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The screening of a Coulomb field of test charge in plasma with a Bose condensate of an electrically

charged scalar field is considered. It is found that the screened potential contains several different terms:

one decreases as a power of distance (in contrast to the usual exponential Debye screening), and some

others oscillate with an exponentially decreasing envelope. A similar phenomenon exists for fermions

(Friedel oscillations), but fermionic and bosonic systems have quite different features. Several limiting

cases and values of the parameters are considered and the resulting potentials are presented.
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I. INTRODUCTION

It is well known that an electric charge, Q, in plasma is
screened according to the Debye law, so the long-ranged
Coulomb field is transformed into the Yukawa type poten-
tial (see e.g. [1,2]):

UðrÞ ¼ Q

4�r
! Q expð�mDrÞ

4�r
; (1)

where the Debye screening mass,mD, is expressed through
the plasma temperature and chemical potentials of the
charged particles; see below Eqs. (12) and (13). Physical
interpretation of this result is evident: test charge polarizes
plasma around, attracting opposite charge particles and
thus the electrostatic field drops down exponentially faster
than in vacuum. Formally the Debye screening appears
from a pole at purely imaginary k in the photon propagator
in plasma, ðk2 þ�00Þ�1, where�00 is the time-time com-
ponent of the photon polarization operator.

By an evident reason the screening effects were studied
historically first in fermionic i.e. in electron-proton and in
electron-positron plasma. For degenerate fermionic plasma
another and quite striking screening behavior was found.
Namely, the screened potential drops down as a power of
distance, 1=r3 in the nonrelativistic case and 1=r4 in the
relativistic case multiplied by an oscillating function,
cosðkFrÞ or sinðkFrÞ, where kF is the Fermi momentum.
This phenomenon is called Friedel oscillations [3,4].
Usually it is prescribed to a sharp (nonanalytic) cutoff of
the Fermi distribution of degenerate electronic plasma at
T ¼ 0, but maybe it is better to say that the effect is related

to the logarithmic singularity of the photon polarization
operator �00ð! ¼ 0; kÞ. This type of screening is dis-
cussed in Sec. III both in the nonrelativistic and relativistic
cases for arbitrary, not necessarily zero, temperature.
Plasma with charged bosons attracted attention much

later, both for pure scalar electrodynamics (for a review,
see, e.g., Ref. [5]), or for quark-gluon plasma [2,6,7].
Surprisingly until last year the impact of a possible Bose
condensate of charged fields on the photon polarization
operator was not considered. Only recently an investiga-
tion of plasma with a Bose condensate of charged scalars
was initiated [8–14]. It was found that in the presence of a
Bose condensate the screened potential behaves similarly
to that in the fermionic case, i.e., the potential oscillates,
exponentially decreasing with distance [9,10]. This effect,
however, in contrast to Friedel oscillations, does not come
from the logarithmic branch point singularity in �00 but
from the pole in the photon propagator at a complex (not
purely imaginary) value of k. It was shown that the polar-
ization operator contains an infrared singular term �00 �
1=k2 [10,11] that shifts the pole position from an imaginary
axis (as in the Debye case) to a point with nonzero real and
imaginary parts.
At nonzero temperature the polarization operator has

another infrared singular term �1=k. This term is odd
with respect to the parity transformation, k ! �k and, as
a result, the potential acquires the term which decreases as
a power of distance but does not oscillate. Moreover, the
polarization operator has logarithmic singularity as in the
fermionic case and this singularity also generates an oscil-
lating potential similar to the Friedel one. It is interesting
that the screened potential is a nonanalytic function of the
electric charge e. In particular, in a certain limit it may be
inversely proportional to e, despite being calculated in the
lowest order in e2.
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Another oscillatory, exponentially damped, behavior of
the potential between static charges has been reported in
the literature: it was argued [15] that in nuclear matter at
high densities and low temperatures, the Debye pole ac-
quires a nonzero real part and so the screened potential
oscillates (see also [16]). These Yukawa oscillations are
short ranged oscillations and fade away with distance
faster, as compared to the Friedel oscillations.

The screening of color charges in QCD in the presence
of an uncharged pion condensate was considered recently
in [17]. Since the condensate is uncharged its effect is quite
different from those found in our work.

In this paper we further analyze the asymptotics of the
screening effects arising in bosonic and fermionic plasma.
In particular, we have taken into account all the contribu-
tions, including the ones from the logarithmic singularities
in the photon polarization tensor and considered different
limiting cases.

The content of the paper is the following. In Sec. II we
reproduce our results for the photon polarization operator
in plasma with a charged Bose condensate. Fermionic
Friedel oscillations in nonrelativistic and relativistic cases
both for T ¼ 0 and T � 0 are considered in Sec. III. There
we reproduce some already established results but use
different techniques. We present this derivation because
our method is new and more general than that presented in
the literature. Moreover, the method is used in the bosonic
case where such calculations have never been performed,
and it is instructive to check the method in a simpler known
case of fermions. On the other hand, our results for T � 0
and relativistic electrons are new. In Sec. IV we calculate
screening in bosonic plasma, taking into account the con-
tributions from the poles in the complex k plane, from the
integral along the imaginary axis, and from the logarithmic
branch cuts. The last part has never been done before. We
consider several conditions, in particular, bosons with or
without condensate and eventually even in the absence of
fermions. Finally, in Sec. Vour conclusions are presented.

II. POLARIZATION OPERATOR OF PHOTON
IN MEDIUM

We confine ourselves to the lowest order in the electro-
magnetic coupling, e2. The photon polarization operator,
���ð!; kÞ, in this approximation is well known; see, e.g.,

books [2,6]. For the calculation of the latter either imagi-
nary or real time methods are used. However, the result can
be obtained in a simpler way [10] just by including into the
photon Green’s function the effects of medium. This can be
done by taking into account both the expectation value of
the time ordered product of hA�ðxÞA�ðyÞi over vacuum and

the contribution of matter states, weighted by the particle
distribution, fjðqÞ, where j denotes the particle type and q

is the particle momentum. The resulting expressions, found
in many works—see, e.g., [10] and references therein—are
the following:

�B
��ðkÞ ¼ e2

Z d3q

ð2�Þ3E ½fBðE;�Þ þ �fBðE; ��Þ�

�
�
1

2

ð2q� kÞ�ð2q� kÞ�
ðq� kÞ2 �m2

B

þ 1

2

ð2qþ kÞ�ð2qþ kÞ�
ðqþ kÞ2 �m2

B

� g��

�
; (2)

�F
��ðkÞ ¼ 2e2

Z d3q

ð2�Þ3E ½fFðE;�Þ þ �fFðE; ��Þ�

�
�
q�ðkþ qÞ� � q�k�g�� þ q�ðkþ qÞ�

ðkþ qÞ2 �m2
F

þ q�ðq� kÞ� þ q�k�g�� þ q�ðq� kÞ�
ðk� qÞ2 �m2

F

�
;

(3)

where k ¼ ½!;k� and q ¼ ½E;q� are four momenta of

photon and charged particles living in plasma, E ¼ ðq2 þ
m2

B;FÞ1=2, with mB;F being either the mass of charged

bosons or fermions. �B
�� and �F

�� are, respectively, the

contribution to the polarization tensor from bosons and
fermions, and� and �� are chemical potentials for particles
and antiparticles. Chemical potentials for bosons and fer-
mions are generally unequal; moreover, the chemical equi-
librium is not necessarily maintained and �þ �� � 0.
Though in what follows we present all the results for �þ
�� ¼ 0, it is straightforward to generalize them to arbitrary
� and ��. The derivation of these intuitively clear expres-
sions from the first principles in the case in which fB
contains a Bose condensate contribution can be found in
our paper [10]. There, starting from the basics of the field
theory, we solve the equation of motion for the photon
propagator, averaging not only over vacuum fluctuations,
but over the medium as well. In kinetic equilibrium the
distribution functions take the form:

fB;F ¼ 1

exp½ðE��Þ=T� � 1
; (4)

where the signs þ and � stay for fermions and bosons,
respectively. In the case in which the boson chemical
potential is equal to its maximum allowed value � ¼ mB

(or �� ¼ mB), the formation of the Bose condensate is
possible and in equilibrium the Bose distribution function
acquires an additional term describing accumulation of
bosons in the zero momentum mode:

fB ¼ C�ð3ÞðqÞ þ 1

exp½ðE�mBÞ=T� � 1
; (5)

where C is a constant parameter describing the amplitude
of the condensate. One can easily check that the distribu-
tion in Eq. (5) annihilates the collision integral and hence is
the equilibrium distribution for � ¼ mB.
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The screening of the test charge in the static case is
determined by the zero frequency value of �00ð0; kÞ. We
assume that the plasma is homogeneous and isotropic, so
the polarization tensor depends only upon the magnitude of
vector k but not on its direction. The corresponding ex-
pressions can be easily read from Eqs. (2) and (3):

�B
00ð0; kÞ ¼

e2

2�2

Z 1

0

dqq2

EB

½fBðEB;�BÞ þ �fBðEB; ��BÞ�

�
�
1þ E2

B

kq
ln

��������2qþ k

2q� k

��������
�
; (6)

�F
00ð0; kÞ ¼

e2

2�2

Z 1

0

dqq2

EF

½fFðEF;�FÞ þ �fFðEF; ��FÞ�

�
�
2þ ð4E2

F � k2Þ
2kq

ln

��������2qþ k

2q� k

��������
�
: (7)

In what follows we will omit the first argument in the
polarization tensor, i.e., write �00ð0; kÞ � �00ðkÞ.

Evidently the first (condensate) term in fB gives rise to
the quadratic infrared singularity �00 � 1=k2, as found in
Refs. [10,11]. At nonzero temperature the pole singularity
of the Bose distribution at q ¼ 0 leads to an additional
infrared pole �1=k in the polarization tensor of photons
[10]. Thus at low values of the photon momentum�00 can
be expanded as [10]

�B
00ð0; kÞ ¼ e2

�
hðTÞ þm2

BT

2k
þ 1

ð2�Þ3
C

mB

�
1þ 4m2

B

k2

��
;

(8)

where the function hðTÞ is independent of k and has the
limiting values:

hðTÞ ¼
�
T2=3 ðhigh TÞ;
�ð3=2ÞðmBT

3Þ1=2=ð2�Þ3=2 ðlow TÞ: (9)

The low T limit of the function hðTÞ is however always
subdominant with respect to the second term in Eq. (8)
which comes from the logarithmic term in Eq. (6).

In the expression of the photon polarization tensor writ-
ten above the singularities of �00 due to pinching of the
integration contour by the poles of fBðEB;mBÞ and the
logarithmic branch point in the integrand of Eq. (6) are
not taken into account. It will be done in Sec. IV

The contribution of fermions into the polarization tensor
is not infrared singular, so it is convenient to present the
latter as

�F
00ðkÞ ¼ �F

00ð0Þ þ ½�F
00ðkÞ ��F

00ð0Þ�; (10)

where

�F
00ð0Þ ¼

e2

�2

Z dq

E
ðfþ �fÞðq2 þ E2Þ: (11)

In the case of relativistic fermions with nonzero chemi-
cal potential, �, the zero momentum limit of �F

00 is [18]

�F
00ð0Þ ¼ e2

�
T2

3
þ�2

�2

�
: (12)

This expression is valid in the limitmF � � andmF � T,
while in the nonrelativistic case for positive (��m) and
small T we find

�F
00ð0Þ ¼

ffiffiffi
2

p
e2m3=2

F ð��mFÞ1=2
�2

� e2T2

12
ffiffiffi
2

p
�

mF

��mF

�
3=2

þ � � � : (13)

If �<m, the polarization tensor is exponentially sup-
pressed, �00 � exp½�ðm��Þ=T�. For the Debye mass
we find the well-known nonrelativistic result:

m2
D ¼ e2nF

T
: (14)

Here, as above in the bosonic case, the singularities of�F
00

due to the logarithmic branch point in integral (7) are not
included. For that, see the next section.
The potential of a test charge,Q, modified by the plasma

screening effects is given by the Fourier transform of the
photon propagator in plasma:

UðrÞ ¼ Q

ð2�Þ3
Z d3k expðikrÞ

k2 þ�00ðkÞ

¼ Q

2�2

Z 1

0

dkk2

k2 þ�00ðkÞ
sinðkrÞ
kr

¼ Q

2�2r
Im

Z 1

0

dkkeikr

k2 þ�00ðkÞ
: (15)

Usually the integrand in Eq. (15) is an even function on k
and the integration along the line of positive real k can be
transformed into the contour integral in the upper complex
k plane. However, in the case of bosons with�B ¼ mB, the
polarization operator contains an odd term m2

BT=2k,
Eq. (8), and the usual contour transformation is not appli-
cable. So we express integral (15) through the integral
along the imaginary upper k axis plus contribution of
singularities in the upper k plane. If�00 is an even function
of k and ðk2 þ�00Þ�1 is regular on the imaginary k axis,
the imaginary part of the integral along the imaginary axis
vanishes. If the integrand has a pole at positive imaginary
k ¼ ikD, i.e.,

� k2D þ�00ðikDÞ ¼ 0; (16)

this poles contributes into the integral as i��ðk� ikDÞ and
gives rise to the usual exponential Debye screening. If�00

contains an odd part, the integral along the imaginary k
axis gives a contribution to the potential which decreases
only as the power of distance [10].
There may also be poles at complex k ¼ kp, when both

real and imaginary parts of kp are nonzero. Such poles have

been found for plasma with a charged Bose condensate
[9,10]. They produce an oscillating behavior superimposed
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on the exponential decrease of the potential. It was argued
[15] that complex poles also exist in the plasma of strongly
interacting particles (pions and nucleons) and in QCD
plasma.

There are also logarithmic singularities of �00ðkÞ at
some nonzero Imk and the integrals along the correspond-
ing cuts also produce oscillations in the screened potential
but the exponential cutoff is much weaker; it is propor-
tional to temperature and for zero T it becomes a power law
one. For fermions, this effect, called Friedel oscillations, is
known for a long time [3,4], while for bosons a similar
phenomenon has not been studied before.

III. FRIEDEL OSCILLATIONS IN FERMIONIC
PLASMA

We consider here the Friedel oscillations in fermionic
plasma. The nonrelativistic case is discussed in
Refs. [3,4,19], both at zero and nonzero temperatures.
The relativistic case was studied in [19]. In what follows
all four cases are presented, considered in somewhat differ-
ent ways.

Singularities of �00ðkÞ in the complex k plane appear
when the singular points of the integrand in Eq. (7) in the
complex q plane pinch the contour of integration or coin-
cide with the integration limit at q ¼ 0. The usual calcu-
lation is done at zero temperature when the fermion
distribution tends to the � function and hence the integral
over dq goes from zero to the Fermi momentum, qf. The

singularity in �F
00 appears when the branch points of the

logarithm at k ¼ �2q move to the integration limit at q ¼
qF. In a more general case of arbitrary temperature the
integrand is a smooth function of q and integration goes up
to infinity. The integrand has two kinds of singularities.
First, there are poles in the distribution function fF which
are situated at

q2n ¼ ½�� i�Tð2nþ 1Þ�2 �m2
F; (17)

where n runs from 0 to infinity.
The second type of singularities are branch points of the

logarithm at

qb ¼ �k=2: (18)

The singularities of �00ðkÞ are situated at such kn for
which qn and qb coincide, qn ¼ qb, and the poles qn and
branch points qb approach the integration contour in the
q plane from the opposite sides. Since, according to the
discussion in the previous section and Eq. (15), we con-
sider k in the first quadrant of the complex k plane, only the
singularities with Rek 	 0 and Imk 	 0 contribute to the
asymptotics of the potential, i.e.,

kn ¼ 2qn ¼ ½ð�þ i�Tð2nþ 1ÞÞ2 �m2
F�1=2: (19)

Symbolically the integral on the right-hand side of Eq. (15)
can be written as a sum of three contributions:

I0 ¼
Z 1

0
½idk� þ 2�i

X½Res� þX
n

Z knþi1

kn

�; (20)

where the first integral goes along the positive imaginary
axis in the k plane, the second one is the sum of the residues
of the poles on the integrand (if the poles are on the
imaginary axis, only one-half of the residue is to be taken),
and the third term is the integral of the discontinuity over
the branch line of the logarithmic singularity of �00ðkÞ.
The integration contour in the complex k plane is sche-
matically depicted in Fig. 1, where only one pole and one
branch cut are included.
Before calculating the singular part of �00, let us first

note that we are interested only in singularities in the first
quadrant in the k plane and thus only the contribution from
� lnj2q� kj should be taken. Since the absolute value of

the argument can be written as the limit of � ! 0 of j2q�
kj ¼ ½ð2q� kÞ2 þ �2�1=2, the logarithmic contribution into
UðrÞ is given by

ln

��������kþ 2q

k� 2q

��������! � lnjk� 2qj
¼ �½lnðk� 2qþ i�Þ þ lnðk� 2q� i�Þ�=2
! � lnðk� 2q� i�Þ=2: (21)

The singular part �ðnÞ
00 near kn can be determined as

follows. The integral along the contour squeezed between
qn and qb is equal to the residue of the integrand at the pole
multiplied by 2�i plus a regular part at k ¼ kn. The pole
term near q ¼ qn þ z is equal to

1

exp½ðEn ��Þ=T� þ 1
¼ �EnT

zqn
: (22)

The residue in the pole gives the singular term in�00 equal

k

FIG. 1. Contour of integration in the complex k plane.
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to

�ðnÞ
00 ðkÞ ¼

ie2T

4�k
ð4E2

n � k2Þ lnðk� 2qn � i�Þ; (23)

where qn is the pole position given by Eq. (19) and En ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n þm2

p
. We have neglected here the contributions of

antiparticles assuming that the chemical potential is suffi-
ciently large. The discontinuity of �00 at the branch line
k ¼ 2qn þ iy, where y runs from zero to infinity, is equal
to

��ðnÞ
00 ¼ �ðnÞþ

00 ��ðnÞ�
00 ¼ � e2Tð4E2

n � k2Þ
2k

; (24)

where the upper index þ or � indicates that the value of
�00 is taken on the right- or the left-hand side of the cut.

The contribution of this discontinuity into the asymp-
totic behavior of UðrÞ, Eq. (15), is equal to

UnðrÞ ¼ Q

2�2r
Im

Z 1

0

idyk expð�yrþ 2iqnrÞð���00Þ
½k2 þ�ðnÞþ

00 ðkÞ�½k2 þ�ðnÞ�
00 ðkÞ� :

(25)

Here k ¼ 2qn þ iy. For the fermionic plasma we can
neglect y in comparison to qn, because in the limit of large
distances y� 1=r. However, in the bosonic case a non-
vanishing contribution comes from subdominant in y
terms; see below.

Below we consider separately, first, relativistic and,
second, nonrelativistic cases. In the relativistic limit En ¼
qn and the factor in front of the logarithm, Eq. (23), and
discontinuity (24) vanish at the branch point and the dis-
continuity becomes purely imaginary in the leading order,

��ðnÞ
00 ¼ ie2Ty. This leads to a faster decrease of the

screened potential in comparison with the nonrelativistic
case, 1=r4 instead of 1=r3, and to the change of phase,
sinð2�rÞ instead of cosð2�rÞ.

In the relativistic case, whenm � T but�may be large,
the poles are situated at

En ¼ qn ¼ �� i�Tð2nþ 1Þ: (26)

Since jkj2 > 4jqnj2 > 4ð�2 �m2
FÞ, then for sufficiently

large �, �>mF, and low T we can neglect �00 � e2�2

in the denominator in comparison with 4q2n and obtain

UnðrÞ ¼ Qe2T

16�2q3nr
3
Ime2iqnr

¼ Qe2T

16�2q3nr
3
sinð2�rÞe�2�ð2nþ1ÞTr: (27)

For non-negligible T, the dominant term is that with n ¼ 0
and though it decreases exponentially, the power of the
exponent may be much smaller than the standard one,
Eq. (1) with mD ¼ e�=�, as follows from Eq. (12).

At small T the result is proportional to the temperature
and thus formally vanishes at T ¼ 0. However, at small T

the total contributions of the branch points diverge as 1=T,
so summing up all Un we find

Ucut ¼
X1
n¼0

Un ¼ e2QT

16�2r3�3

sinð2�rÞ expð�2�rTÞ
1� expð�4�rTÞ :

(28)

For T ! 0 and large r we can take qn ¼ � because the
effective n’s are of the order of neff � 1=ð4�rTÞ and nT �
1=r � �.
For very small T such that rT � 1 we obtain

Ucut ¼ e2Q

64�3

sinð2�rÞ
r4�3

; (29)

in agreement with Ref. [19]. However, if rT 	 1, then, as
we mentioned above, the screened potential decays expo-
nentially, similar to normal Debye screening with the
important difference that the screening mass does not
contain the electromagnetic coupling, e. On the other
hand, the magnitude of the screened potential is propor-
tional to e2. So formally for e ¼ 0 the oscillating potential
vanishes, while the Debye one tends to the vacuum
Coulomb expression.
The ratio of the main term in the potential at T � 0 to

that at T ¼ 0 is equal to

Uðr; TÞ
Uðr; T ¼ 0Þ ¼ 4�rTe�2�rT

1� e�4�rT
: (30)

It is always smaller than unity, i.e., the screening is weakest
at T ¼ 0.
Let us turn now to the nonrelativistic limit, when mF 


T, ��mF � mF, and for simplicity ~� ¼ ��mF 
 T.
The calculations go along the same lines with evident
modifications. The poles of the distribution function f
are located at

qn ¼ ½ð�2 �m2
FÞ þ 2i��Tð1þ 2nÞ�1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mF ~�

p �
1þ i��Tð1þ 2nÞ

�2 �m2
F

�
: (31)

The logarithmic singular part of �00 corresponding to
this pole is given by the same Eq. (23) and the discontinuity
on the cut is given by Eq. (24). An essential difference now
is that the discontinuity does not vanish near the branch
point, ð4E2

n � 4q2nÞ ¼ 4m2
F � 0:

��00 � e2Tm2
F=k: (32)

Thus the contribution of the nth pole into the screened
potential is equal to

UnðrÞ ¼ e2QTm2
F

�2r
Im

Z 1

0

idy expð2iqnr� yrÞ
½k2 þ�ðnÞþ

00 ðkÞ�½k2 þ�ðnÞ�
00 ðkÞ� :

(33)

Here, as in the relativistic case above, k ¼ 2qn þ iy.
Neglecting k2 in comparison with �00, see Eq. (12) and
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discussion below Eq. (26), we obtain

UnðrÞ ¼ Qe2Tm2
F

16�2q4nr
2
Im½ie2iqnr�

¼ Qe2T

64�2r2 ~�2
cosð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mF ~�
p

rÞ

� exp

�
�2�ð2nþ 1Þ rT�ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mF ~�
p

�
: (34)

If temperature is not extremely small, the term with n ¼ 0
gives the slowest decreasing part of the potential, but for
T ! 0 we need to take into account the whole sum
UcutðrÞ ¼

P
UnðrÞ:

UcutðrÞ ¼ Qe2Tm2
F

64�2r2 ~�2
cosð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mF ~�
p

rÞ

� expð��rT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mF= ~�

p Þ
1� expð�2�rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mF= ~�

p Þ : (35)

Asymptotically for large r but 2�rT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m= ~�

p
< 1 the po-

tential tends to

UcutðrÞ ¼ Qe2mF cosð2qFrÞ
64�3r3q3F

; (36)

where qF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~�mF

p
. The result agrees with that presented

in Ref. [19]. The potential in Eq. (35) is plotted in Fig. 2 as
a function of distance r and temperature T for mF ¼
0:5 MeV and �F ¼ 0:55 MeV. Temperatures vary from
10�4 and 10�2 MeV, which corresponds to ð1:16�
106–1:16� 108Þ K. Distances vary from 1 to
100 MeV�1, corresponding to ð2� 10�11–2� 10�9Þ cm.
The main features for the plot in the relativistic case are
similar to the nonrelativistic one.

Note in conclusion that above we have neglected�00 in
comparison with 4q2n. It is justified for sufficiently small
e2. Otherwise one has to calculate the integral more accu-
rately taking into account the mild logarithmic singularity
in �00, which goes to infinity at the branch point for
nonrelativistic fermions and goes to zero for relativistic
ones.

IV. SCREENING IN BOSONIC PLASMA

As we have already mentioned the photon polarization
tensor in the presence of the Bose condensate is infrared
singular, having at small k form (8). The terms�1=k2 have
been found in Refs. [10,11], while the 1=k term, which
vanishes at T ¼ 0, has been found in Ref. [10]. Because of
the 1=k2 term the pole of the photon Green’s function shifts
from an imaginary axis in contrast to the usual Debye case
when the pole is purely imaginary. Because of its real part
the screened potential acquires an oscillating factor super-
imposed on the exponential decrease [9,10]. The positions
of poles in integral (15) are given by the equation k2 þ
�00ðkÞ ¼ 0, which is convenient to write as

k2 þ e2
�
m2

0 þ
m3

1

k
þm4

2

k2

�
¼ 0; (37)

where

m2
0 ¼

C

ð2�3ÞmB

þ hðTÞ þmðFÞ2
D ðT;�FÞ; (38)

m3
1 ¼

m2
BT

2
; (39)

m4
2 ¼

4mBC

ð2�Þ3 ; (40)

where hðTÞ is defined in Eq. (9) and mðFÞ
D is the fermionic

Debye mass. For relativistic fermions it is given by Eq. (12)
and for nonrelativistic ones by Eq. (14). If plasma is
electrically neutral because of the mutual compensation
of bosons and fermions, the chemical potential of fermions
is expressed through the amplitude of the Bose condensate
and �B ¼ mB. However, one can imagine the case when
there are two types of charged bosons and neutrality is
achieved by the opposite charge densities of these bosons.
In such plasma the fermionic Debye mass is zero.
In what follows we analyze different contributions to the

electrostatic potential UðrÞ for different limiting values of
the parameters. In Sec. IVA we investigate further the
contribution from the poles in integral (15). In Sec. IVB
we present the contribution from the imaginary axis which
arises when the integrand in Eq. (15) is not an even
function of k. Finally in Sec. IVC we calculate the con-
tributions from integration along the branch cuts of the
logarithmic terms in �00; see Eq. (6). The integration
contour is similar to that for fermions, Fig. 1, but the
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FIG. 2 (color online). Friedel oscillations for massive fermi-
ons—see Eq. (35)—with mF ¼ 0:5 MeV, and �F ¼ 0:55 MeV.
Temperatures are in MeV and distances in MeV�1. The expo-
nential damping at large distance and/or temperature, as well as
oscillations as a function of the distance r, can be seen.
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positions of the poles are evidently shifted; see the follow-
ing section.

A. Contribution from poles

At low temperatures the four roots of Eq. (37) are given
by

k1;2;3;4 ¼ � iffiffiffi
2

p ½e2m2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4m4

0 � 4e2m4
2

q
�1=2: (41)

As is mentioned above, we are interested only in the poles
in the first quadrant in the complex k plane. If e4m4

0 >
4e2m4

2, all the poles are purely imaginary and the Coulomb
potential is screened exponentially, similar to the usual
Debye situation. The poles on the positive imaginary axis
are situated at

k1;2 ¼ iem0ffiffiffi
2

p ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m4

2=e
2m4

0

q
Þ1=2: (42)

The contribution of these poles into the potential is

UðrÞ ¼ Q

4�r

k21e
ik1r � k22e

ik2r

k21 � k22
: (43)

In the limit of the small ratio m2
2=em

2
0 the potential be-

comes

UðrÞpole � Q

4�r

�
exp

�
�em0r

�
1� m4

2

2e2m4
0

��

� m4
2

e2m4
0

expð�m2
2r=m0Þ

�
: (44)

Thus for a smallm2, the screening, though exponential, can
be much weaker than the usual Debye one.

In the opposite case, e4m4
0 < 4e2m4

2, the poles acquire a

real part and now only one pole is situated in the first
quadrant. The potential oscillates around the exponentially
decreasing envelope [9,10]. The result is especially simple
in the limit of large m2:

UðrÞpole ¼ Q

4�r
expð�

ffiffiffiffiffiffiffiffi
e=2

p
m2rÞ cosð

ffiffiffiffiffiffiffiffi
e=2

p
m2rÞ: (45)

A more interesting situation is realized at larger tempera-
tures, when the term m3

1=k in the polarization operator
Eq. (37) is non-negligible. The contribution of the poles
into the asymptotics of the screened potential is similar to
the above considered case of low T ifm2 dominates in�00,
but for a small m2, e.g., if C ¼ 0, the poles are situated at

k ¼ e2=3ð�1Þ1=3ðm2
BT=2Þ1=3. The potential exponentially

decreases at large distances but the power of the exponent
is proportional to temperature and at small T the decrease
of UðrÞ may be rather weak.

B. Contribution from the integral along the imaginary
axis

Because of the odd term, m3
1=k, in the polarization

operator the imaginary part of integral (15) along the
imaginary axis in the complex k plane is nonzero, and
the screened potential drops as a power of r:

UðrÞ ¼ �Qe2m3
1

2�2r2

Z 1

0

� dz expð�zÞ
½�ðz=rÞ2 þ e2ðm2

0 �m4
2r

2=z2Þ�2 þ e4m6
1r

2=z2
:

(46)

The previous expression has been obtained by substituting
k ¼ iy and then z ¼ yr. If m2 � 0 the dominant term at
large r behaves as

UðrÞ ¼ � 12Qm3
1

�2e2r6m8
2

: (47)

However, if the temperature is not zero and the bosonic
chemical potential reaches its upper limit,� ¼ mB, but the
condensate is not yet formed, the term proportional to m1

dominates and the asymptotic decrease of the potential
becomes much slower:

UðrÞ ¼ � Q

�2e2r4m3
1

¼ � 2Q

�2e2r4m2
BT

: (48)

So the formation of the condensate manifests itself by a
strong asymptotic increase of screening. This effect may be
a signal of formation of the Bose condensate.
It is interesting that the screened potential is inversely

proportional to the fine structure constant 	 ¼ e2=4�.

C. Contribution from the logarithmic branch cuts

Let us estimate now the effects of the logarithmic sin-
gularities of �00 on the asymptotics of the screened po-
tential (analog of the Friedel oscillations). Technically the
calculations are similar to those made in Sec. III but the
results are noticeably different. We assume here that the
chemical potential of bosons reaches its maximum value,
� ¼ mB. For smaller � there is not much difference
between bosons and nondegenerate fermions, while for
� ¼ mB new phenomena arise, which are absent for
fermions.
The poles in the integrand of Eq. (6), which lead to the

singularities of �00ðkÞ in the first quadrant of the complex
k plane, are situated at

qn ¼ ð4i�nTmBÞ1=2ð1þ i�nT=mBÞ1=2: (49)

Here n runs from 1 to infinity, because there is no pole at
q ¼ 0 since the numerator of the integrand is proportional
to q2.
The singularities in �00ðkÞ are situated at such k where

the singularities of the integrand in Eq. (6) pinch the
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integration contour, i.e. as above, at kn ¼ 2qn. The singular
part of �00 is calculated in the same way as it has been
done for fermions and is equal to the residue of the inte-
grand:

�ðnÞB
00 ¼ � ie2TE2

n

2�k
ln

�
k� 2qn � i�

kþ 2qn þ i�

�
; (50)

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n þm2

B

q
.

The discontinuity of this term across the logarithmic cut

is ��ðnÞB
00 ¼ e2TE2

n=k. Correspondingly the contribution

of this singularity into the asymptotics of UðrÞ is given by

UB
n ðrÞ ¼ �Qe2T

2�2r
Re

Z 1

0

dyE2
ne

2iqnre�ry

½k2 þ�ðþÞ
00 �½k2 þ�ð�Þ

00 � ; (51)

where k ¼ 2qn þ iy and E2
n ¼ q2n þm2

B, and ��
00 are

the values of the polarization tensor on right and left banks
of the cut. Note that at r ! 1 the effective y is small, y�
1=r.

An important difference between bosonic and fermionic
cases is that the position of the pole for fermions, Eqs. (26)
and (31), does not move to zero when T ! 0, while for
bosons q2n � T. Correspondingly one can neglect �F

00 in

comparison with k2n, while it may be an invalid approxi-
mation for bosons.

Let us first consider the case of low temperatures when
�00 is dominated by the constant fermionic contribution,
�F

00 � m2
D, where m2

D is given either by Eq. (12) or (13).

At large r and nonzero T the logarithmic contribution into
the screened potential is essentially given by the first term
with n ¼ 1:

U1ðrÞ ¼ �Q�2

2e2
Tm2

B

r2�4
F

expð�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mBT

p
rÞ

� cosð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mBT

p
rÞ: (52)

Here we took the relativistic limit for �F
00. The result is

easy to rewrite in the nonrelativistic case. The potential in
Eq. (52) is plotted in Fig. 3. The bosonic chemical potential
is taken to be equal to its limiting value, �B ¼ mB, and the
boson mass is assumed to be the same as the fermion mass
in Fig. 2, mB ¼ mF ¼ 0:5 MeV. Such a low mass of
bosons is chosen simply for illustration. In the realistic
case charged bosons are much heavier than the charged
fermions, though it is not excluded that there exists an
unknown gauge symmetry with charged bosons lighter
than fermions.

The temperature in Fig. 3 varies from 10�4 to 0.1 MeV,
corresponding to ð1:16� 108–1:16� 109Þ K, while dis-
tances vary from 1 to 100 MeV�1, corresponding to ð2�
10�11–2� 10�9Þ cm.

Figure 4 shows the same potential but with higher mass
for bosons,mB ¼ 100 MeV, that is of the order of the pion
mass. The fermion mass and chemical potential are taken
the same as above. The temperature varies in the range

10�6–5� 10�2 MeV or 1:16� 104–5:8� 108 K and the
distance in 10�2 < rðMeVÞ�1 < 10 corresponding to 2�
10�13 < rðcmÞ< 2� 10�10. We can see from these fig-
ures that if we increase the boson mass, the bosonic po-
tential fades away faster.
In the limit of T ! 0 (analogous to the discussed above

Friedel case) we should take the sum
P1

n¼1 Un, because all
the terms are of the same order of magnitude and neff �
1=ð4�mBTr

2Þ. So we could expect that the sum is inversely
proportional to T and the potential is nonvanishing at T ¼
0, the same as in the fermionic case. However, the summa-
tion is not so simple as previously thought, because we do
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FIG. 3 (color online). Oscillation of the electrostatic potential
in the presence of bosonic plasma; see Eq. (52). The boson mass
is equal to the fermion one in Fig. 2, mB ¼ 0:5 MeV and the
chemical potential is �B ¼ mB. Temperatures are in MeV and
distances in MeV�1.
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FIG. 4 (color online). Oscillation of the electrostatic potential
in the presence of bosonic plasma; see Eq. (52). The boson
chemical potential is equal to its mass, �B ¼ mB ¼ 100 MeV.
Temperatures are in MeVand distances inMeV�1. In the picture,
the oscillations due to both the temperature T and the distance r,
as well as the exponential damping in both the directions, are
evident.
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not deal now with the geometric progression, expð�anÞ
but with a more complicated function, expð�b

ffiffiffi
n

p Þ. Since
the effective values of n are big, we can express the sum as
an integral and obtain, in the leading approximation�00 ¼
m2

D, that the potential is proportional to the temperature T
and hence vanishes:

UðrÞB ¼ � QT�2

2e2r2�4
F

Re
X1
n¼1

E2
ne

2iqnr

� � QT�2

2e2r2�4
F

Re
Z 1

1
dnE2

ne
2iqnr � T: (53)

The real part of the integral
R1
1 dne2iqnr written above is

equal to

expð�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Tm

p
rÞ

4r

� ffiffiffiffiffiffiffiffiffiffiffi
2

�mT

s
ðcosð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Tm
p

rÞ

� sinð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Tm

p
rÞÞ � 1

2�mrT
sinð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Tm
p

rÞ
�
;

that goes to the constant value �1 in the T ! 0 limit. So
the whole expression in Eq. (53) is proportional to T.

It is important to stress that the previous result is valid in
the limit TmBr

2 � 1, which means that it is applicable at
small distances rB � 1=

ffiffiffiffiffiffiffiffiffiffi
mBT

p
. On the other hand, at large

distances r and nonvanishing T one should consider the
expression in Eq. (52) which is similar to the fermionic
Friedel term in Eq. (35) but has a different dependence on
the coupling constant e since it goes like e�2, while the
Friedel oscillations go like e2. Hence we have nonanalytic
dependence on the coupling constant e in the presence of
bosons. A similar dependence on e�2 was found in
Sec. IVB.

There are also differences arising from the fact that in
the limit T ! 0 the poles of the boson distribution function
go to zero, see Eq. (49), while the poles of the fermion
distribution function tend to the nonvanishing value qF, see
Eq. (17). Hence Friedel oscillations for fermions start from
their maximum amplitude at T ¼ 0 and then exponentially
decrease with temperature, while for bosons the effect
vanishes at T ¼ 0, then linearly increases with T and
finally exponentially decreases. Another consequence is
that the argument of the oscillating cosine function de-
pends on T for bosons but not for fermions. Hence the
boson potential does not oscillate at small temperatures.

At high fermionic chemical potential �F and small
temperature T, the boson oscillations typically go to 0 at
smaller distances than the fermionic ones, which are ob-
servable at distances r � T. On the other hand, lowering
the boson mass mB the exponential damping is weaker but
at the same time oscillations fade away.

If the condensate is formed,�00 would be dominated by
the singular term e2m4

2=k
2 and according to Eq. (51) the

contribution of the nth branch point into the screened
potential becomes

UB
n ðrÞ ¼ � QTm2

B

2�2e2m8
2r

2
Re½k4neiknr�: (54)

Again, at large r and nonzero T the n ¼ 1 term is domi-
nant. It oscillates and exponentially decreases according to
Eq. (52). However, the sum Re

P
nU

B
n vanishes as above,

Eq. (53). Probably the vanishing of UBðrÞ at small T in the
leading order is a more general feature. At least the sub-
leading (at small T) terms in kn and in �00 vanish as well.
If we take into account the imaginary part of�00 due to the
logarithmic cut, the result still remains proportional to a
power of temperature after summation. On the other hand,
as we see below, in the absence of a condensate the
potential not only survives at T ! 0 but rises as an inverse
power of T.
Let us turn now to a more interesting though probably

less realistic case when fermions are absent in the plasma,
the chemical potential of bosons is maximally allowed,
�B ¼ mB but the condensate is not formed. In the standard
model a neutral system has necessarily a fermionic com-
ponent because fermions are lighter than bosons. Anyway
we can imagine systems where the electric charge is com-
pensated by other heavier bosons which do not condense or
models with an extra Uð1Þ sector and different particle
content. In this situation fermions may be absent. Under
these conditions �00 vanishes when T ! 0. The position
of the branch points of the logarithm kn ¼ 2qn also tends
to zero and the screening due to logarithmic discontinuity
may be nonvanishing at T ¼ 0. Indeed, let us turn again to
Eq. (51). The integral goes along the contour k ¼ kn þ iy
and y� 1=r is very small. We assume that r > 1=

ffiffiffiffiffiffiffiffiffiffi
TmB

p
.

Thus k2 � k2n ¼ 16i�nTmB. Let us now estimate �00 at
k ¼ kn. At small temperatures, when z2 � ðEB �
mBÞ=T � q2=ð2mBTÞ, �00 can be presented as

�00ðkÞ ¼ e2m2
BT

�2k

Z dzz

expðz2Þ � 1
ln

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
zþ kffiffiffiffiffiffiffiffiffiffiffiffiffi

8mBT
p

z� k

��������:

(55)

Notice in passing that if k <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
, then �00 behaves as

m3
1=k in agreement with Eqs. (37) and (39), while at large

k, k >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
, it has the following asymptotic behavior:

�00ðkÞ �
ffiffiffi
2

p
e2m5=2

B T3=2�ð3=2Þ
�3=2k2

; (56)

where �ð3=2Þ � 2:6. The singular part of �00, Eq. (50), at
k ¼ kn þ iy is equal to

�ðþÞ
00 ðkn þ iyÞ ¼ � i1=2e2T1=2m3=2

B

8�3=2n1=2

� ½lnðy=8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nmBT

p Þ þ i�=2�: (57)

For �ð�Þ
00 the last factor is changed to ( lny=8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nmBT

p �
3i�=2). The factor in the denominator of the logarithm
comes from jkþ 2qnj ¼ 4jqnj in Eq. (50).
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The screened potential (51) at large distances, i.e. for 8�TmBr
2 > 1, is dominated by n ¼ 1. One can check that

j�00ðk1Þj> jk21j, so the latter can be neglected in the denominator of Eq. (51). Keeping in mind that we will use the result
below for arbitrary n for which j�00ðk1Þj> jk21j, we write

UnðrÞ � 32�Qn

e2mBr
2
Re

�
ie2iqnr

Z 1

0

dxe�x

ln2ðx=8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB�nT

p
rÞ � i� lnðx=8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�nT
p

rÞ þ 3�2=4

�
; (58)

where x ¼ yr. For a large logarithm the leading part of the
integral can be approximately evaluated leading to the
result:

U1ðrÞ ¼ � 32�Q

e2mBr
2

e�2
ffiffiffiffiffiffiffiffiffiffiffiffi
2�TmB

p
r

ln2ð8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mBT

p
rÞ sinð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�TmB

p
rÞ:
(59)

Note that U1ðrÞ is inversely proportional to the electric
charge and formally vanishes at T ! 0, but remains finite
if

ffiffiffiffiffiffiffiffiffiffi
TmB

p
r is not zero.

For smaller distances, or such small temperatures that
8�TmBr

2 � 1, all n up to nmax � 1=ð8�TmBr
2Þ make

comparable contributions. Thus we have to sum over n.
If nmax 
 1 the sum can be evaluated as an integral over n.
Now, for large n, k2n � n and may be comparable to
�00ðknÞ which, according to Eq. (57), drops as 1=

ffiffiffi
n

p
.

�00ðknÞ would be smaller by magnitude than k2n for

n > n0 � 10�3ðmB=TÞ1=3ln2=3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBTr

2
q

Þ: (60)

This condition makes sense if n0 < nmax or

rln1=3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBTr

2
p Þ< 5=ðTm2

BÞ1=3. For larger r we return to
domination of �00. We should check that the condition

rln1=3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBTr

2
q

Þ> 5=ðTm2
BÞ1=3 (61)

does not contradict the condition of large nmax. The latter
reads

r < 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�TmB

p
: (62)

If we neglect the logarithmic factor, both conditions would
be compatible for T=mB < 4� 10�9. Thus both cases of
dominant �00ðknÞ or k2n can be realized depending upon
the relation between r, T, and mB.
Let us consider smaller temperatures when j�00ðknÞj>

jk2nj. The potential in the limit of small �TmBr
2 is equal to

UðrÞ ¼ 32�Q

e2mBr
2
Im

�X
n

ne2iqnr
ln2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

8mBT
p

rÞ þ i� lnð ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
rÞ þ 3�2=4

ðln2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
rÞ þ 3�2=4Þ2 þ �2ln2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

8mBT
p

rÞ
�
: (63)

Since the sumX
n

ne2iqnr � 2
Z

d

3e4i
ffiffiffiffiffiffiffiffiffiffiffi
i�TmB

p
r
 � � 12

256�2T2m2
Br

4
;

(64)

where
 ¼ ffiffiffi
n

p
, is real in leading order in 1=ð16�TmBr

2Þ, a
nonvanishing contribution comes from the imaginary part
of the numerator of the integrand and we obtain for the
analog of Friedel oscillations in the purely bosonic case:

UðrÞ � � 3Q

2e2T2m3
Br

6ln3ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
8mBT

p
rÞ : (65)

The result has some unusual features. First, the potential
decreases monotonically without any oscillations. Second,
it is inversely proportional to the temperature, so the
smaller T is, the larger the potential is. However, the effect
exists for sufficiently small r, r � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�TmB

p
, i.e. if

T ¼ 0:1 K and mB ¼ 1 GeV the distance should be
bounded from above as r � 3� 10�8 cm. Another ob-
stacle to realization of such screening behavior is that with
fixed charge asymmetry the Bose particle should condense
and the dominant term in �00 becomes 4mBC=ð2�Þ3. In

this condition we arrive to potential (54) which vanishes at
T ¼ 0.

V. CONCLUSION

We have calculated the electrostatic potential between
two test charges in plasma with electrically charged bosons
and fermions. The new part of our consideration is an
inclusion of the effects of the Bose condensate into the
screening phenomena in plasma. To this end the chemical
potential of bosons is taken equal to the maximally allowed
value, that is to the boson mass, � ¼ mB. In this case the
bosonic contribution to the time-time component of the
photon polarization operator in plasma, �00ðkÞ, acquires
an infrared singular contribution proportional to T=k even
before formation of the condensate and 1=k2 after forma-
tion of the condensate. Such terms drastically change the
form of the screened potential UðrÞ.
All the calculations have been done in the lowest order

in the electromagnetic coupling constant, e. We have im-
posed the condition of electric neutrality of the plasma,
assuming that bosons and fermions compensate each
other’s charge. We have noticed, however, that the
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screened potential demonstrates a very interesting and
unusual behavior as a function of temperature if fermions
are absent. Such a situation cannot be realized in realistic
equilibrium plasma because the lightest charged fermions
(electron/positrons) are lighter than charged bosons.
However, one can imagine a hypothetical case of a new
gauge Uð1Þ symmetry with lighter charged bosons.

We started with a purely fermionic plasma and recon-
structed the known Friedel oscillations of UðrÞ both in
relativistic and nonrelativistic limits using a somewhat
different technique. We obtained an explicit expression
for UðrÞ at nonzero temperature which, to the best of our
knowledge, is absent in the literature.

The main part of our work is dedicated to the new
phenomena created by the singularities of �00ðkÞ in the
complex k plane. We reproduced the previously obtained
results, where due to the 1=k2 term the pole of the static
photon propagator acquires a nonzero real part, and be-
cause of that the screened potential oscillates with an
exponentially decreasing envelope.

At nonzero temperature and � ¼ mB the polarization
operator obtains an odd contribution with respect to the
transformation k ! �k and because of that the integral
along the imaginary axis in the complex k plane, which
determines the asymptotic behavior of UðrÞ, becomes non-
vanishing. It leads to monotonic power law screening U�
1=ðe2r4TÞ, Eq. (48), if the condensate has not yet been
formed. After the condensate formation the screened po-
tential behaves as UðrÞ � T=ðe2r6C2Þ, Eq. (47). Such a
change in the screening may be a signal of the condensate
formation.

We have also considered an analog of the Friedel oscil-
lations in the bosonic case. The origin of the phenomenon
is the same as in the fermionic case but the resulting

potential is quite different. The Friedel oscillations can
be understood as a result of pinching the integration con-
tour in the complex k plane by the logarithmic branch point
of �00 and the poles of the bosonic (or fermionic) distri-
bution functions. However, the poles of bosonic distribu-
tion move to zero when temperature tends to zero, while
the fermionic ones keep a finite value. This leads to a
completely different behavior of the potential as a function
of temperature. The potential vanishes when T goes to zero
for mixed bosonic and fermionic plasma. In the case in
which it is dominated by the first pole, for large r and
nonzero T, it goes as in Eq. (52) and at small T the
exponential screening is quite mild. For purely bosonic
plasma the ‘‘Friedel’’ part of the screening is given by
Eqs. (58) and (65). If TmBr

2 is not small the potential
oscillates and exponentially decreases, while for smaller T
it does not oscillate and is proportional to 1=ðe2T2Þ. The
1=e2 behavior looks puzzling but one should remember
that it is an asymptotic result for large distances. However,
if we take the formal limit e ! 0 the screening would
disappear together with e. Similar reasoning is applicable
to 1=T2 behavior: this is true only for large but simulta-
neously sufficiently small distances r < 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�mBT

p
,

when the k2 part of the photon Green’s function is
subdominant.
We see that the screening is quite different in different

limits and it would be very interesting to study this rich
behavior experimentally.
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