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Construction of a topological charge on fuzzy S*> X S? via a Ginsparg-Wilson relation
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We construct a topological charge of gauge field configurations on a fuzzy S? X S? by using a Dirac
operator satisfying the Ginsparg-Wilson relation. The topological charge defined on the fuzzy S> X $2 can
be interpreted as a noncommutative (or matrix) generalization of the 2nd Chern character on S? X S2. We
further calculate the number of chiral zero modes of the Dirac operator in topologically nontrivial gauge
configurations. Generalizations of our formulation to fuzzy (S?)* are also discussed.
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I. INTRODUCTION

Noncommutative geometry [1] appears naturally in
string theory [2—4], and is also encoded in the matrix model
formulations of the string theory [5,6]. In the superstring
theory, the size of six dimensions is expected to become
tiny and the ten-dimensional spacetime becomes compac-
tified to four dimensions. Then the number of massless
fermions, in particular, the number of generations in the
four-dimensional spacetime is given by the topology of the
six-dimensional compactified space. Then, if the size of the
compactified space is as small as the Planck scale, its
coordinates may become noncommutative and we will
need to generalize the notion of topology to noncommuta-
tive spaces.

In ordinary spaces, the topological charge of gauge field
configurations can be provided by the index of the Dirac
operator, i.e., the difference of the numbers of chiral zero
modes, via the index theorem [7]. Generalizations of the
index theorem to noncommutative spaces are, however,
mostly formulated in spaces with an infinite size, and it
is widely believed that topological charges cannot be de-
fined in a system with finite degrees of freedom.

The situation is similar to the lattice gauge theories,
where the theory is defined on a finite number of lattice
points and the total degrees of freedom are finite. There a
problem to properly define the chiral symmetry and the
index theorem arises due to the doubling problem [8]. The
problem has been solved successfully by introducing Dirac
operators satisfying a Ginsparg-Wilson (GW) relation [9].
While all the gauge field configurations are continuously
connected and there seems to be no room for defining
separate topological sectors in such systems with finite
degrees of freedom, the configuration space becomes dis-
connected by introducing the admissibility condition, and
the various topological sectors can then be realized [10].
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In a previous paper [11], we have proposed to use the
GW relation to define a topological charge and to classify
the gauge field configurations in noncommutative spaces
with finite degrees of freedom. We have provided a general
prescription to construct a GW Dirac operator with a
coupling to background gauge fields. As a concrete ex-
ample, a GW Dirac operator on the fuzzy S* was given.
(See also [12] for an earlier construction of the GW Dirac
operator on fuzzy $2 without the background gauge field.)'

In this paper, we further apply the proposal in Ref. [11]
to fuzzy S X §2. We first construct a GW Dirac operator
on fuzzy §% X §2.2 Owing to the GW relation, the topo-
logical charge is given by the index of the Dirac operator.
We then study the commutative limit of the topological
charge. It becomes a sum of the 2nd Chern character on
5% X §? and the 1st Chern character. We also investigate
the chiral zero modes of the Dirac operator for some
specific gauge field backgrounds and confirm that the index
of the Dirac operator takes the consistent values. We finally
generalize our formulation to fuzzy (S?)~.

The paper is organized as follows. After briefly review-
ing the GW relation on fuzzy S in Sec. II, we construct a
GW Dirac operator on fuzzy S X S? in Sec. III. In Sec. IV,
we calculate the commutative limit of the topological
charge. We then study the chiral zero modes of the Dirac
operator for the free case in Sec. VA, and for the monopole
backgrounds in Sec. V B. Here we also introduce a pro-
jected topological charge that gives correct values for
topologically nontrivial gauge field configurations.

'In the case of noncommutative tori, the gauge fields are
represented by unitary matrices of Wilson lines and a GW
Dirac operator can be constructed similarly to the lattice gauge
theory. It was given in [13] and analyzed in [14]. For construc-
tions of the GW Dirac operators in gauge field backgrounds with
nontrivial topology, see [15,16] for fuzzy S and [17] for non-
commutative tori.

%A Dirac operator on fuzzy S X S? without the GW relation
was given in [18]. Dynamics of gauge theory on fuzzy S? X S2
was studied in [19].
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Generalizations of our formulation to fuzzy (S?)* are given
in Sec. VI. Section VII is devoted to conclusions and
discussions. In Appendices A and B, we give detailed
calculations of the commutative limit. In Appendix C, a
full spectrum of the Dirac operator for the free case is
obtained. A calculation of the topological charge for a
modified Dirac operator is given in Appendix D.

II. BRIEF REVIEW OF GW RELATION
ON FUZZY $?

We first briefly review the Ginsparg-Wilson (GW) rela-
tion on a fuzzy S2, following the prescription given in
Ref. [11].

Noncommutative coordinates of fuzzy S? are given by
x; = wnL;, where u is a noncommutative parameter, and L;
is the n-dimensional irreducible representation matrix of
the SU(2) algebra. Then we have the relation (x;)* =

w2, = p?1,, where p = uy/(n® — 1)/4 expresses
the radius of the S?. The commutative limit is taken by
m— 0, n — oo with p fixed.

In our formulation of the GW relation, we first define
two chirality operators as

Iy = a(a'l-Lf - %)x, (2.1)
. H 1
[y =X, Hy = a(a'l-A,» + —) , (2.2)
VH? 2x
with covariant coordinates
(A)x = (L; + pa))x. (2.3)

The subscript X = 1, 2 will be used for labeling each S? of
§2 X §? in the following sections, and it can be ignored in
the present section. The superscript R in LX means that this
operator acts from the right on matrices, while the other
operators without the superscript R act from the left. The
number @ = 2/n serves as a noncommutative analog of the
lattice spacing, and o; is the Pauli matrix. The matrices a;
in (2.3) represent the gauge field, and the gauge trans-
formation for the covariant coordinate is given by A; —
UA;Ut. The fermionic fields ¢ on which these chiral
operators act are in the fundamental representation of the
gauge group, and the gauge transformation is given by
¢ — Uy. Hence, both I'y ¢ and f’xlp transform cova-
riantly as [y — Uy and 'y — ULy . U(n) gauge
symmetry can be realized by taking L; = L; ® 1 and a; =
a¢T?, where T%’s are the generators of U(n) and a?’s are
functions of the coordinates L;.
From the definitions (2.1) and (2.2), the chirality opera-
tors satisfy the relations
(1_‘)()Jr =Ty, (FX)T =Ty, (Fx)2 = (Fx)z =L
2.4)

One can also show that in the commutative limit, both I'y
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and ['y become the same chirality operator yy = (1;0,)x
on a commutative S?, where (n;)y = (x;)x/p is a unit
vector on S2.

We next define a GW Dirac operator by

(Dow)x = —a~'(I' = D). (2.5)
It satisfies the GW relation

Hence, the index, i.e., the difference of the numbers of the
chiral zero modes, is given by the trace of the chirality
operators as

index (Dgw)y) = 17T + T'x. 2.7)

Here 7T r is the trace in the whole configuration space, that
is, over the spinorial index, the gauge group index, and the
matrix space representing the coordinates. Since the defi-
nition of T’ x depends on the gauge field backgrounds, the
right-hand side (rhs) of (2.7) gives a noncommutative gen-
eralization of the topological charge. Thus, Eq. (2.7) gives
an index theorem on fuzzy S

In the commutative limit, the Dirac operator (2.5) be-
comes

(Dgw)x — Dy = (o(L; + pPjja;) + 1)y, (2.8)
where L; = —i€;;x;d,’s are the derivative operators
along the Killing vectors on S?, and P;j = 0;j —n;n; is

the projection operator on the tangential directions on S2.
The tangential components of the gauge field a; represent
the gauge field on S? while the normal component becomes
a scalar field ¢ = n;a,;. Because of the GW relation, the
Dirac operator is not coupled to the scalar field, since such
a coupling would violate the chiral symmetry on S and
contradict with the GW relation.

The commutative limit of the topological charge, the rhs
of (2.7), is shown to become [11,20]

1 o dQ)
ET}’[F + F]X — p2<[ﬂ tr(eijknkFij))X’ (29)

where tr is the trace over the gauge group. The field
strength F; is defined as Fy; = d,a’ — 9;a; — ila}, a}],
where a/ is the tangential components of the gauge field,
given as a; = €;n;a,. This is the integral of the 1st Chern
character on a commutative S2.

In order to construct topologically nontrivial configura-
tions, we need a bit more modification [15,16,20,21].
Consider, for instance, U(2) gauge theory on the fuzzy
S2. Then some gauge field configurations a; break the
U(2) gauge symmetry to U(1) X U(1). They correspond
to nontrivial elements of I1,(SU(2)/U(1)) and physically
to the 't Hooft-Polyakov—type monopoles. A topological
charge can be also constructed by modifying the index
theorem (by inserting a projection operator), and it cor-
rectly reproduces the topological charge of such configu-
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rations. This issue is discussed later in Sec. V B for the case
of fuzzy $? X §2.

III. GW RELATION ON FUZZY $* X §?
We now construct a GW Dirac operator and the corre-
sponding topological charge on fuzzy $? X §2.
As in fuzzy S?, we first define two chirality operators as

r=",I',, (3.1
= M’ (3.2)
{I'), T,

where I'y and r x with X = 1, 2 are the chirality operators
on each fuzzy S labeled by X. They are given in (2.1) and
(2.2). For simplicity, we take the radii of the two spheres
equal. Note that while the index i of the gauge field (a;)x
refers to each S? labeled by X, the gauge field depends on
the coordinates of both $?’s, (L;); and (L;),.

From (2.1) and (2.2), one has

[T, T,]=[T, 1] =[[,T,]=0. (3.3)
One can also show from (2.4) that
{0, 0,2 =4+ [, 1,1 (3.4)

where the second term is of order O(n™*), as is shown
below (AS).

From the relation of the chirality operator (2.4) on each
sphere, the chirality operators (3.1) and (3.2) on §% X §?
also satisfy the same relations

Mt =T, Mt =1, 0?2 =@M?2=1 (35

One can also show that in the commutative limit, both
operators, I" and f‘, become the same chirality operator
¥ = ¥,7, on a commutative S> X S2. The second term of
(3.4) does not contribute to the commutative limit of (3.2)
because of the O(n~*) behavior. It should be, however,
noted that this term is relevant in calculating the commu-
tative limit of the topological charge.
We then define a GW Dirac operator as

Dgw = —a (T = 1), (3.6)
which satisfies the GW relation
I'Dgw + Dowl =0 (3.7)
and the index theorem
index (Dgw) = 37T + 17 (3.8)

where 7T r is the trace over the whole configuration space,
that is, over the spinorial indices of both spheres, the gauge
group index, and the matrix space spanned by polynomials
of the coordinates (L;); and (L;),.
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The commutative limit of the Dirac operator can be
similarly obtained. Using the relation

rr,-nr,= 1T, - )T, +1,)

+ ([ + )@, -1T)L (39

and (2.8), one can show that in the commutative limit the
GW Dirac operator (3.6) becomes

Dgw — Dyyy + y1Dj, (3.10)

where D and yy are Dirac and chirality operators on each
S2. This is not exactly the same as the ordinary Dirac
operator on a commutative S X $2,° but we will show
later that the Dirac operator (3.6) suffices to define a
topological charge on fuzzy S? X §2.

Our formulation has the following nice properties. First,
it is manifestly covariant under the gauge transformation

(A)x — UA)xUT 3.1

for both X = 1,2 with a common U, which is a general
unitary matrix depending on the coordinates of both
spheres, (L;); and (L;),. Second, the GW relation assures
the topological property of the index and the topological
charge. Finally, the formulation has manifest SO(3) X
SO(3) Poincaré invariance on S X S2. Because of these
properties, the commutative limit of the topological charge
we have defined should become a sum of the 1st and the
2nd Chern characters on S? X S2. This is what we will
show in the next section.

IV. COMMUTATIVE LIMIT OF THE
TOPOLOGICAL CHARGE

In this section, we calculate the commutative limit of the
topological charge defined in the rhs of (3.8). As we dis-
cussed at the end of the previous section, the result should
be a linear combination of a constant, the 1st Chern char-
acter and the 2nd Chern character.

T r[T'] is easily calculated as

T Al = 4n? tr(1), 4.1)

where tr is the trace over the gauge group space.
On the contrary, the evaluation of 7 /{I'] is more in-
volved. As we show in Appendix A, by expanding it in the

gauge fields, it becomes a sum of five terms if we take

terms up to order n~*:

*Taking the planar limit at the north pole (n;)y—; = (n;)y—» =
0;3, the four-dimensional gamma matrices become vy, =
(0)x=1(03)x=2, Y2 = (02)x=1(03)x=2, V3 = (3)x=1(01)x=2,
v4 = (03)x=1(02)x=2, and they do not satisfy the SO(4) Clifford
algebra. However, if one multiplies the GW Dirac operator (3.6)
by I'y from the left in the definition, for instance, then in the
commutative limit, the gamma matrices are multiplied by
(03)x=1 from the left, giving ¥, = i(02)x=1(03)x=0, V> =
—i(o)x=1(03)x=2, ¥3 = (0'1)x=2, ¥4 = (02)x=2, Which satisfy
SO(2,2) Clifford algebra.
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T Al = Tr[i G+ @(n*S)]. 4.2)
i=1

The terms of order O(n~°) vanish in the commutative
limit, since the trace T r gives a contribution of order n*.
Each term is given by

G| = aay, 4.3)

Gy =1a, &V + P+ oo 0V + 47D, @4
= Iay, &} + {an, V), 45)

Gy =34 + 2. 8" + &, (4.6)

Gs = —ta a5y, é“él)] — [ay, Z}l)] + [ffl)y él)])z,
“4.7)

where ay and £ ,((i) are zeroth and ith order in the gauge field
(a;)x, and are defined by (A2) and (A4)—(A6). The last
term G5 comes from the denominator of (3.2). Contrary to
the commutative limit of the chirality operators or the
Dirac operator, we should take care of the order O(n™ %)
term from the denominator.

The first term 7 r[G,] becomes a constant

T G,] = 4n*tr(1). (4.8)

It is the same as (4.1). The commutative limit of T r[G,]
can be calculated as in (2.9) for the fuzzy S?, and gives
terms proportional to the 1Ist Chern character on each
sphere:

dQ, dQ,
tr(eabcn Fab
7T

TG, —2n-2 2[

+ € F ). 4.9
The indices a, b, and ¢ refer to the first S, while the indices
i, j, and k refer to the second S2. Note, however, that the
field strength, F,,({)y, Q) and F;;(€2, £),), can depend
on the coordinates of both 2. In this sense, (4.9) represents
a generalized 1st Chern character defined on a commuta-
tive S? X S2. Since (4.9) is of order n, the subleading order
terms in n~ ! in G, give a finite contribution. The commu-
tative limit of 7 1{G5] also gives a finite contribution.
Since these terms vanish for the configurations that will
be discussed later, we do not write these terms explicitly in
this paper. We will study topological charges for more
general configurations in a separate paper.

The commutative limit of 7 r{G,] can also be calculated
as in (2.9) and becomes

dQ, dQ,

TrGal= @p?? | T— =

tr(Eabcn FabeljknkFlj)

(4.10)
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Remarkably, as we show in Appendix B, the commutative
limit of 7 r{Gs] becomes

7 1G] — —8p* [dQ | dQ,

tr(eabcn eljknkFalFb])
dar
4.11)

Note that the field strengths with indices from different
spheres, F,; and F;, arise here. Combining these two
terms we obtain

dQ, dQ,
47 dar
X tr(FabFl-j - Fainj + Faiji)' (412)

TT[G4 + Gs] - 4p4

€abclle eijknk

This gives an integral of the 2nd Chern character on a
commutative $? X §2.

To summarize, the commutative limit of the topological
charge on §? X S? becomes

dQ, dQ)
—Tr[F+F]—>4n tr(1) +2np? ——ztr €apeleFap
dQ dQ
+ €mFip) +2pt T 4772 €abcNc€ijiT
xtr(FabFij_Fainj+Faiji)' (413)
In the differential forms, it is rewritten as
1
3 ]tr(nzdﬂldﬂz + I’l(dQ]Fz + dQQF])
(2m)
1
+ 25(F2)12), (4.14)
with
Fx = %Pz(dﬂfijknkFij)x, (4.15)
2 2,
(F?)xy = 2P dQxdQy(€,pcn € (FopFij — FoiF,
+ FuiFpi))xy (4.16)

Here d()y is the volume form on each S2. In the flat limit,
F and F? become familiar forms on each S% and $% X S2,
respectively:

Fy— %(FM,,dxM Adx,)x, 4.17)

(Fz)xy i %(F/LVF/\pdx;L A dXV A d.X)‘ A d.xp)xy. (418)

The first and the second terms in (4.13) and (4.14) are
proportional to n? and n, respectively, and they diverge in
the commutative (large n) limit. The third term is also
twice the 2nd Chern character, and the topological charge
we have defined by the GW Dirac operator is different
from the index of the ordinary Dirac operator on §? X S2.
This is because the Dirac operator is different from the
ordinary one as we discussed below (3.10). We will discuss
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origins of each term in (4.13) and (4.14) by investigating
the chiral zero modes in the following sections.

While the topological charge defined this way contains
various topological invariants, we can, nevertheless, ex-
tract the 2nd Chern character. In order to define a non-
commutative analog of the 2nd Chern character on
§2 X 82, we subtract the extra pieces as follows:

Y+t = Lrr, + £, = 27w, + 1]
4 4n 4n

1
~ 52 T 1] 4.19)
Each term is a topological invariant on fuzzy S* X S? and
is well defined on it.

V. CHIRAL ZERO MODES

In this section, we explicitly calculate the number of
chiral zero modes in some specific configurations and
compare it with the topological charge in the commutative
limit, (4.13) or (4.14). Especially we discuss why the index
explicitly depends on the size n of the matrices.

A. Chiral zero modes for the free case

We first investigate the chiral zero modes of the GW
Dirac operator for the free case where the gauge field
vanishes. Even in the absence of the gauge field, there exist
chiral zero modes of the GW Dirac operator and they give
the first term of (4.13) or (4.14). We here consider U(1)
gauge group, for simplicity.

In the free case, we have a simple relation [I', I',] = 0,
and the chirality operator (3.2) can be simplified as [=
f‘lf‘z. Using the relation (3.9), the GW Dirac operator (3.6)
is also simplified as

Dgw = D, + D,, .1
where

D, = —1a7 (', - (T, + 1),

D, = —4a ('} + T, —1)).

Using (3.3), [I"}, I',] = 0, and (2.4), one can easily show
the following GW relations for each D,,:

(5.2)

D, +D, =0 I'D,+ D, =0, (5.3)

where I and [ are the chirality operators on the fuzzy S? X
S? defined in (3.1) and (3.2). One can also show

[Dly Dz] == 0 (54)

Now consider states with zero eigenvalues of the Dirac
operator Dgyw. The chirality operators can also be diago-
nalized in this space owing to the GW relation (3.7).
Hence, we consider a state | ) satisfying

Dawlyp) =0, Tly)=Tlp)==lg). (5.5

PHYSICAL REVIEW D 80, 125006 (2009)
Then from (5.3) and (5.4), we have

DGWDa|¢>:0) FDa|¢>:fDa|¢>:IDu|¢’>:
(5.6)

for a = 1, 2. Therefore, if either D,|¢) # 0 or D,| ) # 0
is satisfied, the contributions to the index of Dgyw cancel
each other by | ) and D,| ). Thus a chiral zero mode that
can contribute to the index must satisfy D;|¢) = 0 and
D,|¢) = 0. From (5.2), a zero mode of D, is given by a
zero mode of I'} — fl or a zero mode of I'; + fz, owing to
[[, —[,T, +I,] = 0. Similarly, a zero mode of D, is
given by that of I'; + fl or’) — f‘z.

We then study each fuzzy S? separately in order to find
zero modes of the operators (I'y = fx). Our formulation
has SO(3) Poincaré invariance on each S, whose gener-
ators are written as

(5.7)

2/x

We then consider the eigenstates of the Casimir operator
>i(M))% as

Z(M,.)QJX) = Jy(Jy + D|Jy). (5.8)

One can show from the SU(2) algebra of (5.7) that the spin
Jy takes values Jy = %,%, e, n— % There are some de-
generacies in the states |Jy). In addition to the (2Jy + 1)-
folded degeneracy associated with (M3)y, the state |Jy) has
a two-folded degeneracy for Jy = %%, o, n = % The
highest spin state with Jy =n — %, however, does not
have this two-folded degeneracy. As we show in detail in
Appendix C, we can see that the Dirac operator (I' — I')y
on each S? does not have a zero mode at all in the free case.
On the other hand, the operator (I' + )y does hlave 7ero

modes in the highest spin states with Jy = n — 3. [See a

comment below (C9).] One can also show that I'y|[Jy =
n—%>= _fx|Jx=n_%>= _|JX=”_%>-

Therefore, coming back to the fuzzy S2 X §2, the chiral
zero modes of the Dirac operator Dgy are given by the
highest spin states with J; =J, = n — 1. The chirality
defined by an eigenvalue of (3.1) and (3.2) is 1 for all of
these states. The degeneracy of these states is (2J; + 1) X
(2J, + 1) = 4n?, which indeed gives the first term of
(4.13).

In the commutative limit, the operator (I" + f‘)X be-
comes proportional to the chirality operator on each S?
and does not have zero modes. In the case of the fuzzy $2,
the highest spin states have nonzero eigenvalues of the GW
Dirac operator (2.5) and do not contribute to the index.* In

“The highest spin states have zero eigenvalues of the Dirac
operator with exact chirality [22], but have nonzero eigenvalues
of the Dirac operator introduced in [23] and the GW Dirac
operator (2.5).
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fuzzy S X §2, however, as we have shown above, these
states become zero modes of the Dirac operator (5.1) since
it contains the operator (I' + I')y. This is the reason why,
even for the free case, there is a nonvanishing term in the
topological charge defined by the Dirac operator.

B. Monopole configurations and chiral zero modes

In this section, we consider a monopole configuration as
topologically nontrivial gauge field configurations. We
also introduce a modified index theorem and a topological
charge that gives nonvanishing values for such configura-
tions. We then investigate the chiral zero modes of the GW
Dirac operator in these backgrounds.

In the case of the fuzzy S?, we constructed a ’t Hooft-
Polyakov monopole configuration where the gauge sym-
metry group U(2) is spontaneously broken down to U(1) X
U(1) [15,16,20,21]. Since the diagonal U(1) is decoupled
in the commutative limit, we discuss only the SU(2) part of
the gauge group in the following. With the SU(2) gauge
group broken down to U(1), this configuration is inter-
preted as the ’t Hooft-Polyakov type monopole containing
both of the scalar field with a nonvanishing vev and the
monopole gauge field configuration on S2.

Analogously, we now consider U(2) X U(2) gauge the-
ory on fuzzy S*> X S?. In the presence of the monopole
configuration, the gauge symmetry is spontaneously bro-
ken from SU(2) X SU(2) to U(1) X U(1). The monopole
configuration we will investigate is the following:

(Aa)l :La®12®12+1n®%® 12

(n+1)
- [ L
= a _ ®1,,
( len 1)) 2

(Ai)ZZLi®12®12+1n®12®%?

(5.9

(5.10)

where (A,); and (4,), are covariant coordinates of the first
and the second sphere. The second and the third factors in
the tensor product refer to spin 1/2 representation of each
SU(2) in the SU(2) X SU(2) gauge group, respectively.
The equality = means a unitary equivalence, and we
have combined the first two spaces, i.e., matrix space
representing the coordinates and the first SU(2) space,
into a single matrix representation. (4;), can be similarly
written. Each of the configurations describes the 't Hooft-
Polyakov type monopole on each S?, and wraps around the
§2. The normal components of the gauge fields, which are
interpreted as two scalar fields on S$2 X S2. have nonvan-
ishing vev’s and break the gauge symmetry.

More generally, we can consider the following type of
configurations:

L(n+m1)
(Aa)] = ¢ L("fml) ® 12. (511)
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A generalized (A;), can be written similarly. For such
configurations, the relation [(4,),, (4;),] = 0 is satisfied.

Although they are the noncommutative analogs of topo-
logically nontrivial configurations, the topological charge
defined in (3.8) vanishes for these configurations. This can
be understood as follows: In the presence of the monopole
configurations, the gauge group is spontaneously broken
from SU(2) X SU(2) to U(1) X U(1). A fermionic field in
the fundamental representation of each SU(2) is decom-
posed into two fermions with opposite electric charges
+1/2 of each of the unbroken U(1)’s, and they cancel
the topological charge, or the index of the Dirac operator.

We thus have to modify the index theorem (3.8) to pick
up one of the fermions with *=1/2 electric charges. As is
shown in Sec. II D of Ref. [15], we can prove the following
index theorem in the projected space:

index(P\"*"™ PU"*") D)

=17 PP+ D)) (5.12)

where P{"""™) is the projection operator on the Hilbert

space with n = my dimensions in (5.11). The projection
operator is written as

Pg?imx) — %(1 + Ty), (5.13)
with
2 n®+my—1
Ty = —<(Ax)2 - 7)()
nmy 4
_ <1n+mx L ) (5.14)

Here we have left out the extra 1,. The operator Ty is
interpreted as an electric charge operator of the unbroken
U(1) gauge group. Its commutative limit becomes the
normalized scalar field as

Ty — 2¢Y, (5.15)

where ¢} = ¢¢ T with 3, (¢¢)> = 1. Without loss of
generality, we hereafter consider only the following pro-
jection:

plirtmd) = po (5.16)

with my > 0.
Following the same calculation that led us to (4.13) in
Sec. IV, the commutative limit of the rhs of (5.12) becomes

%’Tr[Ple(F +1)]
—4(n + my)(n + my) + 2(n + my)p?

dQ)
X [4—77_2 €y (DL F;) + 2(n + my)p?

a0, 4Q, dQ,
X [E €apelte T (P Fop) + 2p* I dm
X €apeltc €y try (D) Fop) try (D5 F ), (5.17)
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where the try stands for the trace over the SU(2)y gauge
group. The monopole configuration (5.11) has the mono-
pole number ( — my), and its 1st Chern character on each
S? becomes ( — my), as is shown below in (5.21). Then,
(5.17) becomes

4(n + m))(n + my) + 2(n + my)(—my)
+ 2(n + my)(—my) + 2(—my)(—my)

= 4n? + 2n(m, + m,) + 2m,;m,. (5.18)

In the following, we will calculate the both-hand sides of
(5.12) at the matrix level, i.e., before taking the commuta-
tive limit, and check that the result agrees with (5.18). We
then investigate what kind of chiral zero modes contribute
to each term in (5.17).

We first calculate the rhs of (5.12). Because of the
relation [(A,);, (4;),] = 0, it can be written as

(T r[P\T)]T ry[P,T5] + T [P\ 11T ro[PoT5)).
(5.19)

Each factor can be evaluated as

Trx[Pxfx] = 2n.
(5.20)

The operator I'y takes its eigenvalue =1 in n + 1 dimen-
sional representation space of the operator —LE + ¢;/2.
By counting the total dimensions of the space, including
the space on which PA; acts, one obtains the first result.
The second result is similarly obtained. [See Eqgs. (3.34)
and (3.36) in [20].] Then one can obtain the monopole
charge on each S? as

T ry[PxTx] = —2(n + my),

TTHPx(Tx + T)] = —my (5.21)
Substituting (5.20) into (5.19), we obtain
5((=2(n + m))(=2(n + my)) + (2n)?), (5.22)

which indeed agrees with the above calculation in the
commutative limit (5.18).

We next calculate the left-hand side (lhs) of (5.12) by
counting the chiral zero modes of the GW Dirac operator in
the monopole backgrounds. The commutativity [f‘l, f‘z] =
0 holds because of the relation [(A,);, (A;),] = 0. Then, the
chirality operator (3.2) reduces to I= flfz, and the GW
Dirac operator in the projected space becomes

PIPZDGW = P1P2D1 + P1P2D2 (523)

with D; and D, given in (5.2). The arguments we have
given in the free case can be applied to the present case,
and it is sufficient to investigate the zero modes of the
operators Py(I'y — I'y) and Py(I'y + I'y) on each fuzzy
s2.

We then classify the states in terms of the Casimir
operator of the SO(3) Poincaré symmetry on each S2.
Generators of the SO(3) symmetry are given by

PHYSICAL REVIEW D 80, 125006 (2009)

(M,)y = (PA,. — LR+ ﬁ) , (5.24)
2 /x

where A;’s are generalized monopole configurations (5.11).

We consider eigenstates of the Casimir operator ¥ ;(M;)? as

in (5.8). As is shown in detail in Sec. III of Ref. [15], in

addition to the (2Jy + 1)-folded degeneracy, the state |Jy)

has an extra two-folded degeneracy for Jy =
nil ],’"T”, ...,n+"33 while the lowest spin sate with
Jy =271 and the hlghest spin state with Jy = n + 271

do not have such two-folded degeneracy. The lowest spin
states are shown to be zero modes of the operator Py(I" —
f‘)X, while the highest spin states are zero modes of the
operator Py(I" + f) x- The other states have nonzero eigen-
values for both of these operators. One can also show that
Tyly =270 = TxlJx =251 = —|Jx = 271) and that
FXl-]X_n_’_le = Fx|Jx—n+mTﬂ> —|Jx =
n+22h),

Consequently, coming back to the fuzzy S? X 2, the
chiral zero modes of the GW Dirac operator P;P,Dgy in
the monopole background (5.11) are given by the lowest
spin states with J; = J, = #5= I and the highest spin states
with J; =J, =n+ ’"21 The chirality defined by an ei-
genvalue of (3.1) and (3.2) is 1 for all of these states. The
index of the Dirac operator P;P,Dgy is, therefore, given
by counting the degeneracy of these states as

mymy + (2n + m)2n + m,). (5.25)

This again agrees with the topological charge in the com-
mutative limit (5.18). Incidentally, the states with J; =
m=lJ, =n+ " have nonzero eigenvalues of the op-
erator P,P,D,, and hence do not give chiral zero modes of
the Dirac operator P P2DGW Neither do the states with
J; = n+12-1 J, = 2-Lcontribute to chiral zero modes of
the Dirac operator P PzD(}W-

Note that the lowest spin states are responsible for the
first term of (5.25). This is half of the last term in the rhs of
(5.18), and exactly matches with an integral of the 2nd
Chern character in the monopole background we are con-
sidering. This is reasonable since the lowest spin states
correspond to the chiral zero modes of the Dirac operator
in the commutative theory. All the other contributions to
the zero modes in (5.25), and hence in (5.18) and (5.17),
come from the highest spin states, which do not have
corresponding chiral zero modes in the commutative the-
ory. Going back to the formula (4.13), we can similarly
infer the origins of various terms.

VI. GENERALIZATION TO FUZZY (S?)*

In this section, we generalize our formulation to fuzzy
(S?)¥. As in the fuzzy S* X S?, we first define two chirality
operators as

6.1
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O e Ve
\/(f1"'fk + oo 1y)?

(6.2)

which satisfy (3.5). As in (3.4), the denominator is written
as

(I NEEE VIS PR SO EE S (NS VS VERR) IV
(6.3)

The second term is of order O(n~*), since [I'y, I'y] is of
order O(n=?) as is shown below (A8). We then define a
GW Dirac operator as in (3.6). It satisfies the GW relation
(3.7) and the index theorem (3.8).

Analogously to (3.9), the following relation is satisfied:

r,---r,—-1,---1,

1 1 k
= S0 = (= D2Zrm)
2k l n],--',%:o,l 2
k A
X | Ty + (=D)™Ty), (6.4)
X=1

where the product respects the ordering of operators from
X = 1to X = k. The coefficient (1 — (— I)Z§(:1 "X) ensures
the number of operators (I" — D)y in the product to be odd.
Since I'y and I'y become the same chirality operator in the
commutative limit, those terms with smaller number of
T -1 x in (6.4) are more dominant in the commutative
limit.

Then, as in (3.10), the commutative limit of the GW
Dirac operator (3.6) becomes

Dow = Dyya vy viDyys -y + oo

Ty Y- 1Dp (6.5)
where only the terms with one of the ny’s being 1 in (6.4)
contribute. This is a generalized Dirac operator on a com-
mutative (S?)¥. [See the discussion after Eq. (3.10).]

The commutative limit of the topological charge, the rhs
of (3.8), gives a generalization of (4.13) and (4.14). We now
conjecture the result as follows:

%’Tr[f‘ 1= (14 (= 1)F25 1k (1)

k
+ 261y pkic, (6.6)
i=1

The coefficient (1 + (—1)¥) in the first term represents that
this term vanishes when k is odd. This is because the
contributions of the two chirality operators cancel for
odd k. The integral of the ith Chern character C; is defined
as

PHYSICAL REVIEW D 80, 125006 (2009)

1 dQy
C,’ = [trl: (
(277)kl! 1$X,<Z<X,sk XEX, -+ X;) 2

X (F")Xl...x,_):l.

(6.7)

For instance, (F)y and (F?)yy are given in (4.15) and (4.16),
and (F3)yy, is written as

3!
fﬂf’dQXdQYdQZ(GabcncEijk”kfxyz”z(FabFijny

- Fainjny + Faijiny - FabFiijy
+ FyyFiyFiy — FoFp Fis + Fo i Fy

iyl jx
+ FoiFy Fjy = FoiFy Fj — FoiFy Fyy
+ FaijyFix - FaXFbiij + FayFbiF

Jx

+ FabujFiy - FayFbjFix))XYZ’ (6.8)
where the indices a, b, and c refer to the sphere X, the
indices i, j, and k to the sphere Y, and the indices x, y, and z
to the sphere Z. Note, however, that the field strength
depends on all of the coordinates, such as
F,(Qy, - -+, Q). Only the highest Chern character term
in (6.6) is independent of the size n of the matrix. It is
important to show the conjecture (6.6) explicitly by taking
the commutative limit as we did for the fuzzy S* X $? in
Sec. I'V. It needs involved calculations and we will report it
in a future publication.

We here demonstrate the justification of (6.6) by con-
sidering a topologically nontrivial configuration, i.e., a
monopole configuration in (SU(2))* gauge theory on fuzzy
(S?). It is a generalization of (5.11). As in (5.12), we
consider the index theorem in the projected space

index (P, - - PDgw) = YT [P, - P, (T + D)1 (6.9)

If the conjecture (6.6) holds, then as in (5.17), the commu-
tative limit of the rhs of (6.9) becomes

%Tr[Pl o PT + 1))

L 2 [T+ my)

) X=1

+zk—lz[ > ( [T &+ my
i=1=1=X, < <X;=k XEX,--X;)

x 1] p2( f geijknktr(d)/FU))X)]. (6.10)

XeX;X;)

The monopole on each S? gives the 1st Chern character
( — my). Following the same calculation as in (5.18) and
(6.10) becomes
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(1 + (= 1)F)2k~ 1k

k
+ (_1)k2k71 Z nk—i Z my, * oy

i=1 1=X,<-<X;=k

(6.11)

In the following, we will evaluate the both-hand sides of
(6.9) at the matrix level, i.e., before taking the commutative
limit, and show that the results agree with the conjectured
topological charge in the commutative limit (6.11).

Following the same calculations in (5.19) and (5.22), the
rhs of (6.9) for the monopole background becomes

k k
%(n TrylPxlx] + ] T”X[erx]>
X=1 X=1

<ﬁ (=2(n + my)) + (2n)"), (6.12)
X=1

1
2
which indeed gives (6.11).

We can also evaluate the lhs of (6.9) by counting the
chiral zero modes of the Dirac operator. Denoting each
term in (6.4) as D, with a =1,...,2"!, we obtain a
generalization of Eq. (5.23). The same arguments we
have given in the S? X S? case hold in the present case:
A chiral zero mode of the Dirac operator Py - - - Py Dgw

must be a simultaneous zero mode of all the operators
P,---PD, with a=1,---,281 A zero mode of

P,---P;D, is given by a zero mode of any of the opera-
tors Pyx(I'+1)y and Px(I'—1)x constituting
Py---P;D,. The lowest spin states with Jy = ”’2;1 are

zero modes of the operator Py(I' — I')y, and the highest
spin states with Jy =n + ’"T*I are zero modes of the
operator Py(I" + D) x- Eventually, we find that the chiral
zero modes of the Dirac operator P, - - - P,Dgyw are given
by the states where an even number of Jy’s are the highest
spin and the remaining Jx’s are the lowest spin. The
chirality defined by an eigenvalue of (3.1) and (3.2) is 1
for all of these states when & is even, and — 1 when £ is odd.
By counting the number of these states as in (5.25), the
index of the Dirac operator P, - - - P;Dgy is evaluated as

3 Y (I ervm
i=0,2,- = 1=X, < <X;=k ‘XE(X,,"*,X;)
(6.13)
XEX,, . X;)

This again reproduces the result (6.11). Incidentally, the
states with an odd number i of Jx being the highest spin,
which we call Jx , ..., Jy , have nonzero eigenvalues of the
operator P, - -+ P,D, that is composed of (I' — I')x with
XE(X,...,X,) and ([ + D)y with X& (X,,..., X))
Those states thus do not contribute to the chiral zero modes
of the Dirac operator P, - - - P;Dgw. We also note that the
states with all Jy being the lowest spin are responsible for
the term with i = 0 in (6.13), giving [T&_,(—my), which
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agrees precisely with the kth Chern character of the back-
ground gauge fields we are considering. This is reasonable
since these states correspond to the chiral zero modes in the
commutative theory.

The agreement of (6.12) and (6.13) to (6.11) supports the
conjecture (6.10), and hence (6.6).

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have constructed a topological charge
on the fuzzy (S?)* based on a Dirac operator satisfying the
GW relation. Our formulation has the manifest gauge
invariance and the SO(3) Poincaré invariance on each S2.
Owing to the GW relation, the index theorem is satisfied
and accordingly we can construct the topological charge.
The commutative limit of the topological charge was eval-
uated directly for the fuzzy S§? X S?, and it becomes a sum
of the 1st and the 2nd Chern characters. We then have
shown that by combining with other topological invariants
we can define a noncommutative generalization of the 2nd
Chern character. We also conjectured a form of the com-
mutative limit of the topological charge on fuzzy (S?)* for
k> 2.

We further calculated the chiral zero modes of the Dirac
operator for the free case and for the monopole back-
grounds, and checked the consistency of our results. The
zero modes of the noncommutative GW Dirac operator on
fuzzy (S?)* consist of the highest spin states and the lowest
spin states. The lowest spin states correspond to the zero
modes of the commutative Dirac operator. On the other
hand, the highest spin states are zero modes of the operator
T+ f)x and do not have the correspondents in the com-
mutative limit. We have indeed found that the chiral zero
modes composed of only the lowest spin states give pre-
cisely the kth Chern character on (S%).

Some comments are in order. In the definition of I" in
(3.2), we first normalized both of fx in (2.2), and then
constructed the normalized chirality operator [ on 2 x 2
in (3.2). Instead, we can directly construct a normalized
operator on S> X §? as

_ {le H2}
ViH,, H,}?

with Hy defined in (2.2). Defining a Dirac operator as in
(3.6), with I replaced by 1", the GW relation (3.7) and the
index theorem (3.8) are satisfied as well. Moreover, as we
show in Appendix D, the commutative limit of the Dirac
operator and the topological charge give exactly the same
result as (3.10) and (4.13). This agreement indicates that
the topological quantities are rigid against slight modifica-
tions of the theories.

In this paper, we considered the monopole configura-
tions wrapping around each S, but it is more interesting if
we can construct configurations wrapping around higher
dimensional space. Then the field strengths whose indices

I (1.1)

125006-9



HAJIME AOKI, YOSHIKO HIRAYAMA, AND SATOSHI ISO

mix the different spheres play an important role. It is also
interesting, as we have studied for the case of fuzzy S? in
Ref. [16], to further extend our formulation of the projected
index theorem to include more general configurations in
the Higgs phase, i.e., when the scalar field takes a nonzero
vev.

As we mentioned at the beginning of the Introduction,
topological aspects of gauge theory on noncommutative
geometry may play an important role in compactified extra
dimensional space in string theory. We can pursue these
studies further by studying the relation of noncommutative
geometry to our world and by investigating dynamics of
noncommutative gauge theory. (See also related works
[24-26].) Our formulation given in the present paper to
define the topological charge and to classify the gauge field
configuration space on noncommutative geometry will
become useful for these studies.

APPENDIX A: EXPANSION OF I' IN THE GAUGE
FIELDS

In this Appendix, we expand the chirality operator ["in
terms of the gauge fields, and provide (4.2).

We first expand the chirality operator 'y on each 2,
defined by (2.2). We decompose Hy into the zeroth and the
Ist order in the gauge fields as

Hy = ax + Bx, (A1)
with
ay =a(o,L; + %)x»

Bx = ap(o;a;)x. (A2)

The operators ay and By are of order O(n°) and O(n™"),
respectively, since a = 2/n and L; is of order n. Since
(ax)? = 1, one has (Hy)*> = 1 + {ay, Bx} + B%. We then
obtain

= (a + W+ @+ {9+ 0(BY)x (A3)

where { )((i) is the ith order in By and hence in the gauge field
(a;)x. They are written as

W =1B - aBa)y, (A4)

0 = (—Yap? + Bap + BPa) + 2aBaBa)y, (A5

(3) (—( B>+ BaBaB + BaB’a + BPaPBa
+ aBapB’ + aBaf + aBa)

—15—6a,8a,8a,8a)x, (A6)

The operators ay and {)((i) themselves are zeroth and ith
order in 1/n. However, taking the trace over the spinor
space with the coordinate matrix space untouched, the
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operators tr, (ay) and tr, (£ (1)) become of order n~!
and n~2, respectively.

It then follows that

{fl’f2}22a1a2+{alr 2(l)+ (2)"‘5(3)}
Hag, (I + P+ {3+ {V +

+0(n3).

£ 20+ o0
(AT)

While the operators {«a, §£4)}, {ay, é’f“)}, {{1(1), {f)}, and
{& (1), {1(3)} also appear at order n~*#, when one considers
these terms in 7 r[I'] in (4.2), one takes a trace like

tr, (ay) and tr, ({y ). and these terms become of order
O(n=). One also has

[, 1,] = [a, (1)] = [ay, ffl)] + [5(1) (1)] + 0(n3).
(A8)

Note that (A8) is of order @(n~?), since the leading term
[a;, @] vanishes, and the commutators [a, 8,] and
[a,, B;] are of order O(n~?). This is why the second
term in (3.4) is of order O(n™*).

Using the identity (3.4), the chirality operator (3.2) is
written as

A

1 A A A A
I'= E{FIJFZ} %{Fl,rz}[rl,rz]z‘*‘ (A9)

Plugging (A7) and (A8) into (A9), we obtain (4.2).

APPENDIX B: COMMUTATIVE LIMIT OF 7 r[Gs]

In this Appendix, we show Eq. (4.11) by taking the
commutative limit of 7 /{Gs]. Substituting (A4) into
(4.7), we obtain

i=1
with
1
K, = _ﬁalaz([% Bal — [, B1 ]2, (B2)
K, = — ﬁalaz(az[al’ Balay — aj[ay, Bilay)? (B3)
1

K; = EQIQZ{[‘II’ B2] — [az, B1] aslay, Bola,

— aj[ay, Blay}, (B4)
1
Ky = — aalaz([ab 52] - [CYz» ,31])[,31» ,32]

+ (15 terms), (B5)
K5 = —ﬁalaz[ﬂl, Bz]z + (15 terms), (B6)
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where K, K,, and K3 are 2nd order, K, is 3rd order, and K
is 4th order in B. In (B5) and (B6), we wrote only a typical
term. The remaining 15 terms can be similarly written.

We first calculate the commutative limit of T r[K;].
Plugging (A2) into (B2), we obtain

TrK]=— —a Sp*Trl(o- L) (o L)y[(o- L)y, (0 a), P

- (0 L)i(o-L)[(o- L)y, (- a),]

X[(g- L)y (0-a)]+(1=2)], (B7)

where we omitted subleading terms in 1/n. Taking trace
over the spinor space, by using the formula

tr,[o0;0] = 2iey, (B3)
(B7) becomes
a8 p* T r'l€apeLo€ijli[ Loy ai][Ly, a;]
€apeLo€ijilil Lo, a;i)[Lj ap] + (1 - 2)],  (BY)

where 7 ' is the trace over the matrix space and the gauge
group space. The indices a, b, and c refer to the first S2,
while the indices i, j, and k refer to the second S2. Then, the
commutative limit of (B9) becomes

dQ, sz

- p 477_ 4 tr[Eaan Eljknk(a a; aba

+ aiaaaliab) + 28H(Pa),-8i(Pa)a], (B]O)

where (Pa); =
written as

Pl]a] Wlth P = 511 -

n;n;. (B10) is re-

dQ, dQ,
47 47

/
X tr[eabcnceijknk(aaai -

d;ay)(0pa’; — 9;a,)],  (B11)

where aj = €;n;a; is the tangential component of the
gauge field.
By using the identity

ajlay, Br] = —la, Brlay, (B12)
aZ[a27 Bl] = _[aZ: Bl]ab (B13)

(B3) is rewritten as
1

Ky, = — 3—2([a1, Bo] — [, B1]) aja, (B14)

and (B4) is

1
K; = _3—2(012[011, Brlajas[ay, Brla,
+ [ay, Bolajaslay, Br] — aslay, Brllas, Bile;
— [ay, Brlajayay, Bi] + (1 < 2)). (B15)

By the same calculation that was done for 7 r{K,], we can
show that the commutative limits of 7 /[K,] and T r[K;]
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give the same result (B11) and twice of that, respectively.
Therefore, the commutative limit of T (K, + K, + K3)
becomes 4 times of (B11). This gives the 2nd order terms
in the gauge field in (4.11).

We next consider 7 r/[K,]. By substituting (A2) and
taking the trace over the spinor space, the first term in
K4, which was presented in (B5), gives

1

a6P3T’”/[€abch fijkLk([La» a;] = [L;, a,)lay, Clj]]-

16
(B16)
Its commutative limit becomes
dQ, sz
- lP Am dm €abclc€ijiTk (B17)

X tr((eudendaeai - Eilmnlamaa)[ab) aj:l)

This is rewritten as

dQ, do,

4o dar €abcMc€ijk Mg tr((auag -

0:a)al, a')).
(B18)

The remaining 15 terms in (BS) give the same results.
Thus, the commutative limit of 7 7[K,] becomes 16 times
of (B18). This gives the 3rd order terms in the gauge field
in (4.11).

We finally consider 7 r{K5]. By substituting (A2) and
taking the trace over the spinor space, the first term in Ks,
which was presented in (B6), gives

ip*

1
ﬁa6p4Tr/[6abchEijkLk[aa: ai][ab: aj]] (Blg)
Its commutative limit becomes
1 dQ, dQ
§p4 477_1 4 = €abclc€ijkTk tr([aa’ az][ab’ j]) (BZO)

which is rewritten as

Lot [ R el o). (B21)
The remaining 15 terms in (B6) give the same results.
Thus, the commutative limit of 7 7[K5] becomes 16 times
of (B21). This gives the 4th order terms in the gauge field in
(4.11).

Hence we have proved (4.11).

APPENDIX C: SPECTRUM OF THE DIRAC
OPERATOR FOR THE FREE CASE

In this Appendix, we calculate the whole spectrum of the
GW Dirac operator for the free case. We here consider the
U(1) gauge group, for simplicity. For the free case, one has

T -1y =—aloc L+ 1)y, (C1)

T+ D)y =alo- (L + LR))y, (C2)
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where (L;)y = (L; — L)y is the adjoint operator. Then,
the free GW Dirac operator (5.1) is written as

Dow =5l L+ Dy(o (L + LR,

+ (o (L + LR), (o L+ 1),] (C3)
Let us begin with an investigation of each fuzzy S?. Our
formulation has SO(3) Poincaré symmetry on each S2,
whose generator (M;)y is given in (5.7). We now write its
eigenstates as
(M)zx, =) = Jx(Ux + DlJx, ). (C4)
Each |Jy, =) has (2Jy + 1)-folded degeneracy associated
with (M3)y. The sign = indicates that this state is obtained
from the spin Iy state of (L;)x as Jy = Ix 3. For Jy =
%, %, on— %, there exist both |Jy, +) and |Jy, —), while
for the highest spin Jy = n — % there exists only |Jy, +).
The state |Jx,~i> is shown to be an eigenstate of the
operator (o - L + 1)y as

(o L+ DylJy, £) = =(Ux + Py, *). (C5)
Since we have the relation
r-0r+1} =0 (C6)
and, in particular, for the free case,
{o-L+1,0-(L+L%}=0, (C7)
the operator (o - (L + LR))y flips the = sign as
(- (L + L®)xlJx, =) = Cj lUx, ¥) (C8)
with
Cj, = > = L= Jy(Ux + D). (C9)

For the highest spin Jy = n — %, a state |Jy, —) does not

exist, and thus (o - (L + LR))y|Jy, +) must vanish.
Indeed, C;, = 0 in this case, as one can see from (C9).

We now come back to S X S2. We consider states
specified by the spin J; and J, of each $%. We will study
the following three cases in turn:

I\

(@)3=Ji=n-3
(b).]]:n_%, %S

(C)J]ZJQZI’[_%.

=/

y=n-—3 (C10)

_3
n—s3

« L=

Let us first consider the case (a), where four types of
states |J,, =; J,, =) exist. Acting the GW Dirac operator
(C3) on these states, we obtain

PHYSICAL REVIEW D 80, 125006 (2009)
Dewl(eilJy, +3J5 ) + ealdy, +575, =)
+ eslJy, =3 dp )+ ealdy, =50, )
= (Acy + Bey)lJy, +35J,, +)
+ (Acy — Bey)ly, +575, —)
+ (=Acy + Be)lJy, =375, +)
+ (=Acy = Bey)lJy, =305, ), (C11)

with  A=40;+9)C,;, and B=%(,+)C,.
Diagonalizing Dgy in this sector, we obtain the eigenval-
ues =|A = B|, where two = signs need not coincide.

In particular, for J; = J,, and hence for A = B, there
exist two types of zero modes. Their explicit form is given
as

[1) =311, +5 00, ) + Uy +50, =) = Uy, =502, +)
+ |J1r _;121 _>)! (Clz)

+ |Jl’ _;JZ) _>) (C13)

We now study their chiralities. The chirality operator (3.1)
is rewritten as

M=%l L+ L) (o (L + L),

+(o-L+1)(oc-L+1),
— (- (L+L®)(o-L+1),

—(o-L+1),(0-(L+LR)),] (C14)
Acting it on the above states, we obtain
I'[1) =12), r2) =11), (C15)
where we used "72[(CJ)2 + (J +1)?] = 1. We thus have
rjiuw ) - +é<|1> ),
) ] (C16)
F\/—E(ID —12)) = —7§(I1> —12)).

The zero modes in this sector have both chiralities and do
not contribute to the index.

We next consider the case (b), where two types of states
|Jy, +;J,, =) exist. Acting the GW Dirac operator (C3) on
these states, and diagonalizing Dgw, we obtain the eigen-
states as

1
DGWTE(IJI’ +,J2, +> * |J1; +» J2; _>)
a 1 1
== ii("l + E)CJZ\/_E(LI], +; J2; +> * |J1J +’ J2’ _>)

(C17)

There is not a zero mode in this case.
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We finally consider the case (c), where only the states
|Jy, +;J,, +) exist. Acting the GW Dirac operator (C3)
and the chirality operator (C14) on these states, we obtain

DgwlJy, +5 75 +) =0, (C18)

LIy, +5ds, +) = +[Jy, +3J5, +). (C19)

They give chiral zero modes and contribute to the index.
Recalling that the state |Jy, +) has the (2Jy + 1)-folded
degeneracy, the degeneracy of the chiral zero modes is
(24, + 1)(2J, + 1) = 4n>. This agrees with the first term
in (4.13).

PHYSICAL REVIEW D 80, 125006 (2009)

Now we have obtained the whole spectrum of the Dirac
operator and checked that the chiral zero modes are indeed
given by the states that we discussed in Sec. VA.

APPENDIX D: COMMUTATIVE LIMIT IN THE
MODIFIED FORMULATION

In this Appendix, we consider the modified formulation
given by (7.1), and calculate the commutative limit of the
Dirac operator and the topological charge.

By substituting (A1) into (7.1), and expanding it in 8
and hence in the gauge fields, we obtain

"= aja, + I:th{az, Bi— aBia}+ (1< 2)] + %[7{,31, Ba} — Sajan{ By, Brtajas + 3 Bray, ayBrast

—[{B1 axprany + a{By, Botay = 3a{B, avfranta; + arfian By + Brai Bray + ajanfiagay By
+afiaimpra) T ajafiasfra; + ayfia frajay + Brajasfrajay + (1o 2)]

—Hao, aB] + Biay + Bia B} + a BBy + Braafay + Biayas By + ayarBranBra, + anBras Braga;
+ @By Bia; = 3({ay, a1 Bia Bra} + a1 frajayBray + ajayBraiayfraiay) + (1< 2)]] + O(B).

The first and the second terms in (D1), which are zeroth
and Ist order in S, coincide with those of the original
formulation, (4.3) and the 1st order terms in (4.4), at the
operator level, i.e., before taking the trace. Then, the
commutative limit of the Dirac operator —a !(I" — )
becomes the same one as the original formulation, (3.10),
since the commutative limit of the Dirac operator is af-
fected by I only up to order n~!.

We next consider the commutative limit of the topologi-
cal charge 1 7'+(I" + "), which is affected by I” up to
order n~*. While [ and I differ at O(B?) at the operator
level, the trace of the difference becomes

A A 1
Tl -T]= ETF[[C% Bilaayay, Bi]

— ajlay, Bi]ajalay, Bilay]
+ O((B)?) + O(B1B2) + O(B), (D2)

where we have written only the terms with (8,)2. Since

(D1)

I
(D2) vanishes in the commutative limit, the commutative

limit of the topological charge 1 7 (" + ") becomes the
same one as the original formulation, (4.13).

In the original formulation, the commutative limit of
{ay, {éz)} and {a,, { fz)} in (4.4) gave the second order terms
in the gauge field in the 1st Chern character. The commu-
tative limit of {{fl), {2(1)} in (4.6) gave the second order
terms in the gauge field in (4.10), which is a part of the 2nd
Chern  character. The commutative limit of
ajay(ay, V] - [as {1)])2 in (4.7) gave the second or-
der terms in the gauge field in (4.11). However, in the
modified formulation, the corresponding terms are all
mixed in the third term in (D1), and it is difficult to perform
the same calculations that we have done in the original
formulation. While the modified formulation is simpler in
the definition since it has normalization procedure only one
time, calculations are easier in the original formulation.
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