new
mixed phase and examine its disappearance during the
cooling of the neutron star in a separate study [56].
If local charge neutrality is lifted, no local charges exist

any more, and chemical equilibrium is expressed by
case V, with weak equilibrium in the two phases in addi-
tion. For the liquid-gas phase transition, the chemical
potentials of all particles are equal in the two phases.
Because of the stronger constraint of local charge neu-

trality, one can expect that the locally charge neutral mixed
phase will extend over a smaller range in pressure. In both
cases, the appearance of the mixed phase assures that all
thermodynamic variables are well defined and the first
derivatives of the thermodynamic potential change contin-
uously with the pressure.

E. Strange matter

In strange quark matter, in addition to the up and down
quarks, Ns strange quarks are part of the thermodynamic
system. In principle, strange quarks carry the additional
quantum number of strangeness. There exist two possibil-
ities to handle this additional quantum number: First, one
can use the total strangeness of the system indeed as an
additional conserved charge. If strangeness is not taken to
be identical to zero, it is necessary to calculate the EOS for
all possible strangeness fractions YS ¼ NS=NB. The
strangeness chemical potential �NS

would appear in addi-

tion to the chemical potentials of the other conserved
charges. This approach was e.g. used in Ref. [57] to
describe strangeness separation in heavy ion collisions.
In this early work, for the first time, the phase transition
to strange quark matter was described by two separate
conserved charges, baryon number and strangeness, lead-
ing to the phase transition of a multicomponent body. Here,
we will not discuss the scenario of conserved strangeness
any further but will leave it for future discussion.
Second, there exists a simpler and more commonly used

description of strange matter, by assuming equilibrium
with respect to strangeness changing reactions, i.e. strange-
ness is not conserved, so that �NS

¼ 0. In this case, the
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conserved quantum numbers of the strange quark are iden-
tical to the ones of the down quark, so that �d ¼ �s

because of Eq. (30). Then all results presented for two-
flavor quark matter in this article can also be applied to
strange quark matter, with the baryon number given by
NB ¼ 1=3ðNu þ Nd þ NsÞ and the electric charge number
by NC ¼ 1=3ð2Nu � Nd � NsÞ � Ne.

The only subtlety arises when Yp is conserved. First of

all, it is necessary to reconsider the meaning of Yp for

strange matter. One possibility would be to interpret Yp as

the net electric charge carried by baryons Np ¼
1=3ð2Nu � Nd � NsÞ so that Np ¼ Ne still gives charge

neutrality. In combination with baryon number conserva-
tion, the conservation of Yp leads then to a fixed number of

up quarks, but only the sum of down and strange quarks is
fixed, i.e. reactions which change down into strange quarks
are still in equilibrium. Thus it would be necessary to
assume that these reactions happen on a much shorter
time scale than reactions which change the number of up
quarks (semileptonic reactions).

The argumentation followed in Ref. [44] is a different
one. The EOS of state is calculated for fixed Yp. But within

the application in a core-collapse supernova, quark matter
appears only at such large densities and temperatures that
neutrinos are completely trapped and weak equilibrium is
established. Hence Yp is actually not conserved but only YL

remains approximately constant. Within the numerical
simulation for a given YL, the proper Yp is determined.

Under these conditions, weak equilibrium is a reasonable
assumption and it is not necessary to argue with the differ-
ent time scales of the different reactions.

The whole discussion of this subsection applies also for
hyperonic matter, i.e. hadronic matter with strangeness,
and the conclusions are analog.

V. SUMMARY & CONCLUSIONS

In Sec. II, we derived the chemical equilibrium condi-
tions for the chemical potentials of the particles. We used a
formulation, in which the two local parts Ck

0 of the two

phases k ¼ I, II of the conserved charge C0 ¼ CI
0 þ CII

0

and the local charge fractions Yk
� ¼ Ck

�=C
k
0 of the con-

served charges C� ¼ CI
� þ CII

� were chosen to be the
independent degrees of freedom. Finally in Eqs. (20), the
chemical potentials of the particles were expressed by the
chemical potentials of these degrees of freedom. We se-
lected this special set of state variables because it can be
used for all additional local constraints which are consid-
ered in this article: locally fixed fractions with equal values
in the two phases, or local charge densities which are zero
(e.g. local charge neutrality). From this general formula-
tion, we continued with a particular set of local and global
conservation laws and showed that the local chemical
potentials of globally conserved charges without local

constraints become equal, see Eqs. (25) and (26). This
means if no local constraints exist for a charge, chemical
equilibrium with respect to this charge is established. In
Eq. (32), it became apparent that �0C0 (where �0 is the
chemical potential of the charge C0) is equivalent to the
Gibbs potential.
With these results, we showed in Sec. III that the quali-

tative properties of the phase transformation only depend
on the number of globally conserved charges G and that
they are independent of locally fixed fractions. In case
there is only one globally conserved charge G ¼ 1, the
simple Maxwell construction can be used for the calcula-
tion of the mixed phase. The mixed phase will vanish in a
static configuration under the influence of gravity, leading
to a discontinuous phase transformation with a continuous
thermodynamic potential. If there is more than one glob-
ally conserved charge G � 2, the Gibbs construction ap-
plies and every point inside the mixed phase has to be
calculated explicitly. An extended mixed phase always
forms, leading to a continuous phase transformation. The
assumption of additional local constraints allows to
achieve the Maxwell construction, if all the charge frac-
tions are fixed locally. However, this does not work for an
adiabatic phase transition, as the temperature has to vary
with the density to keep the entropy constant.
We applied these general findings to phase transitions in

typical astrophysical systems in Sec. IV. We considered the
liquid-gas phase transition and the transition from hadronic
to quark matter at high densities. It was shown that the
results for up and down quark matter are the same as for
strange quark matter with �d ¼ �s if equilibrium, with
respect to strangeness changing reactions, is assumed.
First, we focused on single phases, and derived that the
equilibrium condition with a nonconserved fraction is
given by setting the corresponding chemical potential to
zero. The well-known weak-equilibrium conditions
[Eqs. (45) and (46)] are found if the proton fraction is
not conserved, and the conditions for beta equilibrium
[Eqs. (47) and (48)] if both the lepton and the proton
fraction are not conserved. If the lepton fraction is not
conserved �I

	 ¼ �II
	 ¼ 0, if neutrinos are included in the

thermodynamic system. Furthermore, it was shown that the
neutrino EOS is independent of the rest of the matter as
long as Yp is conserved and YL is not fixed locally.

For mixed phases it is crucial whether a local or a global
conservation law is applied. We classified the equilibrium
conditions between the two phases for all relevant combi-
nations of global and local constraints, see Tables II and III.
The equilibrium conditions were derived by applying the
procedure described in Sec. II: If a charge is conserved
only globally, its chemical potentials become equal in the
two phases. For this, we used the results from Table I which
express the chemical potentials of the conserved charges in
terms of the chemical potentials of the particles, if all of the
fractions are fixed locally. If Yp or Yp and YL are no longer
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conserved, this is a global constraint leading to weak or
beta equilibrium in both of the two phases. The case Id, in
which Yp and YL are not conserved, gives the well-known

Maxwell construction for cold-deleptonized neutron stars.
Next, we discussed all the different cases. For fixed Yp,

case IIa is most interesting, as it allows to use the Maxwell
construction for the non-neutrino EOS with locally fixed
Yp as the only additional local constraint in addition to

local charge neutrality. With the inclusion of neutrinos and
globally fixed YL, an extended mixed phase will form,
causing a continuous phase transformation. The non-
neutrino part of case IIa is equivalent to case Ic.
Compared to case Ia, case IIa should be used preferably,
as the Maxwell construction is achieved without the as-
sumption of a locally fixed lepton fraction. Case IIIa is also
based on a locally fixed lepton fraction, but still requires
the Gibbs construction. If the Maxwell construction is not
necessary, case IIIb and IV show the equilibrium condi-
tions for local charge neutrality. In case V, no local con-
straints are applied, resulting in the equality of the
chemical potentials of identical particles in the two phases.

For nonconserved Yp, nothing analogous to case IIa does

exist, as the non-neutrino part becomes dependent on the
neutrino contribution. Either one assumes a locally fixed
lepton fraction (case Ib) or the Gibbs construction has to be
used. The only physical meaningful local constraint in the
latter case is local charge neutrality (case IIb). The same is
true for an adiabatic phase transition in which no Maxwell
construction can be achieved at all.

The possibility of a direct phase transition always exists,
by fixing all the state variables locally so that no mixed
phase has to be calculated at all. However, this is contra-
dictory to the second law of thermodynamics as the ther-
modynamic potential changes discontinuously.

In full equilibrium, in general, there is no physical
motivation for a locally fixed proton or lepton fraction, as
no long range force is associated with these charges.
However, with such local constraints, one can simulate
the situation in which the exchange of some particles
between the two phases is suppressed, e.g. due to a rapid
expansion. We will discuss this aspect in more detail later.
Furthermore, one can use local constraints to reduce the
number of globally conserved charges so that the Maxwell
construction can be applied. Then the locally fixed frac-
tions have to be seen as a tool to construct a mixed phase in
a thermodynamic consistent way, without the need of
complicated calculations of the mixed phase. So far, the
necessary conditions for the Maxwell construction were
not derived explicitly in the literature. Conversely, the
assumption of local charge neutrality is physical mean-
ingful. It represents a simple way to describe the mixed
phase if the typical size of the structures is larger than the
Debye-screening length (due to a sufficiently large surface
tension) without the need to include finite-size and
Coulomb effects.

There is another interesting application of the results in
this article already indicated before: the question of nu-
cleation and formation of the new phase. In reality, when
entering the binodal region, the system will first be in a
metastable state in which initial fluctuations can serve as
the seed for the newly appearing phase. Whether these
fluctuations are enhanced (overcritical droplets/bubbles)
and can grow fast enough to develop to a complete phase
separation, depends on the size of the initial fluctuations,
the properties of the medium, and the dynamics of the
entire system, see e.g. Refs. [58,59]. When the spinodal
region is reached, the system becomes locally unstable, i.e.
any fluctuation will be enhanced. However, also in this
case, the growth time maybe rather long [58–60], so that
the system is actually out of equilibrium. Without such
detailed dynamical calculations, it is possible to use addi-
tional local constraints to achieve a similar effect in a pure
thermodynamic description. Without any local constraints,
the coexistence region is given by the binodal surface and
thus represents the scenario that the system has infinitely
long time to reach the true ground state. With additional
local constraints, the coexistence region will shrink, as the
phases have less degrees of freedoms which can be ex-
plored. Fluctuations with respect to the locally fixed frac-
tion are not allowed any more. The result is qualitatively
similar to a spinodal region which is also enclosed by the
binodal. Eventually when all charges and fractions are
fixed locally (case 0), the coexistence region will become
lower dimensional, in the sense that no extended mixed
phase exists but the systems goes directly from one phase
into the other. It is also possible that in this case the phase
transition disappears completely, as it is the case for the
liquid-gas phase transition. Then the entire binodal region
is crossed without any phase separation.
We want to illustrate this further for the hadron-quark

phase transition: The deconfinement process is mediated
only by strong interactions. Since the time scales for any
weak reactions are much longer, one can assume that this
leads to flavor conservation during the deconfinement tran-
sition. Depending on the size of the relevant fluctuations in
the hadronic phase, one might choose one of the different
cases presented in Table III to calculate the threshold
density of the nucleation, so that only some of the charges
are taken to be in equilibrium. For example, in [52], the
equilibrium conditions denoted by case Ia in the present
article were derived with the motivation to determine the
phase transition point under the assumption of flavor con-
servation. The authors assume locally fixed Yp and YL and

local charge neutrality. However, in this calculation,
chemical equilibrium with respect to baryon number is
still established, leading to different baryon densities in
the two phases, although the proton fraction remains equal
in the two phases. One might consider the even stronger
constraint, that initially also the baryon density has to
remain constant inside the bubble which is nucleated
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(case 0). After the quarks have been deconfined, weak
reactions will take place and the system will develop to a
state described by case IV for local charge neutrality or by
case V for global charge neutrality. Latent heat will be
released during this nonequilibrium process. Also in
Ref. [61], local constraints were applied to describe the
nucleation of a multicomponent system.

The present work may also be relevant for the descrip-
tion of the 1st order QCD phase transition in relativistic
heavy ion collisions which may be explored in experiments
at e.g. CERN, Relativistic Heavy Ion Collider (RHIC), or
Facility for Antiproton and Ion Research (FAIR). Let us
first discuss the consequences if the system is assumed to
be in equilibrium: If the relativistic expansion of the fire-
ball in the central collision zone is characterized by a
constant entropy and baryon number, from our consider-
ations we can conclude that a mixed phase exists over an
extended range in pressure and thus over a finite period in
time, too. The phase transition will be continuous, if ther-
modynamic equilibrium is reached at all stages of the
expansion. The description of matter in the QCD phase
transition as a multicomponent system allows different
choices of the equilibrium conditions, as presented here
in the case of compact stars. We note that only such
globally conserved charges are relevant degrees of free-
dom, which are actually accessible by the system. With the
choice of the equilibrium conditions, one can study the
effect that only some of the charges are actually in equi-
librium. For example, in Ref. [62], in addition to global
conservation of baryon number the global conservation of
isospin was considered. The investigation [63] indicates,
that also strangeness fluctuations and separation could lead
to interesting effects. Regarding a hydrodynamical de-
scription, there is an important difference compared to
the case of compact stars: The typical cells in a hydro-
dynamic simulation of a heavy ion collision are usually
very small of order�0:1fm . Thus it might be questionable
to apply an EOS which includes a mixed phase for the
hydrodynamic description. This suggests using a discon-
tinuous EOS with a direct phase transition without a mixed

phase (case 0). However, in principle, a more detailed
treatment, as in Refs. [58,59], might be necessary.
Also in the astrophysical context, it would be interesting

to study the quantitative properties of the mixed phase and
the phase transition by applying the general conditions
found in the present article to specific equations of state
for hadronic and quark matter. For example, one could
analyze the consequences for the protoneutron stars’ evo-
lution during the cooling process and its stability. In
Ref. [56], this was done for case IIb. It represents the first
study of locally charge neutral mixed phases in the quark-
hadron phase transition. Such locally charge neutral struc-
tures can grow almost arbitrary in size. Thus one can
expect significant changes of dynamical properties like
the neutrino emissivities and opacities or the thermal con-
ductivity. Furthermore, local charge neutrality has an in-
teresting effect on the evolution of the mixed phase itself.
As long as Yp or YL are conserved, at least two globally

conserved charges exist and a mixed phase is present. After
the deleptonization, finally only NB remains as a globally
conserved charge, and when the star becomes isothermal
the mixed phase disappears. Another promising investiga-
tion would be the implications of the different assumptions
for the mixed phase in the dynamical environment of a
supernova, as done e.g. in Ref. [44] for only one of the
cases presented here.
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Greiner, Phys. Rev. Lett. 89, 171101 (2002).
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