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Color magnetic flux tubes appear in the color-flavor locked phase of high density QCD, which exhibits

color superconductivity as well as superfluidity. They are non-Abelian superfluid vortices and are

accompanied by orientational zero modes in the internal space associated with the color-flavor locked

symmetry spontaneously broken in the presence of the vortex. We show that those zero modes are

localized around the vortex in spite of the logarithmic divergence of its tension and derive the low-energy

effective theory of them on the world sheet of the vortex string.
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I. INTRODUCTION

It seems likely from theoretical studies that a color
superconducting phase exists in the high density and low
temperature region of a QCD phase diagram [1]. The color
superconducting phase is classified roughly into so-called
two-flavor superconducting [2,3] and color-flavor locked
(CFL) [4] phases depending on the number of flavors
participating in a condensation, and further into many other
variants in more realistic situations with color and charge
neutrality, effects of the chiral anomaly, and finite quark
masses [5,6]. Such a state of matter is considered to be
realized in the core of compact stars, or during the evolu-
tion after collision experiments. To capture their signa-
tures, it is necessary to figure out various properties of
color superconductivity.

In the three flavor case which we are interested in, and in
higher density regions where effects of the quark masses
can be ignored and the three flavor symmetry effectively
hold, the CFL phase would take place with the order
parameter:

�LðRÞ
k� ¼ �ijk����hqLðRÞi� CqLðRÞj� i / �k�; (1.1)

where i, j, k and �, �, � are flavor and color indices. This
diagonal configuration which locks flavor and color, mini-
mizes the free energy [4]. In the CFL phase the symmetry
G ’ SUð3ÞC � SUð3ÞL � SUð3ÞR �Uð1ÞB breaks down to
the diagonal oneH ’ SUð3ÞCþLþR � SUð3ÞCþF, where we
consider the massless case and left- and right-handed
quarks are separated. The Higgs mechanism provides
masses of all eight gluons,1 and there appear eight

Nambu-Goldstone (NG) bosons (the CFL mesons) associ-
ated with chiral symmetry breaking. Also, spontaneous
breaking of the baryon-number symmetry Uð1ÞB generates
a phonon as the associated NG boson. Low-energy effec-
tive theories of the CFL mesons and the Uð1ÞB phonon
have been derived in [7,8], respectively.
When the symmetry of a system is spontaneously broken

in the ground state, there appear various kinds of topologi-
cal defects, corresponding to a nontrivial topology of the
order parameter space. Particular attention has been paid to
vortices determining the dynamics of a system with spa-
tially rotating and/or under an external magnetic field, such
as pulsars with a strong magnetic field. Therefore, in this
paper, we study vortices in the CFL phase [9–18]. In such
systems one might expect that there appear stable vortices
associated with Uð1ÞB symmetry breaking, but this is only
true for the confining phase like hadronic matter. The
Uð1ÞB superfluid vortices appear also in the deconfining
CFL phase as a response to rotation [10,12], but each of
them is unstable to decay into three non-Abelian vortices
found in [14] which are color magnetic flux tubes. This is
because the total tension of the three well-separated non-
Abelian vortices is 1=3 of that of one Uð1ÞB vortex. This
decay is inevitable because of a long range repulsive force
between non-Abelian vortices [15]. Moreover it has been
found in [16,18] that one non-Abelian semisuperfluid vor-
tex carries 1=3 the amount of the color flux of the color
magnetic vortex studied in [9–11]. The non-Abelian vortex
is therefore the most fundamental vortex in the CFL phase,
which is topologically stable and has the minimum wind-
ing and flux. These vortices are called semisuperfluid
vortices which respond not only to color field but also to
rotation like superfluid vortices [14]. In a realistic situation
such as a neutron star, external color fields cannot exist in
the outer core which is in the confining phase. Therefore
the non-Abelian semisuperfluid vortices should be consid-
ered to be created under a rapid rotation of the core of a
rotating star which exhibits the CFL phase, or in a phase
transition in a rapid cooling of a neutron star by the Kibble-
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1In a realistic situation with an electromagnetic gauge field,

seven gluons and one linear combination of the 8th gluon and
electromagnetic photon acquire Higgsed masses. The other
orthogonal combination remains massless. In the present work,
however, we ignore the electromagnetism for simplicity.
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Zurek mechanism [14]. In the core of rotating stars, the
created non-Abelian vortices might form a vortex lattice,
like superfluid vortices in a helium superfluid or a Bose-
Einstein condensate.2 Its lattice structure can be deter-
mined by details of vortex-vortex interaction. It should
be noted here that as the most significant feature of the
non-Abelian vortices, there appear, around the vortex
string, further NG zero modes associated with the addi-
tional symmetry breaking due to the advent of the vortex:
H ¼ SUð3ÞCþF ! K ¼ ½Uð1Þ � SUð2Þ�CþF. These modes
parametrize the complex projective space H=K ¼ CP2

[15], and they are called orientational zero modes. Points
in CP2 correspond one to one to color degrees of freedom
which the vortex carries.

In a previous paper [18] we constructed full numerical
solutions of the semisuperfluid non-Abelian vortices with
diverse choices of parameters. We have analytically shown
that both the scalar and gauge fields asymptotically behave
as e�mr with m ¼ minðmG;m�Þ, where mG and m� are the

masses of the gluons and the traceless part of the scalar
fields, respectively. We also have numerically evaluated the
width of the color flux and found that it is not always the
penetration depth, the Compton wavelength m�1

G . When

the gluon mass is smaller than the scalar masses the width
cannot become larger than certain values determined by the
masses of other fields, so we have found that the color flux
is enforced to reside in the scalar core.

The orientational zero modes CPN�1 of non-Abelian
vortices were first found in the context of supersymmetric
UðNÞQCD [19] in whichUð1ÞB is also gauged; see [20] for
a review. The non-Abelian vortices appearing in these
theories are local vortices which have finite tension and
are at critical coupling [called Bogomol’nyi-Prasad-
Sommerfield (BPS) states in the context of supersymme-
try]. Thanks to supersymmetry, the normalizability of the
orientational zero modes CPN�1 was proved and the 1þ 1
dimensional CPN�1 model with a suitable decay constant
(overall constant) was obtained as the effective world-sheet
theory of the non-Abelian vortex; for instance, see [21]. On
the other hand, in the case of our non-Abelian semisuper-
fluid vortex, the normalizability of the orientational zero
modes has not been shown yet. We have only shown in [15]
that the orientational zero modes do not affect the bound-
ary condition, which is necessary but not sufficient for the
normalizability.3 For instance, the orientational zero
modes of non-Abelian semilocal vortices have been shown

to be non-normalizable (if the size moduli are nonzero)
[23], although those modes do not affect boundary con-
ditions. The question whether orientational zero modes of
the non-Abelian semisuperfluid vortex are normalizable or
not remains as a significant problem in order to study its
dynamics.
In the present work we explicitly show the normaliz-

ability of the orientational zero modes and derive the low-
energy effective world-sheet theory of a non-Abelian semi-
superfluid vortex. To this end, we generalize the derivation
of the effective action of the BPS non-Abelian vortex string
by Gorsky, Shifman, and Yung [21], where the decay
constant (overall constant) of the CPN�1 model was found
to be 4�=g2s with a gauge coupling constant gs. For our
case of a non-Abelian vortex in the CFL phase we find that
the decay constant of the CP2 model does not coincide
with 4�=g2s of the BPS case. It can be larger or smaller
depending on the parameter regions. Our work will be the
first step to study dynamics of semisuperfluid non-Abelian
vortex strings which will be relevant for instance in the
neutron star physics.
In the case of Abelian vortex strings, only translational

zero modes are localized around a vortex, and the dynam-
ics of a single vortex string is described by the Nambu-
Goto action

S ¼ �T
Z

d2�
ffiffiffiffiffiffiffiffi��

p
; (1.2)

with the tension T and the induced metric � on the world
sheet. It is well known that Kelvin waves propagate along a
vortex string. In our case, this is complemented by the CP2

model action. These two kinds of modes arise, for instance,
at finite temperature.
On the other hand, dynamics of multiple vortices such as

the reconnection of two vortex strings have been studied in
various areas from condensed matter physics to cosmology
[24]. For instance, when two vortex strings reconnect with
each other in a helium superfluid, the Kelvin waves are
induced and this process is considered to play an essential
role in quantum turbulence. In the case of non-Abelian
vortices, the reconnection of BPS local non-Abelian vortex
strings was studied in [25]. It was found that even if two
non-Abelian vortex strings initially have different CPN�1

orientations in the internal space, their orientations must be
aligned at the collision point and that the reconnection
always occurs as in Fig. 1. We expect the same thing occurs
in the collision of two semisuperfluid non-Abelian vorti-
ces. When two non-Abelian semisuperfluid vortex strings
reconnect, it is expected that not only the Kelvin waves but
also waves in the internal CP2 space arise (see the right-
hand side of Fig. 1). This may induce a new kind of
turbulence or entangled network of non-Abelian strings,
which is different from a helium superfluid. Our work also
provides a basis to proceed with more applicative studies
on the dynamics of multiple vortex systems, such as a
semisuperfluid vortex lattice in the core of a neutron star.

2It has been suggested in [17] that the oscillations propagate in
the plane perpendicular to vortex strings in a vortex lattice.

3Non-Abelian global vortices appear in the chiral symmetry
breaking, where all symmetries are global [22]. In this case, the
corresponding CP2 zero modes are obviously non-normalizable
because they change the boundary condition, and therefore
cannot be regarded as zero modes associated with the vortex
itself. Those vortices also appear in QCD at very high density in
which Uð1ÞA, originally broken by instantons, is approximately
recovered.
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This paper is organized as follows. In Sec. II we provide
the basic ingredients for our calculations, the time-
dependent Landau-Ginzburg Lagrangian, the non-
Abelian semisuperfluid vortex, and its orientational zero
modes in the color-flavor space. In Sec. III we construct the
low-energy effective theory for the orientational zero
modes of a semisuperfluid vortex string. Section IV is
devoted to the conclusion and discussion.

II. COLOR MAGNETIC FLUX TUBES

We start with a Ginzburg-Landau effective Lagrangian
for the CFL order parameters �L and �R. Since at a high
density region a perturbative calculation shows mixing
terms between �L and �R are negligible, we simply
assume �L ¼ �R � �, and fix their relative phase to
unity [14]. Then the static Ginzburg-Landau Lagrangian
has been obtained as a low-energy effective theory of the
high density QCD in the CFL phase [9,26]

Lð1Þ ¼ Tr½�1
4FmnF

mn þ K1Dm�
yDm�� 	2ð�y�Þ2

� n2�y�� � 	1ðTr½�y��Þ2; (2.1)

where Dm ¼ @m � igsAm, Fmn ¼ @mAn � @nAm �
igs½Am; An� with the spatial indices m, n ¼ 1, 2, 3, and
Tr½TaTb� ¼ �ab with color indices a ¼ 1; 2; . . . ; 8. Here
gs is the SUð3ÞC gauge coupling constant. In addition to the
Lagrangian (2.1), the time-dependent Ginzburg-Landau
Lagrangian contains4

L ð0Þ ¼ Tr½�1
2F0mF

0m þ K0ð ~D0�Þy ~D0��; (2.2)

with

~D 0� � ðD0 � 2i�Þ�: (2.3)

The full Lagrangian L ¼ Lð1Þ þLð0Þ respects the SOð3Þ
spatial rotation, the SUð3ÞC gauge symmetry, and the
SUð3ÞF flavor symmetry. While the parameters K1, n, 	1,
and 	2 in the static Lagrangian (2.1) have been obtained in
a weak coupling regime of high density QCD [9,26], the
parameters K0 and � in a time-dependent Lagrangian have
not yet been determined microscopically in the literature to
our knowledge. However they must be determined in prin-
ciple from the microscopic QCD Lagrangian. In general,
� ¼ �1 þ i�2 is a complex function and is related to
medium effects. Thus as one goes to QCD vacuum where
both temperature and the baryon-number density are zero,
the function � vanishes to restore the Lorentz invariance.
Instead of deriving the unknown parameters K0 and � in

Lð0Þ from QCD, we leave them as free parameters in this
paper. We can decompose the time covariant derivative

as Tr½ ~D0�
y ~D0�� ¼ Tr½D0�

yD0�þ �1j0 þ �2
~j0 þ

j�j2�y�� with j0 � i½ðD0�Þy���yD0�� and ~j0 �
ðD0�Þy�þ�yD0� ¼ @0ð�y�Þ. Thus our Lagrangian
is generic in the sense that it consists of all possible
SOð3Þ � SUð3ÞC � SUð3ÞF invariant terms in an expan-
sion of the time and space derivatives and the order pa-
rameter� up to quadratic order in total. It is convenient to
write the full Lagrangian

L ¼ Tr½�1
4F
�F


� þ K0ðD0�
yD0�þ �1j0 þ �2

~j0Þ
þ K1Dm�

yDm�� � V; (2.4)

V ¼ Tr½	2ð�y�Þ2 �m2�y�� þ 	1ðTr½�y��Þ2; (2.5)

with m2 � �n2 þ j�j2. For the stability of the ground
state, we consider the parameter region m2 > 0, 	2 > 0,
and 3	1 þ 	2 > 0.
The action of color, flavor, and baryon symmetries on�

is given by

� ! ei�UC�UF; UC 2 SUð3ÞC;
UF 2 SUð3ÞF; ei� 2 Uð1ÞB:

(2.6)

There is some redundancy of the action of these symme-
tries. The actual symmetry is given by

G � SUð3ÞC � SUð3ÞF �Uð1ÞB
ðZ3ÞCþB � ðZ3ÞFþB

; (2.7)

where the discrete groups in the denominator do not
change � and are removed from G [14,18].
By using the symmetry G, one can choose a vacuum

expectation value as

h�i ¼ v13; v2 � m2

2ð3	1 þ 	2Þ> 0 (2.8)

without loss of generality. By this condensation the gauge
symmetry SUð3ÞC is completely broken, and the full sym-

FIG. 1. Schematic picture of the reconnection of two non-
Abelian vortex strings. The arrows stand for the CPN�1 orienta-
tions.

4We mimic the time-dependent Ginzburg-Landau Lagrangian
known in the conventional superconductors [27]. We neglect
terms like @0 Tr½ð�y�Þn� and @0½Trð�y�Þ�n with n � 2, be-
cause we regard them as higher order terms containing the fourth
order of fields and a time derivative. Even if one includes these
terms in the Lagrangian, our results in Sec. III are not changed.
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metry G is spontaneously broken down to

H ¼ SUð3ÞCþF

ðZ3ÞCþF

: (2.9)

Therefore the order parameter space (the vacuum mani-
fold) is given by

M ’ G=H ¼ SUð3ÞC�F �Uð1ÞB
ðZ3ÞC�FþB

¼ Uð3Þ: (2.10)

This space is parametrized by SUð3Þ would-be NG bosons,
which are eaten by eight gluons, and one massless NG
boson of the spontaneously broken Uð1ÞB. The mass spec-
tra around the Higgs ground state (2.8) can be found by
perturbing � as

� ¼ v13 þ
þ i’ffiffiffi
2

p 13 þ �a þ i�affiffiffi
2

p Ta: (2.11)

The trace parts 
 and ’ belong to the singlet of the color-
flavor locked symmetry, whereas the traceless parts � and
�a belong to the adjoint representation of it. The gluons get
mass with eating �a by the Higgs mechanism. The masses
of fields are given by

m2
G ¼ 2g2sv

2K1; m2

 ¼ 2m2

K1

;

m2
’ ¼ 0; m2

� ¼ 4	2v
2

K1

;

(2.12)

wheremG is the mass of the SUð3Þmassive gluons and’ is
the NG boson (phonon) associated with the spontaneously
broken Uð1ÞB symmetry. The trace part
 and the traceless
part � of � are massive bosons.

Let us construct a minimal vortex solution in the CFL
phase. We make the standard ansatz for a static vortex-
string configuration parallel to the x3 direction (perpen-
dicular to the x1-x2 plane):

�ðr; �Þ ¼ v diagðei�fðrÞ; gðrÞ; gðrÞÞ; (2.13)

Aiðr; �Þ ¼ 1

gs

�ijx
j

r2
½1� hðrÞ�diagð�2=3; 1=3; 1=3Þ;

(2.14)

with i, j ¼ 1, 2. The equations of motion for the profile
function fðrÞ, gðrÞ, and hðrÞ are of the form

f00 þ f0

r
� ð2hþ 1Þ2

9r2
f�m2




6
fðf2 þ 2g2 � 3Þ

�m2
�

3
fðf2 � g2Þ ¼ 0; (2.15)

g00 þ g0

r
� ðh� 1Þ2

9r2
g�m2




6
gðf2 þ 2g2 � 3Þ

þm2
�

6
gðf2 � g2Þ ¼ 0; (2.16)

h00 � h0

r
�m2

G

3
ðg2ðh� 1Þ þ f2ð2hþ 1ÞÞ ¼ 0: (2.17)

We solve these differential equations with the following
boundary conditions:

ðf; g; hÞ ! ð1; 1; 0Þ as r ! 1;

ðf; g0; hÞ ! ð0; 0; 1Þ as r ! 0:
(2.18)

For the regularity of the field �, the profile function fðrÞ
must vanish at the origin. This means that in the center of
the flux tube, there exists an ungapped component. An
approximate numerical solution with g ¼ 1 was first ob-
tained in [14]. The full numerical solution without any
approximation has been recently obtained by the relaxation
method in diverse choices of parameters [18].
The above ansatz can be written in a different way:

�ðr; �Þ ¼ vei�½ð1=
ffiffi
3

p ÞT0�ð
ffiffiffiffiffiffi
2=3

p
ÞT8�

�
FðrÞffiffiffi
3

p T0 �
ffiffiffi
2

3

s
GðrÞT8

�
;

(2.19)

Aiðr; �Þ ¼ 1

gs

�ijx
j

r2
½1� hðrÞ�

ffiffiffi
2

3

s
T8; (2.20)

with new fields

F � fþ 2g; G � f� g; (2.21)

and the Uð3Þ generators

T0 ¼ 1ffiffiffi
3

p diagð1; 1; 1Þ; T8 ¼ 1ffiffiffi
6

p diagð�2; 1; 1Þ:
(2.22)

The piece proportional to T8 in �ðr; �Þ breaks the color-
flavor locked symmetry H ¼ SUð3ÞCþF down to K ¼
Uð2ÞCþF. This yields the NG modes (the orientational
zero modes)

H

K
¼ SUð3Þ

SUð2Þ �Uð1Þ ’ CP2: (2.23)

III. LOW-ENERGY EFFECTIVE WORLD-SHEET
THEORY

The semisuperfluid vortex has the properties of both
global and local vortices [18]. The vortex tension logarith-
mically diverges in r (in infinite space), but the color
magnetic flux is well squeezed inside the vortex core.
Indeed, as shown in [18], the profile functions
fGðrÞ; hðrÞg in Eqs. (2.19) and (2.20) get exponentially
small of order Oðe�mrÞ at a large distance mr � 1 with
m beingminfmG;m�g. This implies that the wave functions

of the massless NG bosons CP2 are well localized inside
the vortex core. We thus expect these modes are normal-
izable. If it is the case, the NG modes propagate along the
world sheet of the color-flux tube. The purpose of this

MINORU ETO, EIJI NAKANO, AND MUNETO NITTA PHYSICAL REVIEW D 80, 125011 (2009)

125011-4



section is to prove the normalizability and derive the d ¼
1þ 1 dimensional effective theory of the NG modes.

Before going to derivation of the effective action, let us
identify the CP2 zero modes in the background solutions.

To this end, we take a singular gauge, U ¼ expði
ffiffi
2
3

q
T8�Þ,

which transforms the ansatz (2.19) and (2.20) to another
form

�? ¼ vei�=3
�
FðrÞffiffiffi
3

p T0 �
ffiffiffi
2

3

s
GðrÞT8

�
; (3.1)

A?
i ¼ � 1

gs

�ijx
j

r2
hðrÞ

ffiffiffi
2

3

s
T8; (3.2)

as keeping the topology unchanged. Starting from this
special solution, the generic solutions can be obtained by
acting the color-flavor locked symmetry as

�ðUÞ ! U�?U�1; AiðUÞ ! UA?
i U

�1;

U 2 SUð3ÞCþF:
(3.3)

This action changes only T8 with keeping T0. We define the
coordinates on CP2 by

�U

� ffiffiffi
2

3

s
T8

�
U�1 � 

y � 13

3
� h

yi; (3.4)

where 
 is a complex NC ¼ 3-column vector, and hAi
denotes the traceless part of a square matrix A. The
SUð3ÞCþF symmetry acts on 
 from the left-hand side as

 ! U
. Taking trace of this, one gets


y
 ¼ 1: (3.5)

In the definition of 
 in Eq. (3.4), there is a redundancy in
the overall phase of 
. This brings us a Uð1Þ equivalence
relation, 
� ei�
, and therefore one finds that 
 are
indeed the (homogeneous) coordinates on CP2.

In order to derive the low-energy effective theory, we
now promote the moduli parameters to the fields depending
on the coordinates x� with � ¼ 0, 3 of the vortex world
sheet using the moduli space approximation (first intro-
duced by Manton for BPS monopoles [28]), ’ ! ’ðx�Þ.
We are interested in the slow deformation such as
j@�’ðx�Þj � minfm�1


;�;Gg. From a symmetry argument

the low-energy effective theory on the world sheet can be
written in the form of the CP2 (nonlinear sigma) model,

L low ¼ Cgab	 ð’;’	ÞK�@�’
a@�’b	 ða; b ¼ 1; 2Þ;

(3.6)

with the so-called Fubini-Study metric gab	 ¼ ð�abð1þ
j’j2Þ � ’	a’bÞ=ð1þ j’j2Þ2 on the complex projective
space CP2. The overall coefficient C in front of the
Lagrangian is a certain real constant (corresponding to
the pion decay constant in the chiral Lagrangian). It is
called the Kähler class in the context of the Kähler geome-

try. It should be calculated from the Ginzburg-Landau
theory, and consequently depends on the parameters
fm�;m
;mGg. If C is finite (infinite), the NG modes

are (non-)normalizable. We find C to take finite values in
explicit calculations for various parameters fm�;m
;mGg,
below.
The effective Lagrangian (3.6) in the quadratic order of

the derivatives @� (� ¼ 0, 1) can be obtained from the
original Lagrangian (2.1) in the following procedure. We
substitute the background solution, where the orientation
modes are promoted to the fields, into the original
Lagrangian (2.4), to yield

Llow ¼
Z

dx1dx2 Tr

�
� 1

2
Fi�F

i� þ K�D��
yD��

þ K0ð�1j0 þ �2
~j0Þ

�
ð� ¼ 0; 3Þ; (3.7)

with � ¼ �ð
ðx�ÞÞ, Am ¼ Amð
ðx�ÞÞ. Note that the
x� dependence appears in the Lagrangian only through
the moduli fields 
ðx�Þ. We have already known the
x� dependence of � and Ai¼1;2

�ðr; �; 
ðx�ÞÞ ¼ vei�=3
�
FðrÞffiffiffi
3

p T0 þGðrÞh
ðx�Þ
yðx�Þi
�
;

(3.8)

Aiðr; �;
ðx�ÞÞ ¼ 1

gs

�ijx
j

r2
hðrÞh
ðx�Þ
yðx�Þi: (3.9)

The missing piece to construct the low-energy theory is
A�ð
ðx�ÞÞ which is zero in the background configurations,
namely, it does not depend on either x1 or x2, and does not
vanish for fluctuations. We make an ansatz for A� by
following [21]

A�ð
ðx�ÞÞ ¼ i�ðrÞ
gs

½h

yi; @�h

yi�; (3.10)

where �ðrÞ is an unknown function which will be deter-
mined below. In order to make the following calculations
simplified, let us define

F �ða; bÞ � a
@�

y þ b@�

y þ ða� bÞ

y@�

y;

a; b 2 C: (3.11)

One finds that this quantity satisfies the relations

F ða; bÞy ¼ F ðb	; a	Þ; Tr½F ða; bÞ� ¼ 0; (3.12)

�F ða; bÞ ¼ F ð�a;�bÞ;
F ða; bÞ þF ða0; b0Þ ¼ F ðaþ a0; bþ b0Þ;

(3.13)

Tr ½F �ða; bÞyF �ða; bÞ� ¼ ðjaj2 þ jbj2Þ½@�
y@�


þ ð
y@�
Þð
y@�
Þ�:
(3.14)
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The effective Lagrangian (3.7) consists of the terms D��
and Fi� which include @� once and are traceless, so that
they can be written in terms of F ða; bÞ:

A� ¼ i�

gs
F �ð1;�1Þ; (3.15)

D �� ¼ vei�=3F �ðf� gþ �g; f� g� �fÞ; (3.16)

F�i ¼ 1

gs
�ij

xj

r2
ð1� �ÞhF �ð1; 1Þ � i

gs

xi
r2

�0F �ð1;�1Þ:
(3.17)

By plugging these into Eq. (3.7), we finally obtain

L CP2 ¼ C
X

�¼0;3

K�½@�
y@�
þ ð
y@�
Þð
y@�
Þ�;

(3.18)

where we have defined K3 � K1, and the constant C is
given by the integration

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

1, 1, 5

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

0.1
0.2
0.3
0.4
0.5

c

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

1, 5, 1

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

0.1
0.2
0.3
0.4
0.5
0.6
0.7

c

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

5, 1, 1

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

1
2
3
4
5
6
7

c

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

5, 5, 1

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

2
4
6
8

10
c

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

5, 1, 5

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

1
2
3
4
5
6
7

c

2 4 6 8 10 12 14
r

0.2
0.4
0.6
0.8

1
1.2

1, 5, 5

2 4 6 8
r

0.2
0.4
0.6
0.8

1

2 4 6 8
r

0.2
0.4
0.6
0.8

1
c

FIG. 2 (color online). The background configurations with various fmG;m
;m�g are shown in the left panels. The middle panels
show the function �ðrÞ, and the integrand c (C ¼ 4�

g2s

R
drrc) in Eq. (3.19) is shown in the right panels.
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C ¼ 4�

g2s

Z
dr

r

2

�
m2

G

�
ð1� �Þðf� gÞ2 þ �2

2
ðf2 þ g2Þ

�

þ ð1� �Þ2h2
r2

þ �02
�
: (3.19)

Note that j0 and ~j0 in the original Lagrangian (2.4) give no
contribution in the low-energy effective action because of
the equation

Tr½�yD��� ¼ v2GTr½h

yi
�F �ðf� gþ �g; f� g� �fÞ� ¼ 0:

(3.20)

The unknown function �ðrÞ should be determined in
such a way that the ‘‘Hamiltonian,’’ Eq. (3.19), is mini-
mized. The Euler-Lagrange equation of motion for � reads

�00 þ �0

r
þ ð1� �Þh

2

r2
�m2

G

2
½ðf2 þ g2Þ�� ðf� gÞ2� ¼ 0:

(3.21)

We have to solve this with given background solutions
ff; g; hg and the boundary condition

� !
�
1 for r ! 0;
0 for r ! 1:

(3.22)

Note that the Kähler class C expressed in terms of � in
Eq. (3.19) and the Euler-Lagrange equation (3.21) are
formally the same as those for the BPS non-Abelian local
vortex in the supersymmetric UðNÞ gauge theory [21].
Equation (3.21) for the BPS non-Abelian vortex [21] has
been analytically solved to give � ¼ 1� f=g with the aid
of the supersymmetry. Since Eqs. (2.15) and (2.16) for f, g
in the present case are different from the BPS equations in
the supersymmetric theory, Eq. (3.21) cannot be solved
analytically.

In order to solve it, we first need to specify the back-
ground configurations f, g, and h by solving Eqs. (2.15),
(2.16), and (2.17) [18]. Then we numerically solve
Eq. (3.21) with the background fields. Various numerical
solutions are shown in Fig. 2. Our numerical results for C
are listed in Table I. We thus have shown that the Kähler
class C is finite for a wide class of fmG;m
;m�g, implying

that the massless NG modes CP2 are normalizable on the
world sheet of the vortex. Comparing to CBPS ¼ 4�=g2s for
a local BPS non-Abelian vortex string [21], C can be larger
or smaller than in general, depending on parameters.

Let us estimate the Kähler class C in a realistic setting
in the weak coupling regime, where the couplings of the
Ginzburg-Landau Lagrangian have been determined [9,26]

as 	1 ¼ 	2 ¼ 3K1 ¼ 7�ð3Þ
4ð�TcÞ2 Nð
Þ and m2 ¼ �8Nð
Þ�

log T
Tc

with Nð
Þ ¼ 
2

2�2 . We consider the quark chemical

potential 
 ¼ 500 MeV, � ¼ 200 MeV, Tc ¼ 100 MeV,
and T ¼ 0:9Tc. Then we get

gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�2

ð112 NC � NFÞ log
�

vuut ’ 3:1;

v ’ 70 MeV, mG ’ 130 MeV, m
 ’ 344 MeV, and m� ’
174 MeV. The numerical solution is shown in Fig. 3 and
we get C ¼ 0:503� 4�

g2s
given in Eq. (3.19). We thus have

found that the Kähler class C in this realistic setting is
about one-half of CBPS of the BPS case.
We see that the speed of NG modes propagating along a

vortex string is given by

v2
c ¼ K1=K0 (3.23)

as expected from the original Lagrangian (2.4). Although
we have started from the Lagrangian (2.4) which has only
the SOð3Þ rotational symmetry of the space (without the
Lorentz invariance), we have eventually arrived at the low-
energy effective Lagrangian (3.18), which has the effective
Lorentz symmetry on the world sheet if we rescale x3 !
x30 ¼ vcx

3.

IV. CONCLUSION AND DISCUSSION

We have derived the low-energy effective action for the
orientational modes CP2 of a non-Abelian semisuperfluid
vortex sting in the CFL phase, and have confirmed that

TABLE I. The Kähler class given in Eq. (3.19). The ratios C=CBPS to the BPS case CBPS ¼
4�=g2s are written.

fmG;m
;m�g f5; 1; 1g f1; 5; 1g f1; 1; 5g f1; 5; 5g f5; 1; 5g f5; 5; 1g
g2sC=4� 3.27 0.60 0.37 0.38 0.51 4.29
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FIG. 3 (color online). The vortex profile functions ff; g; hg for
mG ’ 130 MeV, m
 ’ 344 MeV, and m� ’ 174 MeV.
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those modes are in fact normalizable and localized around
the vortex string. The Kähler class has been evaluated on
the background vortex solutions with various choices of
the parameters (Table I). It has been shown to be different
from the one for a local BPS non-Abelian vortex string but
in general to be larger or smaller than it depending on
parameters.

Our work will become the first step to study dynamics of
semisuperfluid vortex strings. When well-separated vorti-
ces constitute a lattice by a long range repulsion [15], the
CP2 waves (as well as Kelvin waves) propagate along each
vortex string independently. Such waves will arise at finite
temperature or when two vortex strings reconnect as in
Fig. 1. It has been shown [25] in the case of local non-
Abelian vortices that the reconnection always occurs when
two vortex strings collide even if they have different ori-
entations initially.

In the study of those dynamics, we also have to include
the interaction of a vortex string with the Uð1ÞB Nambu-
Goldstone mode (phonon) living in the bulk. The string
radiates or absorbs those particles because it is a source of
them [24]. This interaction can be written in the same
manner with the Abelian case,

Sint ¼ 2�
Z

d�
�B
�; (4.1)

where theUð1ÞB NG boson has been dualized to the 2-form
field B
�. On the other hand, it is an open question if the

non-Abelian semisuperfluid vortex interacts with the CFL
mesons, the NG bosons for the broken chiral symmetry.

Our result can be used when vortices are well separated
compared with Compton wavelengths of massive particles.
If two or more vortices are close to each other, we have to
construct the effective action from the multiple vortex
background. The construction of the effective action for
multiple non-Abelian vortices was formally achieved in the
BPS case in supersymmetric theories [29]. When two
vortices make a bound state the orientational zero modes

are not the direct product of two CPN�1’s but something
different [30]. Extensions of the present work to the mul-
tiple non-Abelian vortices at a short distance as well as a
gas of non-Abelian vortices at finite temperature [31]
remain as interesting problems.
In the present work we have considered an ideal CFL

phase where the exact flavor symmetry has held. Once
flavor asymmetries in electric charges or mass differences
are taken into consideration, there would appear favored
directions in the CP2 space of the orientational zero
modes, hence the effective action which we have derived
here would be modified accordingly. We will discuss this
problem elsewhere.
Finally we comment on the possible application to in-

stantons. Instantons cannot stably exist but shrink to zero in
the Higgs phase, due to the Derrick’s scaling argument.
Instead, they can live stably inside a non-Abelian vortex
core where they are regarded as sigma model instantons in
the CPN�1 world-sheet theory of the vortex. In the case of
supersymmetric QCD, the instanton energy (action) can be
calculated as the lump energy (action) multiplied by the
decay constant (Kähler class) of CPN�1 [32], because the
energy of BPS solitons coincides with their topological
charge in supersymmetric theories. In our case of high
density QCD, however, this agreement does not hold but
the instanton energy inside a non-Abelian vortex becomes
smaller or larger than the standard instanton energy.
Physical interpretation of this phenomenon remains as a
future problem.
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