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We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories.

We argue that there are three generic mechanisms for the loss of conformality in any number of

dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or

(iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane.

We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that

the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature

Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, �� expðc=jT � Tcj1=2Þ. We

speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this

universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed

point at the lower end of the conformal window.
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I. INTRODUCTION

The renormalization group (RG) underlies our under-
standing of second-order phase transitions, with critical
points being identified with fixed points of the appropriate
RG equation [1]. Near the phase transition the character-
istic energy or momentum scale m (the inverse correlation
length) goes to zero as m� j�� ��j�, where � is a
parameter that can vary continuously, and � ¼ �� is the
location of the critical point.

In this paper, we argue that there is wide class of phase
transitions in which the correlation length behaves very
differently, vanishing exponentially on one side of the
phase transition, while being strictly zero on the other side

m��UV�ð�� � �Þ exp
�
� cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � �
p

�
; c > 0: (1)

This peculiar behavior—where all derivatives of the corre-
lation length with respect to � vanish at the critical point—
has been observed before in the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition in two dimensions [2];
therefore we will refer to Eq. (1) as ‘‘BKT scaling.’’ The
BKT transition is a classical phase transition in two di-
mensions that can be described in terms of vortex con-
densation. It arises due to the competition between the
entropy of a single vortex and the binding energy of a
pair of vortices, both of which scale as logR, R being the
size of the system. While this transition is peculiar to two
dimensions, we will show that the mechanism underlying
BKT scaling from an RG point of view is far more general,
and is one of three generic behaviors that can occur when a
system in any dimension makes a transition from a con-
formal to a nonconformal phase. In particular, as we will
show, it follows when an IR fixed point of the system

merges with a UV fixed point. In this language it is easy
to see why BKT scaling can be found in a wide variety of
systems.
The basic mechanism can be illustrated with a simple

model with a dimensionless coupling g depending on an
external parameter �, for which the �-function takes the
form [Fig. 1(a)]

�ðg;�Þ ¼ @g

@t
¼ ð�� ��Þ � ðg� g�Þ2; (2)

where t ¼ ln�, � being the renormalization scale. For
ð�� ��Þ> 0, the fixed points for this system (zeros of
�) are given by

g� ¼ g� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� ��

p
; (3)

where g�, gþ correspond to IR and UV fixed points,
respectively, each describing a conformal phase of the
theory.1 As � decreases, these two fixed points approach
each other until they merge at g� ¼ g� for � ¼ ��. For
�< �� the solutions to � ¼ 0 are complex, and the theory
no longer has a conformal phase.
To see that fixed point merger generically gives rise to

BKT scaling, consider the case where � is slightly below
��, and that at a UV scale�UV the coupling takes an initial
value gUV < g�. On scaling to the IR, the coupling then
flows to larger values, lingering near g ¼ g� where the
�-function is small, and then blowing up quickly, defining
an intrinsic IR scale �IR, which is insensitive to the initial
value gUV. This behavior is displayed in Fig. 1(b). The
scale �IR will characterize the longest correlation lengths
in this theory, and can be computed by integrating Eq. (2):

1By IR and UV fixed points we mean zeros of the �-function
which are attractive or repulsive in the IR, respectively.
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�IR

�UV

¼ exp½tIR � tUV� ¼ exp

�Z gIR

gUV

dg

�ðg;�Þ
�

’ e��=
ffiffiffiffiffiffiffiffiffiffiffiffi
ð����Þ

p
; (4)

where we have assumed jgIR;UV � g�j � j�� ��j1=2.
How general is this mechanism of fixed point annihila-

tion? Suppose a system has a nontrivial IR fixed point at
g ¼ �gð�Þ whose location depends continuously on a pa-
rameter �, and that at a critical value � ¼ �� there is a
phase transition where conformality is lost. At this phase
transition, the �-function must somehow lose a zero. This
can come about in three ways:

(A) �g can decrease until it merges with the trivial fixed
point at g ¼ 0, giving rise to a trivial, asymptoti-
cally unfree theory;

(B) �g can run off to infinite coupling and disappear;
(C) �g can merge with a UV fixed point, as in our toy

model, giving rise to BKT scaling.
Examples of scenarios (A) and (B) are afforded by super-
symmetric QCD (SQCD). At large number of colors Nc,
the parameter x � Nf=Nc may be treated as continuous,

where Nf is the number of quark flavors. It has been shown

by Seiberg [3,4] that SQCD is conformal in the window
3=2 � x � 3. For x just below 3, the theory has a Banks-
Zaks fixed point at weak coupling [5]; approaching x ¼ 3
from below, this fixed point merges with the trivial fixed
point at g ¼ 0, and for x > 3 the theory is in the asymptoti-
cally unfree ‘‘free electric phase.’’ This is an example of
mechanism ‘‘A’’ above. In contrast, at the lower end of the
conformal window at x ¼ 3=2, SQCD goes from a strongly
coupled conformal theory when x * 3=2 to a ‘‘free mag-
netic phase’’ when x & 3=2. In the free magnetic phase,
the Coulomb force between charges takes the form
e2 lnð�rÞ=r2 where � is associated with the Landau pole
of the dual magnetic theory. The log behavior of the
coupling can be explained by a �-function which is nega-
tive and approaches zero as ���1=g for large g. Thus it

appears that conformality in the electric description is lost
via mechanism (B). [Yet, since in the dual magnetic theory
conformality is lost via mechanism (A), it would appear
that scenarios (A) and (B) can describe the same physics in
terms of different degrees of freedom.]
In this paper we give several examples of theories which

exhibit the mechanism (C) of fixed point merger and BKT
scaling. Following our RG analysis of the original BKT
transition, we analyze the quantum mechanical example of
a 1=r2 potential in d dimensions, which can be solved
nonperturbatively and which exhibits the phenomenon of
fixed point merger. We show how this analysis has many
parallels in the AdS/CFT correspondence [6–8], and that
loss of conformality via fixed point merger is analogous (if
not holographically dual) to the instability of AdS space at
the Breitenlohner-Freedman (BF) bound [9].
Our next example is a relativistic theory of gauged

fermions confined to a defect. Here a perturbative analysis
near d ¼ 2 dimensions reveals fixed point merger and BKT
scaling. A rainbow approximation to the gap equation
gives qualitatively similar results.
One of the motivations for this paper is to understand the

chiral phase transition that happens in (nonsupersymmet-
ric) large-Nc QCD when the number of flavors of massless
fermions Nf varies. As with SQCD, we know there exists a

conformal window for QCD in the parameter x ¼ Nf=Nc

where the upper end occurs at x� ¼ 11=2, near which the
Banks-Zaks calculation is perturbative and reliable. For
decreasing x conformality must eventually be lost, since
for small x chiral symmetry breaking is expected. We
speculate that the phase transition at this lower boundary
of the conformal window occurs due to fixed point merger.
This suggestion is not new: it has been advocated before by
Gies and Jaeckel based on the results from the functional
RG approach [10]. If this picture is correct, then near the
transition the chiral condensate must exhibit BKT scaling.
Incidentally, this exponential behavior is also typically
found when one solves the gap equation obtained from
(an unsystematic) truncation of the Schwinger-Dyson hier-
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FIG. 1 (color online). (a) A toy �-function. For �> �� there are fixed points at g� which are UV- and IR-stable respectively; these
fixed points merge at g� for � ¼ ��, and disappear for �< ��; (b) The RG flow of the coupling g as a function of t ¼ ln� in the
nonconformal phase, with ðtUV � tIRÞ / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

p
.
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archy (see, e.g., [11–16] for further references).2 A priori,
the relationship between the RG picture of merging fixed
points and the gap equation is not obvious; however our
analysis of relativistic defect fermions yields the same
result in the regime where both approaches are reliable.

If QCD does indeed exhibit BKT scaling, then our argu-
ments suggest that within the conformal window there
exists another theory, QCD�, which is defined at the UV
fixed point. We conclude with speculations about this
theory.

II. THE BKT PHASE TRANSITION

The BKT phase transition [17,18] is due to the decon-
finement of vortices in the XY model at a critical tempera-
ture Tc, above which the theory is conformal. The behavior
of the correlation length Eq. (1) below the phase transition
can be understood from the appropriate RG equation [19].
We can exploit the equivalence between the XY model and
the zero temperature sine-Gordon model in 1þ 1 dimen-
sions:

L ¼ T

2
ð@��Þ2 � 2z cos�; (5)

where T corresponds to the temperature of the XY model
in units of the spin coupling. Near the phase transition, it is
useful to use the variables u ¼ 1� 1=8�T and
v ¼ 2z=T�2— where � is the UV cutoff associated with
the vortex core—in terms of which the perturbative
�-functions are

�u ¼ �2v2; �v ¼ �2uv: (6)

Changing variables to vþ u ¼ 	 and v� u ¼ 2w, one
sees that 	w invariant under RG flow, and the running of 	
is governed by

�ð	;w	Þ ¼ �
d	

d�
¼ �2w	� 	2: (7)

This �-function has exactly the quadratic form of our toy
model Eq. (2), with the substitution

ð�� ��Þ ! �2w	; ðg� g�Þ ! 	: (8)

However, this�-function is only valid for small 	 andw, so
the region about 	 ¼ 0 is excluded for fixed w	, as shown
in Fig. 2. Because of the excluded region, the physics for
the BKT model is slightly different than for the toy model:
in the nonconformal phase (w	 > 0), instead of starting
from the left of 	� ¼ 0 in the UVand flowing to the right in
the IR, the system starts at the top of the hill just to the right
of 	� and flows to the right in the IR. While it may appear
that this requires a fine-tuned initial condition for 	, that is
not the case in terms of the u and v variables. Starting the
flow near 	 ¼ 0 gives a factor of 1=2 in the exponent for

the correlation length relative to the expression Eq. (4):

�BKT� ’ e�=ð2
ffiffiffiffiffiffiffi
2w	

p Þ: (9)

The critical temperature is found by solving w	 ¼ 0; ex-
panding about T ¼ Tc yields the familiar BKT result

�BKT� ’ eb
0=jT�Tcj1=2 ; (10)

where b0 is a nonuniversal number that can be expressed in
terms of z and �.

III. A NONRELATIVISTIC EXAMPLE: QUANTUM
MECHANICS IN 1=r2 POTENTIAL

It is well known that the solutions for a quantum particle
in a potential

VðrÞ ¼ �=r2 (11)

possess conformal symmetry when the potential is repul-
sive or weakly attractive (�> ��), but that for sufficiently
attractive potential (�< ��), conformality is lost and the
potential has discrete bound states.3 For a range of �, the
zero-energy, s-wave solution to the Schrödinger equation
for two particles with mass m ¼ 1 in d dimensions inter-
acting via the potential VðrÞ is given by

c ¼ c�r�� þ cþr�þ ; �� ¼ � ðd� 2Þ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� ��

p
;

�� � � ðd� 2Þ2
4

: (12)

This solution is valid for � in the range

�� � � � �� þ 1; (13)

w

w

w

w

FIG. 2 (color online). The function �ð	Þ in the vicinity of 	 ¼
0 for the BKT transition Eq. (7); the gray region is outside the
realm of validity of the calculation.

2In this context, BKT scaling is sometimes called ‘‘Miransky
scaling.’’

3There is a vast literature on the 1=r2 potential. For textbook
treatment, see Ref. [20]; for an early reference, see [21]; for
relatively recent RG treatments see [22–26] and references
therein.
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for �< �� the above solution becomes complex, and the
Hamiltonian does not have ground state, while for �>
�� þ 1 then �� <�d=2 and the r�� solution is not nor-
malizable near r� 0. Within the range Eq. (13), if either
cþ or c� vanish, then the solution is scale-invariant.
Solutions for which both cþ and c� are nonzero define

an intrinsic length scale, L � ðcþ=c�Þ1=ð����þÞ and there-
fore do not exhibit conformal invariance; however in this
case the solution always approaches cþr�þ for large r
(since �þ 	 ��) and so we can identify the c� ¼ 0 solu-
tion with an IR attractive fixed point and the cþ ¼ 0
solution with a UV fixed point, in a manner we can make
precise. Arranging to have one of these solutions or the
other requires different boundary conditions at the origin,
so we see that the theory is actually not well defined with
the potential Eq. (11), but that it must be augmented by a 

function at the origin which controls the boundary condi-
tion at r ¼ 0:

VðrÞ ¼ �=r2 � g
dðrÞ: (14)

We will show that the coupling g obeys an RG equation
analogous to our toy model Eq. (2), and that the two
conformal solutions c� ¼ 0 and cþ ¼ 0 will correspond
to two different fixed points of the coupling g. As �
approaches �� from above, we will show that the two fixed
points merge, g� ¼ g�, at a value for g� which we will
compute. For �< �� a UV cutoff must be imposed on the
theory in order to have a ground state and an IR scale
emerges which is related to the UV cutoff through the BKT
scaling formula Eq. (4). We show this in two different
ways: first we perform a nonperturbative analysis, and
then we use Feynman diagrams in a perturbative calcula-
tion in 2þ � dimensions. Both calculations shed light on
the relativistic example we provide later, and on our con-
jecture about the behavior of QCD as a function of the
number of flavors.

A. nonperturbative calculation

1. The exact wavefunction and energy

To solve the Schrödinger equation exactly for two-
particle scattering via a 1=r2 potential in d dimensions
we need to regulate the singularity at r ¼ 0. We choose
to do so by considering the potential

VðrÞ ¼
�
�=r2; r > r0;
�g=r20; r < r0;

(15)

where r�1
0 will serve as the cutoff �UV.

At low energy, there is a region r0 < r 
 1=
ffiffiffiffi
E

p
where

the Ec term in the Schrödinger equation can be neglected,
and for �> �� we find the solution Eq. (12)

c ¼ c�r�� þ cþr�þ ; (16)

with the ratio cþ=c� given in terms of Bessel functions as

cþ
c�

¼ �rð����þÞ
0

�þ ��
�þ �þ

; � �
� ffiffiffi

g
p

Jd=2ð ffiffiffi
g

p Þ
Jðd�2Þ=2ð ffiffiffi

g
p Þ

�
:

(17)

The quantity (cþ=c�) is a dimensionful quantity char-
acterizing this solution; by requiring that it does not change
as we change the UV cutoff r0, we arrive at the exact
�-function for � (defining RG time t ¼ � lnr0):

�� ¼ @�

@t
¼ �ð�þ �þÞð�þ ��Þ

¼ ð�� ��Þ � ð�� ��Þ2; (18)

with

�� ¼ �
�
d� 2

2

�
2
; �� ¼ d� 2

2
;

�� ¼ ��� ¼ d� 2

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� ��
p

:

(19)

We recognize this to be the same �-function as our toy
model Eq. (2) with fixed points at ��; referring to Eq. (17)
we see that the IR fixed point corresponds to � ¼ �� and
c� ¼ 0, while the UV fixed point is associated with � ¼
�þ and cþ ¼ 0.
For general d and �< ��, scaling solutions do not exist;

physical quantities, such as the bound state energy, depend
on the UV cutoff. Motivated by the discussion of coupling
constant flow in our toy model, we know that physical
quantities will be insensitive to the value of � (the UV
coupling) so long as � < ��, as seen in Fig. 1(b). So we
take � ! �1, which is reached in the limit of a hard-core
repulsive potential for r < r0, g ! �1. The ground state
wave function is then described by the Bessel function

c ðrÞ ¼ r�ðd�2Þ=2Ki
ðkrÞ with 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

p
and the

boundary condition c ðr0Þ ¼ 0. For small real 
 we can
solve for k and find the binding energy

B ¼ k2 ¼ 1

r20
exp

�
� 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � �
p þOð1Þ

�
; (20)

Note that this scale for the binding energy is easily attained
from the RG analysis as

B ’ �2
IR ¼

�
1

r0
e
R1

�1 d�=��

�
2 ¼ 1

r20
e�2�=

ffiffiffiffiffiffiffiffiffiffi
����

p
: (21)

If one takes � to be arbitrarily close to �� in the UV, and
then takes � ! �� then the binding energy goes to zero,
but the exponent is only half as large,

B� 1

r20
exp

�
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � �
p

�
: (22)

recalling the result for the BKT transition.
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2. Onset of the Efimov effect

Although the �-function in Eq. (18) takes the same form
as the toy �-function in Eqs. (2) and (17), implies that the
coupling g is a multivalued function of �, with j�j ! 1
identified with the zeros of Jðd�2Þ=2ð ffiffiffi

g
p Þ. Therefore for�<

�� our RG equation actually describes limit cycle behav-
ior: as � runs from �1 to þ1 in RG period T ¼
�R

d�=�� ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

p
, g runs from one Bessel func-

tion zero to the next. It follows that there is not just one IR
scale defined by this RG flow, as in Fig. 1(b), but an infinite
number of such scales, each successively smaller than the
previous by a factor of exp½��=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

p �. This behavior
can explain the Efimov effect in 3-body bound states.

The classic Efimov effect [27] concerns the system of
three identical bosons. When the scattering length between
two bosons becomes large, the three-body system develops
a series of ever shallower bound states. This occurs because
the three particles interact via an�=r2 potential for r � r0,
where r0 is the two-body effective range, and � a fixed
number satisfying �< ��. These systems require a 3-body
interaction, and the renormalization of this interaction
exhibits the limit-cycle behavior discussed above. The
infinite tower of IR scales is associated with the infinite
number of ‘‘Efimov states’’ below threshold, exhibiting a
geometric spectrum [26]. Such states have been observed
in systems of trapped atoms tuned to a Feshbach resonance.

Three degenerate bosons tuned to infinite scattering
length (so-called ‘‘unitary bosons’’) do not have a variable
� parameter; in order to see a transition very similar to
what happens at � ¼ �� we need a case when the Efimov
effect appears as one changes a tunable parameter. This is
realized by nonrelativistic fermions at unitarity with differ-
ent masses for two spin components, M (heavy) and m
(light). The Efimov effect occurs in the p-wave channel for
two heavy and one light fermions if M=m> 13:6 [28].

It is known that for 8:6<M=m< 13:6 one can addi-
tionally fine tune the three-body interaction to resonance
[29]. From our point of view, the two theories with and
without fine-tuning in the three-body channel correspond
to the UVand IR fixed points. WhenM=m ! 13:6, the two
fixed points approach each other: the difference between
theories with and without 3-body fine-tuning becomes
smaller and smaller. Finally when M=m> 13:6, the fixed
point completely disappear, and an energy scale appears in
the problem: the ground state energy of the three-body
bound state.

3. Operator anomalous dimensions at the IR and UV fixed
points

We can gain insight about the two fixed points by look-
ing at the dimension of the operators. Let us consider the
two-particle operator c c . According to the operator/state
correspondence developed in Ref. [30], one can find di-
mensions of this operator by putting two particles in a
harmonic potential. The Hamiltonian of the system is given

by

H ¼ � 1

2
r2

1 �
1

2
r2

2 þ Vðjr1 � r2jÞ þ 1

2
!2ðr21 þ r22Þ:

(23)

In terms of the center of mass coordinate R and relative
coordinate r, the Hamiltonian can be rewritten as H ¼
HR þHr where the ground state energy of HR equals
d!=2 and

Hr ¼ �r2
r þ VðrÞ þ 1

4
!2r2; (24)

where the potential is given in Eq. (15). The ground state
wave functions and energies for this Hamiltonian for g
tuned to one of the fixed points g� is easily seen to equal

c� ¼ e�!r2=4r�� ; E�
r ¼

�
d

2
þ ��

�
! (25)

in the limit r0 ! 0. (Recall that the fixed points g� corre-
spond to solutions c ¼ r�� in the absence of the harmonic
potential). Therefore the total ground state energy is

E� ¼ ðdþ ��Þ!; (26)

and so the scaling dimensions of the two-particle operator
c c are

�� ¼ ðdþ ��Þ ¼ dþ 2

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� ��
p

; (27)

where�þ and �� are the operator dimension at the IR and
UV fixed points, respectively. We emphasize the fact that

ð�þ þ ��Þ ¼ dþ 2 (28)

in any spatial dimension d and for any in the range �� �
�< ð�� þ 1Þ in Eq. (13), with �þ ¼ �� ¼ ðdþ 2Þ=2 at
� ¼ ��. Note that (dþ 2) is the scaling dimension of a
nonrelativistic Lagrange density, since time has twice the
scaling dimension as space; we return to this below, when
we discuss the AdS/CFT correspondence.

B. The renormalization group: � expansion

When we consider relativistic quantum field theories a
nonperturbative solution will not be available, and we will
have to rely on either perturbation theory, or a truncation of
the Schwinger-Dyson equations. It is therefore instructive
to examine a perturbative analysis of the 1=r2 potential. We
have seen that the doubly degenerate fixed point at the
phase transition occurs at coupling � ¼ �� ¼ ðd� 2Þ=2;
we therefore start with the action in d ¼ 2þ � spatial
dimensions, where perturbation theory can correctly de-
scribe the phase transition. In order to facilitate the use of
Feynman diagrams, we write the theory in second quan-
tized form with a contact interaction,
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S ¼
Z

dtddx

�
ic y@tc � jrc j2

2
þ �

g

4
c yc yc c

�

�
Z

dtddxddyc yðt;xÞc yðt; yÞ

� �

jx� yj2 c ðt; yÞc ðt;xÞ; (29)

where the factor of � in the contact interaction is chosen
for future convenience. The Feynman rules are as follows:

(i) Propagator

i

!� p2=2
; (30)

(ii) Contact vertex

i�g���; (31)

(iii) ‘‘Meson exchange’’

2�i�

�

1

jqj� : (32)

Note the unusual 1=� pole in the ‘‘meson propagator.’’ It
arises because the Fourier transform of a 1=r2 interaction is
log divergent in d ¼ 2 dimensions.

It is easy to see that � does not get renormalized (as one
would expect, being the strength of a nonlocal interaction);
however the coupling g runs. From the above Feynman
rules, the �-function for g arises from the sum of the tree
graph and the one-loop graph shown in Fig. 3, with the
result

�ðg;�Þ ¼ @g

@t
¼ �g� g2

2
þ 2�

¼ 2

�
�þ �2

4

�
� 1

2
ðg� �Þ2; (33)

which we recognize to be equivalent to our toy model, up
to an unimportant rescaling of g by 2, with

g� ¼ �; �� ¼ � �2

4
; (34)

Note that our perturbative expansion is justified for small �,
but �� coincides with the exact result in Eq. (19). For �>
�� the �-function has two zeros: g� ¼ g� � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� ��

p
.

At � ¼ 0, g� ¼ 0 is the IR stable fixed point, correspond-
ing to a noninteracting theory—for the generic short-
ranged potential, low-energy scattering is trivial; gþ ¼
2� corresponds to a fine-tuned potential with a bound state
at threshold (i.e., an infinite scattering length). As one
decreases � the two fixed points approach each other,
merging at g� ¼ g� when � ¼ ��.
For �< �� the potential requires a cutoff and has a

bound state; we can estimate the size of the bound state
to be given by the correlation length � ¼ ��1

IR in Eq. (4);
this gives a binding energy B��2

IR, or

B��2
UV exp

�
� 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � �
p

�
: (35)

Note that this formula is independent of � and therefore
appears to be independent of dimension. In fact the above
estimate is verified in the nonperturbative calculation of the
previous section.
An unusual feature of our calculation of the �-function

(Fig. 3) is the contribution from a tree graph. We close this
section by noting that a more conventional calculation is
obtained by making the following change of variable:

g ¼ ~g� 2�

�
: (36)

Then the RG equation becomes

@~g

@t
¼ �~g� ~g2

2
þ 2~g

�
�

�

�
� 1

2

�
2�

�

�
2
: (37)

The first term on the right-hand side comes from the
engineering dimension. The other terms come from the
diagrams as in Fig. 4. All diagrams now have loops. This is
a more natural approach from the point of view of
Wilsonian RG, where one looks at the logarithm in the
momentum integral instead of the 1=� poles. But we
emphasize that the two RG equations lead to the same
physical consequences.

FIG. 3. Two diagrams contributing to the �-function in
Eq. (33). Note that the second diagram is a tree diagram.

FIG. 4. Diagrams contributing to the perturbative �-function for ~g.
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1. Summary of the QM example

Before proceeding, we summarize our findings.
(i) The theory has two fixed points, IR and UV, when

�> �� ¼ �ðd� 2Þ2=4.
(ii) When there are two fixed points, the dimensions of

the scalar operators at the IR and UV fixed points are
�þ and ��, and they satisfy �þ þ�� ¼ dþ 2.

(iii) When �< ��, the fixed points do not exist and the
theory develops a bound state energy which scales as
�2

UV expð�2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

p Þ.

IV. A HOLOGRAPHIC PERSPECTIVE

As far as we know, there is no simple holographic dual
description of quantum mechanics with 1=r2 potentials,
nor of the field theoretical models considered later in this
paper. However, holography provides an interpretation of
conformality loss which turns out to be very useful in
developing our intuition about such phase transitions: the
loss of conformality can be associated with the violation of
the Breitenlohner-Freedman (BF) bound.

A. The conformal phase: pair of theories

In our RG discussion, for �> �� there are two CFTs
that merge into one at � ¼ ��. This situation is reminis-
cent of what occurs in holography [31]: a higher dimen-
sional theory containing a scalar field � with mass m2 in
the interval�d2=4<m2 <�d2=4þ 1 corresponds to two
different boundary theories in which the dimensions of the
operator O dual to � have two different values

�� ¼ d

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
� d

2
� �: (38)

The main point here is that in the asymptotics of the scalar
field near the boundary z ¼ 0 of the AdS space, �ðzÞ ¼
c�z�� þ cþz�þ , one can interpret c� as the source
coupled to O, and cþ as its expectation value, and vice
versa.

Instead of repeating the discussion in Ref. [31], we
illustrate its main points in a simple model. In this model,
one sees that the theory with ½O� ¼ �� can be obtained
from the theory with ½O� ¼ �þ by adding to the
Lagrangian a term O2 with a fine-tuned coefficient (in
other words, we will go ‘‘against the RG flow,’’
cf. Ref. [32] where one follows the RG flow from the UV
fixed point to the IR fixed point).

Consider a massive scalar field in AdSdþ1 space. We use
Euclidean signature in this subsection, so the metric is

ds2 ¼ R2

z2
ðdz2 þ dx�dx�Þ: (39)

We will set the radius of the AdS space R ¼ 1. The action
for the scalar field � ¼ �ðz; xÞ is

S ¼ 1

2

Z
dzddx

ffiffiffi
g

p ðg��@��@��þm2�2Þ

� 1

��þ

Z
ddxJðxÞ�ð�; xÞ

¼ 1

2

Z
dzddx

1

zdþ1
½z2ð@z�Þ2 þ z2ð@��Þ2 þm2�2�

� 1

��þ

Z
ddxJðxÞ�ð�; xÞ: (40)

In our model, this action is taken as the definition of the
CFT. This CFT ‘‘lives’’ on the boundary in the sense the
external source J couples only to the field at some small
z ¼ �, with 1=� playing the role of the momentum UV
cutoff. The operator OðxÞ that J couples to is defined as
OðxÞ ¼ ���þ�ð�; xÞ. The extra power of � is chosen so
that subsequent results have a regular � ! 0 limit.
We assume a large N parameter so that one can use the

saddle point approximation, in which � satisfies the field
equation

�00 � d� 1

z
�0 � q2��m2

z2
�þ ����1J
ðz� �Þ ¼ 0;

(41)

where we have changed to momentum space. We assume
q� 
 1, i.e., q is much smaller than the UV cutoff. To
completely specify the solution we impose two boundary
conditions. Near z ¼ 0 there are two possible solutions to
this equation, �� z�� where �� are defined in Eq. (38).
We require that

� ¼ c0z
�þ ; z ! 0; (42)

i.e., we require � to follow the most regular asymptotic
behavior at small z. We leave the boundary condition at
z ! 1 for later discussion. Equation (42) is valid for z <
�, but due to the insertion of a source at z ¼ �, � contains
both asymptotics once z is larger than �,

� ¼ cþz�þ þ c�z�� ; � < z 
 q�1: (43)

Clearly, c� is proportional to the source J. Matching
boundary conditions one finds

c� ¼ J

�þ ���
: (44)

From the point of view of the interior region z > �,
Eqs. (43) and (44) effectively fix the boundary condition
near z ¼ �. Here we obtain a key ingredient of the AdS/
CFT prescription: the coefficient in front of the z�� part of
the field is the source coupled the operator �.
The coefficients c0 in Eq. (42) and cþ in Eq. (43) can be

determined only after the boundary condition at z ¼ 1 is
fixed. We can relate the expectation value of O with cþ:

hOijJ ¼ �ð�Þ
��þ

¼ J

ð�þ � ��Þ��þ���
þ cþ: (45)
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Therefore, up to a singular contribution, the expectation
value ofO is related to cþ. The two-point function hOOi is
then

hOOi ¼ @

@J
hOijJ ¼ J

2��2�
þ @cþ

@J
: (46)

Let us now impose the boundary condition at z ! 1. To
ensure finiteness of the action, it is sufficient to require

�ðz; xÞ ! 0; z ! 1: (47)

The saddle point solution is now completely determined

�ðzÞ ¼
�
D���K�ðq�Þzd=2I�ðqzÞ; z < �;
D���I�ðq�Þzd=2K�ðqzÞ; z > �;

(48)

with D ¼ J���. This solution corresponds to

c� ¼ J

2�
; cþ ¼ � �ð1� �Þ

�2�ð�Þ21þ2�
Jq2�: (49)

The two-point function hOOi is proportional to q2�, con-
sistent with dimension of O being �þ ¼ d=2þ �.

Now we turn on a deformationO2 with a coefficient that
will be fine-tuned to get another conformal field theory.
The action is now

S ¼ 1

2

Z
dzddx

1

zdþ1
½z2ð@z�Þ2 þ z2ð@��Þ2 þm2�2�

�
Z

ddx

�
�

2�d
�2ð�Þ þ J

�ð�Þ
���

�
: (50)

Let us first set J ¼ 0. The field equation is

��00 þ d� 1

z
�0 þm2

z2
�þ q2�� �

�

ðz� �Þ� ¼ 0:

(51)

One can integrate this equation from z ¼ 0 to larger z. For
z < �, � is purely z�þ , and for z > � it becomes a mixture
of z�þ and z�� , the relative weight of which depends on �.
The most interesting value of � is when� is purely z�� for
z > �. This happens when � is fine-tuned to the critical
value

� ¼ �þ � ��: (52)

There is a quantum-mechanical interpretation of this fine-
tuning. If one identifies z as the radial coordinate r of a
two-dimensional space, then Eq. (51) is the radial

Schrödinger equation for the wave function c ¼ z�d=2�
of a particle moving in a potential which is a sum of a 1=r2

piece and a delta-shell piece,

VðrÞ ¼ �2

r2
� �

�

ðr� �Þ: (53)

with �q2 playing the role of the energy. The value (52)
corresponds to the case when the potential has a zero-
energy bound state.

Let � be fine-tuned to this value, and turn on the source
J. Using the asymptotics�� z�þ for z < � and integrating
the field equations passed z ¼ �, we find that for z > �, the
coefficient cþ is now proportional to J:

cþ ¼ � J

�þ � ��
: (54)

The expectation value for O is now related to c�,

hOiJ ¼ c�: (55)

The assignment of source and expectation value is reverse
to the case � ¼ 0. If one imposes the boundary condition
�ðzÞ ! 0 when z ! 1, then the solution to Eq. (51) is
given by Eq. (48), but now

D ¼ J��

1� 2�I�ðq�ÞK�ðq�Þ : (56)

The solution corresponds to

cþ ¼ � J

2�
; c� ¼ 22��1�ð�Þ

�ð1� �Þ
J

q2�
: (57)

In particular hOOi � q�2�, corresponding to ½O� ¼ �� ¼
d=2� �.
Thus, in this simple holographic model, the UV stable

fixed point of the CFT with the fine-tuned O2 interaction
corresponds to the same bulk theory, but with the opposite
assignment for the source and the expectation value.

B. Below the Breitenlohner-Freedman bound

Here we speculate on the fate of the bulk theory with a
scalar with m2 below the Breitenlohner-Freedman (BF)
bound �d2=4. The most interesting case is when m2 is
only slightly below the BF bound, where the boundary
theory is approximately conformal over a large energy
range. The dual bulk description should involve a space-
time that is approximately AdS, cutoff both at the UV and
the IR by the respective ‘‘walls.’’
First, for the set up with a scalarm2 below the BF bound,

there must be an UV cutoff in the theory. For example, the
theory with a dual description can arise as a low-energy
limit of another theory whose UV is free of any instability.
Let us model that by imposing a hard cutoff on the AdS
space, and impose a boundary condition on the scalar � at
the cutoff. The precise form of the boundary condition is
not important, for definiteness we take it to be Dirichlet:
�ðzUVÞ ¼ 0.
One expect that a IR scale will be generated by the

condensation of �. We model that scale very roughly by
another, IR, cutoff at zIR, and impose another Dirichlet
boundary condition there.
Now let us look at the field equation for �,

�00 � d� 1

z
�0 �m2

z2
�� q2� ¼ 0: (58)
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Changing variables to � ¼ zðd�1Þ=2c , this equation be-
comes

� c 00 þm2 þ ðd2 � 1Þ=4
z2

c ¼ �q2c : (59)

This equation, with the boundary condition on at zIR and
zUV, gives us an infinite tower of particles. The mass square
of the particles in this tower is the eigenstate of a particle in
a one-dimensional potential which is �=r2 enclosed be-
tween two infinite walls at zUV and zIR. The condition of
absence of tachyon is equivalent to the condition that the
potential does not contain a negative-energy eigenstate.
This requires the interval between the two cutoffs is not
too large,

ln
zIR
zUV

<
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
BF �m2

q : (60)

In a more realistic setup where the scale zIR appears
dynamically, one can expect that it appears at the scale
required for preventing a tachyon,

zIR � zUV exp

�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
BF �m2

q �
: (61)

We expect that this situation is rather generic in holog-
raphy. It would be interesting to construct an explicit
solution in string theory which exhibits the BKT scaling.

V. A RELATIVISTIC EXAMPLE: DEFECT QFT

In this section we consider a relativistic quantum field
theory that exhibits the phenomenon of fixed point annihi-
lation. The example resembles QCD with large number of
flavors, but the phase transition occurs in the regime of
weak coupling.

We consider a theory of a fermion living on a
d-dimensional membrane, and interacting through a
SUðNcÞ gauge field that lives in (3þ 1) dimensions. We
shall assume that the SUðNcÞ gauge coupling does not run;
it can be easily accomplished by taking the gauge field
to be part of a conformal field theory, say, the N ¼ 4
super-Yang-Mills theory. The most interesting case is d ¼
3ð¼ 2þ 1Þ, which was analyzed in Refs. [33,34] using the
Schwinger-Dyson approximation and gauge/gravity dual-
ity. Here we shall take d ¼ 2þ � (i.e., ð1þ �Þ þ 1) to take
advantage of a small parameter � 
 1.

The action is

S ¼
Z

ddxði �c��@�c þ g �c��cA�Þ � 1

4

Z
d4xFa

��F
a
��

þ 
 
 
 ; (62)

and we assume there is a UV cutoff �. The d-dimensional
photon propagator is obtained by integrating out the 4d
propagator over transverse directions,

D��ðqÞ ¼
Z d2��q?

ð2�Þ2��

�i

q2

�
g�� � ð1� �Þ q�q�

q2

�
; (63)

where q2 ¼ q2k � q2?. For small �, the result is

D��ðqÞ ¼
ig��

2��

�
1

ð�q2Þ�=2 �
1

��

�
: (64)

Note that the dependence on the gauge parameter � dis-
appears in the small � limit (if one assumes �� 1).

A. Schwinger-Dyson treatment (rainbow
approximation)

Before going to the RG treatment, we review how the
chiral phase transition is found using the gap equation. This
treatment is very similar to that used in QCD [11,14]. The
lowest-order gap equation is (Fig. 5)

�i�ðpÞ ¼ �g2
Z ddq

ð2�Þd D��ðp� qÞ��ta

� ��q� þ �ðqÞ
q2 � �2ðqÞ þ i�

��ta: (65)

Inserting the photon propagator (63) and performing a
Wick rotation, the equation becomes, for small �,

�ðpÞ ¼ g2CA

4�3�

Z
ddq

1

jp� qj�
�ðqÞ

q2 þ�2ðqÞ ;

CA � N2
c � 1

2Nc

;

(66)

where the integral is taken in Euclidean space. It will
become clear later that the dominant contribution to the
integral comes from the regions p 
 q and p � q, with
p� q giving a subleading contribution. Changing varia-
bles to

x ¼ ln
p

m
; y ¼ ln

q

m
; (67)

where m ¼ �ð0Þ will be the mass gap, the Schwinger-
Dyson equation becomes

�ðxÞ ¼ g2CA

2�2�

�Z x

0
dy½e��ðx�yÞ � e��ðxm�yÞ��ðyÞ

þ
Z xm

x
dy½1� e��ðxm�yÞ��ðyÞ

�
; (68)

where xm ¼ lnð�=mÞ and � is the UV cutoff.
Differentiating Eq. (68) over x, we find

FIG. 5. The one-loop graph that contributes to the gap equa-
tion.
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�0ðxÞ ¼ �g2CA

2�2

Z x

0
dye��ðx�yÞ�ðyÞ; (69)

�00ðxÞ ¼ g2CA�

2�2

Z x

0
dye��ðx�yÞ�ðyÞ � g2CA

2�2
�ðxÞ; (70)

from which we find that� satisfies the differential equation

�00ðxÞ þ ��0ðxÞ þ g2CA

2�2
�ðxÞ ¼ 0; (71)

with boundary conditions

�0ð0Þ ¼ 0; �ðxmÞ ¼ 0: (72)

The solution to the equation is

�ðxÞ ¼ me��x=2 cosð�x� 
Þ
cos


; (73)

with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2CA

2�2
� �2

4

s
: (74)

When � and � are small,� varies slowly on the logarithmic
scale, which validates the assumption that the integral in
Eq. (66) is dominated by regions where p and q are very
different.

The boundary conditions imply

tan
 ¼ �

2�
; cosð�xm � 
Þ ¼ 0; (75)

from which one finds

xm ¼ 1

�

��
nþ 1

2

�
þ arctan

�

2�

�
; (76)

where n is an integer. The solution with n ¼ 0 corresponds
to the biggest gap and is favored energetically. The dy-
namically generated mass gap is

m��exp

�
� 1

�

�
�

2
þ arctan

�

2�

��
;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2CA

2�2
� �2

4

s
:

(77)

So we find that there is a phase transition occurring at

g2� ¼ �2�2

2CA

; (78)

and the critical behavior of the gap near g ¼ g� conforms
with BKT scaling.

B. RG treatment: beyond the rainbow

The RG equation can be written in a way very similar to
the RG equation for the QM example with 1=r2 potential.
One introduces an extra four-fermi interaction into the
Lagrangian

S ¼
Z

ddxði �c��@�c þ g �c��cA� � c

2
ð �c��tac Þ2Þ

� 1

4

Z
d4xFa

��F
a
�� þ 
 
 
 : (79)

The tree level one-gluon exchange contains a 1=� factor
from the gluon propagator (64) and contributes to the beta
function for c:

�ðcÞ ¼ �c� Nc

2�
c2 � g2

2�
: (80)

The phase transition occurs at g ¼ g� where �ðcÞ has a
double zero,

g2� ¼ �2�2

Nc

: (81)

When g > g�, we need to solve the RG equation,

@c

@ ln�
¼ �ðcÞ; (82)

with the boundary condition that the bare four-fermi cou-
pling is zero at the UV cutoff, gð�Þ ¼ 0. The solution is

cð�Þ ¼ ��

N
þ 2�

N
� tan

�
� ln

�

�
� 


�
;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Nc

4�2
� �2

4

s
;

(83)

where 
 ¼ arctanð�=2�Þ. The coupling constant becomes
infinite at

m ¼ �exp

�
� 1

�

�
�

2
þ 


��
: (84)

We find that in the limit Nc ! 1, the result from the RG
approach coincide with what is obtained from the
Schwinger-Dyson approach. However, for finite Nc the
results of the two approaches are different. This is not
unexpected, since the RG sums up a wider class of dia-
grams than the gap equation.
For g < g�, there are two zeros of the �-functions

c� ¼ 1

Nc

ð���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2 � g2Nc

q
Þ: (85)

On the other hand, the scaling dimension of operator �c c is

��½ �c c � ¼ 1þ �� Nc

2�
c� ¼ 1þ �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2 � g2Nc

q
:

(86)

We find that

�þ þ �� ¼ 2þ � ¼ d: (87)

up to possible corrections of order �2.
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C. Summary of the relativistic example

The lessons we learn from the relativistic examples are
very similar to the nonrelativistic example:

(i) g < g�: two fixed points. The dimensions of the
operator �c c at the two fixed points satisfy �þ þ
�� ¼ d.

(ii) g > g�: no fixed points, gap formation, BKT scaling.

VI. QCD AT LARGE Nc AND Nf

We now turn our attention to the most interesting, and
most difficult, example; the chiral phase transition in QCD
with large Nc and Nf. Denote x ¼ Nf=Nc. We consider the

Veneziano limit Nc ! 1, Nf ! 1, x fixed, and denote the

(rescaled) ’t Hooft coupling as

as ¼ g2Nc

ð4�Þ2 : (88)

The beta function of QCD in this regime is

�ðasÞ ¼ � 2

3
½ð11� 2xÞa2s þ ð34� 13xÞa3s þ 
 
 
�: (89)

For x < 11=2 the theory is asymptotically free. If x is
slightly below 11=2 the beta function has a nontrivial
zero which is still in the perturbative regime:

as� ¼ 2

75
ð11� 2xÞ: (90)

This is the Banks-Zaks (BZ) fixed point [5]. In the IR, the
theory is an interacting CFT. This fixed point moves to
strong coupling as one makes 11=2� x� 1. For small x,
x 
 1, we believe that the theory has chiral symmetry
breaking and a confinement scale. It is natural to assume
that there is a critical Nf=Nc ratio xcrit at which the chiral

condensate goes to zero.4

If the picture emerging from the previous examples also
holds for QCD, then conformality is lost when the BZ fixed
point annihilates with another UV fixed point. Therefore,
we predict that when x is slightly larger than xcrit, QCD has
an UV fixed point, in addition to the IR fixed point (and the
free UV fixed point).

The situation is illustrated in Fig. 6. The UV fixed point
called QCD�, is a different CFT compared to the usual IR
fixed point, for example, the dimension of the operator �c c
should be different between the two fixed points.

What is the nature of QCD�? It could be that the
�-function for the QCD gauge coupling simply has an
unstable fixed point at strong coupling. However, this
picture implicitly assumes that the set of relevant operators
in QCD� consists of just kinetic terms for the gauge fields
and fermions, as is the case at weak coupling. At strong
coupling other operators could be relevant as well, and

guided by our defect QFTexample of Sec. V, it is natural to
consider the possibility that a chirally symmetric four-
fermion operator is relevant in QCD�

L QCD� ¼ LQCD � cð �c��tac Þ2 (91)

and that the unstable fixed point exists at some value
fg�; c�g in the two-dimensional space of couplings. By
analogy with Sec. V, we then expect that the beta function
for c contains linear, quadratic and constant terms,

�ðcÞ ¼ �1c� �2Ncc
2 þ �0g

2; (92)

where the linear �1c term is due to the anomalous dimen-
sion of the four-fermi operator, the quadratic c2 term is due
to the one-loop graph involving two four-fermi vertices,
and the constant g2 term is due to, e.g., one-gluon ex-
change graph.5 This is essentially the picture advocated
by Gies and Jaeckel [10].6 The constants �0, �1, �2 depend
on x ¼ Nf=Nc; and xcrit is where �ðcÞ has a double zero.
We do not know where in x the fixed point QCD� exists.

A particularly interesting possibility is that QCD� exists at
weak coupling, say near x ¼ 11=2. As described subse-
quently, we find many theories similar to QCD� in the
perturbative regime, but none of them possess the full
chiral symmetry of QCD, and hence cannot be QCD�.
The possible ‘‘phase diagram’’ is illustrated in Fig. 6, the
line corresponding to QCD� does not continue to the
vicinity of x ¼ 11=2.
In the rest of this section, we shall be looking for

perturbative UV fixed points that flow to the BZ fixed

xcrit
xxBZ

=11/2

QCD

3

2

1

QCD*

+

-

Free fermions

FIG. 6 (color online). A possible picture for the QCD chiral
phase transition in Nf=Nc. The lines denotes the dependence of

the dimension of the chiral condensate �c c at the fixed point.
The solid line is the IR fixed point, and the dashed line is the UV
fixed point.

4One assumes that some UV scale, e.g., the scale �QCD
defined from one-loop running, is fixed when x is changed.

5The constant term can be of a different power of g, but it does
not affect the argument.

6Beta functions containing three terms of the almost the same
origin arise in orbifolds of N ¼ 4 super-Yang-Mills theory for
the coefficients of double-traced operators [35]. The constant
term also appears in the running for the Landau liquid parame-
ters in the RG treatment of color superconductivity [36].
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point. Models A and C below have been considered in
Ref. [37].

A. Model A

As the first step, we try to find a fixed point when one
operator, �c c , has dimension different from its dimension
at the BZ fixed point. From AdS/CFT experience, we
expect that operator dimensions at the two fixed points
satisfy

�þ þ�� ¼ d ¼ 4: (93)

At the BZ fixed point �þ � 3, therefore at the QCD� fixed
point, �� � 1, which means that this operator is almost a
free scalar. This suggests that we look for QCD� in the
following Lagrangian, which will be called model A,

L model A ¼ LQCD þ 1

2
ð@��Þ2 � yffiffiffi

2
p �c c�� �

24
�4:

(94)

It is convenient to define the rescaled couplings,

as ¼ g2Nc

ð4�Þ2 ; ay ¼
y2NcNf

ð4�Þ2 ; �̂ ¼ �NcNf

ð4�Þ2 : (95)

These constants will be found to be OðN0
cÞ at the fixed

point. In this regime, the beta functions are

�as ¼ � 2

3
½ð11� 2xÞa2s þ ð34� 13xÞa3s�; (96)

�ay ¼ �6asay þ 2a2y; (97)

��̂ ¼ �12a2y þ 4ay�̂: (98)

The fixed point for the gauge coupling, as�, is the same as
at the BZ fixed point to leading order in 1=Nc. The fixed
point for the Yukawa and four-scalar couplings are

ay� ¼ 3as�; �̂ ¼ 3ay� ¼ 9as�: (99)

Thus, model A has a perturbative fixed point.
We can compute the dimension of the scalar operators at

the fixed point,

�½ �c c �BZ ¼ 3� 3as�; (100a)

�½��model A ¼ 1þ ay�: (100b)

Notice that at in the model-A fixed point, the operator �c c
is replaced by the operator �. We see here that

�½ �c c �BZ þ�½��model A ¼ 4; (101)

which coincides with our expectation (93). From the QM
intuition, we may expect that when �þ ¼ �� ¼ 2, the BZ
fixed point and model A become identical.

According to our expectation, the new fixed point should
be an UV fixed point, and that there exist a deformation of
this fixed point that leads to the BZ fixed point. The

deformation is provided by the scalar mass term m2�2.
This deformation is relevant if �½�� is less than 2. If such
perturbation is present, the scalar � decouples below a
certain energy scale, leaving the theory to be in the BZ
fixed point, as expected.
It might seem that the way model-A Lagrangian was

introduced, with an extra scalar field and Yukawa interac-
tion, is very different from the way done in Eq. (91). It
seems that if we want to change the dimension of �c c , then
one should introduce a four-fermi interaction into the QCD
Lagrangian:

L model A ¼ LQCD þ cð �c c Þ2: (102)

We argue here, however, that the two forms of the
Lagrangian are just two different representations of the
same fixed point; with Eq. (94) being the weak-coupling
representation near the upper end of the conformal window
(x ¼ 11=2), and Eq. (102) being the more useful represen-
tation near the lower end (x ¼ xcrit). Indeed, the propagator
of � at the IR fixed point is q2���4 where �� is the

dimension of �; near the lower end of the conformal
window � ¼ 2, therefore the scalar propagator is almost
momentum independent, and the scalar-mediated interac-
tion between fermions becomes pointlike. This is similar to
the equivalence between Nambu–Jona-Lasinio and
Yukawa models in dimensions between 2 and 4 [38,39].

B. Model B

Model B is similar to model A, except there are now two
scalar fields,

L ¼ LQCD þ 1

2
ð@��1Þ2 þ 1

2
ð@��2Þ2

� yffiffiffi
2

p �c ð�1 þ i�5�2Þc � �

24
ð�2

1 þ�2
2Þ2: (103)

The Lagrangian preserves vector SUðNfÞ and axial Uð1ÞA
(more precisely, the nonanomalous discrete subgroup of
it). The behavior of model B is exactly like in model A:
there is a fixed point for y and �; and the running of g is not
altered in large Nc, Nf regime.

C. Model C

Both model A and B preserves only a small subset of the
SUðNfÞ � SUðNfÞ chiral symmetry of QCD. The simplest

Lagrangian which preserves chiral symmetry is

L ¼ LQCD � yð �c tAc�A þ i �c tA�5c�AÞ
þ Tr@��y@��� �1ðTr�y�Þ2 � �2Trð�þ�Þ2;

(104)

where � ¼ ð�A þ i�AÞtA, A ¼ 1; . . .N2
f or A ¼

0; . . .N2
f � 1 are flavor Gell-Mann matrices, normalized

so that TrðtAtBÞ ¼ 1
2


AB. We need to find the fixed point
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of this theory. This fixed point should have only one IR
unstable direction corresponding to the mass term for �.

The RG equations for g and y can be read out from
Refs. [40–42]. We need the two-loop beta function for the
gauge coupling (as the one-loop contribution has a small
coefficient near x ¼ 11=2), but for the Yukawa and scalar
couplings one-loop beta function suffices. Moreover, the
two-loop beta function for g and the one-loop beta function
for y does not contain scalar self-couplings, thus one can
first solve for the fixed point for g and y, and then look for
the fixed points of scalar couplings. In this model we define
ay as

ay ¼ y2Nc

ð4�Þ2 : (105)

The beta functions are

�as ¼ � 2

3
ð11� 2xÞa2s � 2

3
ð34� 13xÞa3s � 2x2a2say;

(106)

�ay ¼ �6asay þ 2ð1þ xÞa2y: (107)

We work around x ¼ 11=2. At fixed as, there is a zero of
�y, but there is no fixed point of both beta functions.

Therefore model C does not have a perturbative fixed
point.

D. Model D

The difference between model C and models A, B is that
we introduce OðN2Þ scalars into model C, while there are
only Oð1Þ scalars in models A, B. As a result, the beta
function for the gauge coupling changes, and there is no
longer a fixed point.

Our last model, model D, interpolates between models B
and C. We introduce couplings to 2M2 scalars that preserve
a SUðMÞ � SUðMÞ � SUðkÞ subgroup of the chiral sym-
metry group, with M ¼ Nf=k,

L ¼ LQCD � y �c �
i t

A
��ð�A þ i�5�AÞc �

i þ scalar terms;

(108)

where �, � runs 1 . . .M, i runs 1 . . . k, A runs 1 . . .M2.
Model B corresponds to k ¼ Nf and model C to k ¼ 1. We

redefine ay to be

ay ¼ y2kNc

ð4�Þ2 : (109)

The beta functions are now

�as ¼ �2a2s

�
11� 2x

3
þ 34� 13x

3
as þ x2

k2
ay

�
: (110)

�ay ¼ 2ay

�
�3as þ

�
1þ x

k2

�
ay

�
: (111)

For x slightly below 11=2, the model has a fixed point for
any integer k larger than 1,

as� ¼ 2k2 þ 11

25k2 � 44

 11� 2x

3
;

ay� ¼ 2k2

25k2 � 44
ð11� 2xÞ;

(112)

but there is no perturbative fixed point for k ¼ 1 (model C).
(The fixed point values for the four-scalar couplings can
also be found.)
Therefore, there exist theories that preserve part of the

chiral symmetry of QCD and flow to QCD by a relevant
deformation, but we have not succeeded in finding a theory
that plays the role ofQCD� in the perturbative regime. This
does not mean QCD� does not exist; in fact we will give
arguments, largely based on holography, that it does exist
in the nonperturbative region.

1. Operator dimensions in model D

The dimension of the scalar operators �A, �A in model
D is

�½��jmodel D ¼ 1þ ay�jmodel D: (113)

On the other hand the dimension of �c c at the BZ fixed
point is given in Eq. (100a). Taking the sum of the dimen-
sions, we find

�½ �c c �jBZ þ �½��jmodelD ¼ 4þ 88

25ð25k2 � 44Þ ð11� 2xÞ:
(114)

So, the rule �þ þ �� ¼ 4 is broken in model D when k�
Oð1Þ. When k � 1, the equation can be written in the
suggestive form

�þ þ �� ¼ 4þ 88

625

n�

N2
f

ð11� 2xÞ; (115)

where n� ¼ 2M2 is the number of scalars. We see that the

violation of the rule �þ þ�� ¼ 4 occurs when the num-
ber of scalars is of the same order as the number of color
degrees of freedom, N2

c .
Recall that the rule �þ þ �� ¼ 4 can be understood

from AdS/CFT correspondence: � is related to the mass
square m2 of the bulk scalar by the equations �ð�� dÞ ¼
m2R2. How do we understand the fact that this rule is
violated when there are OðN2Þ scalars? In fact, it is easy
to come up with a mechanism leading to this effect within
holography. Recall the AdS radius R is determined by the
cosmological constant. Changing the boundary condition
for the scalar field alters the vacuum energy (Casimir
energy) associated with that scalar field [43]. The change
in the vacuum energy is small for one scalar, but becomes
of order one for OðN2Þ scalars. Thus we have
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�� ¼ d

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2R2�

s
(116)

and, if Rþ=R� ¼ 1þOðn�=N2Þ, then �þ þ �� ¼ 4þ
Oðn�=N2

cÞ, which is exactly what is found. We can con-

struct an holographic model where the deviation of �þ þ
�� from 4 can be explicitly computed (see Appendix).
Interestingly, in this simple model �þ þ�� > 4, as in
model D.

The holographic model also lends support to the hy-
pothesis that model C, with full chiral symmetry, exists in
strong coupling. Indeed, the reason model C does not exist
at weak coupling, from the holographic point of view, is
that flipping the boundary condition for 2N2

f scalars from

close to z3 to close to z1 is too much a disruption for the
AdS geometry (for example, in terms of the change of the
cosmological constant). However, when both �þ and ��
are close to 2, the change of the vacuum energy is para-
metrically small in �þ � �� [see Eq. (A11)], and flipping
the boundary condition from z�þ to z�� is no longer a large
disruption. Hence, the theory where all fermion bilinears
have dimension ��, i.e., QCD�, should exist near the
merger point. However, arguments based on holographic
models can only be taken as suggestive at this moment.

VII. CONCLUSION

There have recently been several lattice studies seeking
to find the boundaries of the conformal window in QCD
[44–47] and in other QCD-like theories [48–55]. Interest in
the phase transition between conformal and nonconformal
theories is motivated in part by the invocation of approxi-
mate conformal symmetry in numerous theories for phys-
ics beyond the standard model.

In this paper we have investigated the nature of such a
phase transition, and we suggest that there is a wide class of
theories where it is due to the merger and annihilation of
fixed points. Several explicit examples of this phenomenon
were given, and we speculate that this mechanism is also
responsible for the chiral phase transition in QCD in the
large Nc, large Nf regime, at some critical value for

Nf=Nc. We show that this mechanism leads to the BKT

scaling behavior of the chiral condensate at the phase
transition, and also implies the existence of the conformal
theory QCD� which annihilates with QCD at the lower end
of the conformal window. We tried, unsuccessfully, to
construct QCD� in the perturbative regime, and argued
that it should exist in the nonperturbative regime. It would
be interesting to search for evidence for QCD� on the
lattice.

The models considered in the last section of our paper, in
an attempt to find the UV fixed point of QCD, may be of
interest in their own right. For example, these models may
be used to explicitly realize the ‘‘unhiggs’’ [56], which

behaves at high energies as a field with noninteger scaling
dimension.
The picture of the chiral phase transition realizes walk-

ing technicolor when Nf=Nc is only slightly below the

phase transition. In the holographic interpretation, confor-
mality is lost when the mass squared of a bulk scalar drops
below the BF bound. A naive application of AdS/CFT rules
implies that the dimension of the operator �c c is equal to 2
at the phase transition. This feature is explicit in the holo-
graphic model considered in the Appendix. This conclu-
sion is, interestingly, in agreement with result from the
Schwinger-Dyson approach, and also with Ref. [57]. The
result illustrates that the dimension of the fermion bilinear
on the IR stable branch cannot approach the unitarity
bound used in Ref. [58] for estimating the maximal exten-
sion of the conformal window.
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APPENDIX: CASIMIR EFFECT IN AdS5

We consider a holographic model for a UV-IR pair of
conformal theories. Each theory has a set of n� scalar

operators that all have the scaling dimension 1<�� < 2
in one theory and 2<�þ < 3 in the other. Both theories
are described by the same holographic dual

S5 ¼ 1

2�2

Z
M
d5x

ffiffiffiffiffiffiffi�g
p �

R�V0 � 1

2

Xn�
i¼1

ðð@�iÞ2 þm2�2
i Þ
�
:

(A1)

The two different theories correspond to the two choices of
the boundary conditions on the scalar fields �i. The solu-
tion of the classical equations of motion is given by all
�i ¼ 0 and AdS5 metric:

ds2 ¼ R2
0z

�2ðdz2 þ dx2 � dt2Þ; (A2)

with

R2
0 ¼ �12=V0: (A3)

The loop expansion is controlled by dimensionless pa-
rameter �2R�3

0 � N2
c , where Nc is the number of colors

in the dual theory. One-loop contribution is not negligible
in the Nc ! 1 limit if n� is also large, i.e., n� � N2

c . For

simplicity we assume n�=N
2
c 
 1 and compute �þ þ

�� � 4 to leading order in n�=N
2
c . We use the technique

of Ref. [43].7 The one-loop contribution of the scalar fields

7For earlier calculations of the Casimir energy in AdS space
see Refs. [59,60].
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depends on the boundary condition. This contribution
shifts the vacuum energy V0 to V�. Consequently, the
AdS5 curvature radius R0 becomes at one loop

R2� ¼ �12=V�: (A4)

It is convenient to measure lengths in units of R0, i.e., R0 ¼
1, V0 ¼ �12, etc.

The calculation of the vacuum energy is easier to per-
form after the Wick rotation t ! �ix4. The correction to
the vacuum energy is equal toZ

d5xE
ffiffiffiffiffiffi
gE

p ðV� �V0Þ ¼ 2�2
n�
2

logdet� ½ð�r2
E þm2Þ ffiffiffiffiffiffi

gE
p �;
(A5)

where index E denotes objects defined using the Wick
rotated metric ds2E ¼ ðdz2 þ dx2 þ dx24Þ. The expression
in the right-hand side (rhs) of Eq. (A6) is formal, since it is
UV divergent. The derivative with respect tom2 eliminates
some but not all divergences:Z

d5xE
ffiffiffiffiffiffi
gE

p d

dm2
V� ¼�2n� tr�f½ð�r2

Eþm2Þ ffiffiffiffiffiffi
gE

p ��1 ffiffiffiffiffiffi
gE

p g:
(A6)

The kernel of the operator ½ð�r2
E þm2Þ ffiffiffiffiffiffi

gE
p ��1 is the

Green’s function defined by the following equation

½�@zz
�3@z þQ2z�3 þm2z�5�G��ðz; z0;QÞ ¼ 
ðz� z0Þ:

(A7)

where �� refer to two different boundary conditions at

z ¼ 0: G�� � z2��, where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
, and Q2 ¼ q2E.

The solution to Eq. (A7) is

G��ðz; z0;QÞ ¼ z2z02I��ðQzÞK��ðQz0Þ�ðz0 � zÞþ ðz$ z0Þ:
(A8)

Collecting results so far, we find

d

dm2
V� ¼ �2n�

Z d4qE
ð2�Þ4 G��ðz; z;QÞ: (A9)

The right-hand side of Eq. (A9) is still UV divergent.

However, the difference Vþ � V� is finite:

1

�2n�

d

dm2
ðVþ � V�Þ

¼ 1

8�2

Z 1

0
dQQ3z4ðI�ðQzÞK�ðQzÞ � ð� $ ��ÞÞ

¼ � 1

8�2

2 sin��

�

Z 1

0
dxx3K2

�ðxÞ ¼ � 1

12�2
�ð1� �2Þ:

(A10)

Using the fact that both boundary conditions are the same
at � ¼ 0, and thus Vþ ¼ V� at � ¼ 0, as well as d�2 ¼
dm2, we can write

1

�2n�
ðVþ � V�Þ ¼ � 1

12�2

Z �2

0
d~�2~�ð1� ~�2Þ

¼ � 1

6�2

�
�3

3
� �5

5

�
< 0: (A11)

(Note that 0< �< 1.)
Using Eqs. (A3) and (A4), and in the regime jR� �

R0j 
 R0 ¼ 1, we can write

Rþ � R� ¼ 1

6
ðVþ � V�Þ: (A12)

The one-loop corrected scaling dimensions of the scalar
operators become

�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2R2�

q
: (A13)

and thus

�þ þ�� � 4 ¼ m2

�
ðRþ � R�Þ

¼ �2n�

36�2
�2ð4� �2Þ

�
1

3
� �2

5

�
> 0: (A14)

Since �2 � N2
c the deviation of �þ þ �� from 4 is

Oðn�=N2
cÞ. At the point of merger � ! 0, �þ þ �� ¼

4, hence �þ ¼ �� ¼ 2, with no correction of order
Oðn�=N2

cÞ.
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