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We propose a way towards a dynamical solution of the strong CP in models with compact extra

dimensions. To this aim we consider a one dimensional toy model for QCD, which contains a vacuum

angle and a strong CP-like problem. We further consider a higher dimensional theory, which has a trivial

vacuum structure and which reproduces the perturbative properties of the toy model in the low-energy

limit. In the weak coupling regime, where our computations are valid, we show that the vacuum structure

of the low-energy action is still trivial and the strong CP problem does not arise. Also, no axionlike

particles are generated in this setup.
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I. INTRODUCTION

Quantum chromodynamics has a complicated vacuum
structure [1]. Because of the nontrivial group of mappings
from the coordinate space to the gauge group �3ðSUð3ÞÞ¼
Z, there is an infinite number of perturbative vacua jni
which are not connected by smooth gauge transformations.
Physical passage between these vacua is possible at an
exponentially suppressed rate. One can further define phys-
ical vacua, that is to say, vacua between which transition is
not possible. These are called � vacua and are expressed as
a discrete Fourier transform of the n vacua, j�i¼P1

n¼�1�
ein�jni. The physics depends on which vacua we are in, so
� becomes a new parameter of the theory. Equivalently this
may be expressed by a new effective term in the Lagran-
gian of the form i�qðxÞ, where qðxÞ is the topological
charge density.1 The presence of this term implies that
hqðxÞi does not vanish and is an odd function of � [2].
The nonvanishing of hqðxÞi leads in turn to theCP violation
and can be measured experimentally. In principle � can
take any value in the interval ½0; 2�Þ, but according to the
measurement of the neutron dipole moment, it turns out to
be extremely small, �<2�10�10. The fact that this value
is unnaturally small is known as the strong CP problem.

Different models were proposed to explain the smallness
of �. Some scenarios [3] lead to a larger probability of liv-
ing in a universe with small �, but most of the models rely
on the addition of some dynamical properties to �. A pos-
sible way is to promote the parameter � to a field, the axion,
which will relax dynamically to zero [4]. This solution is
however, in its minimal setup, ruledout by the nondetection
of this axion particle [5]. More complicated models exist
and can avoid these bounds; some of these also use extra di-
mensions and allow the axion to propagate in the bulk [6].

Though both the CP problem and its axion solution have
their origin in the symmetry properties of the system (ex-
istence of large gauge transformation for the first, and
Peccei-Quinn symmetry for the second), one should be
careful with the high-energy extensions of the theory. In
the case where a high-energy effect breaks some of the
symmetries, the situation may change. This, for example,
happens in the case of the global Peccei-Quinn symmetry.
It is usually considered that it should be broken by higher
order operators arising from quantum gravity corrections
[7]. The contributions from these operators scale like a
power of fa=MPl, where fa is the axion coupling constant.
Because of the astrophysical bounds from supernova cool-
ing by light particles, fa has to be large and the ratio
fa=MPl cannot be small enough, leading to corrections to
the potential that spoils the solution of the strong CP
problem. These problems are avoided in invisible axion
models [8], where the Peccei-Quinn symmetry is a conse-
quence of gauge invariance, and thus survives the quantum
gravity effects. If the high-energy theory does not violate
the Peccei-Quinn symmetry, the solution to the CP prob-
lem is unaffected. On the other hand, if the high-energy
theory breaks the invariance against large gauge transfor-
mation, this may remove the CP problem by itself. This is
the essence of the solution of the CP problem proposed in
this article.
Extra dimensions can provide a solution to the strong

CP problem without light axion particles [9–11]. As we
will see, the solution in this setup is also dynamical, but
does not imply the existence of some light particle or any
additional degree of freedom. The basic idea is that the
group of mappings of a higher dimensional space to the
gauge group [�dðSUð3ÞÞ, d � 4] is trivial2 and � vacua
cannot be defined. This type of solution was already pro-
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1qðxÞ ¼ 1

32�2
~F��F��ðxÞ.

2Except �4ðSUð3ÞÞ ¼ Z2, which should not be an issue for our
discussion.
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posed some time ago with compact extra dimensions [9] or
with infinite ones [10]. It was however pointed out in [11]
that the solution might be more complicated than expected
from the simple topological argument. The presence of a
suitable extra dimension removes the degeneracy of the jni
vacua, thus preventing the definition of � vacua. This
solution is only formal, and the strong CP problem may
reappear when we require that the observable effects of the
extra dimensions are small. In this limit it can be expected
that the usual QCD be recovered and the strong CP prob-
lem reappear in some way.3 To show that the strong CP
problem actually disappears, we should not only get a
trivial vacuum structure but also show that the physical
consequences of a nonvanishing � also does disappear—
that is to say, the topological charge should vanish on
average (hqi ¼ 0).

To our best knowledge, no complete setup where fields
are explicitly localized on a brane and where the strong CP
problem is solved has been constructed till now. Solving
the strong CP problem in real QCD using extra dimensions
is difficult. The full QCD is complicated and the localiza-
tion of non-Abelian theories on a brane is nontrivial [12].
In particular the gauge theories in more than four dimen-
sions are generically not renormalizable [while SUðNÞ
gauge theories might however be nonperturbatively renor-
malizable in five or even six dimensions, see [13] ]. Thus,
an eventual extra-dimensional extension of QCD might
need a UV completion, that is to say will itself have to
be thought of as an effective theory coming as a low-energy
limit of some renormalizable theory (for instance string
theory). However, certain important features of the solu-
tion of the strong CP problem can be addressed in a
simplified model. We will consider here the simplest pos-
sible model where a strong CP-like problem occurs and
can be solved by the addition of an extra dimension.
Keeping this model as simple as possible will enable us
to perform the relevant computations explicitly, retaining
all the important topological properties.

The simplest model which contains a QCD-like � angle
is the Abelian Higgs model in 1þ 1 dimensions. This
model has the same complicated vacuum structure as
QCD [�1ðUð1ÞÞ ¼ Z], and its effective action also contains
a � parameter. This model was already studied many times
as a toy model for QCD. For instance the QCD Uð1Þ
problem was first solved in the Abelian Higgs model
[14]. This solution could then be mapped to QCD [15].
Note that the Abelian Higgs model was also successfully
used as a toy model for the electroweak baryogenesis
[16,17]. Our calculations could also be relevant to such
issues.

We then consider a higher dimensional theory, which
reproduces the perturbative properties of the Abelian Higgs

model as a low-energy action. In this latter theory, the
spatial dimensions have the topology of a sphere, so that
the vacuum structure is trivial [�2ðUð1ÞÞ ¼ 0]. At low
energy, particles are localized on the equator (which will
be the brane) and the extra dimension extends towards the
poles. To simplify the computations we use in practice a
geometrically simpler realization of this topology, and
consider a pancake (the sphere is flattened to two disks).
This article is structured as follows. We first review the

relevant properties of the Abelian Higgs model in 1þ 1
dimensions in Sec. II. In Sec. III, we consider the Abelian
Higgs model in 2þ 1 dimensions and localize the fields
with the help of a warp factor. We show that the 1þ 1
dimensional theory is correctly recovered as low-energy
effective action and discuss the validity of the classical
Kaluza-Klein decomposition in some detail. In Sec. IV, we
discuss the nonlinear sector of the theory. The 2þ 1 di-
mensional equivalent of the 1þ 1 dimensional vacuum
structure is presented. We show that the degeneracy of
the 1þ 1 dimensional jni vacua is lifted and this new
structure is interpreted as a potential for the topological
charge density. Finally the evolution of the topological
charge density is considered. At least in the weak coupling
regime where our calculations are valid, it relaxes very fast
to zero, which solves the strong CP problem. We conclude
in Sec. [5] and discuss the extension to more realistic
models.

II. TOY MODEL

Toy models to address the strong CP problem in the
framework of extra dimensions were already considered.
In [11], 2þ 1 dimensional electrodynamics was localized
on a one dimensional brane. When two spatial dimensions
form a sphere, the topological charge density hqðxÞi is
shown to get the effective action of a harmonic oscillator
with a small frequency. This kind of dynamics does not
completely solve the � problem since hqðxÞi is slowly
oscillating in time. Furthermore, electrodynamics in 1þ
1 dimensions is not really adapted to our purposes. It is a
trivial theory and contains a strong CP-like problem only
when charged particles are added. In [18] the effective low
dimensional action from [11] was reconsidered with
charged fermions, and the strong CP problem was ad-
dressed but without reference to some extra-dimensional
scenario. A simple model that contains � vacua and a
strong CP-like problem is the Abelian Higgs model in 1þ
1 dimensions. This is the model that we will consider, and
before discussing its embedding into a higher dimensional
space, we recall some of its properties [19].

A. Basic properties of the Abelian Higgs model in 1þ 1
dimensions

The action for the Abelian Higgs model in 1þ 1 dimen-
sions reads

3This is indeed the case in [11] when the extra dimension is
taken to be an orbifold.

F. L. BEZRUKOVAND Y. BURNIER PHYSICAL REVIEW D 80, 125004 (2009)

125004-2



S ¼
Z

dxdt

�
� 1

4
F��F

�� � Vð�Þ þ 1

2
jD��j2

�
; (1)

where D� ¼ @� � i~eA�, and � ¼ ðH þ ~vÞei� is a com-

plex scalar field with the symmetry breaking potential

Vð�Þ ¼
~�

4
ðj�j2 � ~v2Þ2: (2)

Note that we use tilde everywhere to denote 1þ 1 dimen-
sional variables. We will now discuss the perturbative
properties of this action. We want to identify the degrees
of freedom and derive their spectrum and interactions. As
we will later compare the effective action of the 2þ 1
dimensional Abelian Higgs model localized on the bound-
ary of the disk to the 1þ 1 dimensional Abelian Higgs
model, we will directly consider the space dimension to be
a circle of length 2�R. We always consider 1=R to be much
smaller that the particle masses. To extract the physical
degrees of freedom in the simplest way, we use the unitary
gauge (� ¼ 0) and perform the spontaneous symmetry
breaking. We replace the coordinate x ! R� and decom-
pose the fields in partial waves

A� ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p X
n

ein�An
�; H ¼ ~vþ 1ffiffiffiffiffiffiffiffiffiffi

2�R
p X

n

ein�Hn;

(3)

with ðAnÞ� ¼ A�n and ðHnÞ� ¼ H�n, so that the fields A�,

H are real. Substituting the partial wave expansion (3) into
the action (1) we get

S ¼
Z

dt
X
n

�
1

2
j _Hnj2 � 1

2

�
2~�~v2 þ n2

R2

�
jHnj2

�
~� ~vffiffiffiffiffiffiffiffiffiffi
2�R

p X
m

HnHmH�n�m

�
~�

8�R

X
m;k

HnHmHkH�n�m�k

�
þ SGF: (4)

We see that the physical spectrum contains a scalar field

(Higgs) with the mass m2
H ¼ 2~�~v2 and its dispersion rela-

tion is, as expected, !2
n ¼ m2

H þ n2=R2. The gauge field
action reads

SGF ¼
Z

dt
X
n

�
1

2
j _An

1j2 �
~e2 ~v2

2
jAn

1j2

þ 1

2

�
~e2 ~v2 þ n2

R2

�
jAn

0j2 þ
in

2R
ð _An

1A
�n
0 � _A�n

1 An
0Þ

þ ~v~e2ffiffiffiffiffiffiffiffiffiffi
2�R

p X
m

ðAn
0A

m
0 � An

1A
m
1 ÞH�n�m

þ ~e2

4�R

X
m;k

ðAn
0A

k
0 � An

1A
k
1ÞHmH�n�m�k

�
: (5)

The field A0 is not dynamical and can be integrated out

using its equations of motion,

An
0

�
~e2 ~v2 þ n2

R2

�
þ in

R
_An
1 þ

2~e2ffiffiffiffiffiffiffiffiffiffi
2�R

p ~v
X
k

Ak
0H

n�k

þ ~e2

2�R

X
m;k

Ak
0H

mHn�m�k ¼ 0: (6)

Inserting Eq. (6) into the gauge field action (5) and rescal-
ing4

An
1 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~e2 ~v2 þ n2=R2

~e2 ~v2

s
An
1 ; (7)

we are left with [up to terms of order Oðð~e ~vRÞ�2Þ]

SGF ¼
Z

dt
X
n

�
1

2
j _An

1j2 �
1

2

�
~e2 ~v2 þ n2

R2

�
jAn

1j2

� ~v~e2ffiffiffiffiffiffiffiffiffiffi
2�R

p X
m

An
1A

m
1 H

�n�m

� ~e2

4�R

X
m;k

An
1A

k
1H

mH�n�m�k

þ higher order interactions

�
: (8)

This is the action of a scalar field with the massmW ¼ ~e ~v .
Integrating out A0 leads to some complications, such as
Oðð~e ~vRÞ�2Þ corrections in the interactions’ terms, which
we will consider small as we are interested in the large R
limit. In the following we will mainly perform semiclassi-
cal calculations. To ensure that they are valid, we will
consider only small couplings. Consequently, higher order
interactions in (8) are small and not relevant to our dis-
cussion.5 Note that the couplings in the Lagrangian (1) are
dimensionful. A weak coupling criterion means that

~�

m2
H

� ~e2

m2
W

� 1 , ~v � 1: (9)

Of course the QCD coupling is large and this toy model is
not realistic in this sense. However, the strong CP problem
does not rely on the fact that QCD is strongly coupled and
we may very well use a simple toy model which enables
simple perturbative calculations.
As emphasized in the introduction, the Abelian Higgs

model has almost identical nonperturbative properties as
QCD. We list them in the following and, when it happens,
point out where they differ from QCD.

4After replacing A0, the form of the kinetic term for A1 is not
canonical anymore and A1 has to be rescaled.

5They are not needed to compare with the effective action for
localized 2þ 1 dimensional fields since we will make similar
approximations there.
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B. Vacuum structure

In short, the ensemble of vacuum configurations is the
ensemble of mappings from the space S1 to the gauge
groupUð1Þ. This ensemble can be divided into equivalence
classes identifying vacua that can be related by a smooth
gauge configuration. Mathematically this is represented by
the homotopy group �1ðUð1ÞÞ ¼ Z. This means that there
is a discrete infinity of classes that cannot be related by a
smooth gauge configuration. An element of the class n is
for instance

�ðnÞ ¼ ~v exp

�
inx

R

�
; AðnÞ

1 ¼ n

~eR
; A0 ¼ 0: (10)

These equivalence classes can be distinguished by the
Chern-Simons number:

NCS ¼ ~e

2�

Z
dxA1ðxÞ: (11)

It takes the value n when applied on a vacuum state of the
equivalence class n. The transition from one equivalence
class to another can formally be achieved by a discontinu-
ous gauge transformation. An example of the gauge trans-
formation that changes the Chern-Simons number by n is

Un ¼ exp

�
inx

R

�
: (12)

C. Sphaleron

Physically, the transition between two vacua needs to go
through a set of nonvacuum configurations that form an
energy barrier (see Fig. 1). For instance, the set of static
field configurations

�cl ¼ ~veðix�=RÞ½cosð��Þ þ i sinð��Þ tanhðmHx sinð��ÞÞ�;
Acl
1 ¼ �

~eR
; (13)

forms a path that goes from vacuum n ¼ 0 at � ¼ 0 to
vacuum n ¼ 1 at � ¼ 1, minimizing the energy of the
intermediate configurations. The configuration of maximal
energy

Esph ¼ 2
3mH ~v

2 (14)

is reached at � ¼ 1
2 , and is called the sphaleron. It is

relevant for the high temperature behavior of the theory.
Thermal fluctuations can reach the required energy Esph

and the system may pass classically between vacua.
Although all the previous and further discussed properties
of the Abelian Higgs model exactly match QCD, we should
point out that, strictly speaking, the sphaleron does not
exist in QCD. The corresponding configurations in QCD
contain a free scale parameter, and their potential energy
can be made infinitely small in the limit of large configu-
ration size. However, at large scale, kinetic energy along
the path grows and the transition rate is still suppressed.
This small difference will not be of importance for our
discussion.

D. Instanton

At small or vanishing temperature, the system can also
tunnel from one vacuum to another. In quantum field
theory, tunneling is represented by instantons, which are
solutions of the classical equations of motion in Euclidean
space-time. The set of configurations (13) can serve as
Ansatz to compute the Euclidean action, which gives the
leading information to compute the tunneling rate.
The proper instanton in this model, i.e. the field configu-

ration that minimizes the Euclidean action and describes
the tunneling between the states j0i and jni, is the Nielsen-
Olesen vortex [20] with winding number

Q ¼ �NCS ¼ ~e

4�

Z
"��F

��d2x ¼ n: (15)

Parametrizing the Euclidean space-time in polar coordi-
nates ðr; �Þ, the field configuration reads

�ðr; �Þ ¼ ein�fðrÞ; (16)

Aiðr; �Þ ¼ "ijr̂jAðrÞ; (17)

where r̂ is the unit vector r̂ ¼ ðcos�; sin�Þ and "ij the
completely antisymmetric tensor with "01 ¼ 1. The func-
tions A and f have to satisfy the following limits:

fðrÞ!r!0
crjnj; fðrÞ !r!1

~v;

AðrÞ!r!0
0; AðrÞ !r!1 � n

~er
:

(18)

Introducing dimensionless variables

r ! rffiffiffiffi
�

p
v
; A !

ffiffiffiffi
�

p
v

e
A; f !

ffiffiffiffi
�

p
v

e
f; (19)

the classical action of the instanton is

1 2
n

Esph

E

Instanton

Sphaleron

FIG. 1 (color online). Sketch of the vacuum energy as a
function of the winding number n.
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Scl ¼ �~v2�2
Z 1

0
rdr

��
A0ðrÞ þ AðrÞ

r

�
2 þ f0ðrÞ2

þ fðrÞ2
�
AðrÞ � 1

r

�
2 þ�2

2

�
f2ðrÞ � 1

�2

�
2
�

¼ �~v2�2Bð�Þ; (20)

where �2 ¼ ~�=~e2 and the function Bð�Þ is of order one,
and depends weakly on its argument.

E. � vacua and topological charge

We shall consider the nonlocal gauge transformation U1

that changes the Chern-Simons number by one. It com-
mutes with the Hamiltonian and is unitary. The operatorU1

can therefore be diagonalized simultaneously with the
Hamiltonian and must have eigenvalues of modulus 1.
The � vacua are defined as superpositions of the jni states
which are at the same time an eigenvector of U1 with
eigenvalue ei�:

j�i ¼ X
n

ein�jni: (21)

A physical transition between the � vacua is not possible.
They form different sectors with different physical prop-
erties and � is a parameter of the theory. The topological
charge density q ¼ "��F

�� in a � vacuum does not vanish

on average [2]:

hqi ¼ 8�Ke�Scl sin�; (22)

with Scl the instanton action and the factor K �mH taking
quantum corrections into account.

III. 2þ 1 DIMENSIONAL ABELIAN HIGGS
MODEL ON A DISK

We will now recreate the 1þ 1 dimensional Abelian
Higgs model as the low-energy effective theory for a 2þ
1 dimensional model. The perturbative properties of our
low-energy theory has to resemble closely the 1þ 1 di-
mensional Abelian Higgs model, but hopefully have a
different vacuum structure. We expect that this is possible
since, as�2ðUð1ÞÞ ¼ 0, no � vacua exist in the original 2þ
1 dimensional theory.

As discussed in the introduction, we will suppose that
two spatial dimensions are the surface of a pancake, where
the low-energy fields live on its boundary and the extra
dimension extends from the boundary towards the center.
This pancake can be adroitly sliced into two disks. By
symmetry we can expand the fields into functions that
are odd or even with respect to pancake flipping. In the
following we will only consider one disk where the fields
can have either Neumann or Dirichlet boundary conditions
on its boundary.

In 2þ 1 dimensions, we consider a complex Higgs field
� and an Abelian gauge field. The space-time is a disk,
which we parametrize with polar coordinates ðt; �; rÞ. We

will also introduce a warp factor �ðrÞ to localize the fields
[12,21]. Note that we do not want to consider gravity here
and the warp factor will be thought as coming from the
coupling to some external classical field, which multiplies
the whole action,

S ¼
Z

drd�dt
ffiffiffi
g

p
�ðrÞ

�
� 1

4
gABgCDFACFBD

þ 1

2
gABðDA�Þ�ðDB�Þ � Vð�Þ

�
; (23)

with the Higgs potential Vð�Þ ¼ �
4 ðj�j2 � v2Þ2 andDM ¼

@M � ieAM. The metric of the disk is

gMN ¼
1

�r2

�1

0
@

1
A;

and the volume element
ffiffiffi
g

p ¼ r. The action can be rewrit-
ten more explicitly as

S ¼
Z

drd�dt�

�
1

2

�
1

r
F2
0� þ rF2

0r �
1

r
F2
�r

�

þ 1

2

�
rjD0�j2 � rjDr�j2 � 1

r
jD��j2

� r
�

2
ðj�j2 � v2Þ2

��
: (24)

In the following, we will use

�ðrÞ ¼ e�2MjR�rj: (25)

The exact form of � is merely chosen to simplify the
algebra. It is only needed that

R
dr�ðrÞ<1 and that

�ðrÞ decreases from the brane (r ¼ R) towards the extra
dimension. In the following we will consider the following
relation between the parameters:M � mH �mW � 1=R.

A. Linearized theory and spectrum

We decompose the Higgs field in polar coordinates as
� ¼ ðvþHÞei�, and retain the quadratic part of the total
(gauge fieldþ Higgs) Lagrangian;

L0 ¼ 1

2
�ðrÞ

�
1

r
F2
0� þ rF2

0r �
1

r
F2
�r

�

þ 1

2
�v2

�
rð@0�� eA0Þ2 � rð@r�� eArÞ2

� 1

r
ð@��� eA�Þ2

�
� r�

m2
H

2
H2

þ �

2

�
rð@0HÞ2 � rð@rHÞ2 � 1

r
ð@�HÞ2

�
; (26)

with m2
H ¼ 2�v2. The linearized equations of motion read

(with the rescaling � ! e�)
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�@0ð@0�� A0Þ þ 1

r�
@rr�ð@r�� ArÞ

þ 1

r2
@�ð@��� A�Þ ¼ 0; (27)

1

r�
@rr�ð@0Ar � @rA0Þ þ 1

r2
@�ð@0A� � @�A0Þ

þm2
WðA0 � @0�Þ ¼ 0; (28)

�@0ð@0A� � @�A0Þ þ r

�
@r

�

r
ð@rA� � @�ArÞ

�m2
WðA� � @��Þ ¼ 0; (29)

�@0ð@0Ar � @rA0Þ � 1

r2
@�ð@rA� � @�ArÞ

�m2
WðAr � @r�Þ ¼ 0; (30)

�
1

r�
@r�r@r þ 1

r2
@2� � @20 �m2

H

�
H ¼ 0: (31)

Note that the phase � and the gauge fields AM decouple
from the physical HiggsH. These two sectors are analyzed
separately.

1. Higgs sector

After Fourier transform

Hðt; �; rÞ ¼
Z d!

2�
e�i!t

X
n

ein�hnðrÞ; (32)

the Higgs field hn satisfies the following equation of mo-
tion: �

1

r�
@r�r@r � n2

r2
�m2

H þ!2

�
hnðrÞ ¼ 0: (33)

The explicit solution of Eq. (33), which satisfies the bound-
ary conditions hnðrÞ / rn at r ! 0, is given in terms of the
Laguerre function:

hnðrÞ / e�rðMþ�HÞðrÞnL2n
�ðM=2�HÞ�n�1=2ð2r�HÞ; (34)

with �H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

H �!2
q

. We should further impose

that either h0ðrÞ (symmetric mode) or hðrÞ (antisymmetric
mode) vanishes at r ¼ R. For n ¼ 0, the lowest mode is
symmetric h00 ¼ const and has the energy !0 ¼ mH.

For n � 0, there is a low-energy symmetric mode that
satisfies, in the limit M � mH, the usual dispersion rela-

tion !n
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ n2=R2
q

þOðe�2MRÞ (see Appendix A),

so that we have a Higgs particle on the brane, with mass
mH and, compared to (4), a correct dispersion relation.

The next mode is antisymmetric and has !1 * M.
Further modes have higher energy and build a discrete
spectrum (labeled with k) which satisfies !kþ1 �!k ¼
�
2R at large k (see Appendix A).

2. Gauge sector

After Fourier transform

ANðt; �; rÞ ¼
Z d!

2�
e�i!t

X
n

ein�anNðrÞ; (35)

the equations of motion for �, an0 , a
n
�, a

n
r are

i!ð�i!�� an0Þ þ
1

�r
@r�rð@r�� anr Þ

þ in

r2
ðin�� an�Þ ¼ 0; (36)

�1

�r
@rð�rði!anr þ @ra

n
0ÞÞ þ

1

r2
ðn!an� þ n2an0Þ

þ ðan0 þ i!�Þm2
W ¼ 0; (37)

!2an� þ n!an0 þ
r

�
@r

�

r
ð@ran� � inanr Þ

� ðan� � in�Þm2
W ¼ 0; (38)

!2anr � i!@ra
n
0 �

in

r2
@ra

n
� �

n2

r2
anr �m2

Wðanr � @r�Þ ¼ 0;

(39)

with m2
W ¼e2v2 the W mass. For the continuity of the

fields we require that an�, a
n
r vanish at the origin for all n,

except for a00 which might be constant. Note that these four

equations are not independent in the general case. A pos-
sible resolution is to work in the unitary gauge (�¼0).
We extract an0 from Eq. (36) and replace it in Eqs. (38) and

(39):�
� r

�
@r

�

r
@r �!2 þ n2

r2
þm2

W

�
an� �

2in

r
anr ¼ 0; (40)

�
�@r

1

r�
@rr��!2 þ n2

r2
þm2

W

�
anr þ 2in

r3
an� ¼ 0: (41)

Equation (37) for an0 is not independent and can be

dropped. The analysis is slightly subtle and we have to
treat all possible cases separately.
Consider first n ¼ 0. Equations (40) and (41) decouple

and read (for r � R)

ðw2 �m2
WÞan�ðrÞ þ

�
2Mr� 1

r

�
ðan�Þ0ðrÞ þ ðan�Þ00ðrÞ ¼ 0;

(42)

�
�m2

W þ w2 � 1

r2

�
anr ðrÞ þ

�
2Mrþ 1

r

�
ðanr Þ0ðrÞ (43)

þ ðanr Þ00ðrÞ � 2M	ðr� RÞanr ¼ 0: (44)

The presence of the 	 function in Eq. (44) changes the
boundary condition on the brane for the symmetric mode to
ðanr Þ0ðR� "Þ ¼ �Manr ðRÞ ¼ �ðanr Þ0ðRþ "Þ, which makes
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the lowest energy mode for anr heavy (!>M). For an�, we
have the general solution

an� / e�rðMþ�W Þr2L2
1=2ððM=�W Þ�3Þð2r�WÞ; (45)

with �W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

W �!2
q

. The lowest energy mode

satisfies ðan�Þ0ðRÞ ¼ 0 and is light, !0
0 ¼ mW þOðe�2MRÞ,

and the next mode has energy of the order M.
We shall now consider the case n � 0. Equations (40)

and (41) are coupled and should in general be solved
numerically. However if we notice that the mode we are
looking for lives on the brane and therefore should have

Fr� ¼ �inanr ðrÞ þ @ra
n
�ðrÞ ¼ 0; (46)

Eqs. (40) and (41) reduce to (for r � R)�
�m2

W þ w2 � n2

r2

�
an�ðrÞ þ

�
2Mþ 1

r

�
ðan�Þ0ðrÞ

þ ðan�Þ00ðrÞ ¼ 0: (47)

This is similar to the equation for the Higgs mode, withmH

replaced by mW . The modes are therefore similar to the
Higgs ones,

an� / e�rðMþ�W ÞrnL2n
�ðM=2�W Þ�n�1=2ð2r�WÞ; (48)

and anr ¼� i
n@ra

n
�ðrÞ have to be continuous at the poles and

on the brane. The lowest energy mode satisfies ðan�Þ0ðRÞ¼
anr ðRÞ¼0 and has energy !n

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

W þ n2=R2
q

þ
Oðe�2MRÞ. As for the Higgs, the next mode has energy
!1 >M. Like for n ¼ 0, no other low-energy mode is
found in Eqs. (40) and (41).

To summarize, up to corrections Oðe�2MRÞ � 1 the
low-energy spectrum and the dispersion relations exactly
match the usual 1þ 1 dimensional Abelian Higgs model.

B. Effective action

We can now build the effective 1þ 1 dimensional action
for the Kaluza-Klein (KK) modes. To simplify the algebra,
we will remove all the Oðe�2MRÞ suppressed terms. We
work in the unitary gauge and use the following decom-
position for the fields:

� ¼ vþ 1ffiffiffiffiffiffiffi
2�

p X1
k¼0

X1
n¼�1

ein�hnkðrÞHn
k ðtÞ;

A� ¼ 1ffiffiffiffiffiffiffi
2�

p X1
k¼0

X1
n¼�1

ein�an�;kðrÞAn
kðtÞ;

Ar ¼ 1ffiffiffiffiffiffiffi
2�

p X1
k¼0

X1
n¼�1

ein�anr;kðrÞAn
kðtÞ;

A0 ¼ 1ffiffiffiffiffiffiffi
2�

p X1
k¼0

X1
n¼�1

ein�an0;kðrÞAn
kðtÞ;

(49)

with k labeling different KK modes, and n labeling the

angular momentum. Note that we have to impose that the
fields are real, that is to say ðAnÞ� ¼ A�n, ðHnÞ� ¼ H�n

and ðanMÞ� ¼ a�n
M , ðhnÞ� ¼ h�n.

To get the 1þ 1 dimensional action for the whole tower
of the KK modes, we substitute the KK expansion (49) in
the Lagrangian (33), and integrate over the extra-
dimension coordinate r. In the following, we will consider
only the k ¼ 0 mode in the KK expansion (49) to get the
low-energy effective theory. We will also neglect the back-
reaction of heavy Kaluza-Klein modes on the low-energy
action, supposing that these corrections are suppressed.
This assumption will be checked in the next section.

1. Gauge kinetic term

Combining the relations (36) and (46) we get

an0 ¼
!2

n �m2
W

n!n

an�ðrÞ: (50)

The expansion (49) is inserted in the gauge kinetic term

SGF ¼
Z

drd�dt�
1

2

�
1

r
F2
0� þ rF2

0r �
1

r
F2
�r

�
: (51)

We use the formulas (50) and (46), separate the t and r
dependencies, and get after some straightforward algebra
(keeping only the k ¼ 0 mode)

SGF ¼
Z

dt
X
n

I

2

�
j _Anj2 � ð!4

n �m4
WÞ

!2
n

jAnj2
�
; (52)

with

I ¼
Z

dr
�

r

�
jan�j2 þ

r2

n2
jðan�Þ0ðrÞj2

�
: (53)

The dot means derivative with respect to time and the
prime derivative with respect to r. We fix the normalization
of an� such that I ¼ 1, which, with the dispersion relation

!2
n ¼ m2

W þ n2

R2 , leads to

SGF ¼
Z

dt
X
n

1

2

�
j _Anj2 � ðn2=R2Þ2

m2
W þ n2=R2

jAnj2
�
: (54)

2. Higgs kinetic term

We shall now consider the Higgs kinetic part of the
action,

SD ¼
Z

drd�dt�
1

2

�
rjD0�j2 � rjDr�j2 � 1

r
jD��j2

�
:

(55)

Again, we insert the KK expansion (49), use the relations
(50) and (46), and get
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SD ¼
Z

dt
X
n

�
1

2
m2

W jAnj2Ia þ 1

2
j _Hnj2

Z
drjhnðrÞj2

� n2

2R2
jHnj2Ih

�
þ SintD ; (56)

with

Ia ¼
Z

dr
�

r

�
r2
ð!2

n �m2
WÞ2

n2!2
n

jan�j2

� r2

n2
jðan�Þ0ðrÞj2 � jan�j2

�
; (57)

Ih ¼ R2

n2

Z
dr�r

�
jðhnÞ0ðrÞj2 þ n2

2r2
jhnðrÞj2

�
; (58)

and we normalize hn such thatZ
dr�rjhnðrÞj2 ¼ 1: (59)

The interactions between gauge field and Higgs read

SintD ¼
Z

dt

�
� e2

2�

X
n;k;m

AnAmHkH�n�m�kIb

� e2vffiffiffiffiffiffiffi
2�

p X
n;m

AnAmH�n�mIc

�
; (60)

with

Ib ¼
Z

dr
r�

2
hkh�n�m�k

�
� n

R2!n

m

R2!m

an�a
m
�

þ 1

nm
ðan�Þ0ðam� Þ0 þ

1

r2
an�a

m
�

�
; (61)

Ic ¼
Z

dr
r�

2
h�n�m

�
� n

R2!n

m

R2!m

an�a
m
�

þ 1

nm
ðan�Þ0ðam� Þ0 þ

1

r2
an�a

m
�

�
: (62)

3. Higgs potential

The remaining Higgs potential is

SV ¼
Z

drd�dt

�
�r�

�

4
ðj�j2 � v2Þ2

�
; (63)

which is expanded to

SV ¼
Z

dt

�
�m2

H

2

X
n

jHnj2 � �vffiffiffiffiffiffiffi
2�

p X
n;m

HnHmH�n�mId

� �

8�

X
n;m;k

HnHmHkH�n�m�kIe

�
; (64)

with

Id ¼
Z

�rhnhmh�n�m; Ie ¼
Z

�rhnhmhkh�n�m�k:

(65)

4. Low-energy theory

In Appendix B we compute that

Ia ¼ �1þ n2

R2!2
; Ih ¼ 1; (66)

and to OððMRÞ�1; ðmHRÞ�2Þ, we have

Ib ¼ M

R
; Ic ¼

ffiffiffiffiffi
M

R

s
; Id ¼

ffiffiffiffiffi
M

R

s
; Ie ¼ M

R
;

(67)

which gives us

Seff ¼
Z

dt
X
n

1

2

�
j _An

0ðtÞj2 �
�
m2

W þ n2

R2

�
jAn

0ðtÞj2

þ j _Hn
0ðtÞj2 �

�
m2

H þ n2

R2

�
jHn

0 ðtÞj2
�
þ Sinteff ; (68)

and up to OððMRÞ�1; ðmHRÞ�2Þ,

Sinteff ¼
Z

dt

�X
m;n

�
��v

ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffi
2�R

p HnHmH�n�m

� e2v
ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffi
2�R

p AnAmH�n�m

�

þ X
m;n;k

�
� �M

8�R
HnHmHkH�n�m�k

� e2M

4�R
AnAmHkH�m�n�k

��
: (69)

Compared to (4) and (8), we see that up to at least
OððMRÞ�1; ðmWRÞ�2Þ we get the same interactions as in
the 1þ 1 dimensional Abelian Higgs with the identifica-
tions

~e 2 ¼ e2M; ~v2 ¼ v2=M; ~� ¼ �M: (70)

Note that these identifications are just what we would
expect from dimensional analysis. We conclude that the
theory (23) successfully reproduces the 1þ 1 dimensional
Higgs model on the boundary of the disk as its low-energy
limit.6

C. Validity of the Kaluza-Klein expansion

Our computations are purely classical, and up to now we
have not taken into account the corrections to the effective
action coming from interactions with heavy modes. This

6Note that the OððmWRÞ�2Þ corrections not displayed here
match the one of (8) in the large M limit.
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goes beyond the scope of this article, and we will only
describe here a region of the coupling parameter space
where our semiclassical computations can be trusted.

The first problem that occurs in most warped scenarios is
that the couplings become large far from the brane. For
instance, this can be seen if we rescale the gauge field like

eAM ! AM. The gauge kinetic term becomes �
e2
FMNF

MN ,

and we see that the effective charge is effiffiffi
�

p . As �ðrÞ be-
comes very small far from the brane, the effective charge
becomes very large. This leads to large quantum correc-
tions and large effective couplings between modes which
probe the region with small �. This problem first concerns
very energetic modes that live in the bulk and can probe the
region with small � but having strongly coupled heavy
modes may also lead to large corrections to the low-energy
interactions.

1. Behavior of the theory at very high energies

We will compute here the effective interactions between
heavy modes and show under which conditions interac-
tions between light and heavy modes do not affect the low-
energy theory. We only show explicit calculations for the
Higgs modes. The gauge fields case is similar.

If we compute the effective theory for all the KK modes,
we get the terms in the action of the form (64) and (65)

�
~�n;m;p;�n�m�p
k1;k2;k3;k4

8�R
Hn

k1
Hm

k2
Hp

k3
H�n�m�p

k4
:

The quartic coupling between KK modes is given by

~�
n1;n2;n3;n4
k1;k2;k3;k4

¼ �
Z

r�

�Y4
i¼1

hniki ðrÞ
�
dr: (71)

For KK modes with very high energy !n
k � M, this inte-

gral can be approximated as (see Appendix C)

~�
n1;n2;n3;n4
k1;k2;k3;k4

� �

R
e2MR

Q
4
i¼1

ffiffiffiffiffiffiffiffi
!ni

ki

q
P

4
i¼1ð!ni

ki
Þ2 : (72)

It can be shown numerically that this formula fits well for
all ki 	 1. We shall now study what the consequences are
on these large couplings.

2. Corrections to the renormalizable couplings

The simplest correction to the effective action is the
appearance of a nonrenormalizable �l

6H
6
l coupling, which

comes at tree level from the following diagram.

The contribution from heavy modes will be of the order

~� l
6 �

X
k

~�2
l;l;l;k

1

!2
k

: (73)

For heavy KK modes, l 	 1, we can use Eq. (72) and the
relation !k � �k

2R , which leads to

~� l
6 � �2e4MR

X
k

l3

kðk2 þ 3l2Þ2 : (74)

The sum converges fast but the factor e4MR is very large. If
we want our classical calculations to be valid, we have to
impose a strong restriction on the 2þ 1 dimensional cou-

plings �, e2, so that ~�6 and other corrections are small; that
is,

�; e2 � Me�2MR: (75)

This assumption will be considered in the following; it
enables performing semiclassical computations. Although
the assumption (75) seems very restrictive, there is no
obvious reason that the further results are only valid under
this constraint. We suppose that they are also valid under
more general assumptions, but we will not prove it here.
The extension to larger couplings requires lattice compu-
tations [22].

IV. NONLINEAR SOLUTIONS

After discussing the perturbative spectrum of the theory
we study solutions of the nonlinear equations of motion. In
the usual 2þ 1 dimensional Abelian Higgs model—not
localized on a brane—neither a sphaleron nor instanton
exists. There only exists solitons— Nielsen-Olesen vorti-
ces in two spatial dimensions. The vortices possess the
property that, if we consider a closed curve C surrounding
the vortex center, the following relation is satisfied:

e

2�

I
C
A 
 dl ¼ n; (76)

where n is an integer called topological charge of the
vortex.
Processes discussed in [11,23] can happen: starting from

the three dimensional vacuum, a vortex-antivortex pair is
created near the south pole. The vortex can move across the
equator up to the north pole. The bosonic configuration of
the final state looks on the equator (brane) like the n vacua.
Indeed using the relation (76), the Chern-Simons number is

NCS ¼ e

2�

Z
dxA1 ¼ n:

From the point of view of someone living on the brane, a
topological transition (indistinguishable from an instanton
transition) occurred and the vacua changed (from j0i to
j1i). The difference with the pure two dimensional theory
is that the end point is not a vacuum state. It contains two
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vortices, which represent a large energy cost for the
system.

We shall now see what happens when the warp factor is
introduced and the fields are localized. The main effect of
the warp factor is to damp the action of field configurations
localized far from the brane. We therefore expect that, at
the classical level, the vortex is light close to the pole and
heavier when crossing the brane.

The 1þ 1 dimensional jni vacua with n � 0 are not
vacua anymore in the higher dimensional theory. They
become resonances with the energy of two vortices with
topological charge n and some suppressed decay rate.

A. Vortex at the center of the disk

With the warp factor, the vortex is repulsed from the
brane and a stable solution of the equations of motion can
only be found at the center of the disk. In this section we
study the energy of the vortex at the center of the disk and
find its dependency on the parameters of the model and on
its topological charge n. The vortex has the same properties
as the 1þ 1 dimensional instanton, that is to say �ðr¼
0Þ¼0, rotational symmetry, and winding number Q ¼ n.
It is also parametrized by Eqs. (16) and (17) but the
functions fðrÞ, AðrÞ are deformed by the presence of the
warp factor. The energy of the AðrÞ, fðrÞ field configuration
is

E ¼ �v2�2
Z

dr

�
�

r
A02 þ �

�
rf02 þ f2

r
ðn� AÞ2

þ r
�2

2
ðf2 ���2Þ2

��
; (77)

with �2 ¼ �
e2
and their equation of motion reading

� r

�
@r�

A0

r
� f2ðn� AÞ ¼ 0;

� r

�
@r�rf

0 þ fðn� AÞ2 þ r2�2ðf2 ���2Þf ¼ 0: (78)

In the following, we will solve numerically Eq. (78) with
boundary conditions (18) as in [17]. There are three di-
mensionless parameters, one for the gauge-Higgs fields �,
one for the warp factor �M ¼ Mffiffiffi

�
p

v
, and one for the size of

the disk �R ¼ ffiffiffiffi
�

p
vR. The dependencies of the energy with

respect to �M, �R, and the topological charge n will be
studied. For the sake of simplicity we will set � ¼ 1.
The dependency on the topological charge is a parabola

E / n2 for fixed �M, �R. An example of this is shown in
Fig. 2. We checked that for �M ¼ 0::10, �R ¼ 1::6, n ¼
0::10, the discrepancy between the fit E / n2 and the points
is much less that 0.1%
The dependence on the radius size �R is E /

expð�2 �M �RÞ, with some deviation from this behavior at
small values of �R, In Fig. 3, we plot the value of

2 4 6 8 10 12
n

0.002

0.004

0.006

0.008

0.010

0.012

0.014

E

v 2

FIG. 2 (color online). Vortex energy E
�v2�2 as a function of the

topological charge n, fitted with 0:000 101n2. Other parameters
are fixed to �M ¼ 2, �R ¼ 3.

1 2 3 4 5 6
18.6

18.8

19.0

19.2

19.4

19.6

R

FIG. 3 (color online). Parameter 
 as a function of the disk
radius �R. Other parameters are n ¼ 1, �M ¼ 4.

2 4 6 8 10
M

100

200

300

400

FIG. 4 (color online). Parameter 
 as a function of the brane
scale �M, fitted with 4:013 �M2. Discrepancies from points to the
fits only occur for very small �M.
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 ¼ E

�v2�2n2 expð�2 �M �RÞ : (79)

We will now extract the �M dependency. We use of the
previous dependencies and plot 
 for �M ¼ 0::10. In Fig. 4,

 is fitted with values of n ¼ 0::9, and the large �R limit is
used. For large �M the dependency is again a parabola E /
�M2, and deviation from this occurs at a small value of �M.
To summarize, within the relevant region ( �M � 1 �

1= �R) we have the following vortex energy:

E ’ 4�v2�2 �M2n2e�2 �M �R: (80)

Coming back to dimensionful parameters, this takes the
form

E ’ 4�
M2

e2
n2e�2MR: (81)

B. Vortex sitting on the brane: Sphaleron

The other case of interest is when a vortex of topological
charge one is located on the brane, that is to say �ðR; ��Þ ¼
0 at some � ¼ ��; this is the 2þ 1 dimensional analog of
the 1þ 1 dimensional sphaleron. The presence of the
brane breaks the rotational symmetry of the vortex. The
exact solution is found by integrating numerically the two
dimensional equations arising from the variation of the
energy functional. Details of the numerical procedure are
given in Appendix D.

The results of the numerical simulation are shown in
Fig. 5. We only consider the case mHR � 1. As long as
�M * 1, the 2þ 1 dimensional sphaleron energy exactly
matches the 1þ 1 dimensional one. Note that if the KK
mass is larger than the sphaleron negative mode !� �

0:8mH, the properties of the sphaleron are expected to be
part of the low-energy theory and match the 1þ 1 dimen-
sional result (14).

C. Movement of the global mode in the potential—
solution to the strong CP problem

The topological charge can be seen as a field [2]; in the
1þ 1 dimensional Abelian Higgs model it has a periodic
potential (see Fig. 1). The addition of a compact extra
dimension breaks this periodicity (see Fig. 6).
We shall compare the different scales in our model. As

usual we consider the inequality M � mH �mW � 1=R
together with the 1þ 1 dimensional weak coupling re-
quirement ~v � 1 and the 2þ 1 one (75). The sphaleron
mass

msph

mH
� ~v2 � 1 (82)

is much larger than the particle mass in the weak coupling
regime and much larger than the vortex mass,7

msph

mvortex
� mHm

2
w

M3e�2MR
� 1: (83)

At first sight, the energy of the vortex EvðnÞ, and therefore
the energy En ¼ 2EvðnÞ of the state jni, seems very small.
However if we consider that the couplings (electric charge

1 1 D sphaleron

vortex on the brane

0.2 0.4 0.6 0.8 1.0 1.2

M

mH

0.2

0.4

0.6

0.8

1.0

E

Esph

FIG. 5 (color online). Energy of the different topological so-
lutions as a function of the brane mass scale (for mH

mW
¼ 1). The

energy is scaled so that the 1þ 1 dimensional sphaleron has
energy 1. The energy of the vortex sitting on the brane meets the
1þ 1 dimensional sphaleron energy for large M. The accuracy
of the results is estimated to be better than 0.1%.

4 2 2 4
n

0.5

1.0

1.5

2.0

E n Esph

FIG. 6 (color online). Sketch of the minimal energy for a
configuration with winding number n. The value in local minima
corresponds to the energy of two vortices at the center of the
disk, and the maxima contain the contribution of the sphaleron
energy.

7In fact, the full set of requirements for the parameters is the
following: m2

H=v
2M � e�2MR � m3

H=M
3 � 1. The first in-

equality is the weak coupling of the 2þ 1 dimensional theory
the second is (83), and the third says that the KK modes are
heavierthan the localized ones.
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here) have to be tiny to be in the regime where our classical
approximations are valid, we have8

mvortex

mH
¼ M2

e2mHe
2MR

� M

mH

� 1: (84)

The latter relation shows that vortex pairs can decay to
particles and the system relaxes to the n ¼ 0 vacuum. In
this case the strong CP problem is solved. As we see from
Fig. 6, at low energy the system will relax dynamically to
the state n ¼ 0 by tunneling. If the system is in the ground
state, the 1þ 1 dimensional instanton transitions which
make the average of the topological density (hqi � 0)
nonvanishing are not anymore instanton transitions and
can occur only if a large energy is available in the system.
At low energy, for example, for the measurement of the
neutron dipole moment, a topological transition cannot
occur; the topological density vanishes (hqi ¼ 0 since al-
ready hjqji ¼ 0), and therefore � is effectively zero.

In the strong coupling regime, if the mass of the vortex
happens to be too small, the states jni will be almost
degenerate and we expect that the strong CP problem
will reappear at some point. Indeed when the jni are almost
degenerate, the real vacuum will be a superposition of
several jni. Several different superpositions of these jni
states with different phases and slightly higher energy will
exist, and we expect to have some sort of discrete strong
CP problem there. The precise analysis of these states is
left for future work.

V. CONCLUSION

Extra dimensions might give an appealing solution to the
strong CP problem. The solution relies on a global field
dynamic and does not imply the existence of a new parti-
cle. Unlike for the axion solution, it cannot be ruled out by
astrophysical observations. However, the processes with
change of the topological number (and, at the same time,
fermion number) proceed differently in the proposed setup.

In this paper the 2þ 1 dimensional toy model was
studied, which at low energy reduces to the 1þ 1
Abelian Higgs model, often used to model some QCD
properties. If the inequalities msph � mvortex � mH, mW

are satisfied, the 1þ 1 dimensional jni vacua become, for
n � 0, resonances in the 2þ 1 dimensional theory. These
resonances have a high energy and decay reasonably fast to
particles. The system relaxes to the jn ¼ 0i vacuum, which
is the true vacuum of the 2þ 1 dimensional theory. The
vacuum structure is trivial and the strong CP problem is
solved in this case. We showed that these inequalities (82)–
(84) are realized in the weak coupling regime (75). We
suppose that these relations will remain true in the strong
coupling regime. This seems reasonable for the relations

(82) and (83), while for (84) it seems to fail, since we used
the weak coupling assumption. However in the strong
coupling case, the quantum corrections are large and, un-
like the classical action, are not suppressed by the warp
factor at the vortex center. Indeed quantum corrections are
expected to be of order @ independently of the normaliza-
tion of the action. It would be interesting to study the
strong coupling regime with lattice simulations to check
whether this large extra-dimension solution to the strong
CP problem also works at large couplings.
We choose in this paper a very simple geometry, which

allows for simple analysis but which has the annoying
property that the size of the universe is just 2� larger
than the extra dimension. This restricts the semiclassical
calculations to very weak couplings. Away to avoid strong
coupling problems would be to consider a more compli-
cated geometry, which allows for unrelated universe and
extra-dimension size. We could then have a very large or
infinite space and a small enough extra dimension. The
setup will be more complicated and may not enable a
simple analysis of the nonlinear solutions. However, as
we have shown here, it seems that the localization of the
fields on a brane can be done independently of the bulk
geometry. It is indeed an interesting result on its own that
an Abelian Higgs can be localized on the boundary of a
disk.
Finally, we may speculate how the obtained results

transfer to the real world QCD. We expect that the degen-
eracy of the n vacua will be lifted by the extra dimension
and the new jni states (or resonances) will have an energy
monotonically increasing with n. The tunneling between
the n and n� 1will still be suppressed by the instanton (or,
strictly speaking, bounce) action. At very high energy,
these bounce transitions are possible and will look like
normal instanton transitions. If we can arrange the geome-
try so that the states (or resonances) jn � 0i have suffi-
ciently large energy, bounces will not contribute in a
measurement of the neutron dipole moment. The topologi-
cal charge density will be zero and there will not be any
observable effect of a � angle, so that the strong CP
problem will be solved.
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APPENDIX A: SPECTRUM OF KALUZA-KLEIN
MODES

1. Higgs dispersion relation

We derive the dispersion relation for the light mode of
the Higgs. To this aim, we have to impose the boundary8In fact, even stronger inequality is true, mvortex � M.
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condition on the brane, h0ðRÞ ¼ 0. Suppose that the low-
energy mode satisfies !�mH � M. We can then use the
asymptotic expansion for the large argument of the
Laguerre function:

L�
�ðzÞ !z!1

sinð��Þ�ð�þ �þ 1Þz�����1

� ez
�
1þ ð1þ �Þð1þ �þ �Þ

z
þOðz�2Þ

�
: (A1)

In this limit, Eq. (34) becomes

hn0ðrÞ / e�ð	!2r=2MÞð2rMÞ�ð	!2=4M2Þ

�
�
1� n2

2Mr
þOðM�2Þ

�
; (A2)

with 	!2 ¼ !2 �m2
H. Imposing h00ðRÞ ¼ 0 gives 	!2 ¼

n2

R2 .

2. Gauge field dispersion relation

The computation is the same as for the Higgs, the
function an�ðrÞ being the same as hn0ðrÞ replacing mH by

mW . Imposing a0�ðRÞ ¼ 0 implies !2 ¼ m2
w þ n2

R2 . Note

that from Eqs. (50) and (46) this implies anr ðRÞ ¼ 0 and
a00ðRÞ ¼ 0, which are the correct boundary conditions for

these fields.

3. High-energy modes for the Higgs

Using the expansion (A1), we see that for ! � M,

hnðrÞ � eir!: (A3)

One of the requirements hðRÞ ¼ 0 or h0ðRÞ ¼ 0 are satis-
fied if R! ¼ k�=2, which gives !k �!k�1 ¼ �

2R .

APPENDIX B: COUPLINGS IN THE EFFECTIVE
ACTION

In this section, we compute the parameters I. We com-
pute exactly the parameters related to the quadratic part of
the action, first Ia. We start from the normalization condi-
tion for an� (53), integrate jðan�Þ0ðrÞj2 by part, use the

equation of motion (40) for an�, and use the relation (46),

1 ¼
Z

dr
�

r

�
an�a

�n
� þ r2

n2
ðan�Þ0ðrÞða�n

� Þ0ðrÞ
�

¼ !2
n �m2

W

n2

Z
drr�jan�ðrÞj2:

From which we get

Z
drr�jan�ðrÞj2 ¼

n2

!2
n �m2

W

: (B1)

This, together with the normalization condition (53), gives
us

Ia ¼ �1þ n2

!2
n �m2

W

:
ð!2

n �m2
WÞ2

n2!2
n

¼ �1þ n2

R2!2
n

:

(B2)

To calculate Ih, we integrate jðhnÞ0j2 by part and use the
equation of motion (33)

Ih ¼ R2

n2

Z
drr�

�
ðhnÞ0ðrÞðh�nÞ0ðrÞ þ n2

2r2
jhnðrÞj2

�

¼ R2

n2

Z
drr�ð!2

n �m2
HÞjhnðrÞj2;

which, using the normalization condition (59) and the
dispersion relation, gives Ih ¼ 1.
The other parameters Ib, Ic, Id, Ie are computed to

OððMRÞ�1; ðmHRÞ�2Þ using the asymptotic expansion
(A1) for the mode functions. Indeed because of the pres-
ence of the warp-factor and the fact that the modes an�, h

n

are roughly constant, the integrals Ib;c;d;e are dominated by

values close to the brane (r ¼ R). At these points, the
argument of the Laguerre functions is large and the asymp-
totic expansion can be used. We first compute Id, Ie (65); to
this aim, we first have to normalize hnðrÞ. From (A2), and
imposing

R
drr�jhnðrÞj2 ¼ 1, we get

hn ¼ eMðR�rÞ�r�H
rnð2�Þnþð1=2Þ�ðM=2�HÞffiffiffiffiffiffi

2R
p

�ðnþ 1
2 � M

2�H
Þ

� L2n
�n�ð1=2Þ�ðM=2�HÞð2r�HÞ

!�Hr�1

ffiffiffiffiffi
M

R

s �
R

r

��ðn2=ð4R2M2ÞÞ
e�ðr�RÞðn2=2MR2Þ

�
�
1þO

�
1

MR

��
:

(B3)

Some straightforward algebra gives

Id ¼
Z

dr�rhnhmh�n�m ¼
ffiffiffiffiffi
M

R

s �
1þO

�
1

MR

��
; (B4)

Ie ¼
Z

dr�rhnhmhkh�n�m�k ¼ M

R

�
1þO

�
1

MR

��
:

(B5)

Note that these integrals, at least at leading order, do not
depend on the values of n, m, k.
To compute the remaining Ib, Ic, we need the asymptotic

expansion for an�ðrÞ. It only differs from hnðrÞ by the

normalization condition. As an�ðrÞ is constant near r ¼ R,
we can neglect the term jðan�Þ0ðrÞj2 in the normalization

condition (53), which becomes
R
dr �

r jan�j2 ¼ 1. This im-

plies that

an� ¼
ffiffiffiffiffiffiffiffi
MR

p �
R

r

��ðn2=4R2M2Þ
e�ðr�RÞðn2=2MR2Þ

�
1þO

�
1

MR

��
:

(B6)
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Using (B3) and (B6) and performing some straightforward
algebra gives

Ib ¼
Z

dr
r�

2
hkh�n�m�k

�
� n

R2!n

m

R2!m

an�a
m
� þ 1

nm

�ðan�Þ0ðam� Þ0 þ
1

r2
an�a

m
�

�

¼
Z

dr
r�

2
hkh�n�m�k 1

r2
an�a

m
�

�
1þO

�
1

m2
WR

2

��

¼ M

R

�
1þO

�
1

MR
;

1

m2
WR

2

��

and

Ic ¼
Z

dr
r�

2
h�n�m

�
� n

R2!n

m

R2!m

an�a
m
� þ 1

nm
ðan�Þ0

� ðam� Þ0 þ
1

r2
an�a

m
�

�

¼
Z

dr
r�

2
h�n�m 1

r2
an�a

m
�

�
1þO

�
1

m2
WR

2

��

¼
ffiffiffiffiffi
M

R

s �
1þO

�
1

MR
;

1

m2
WR

2

��
:

APPENDIX C: COUPLINGS AT VERY HIGH
ENERGY

We already computed the effective coupling � ¼
�0;0;0;0 ¼ M ~� in the low-energy effective action (69), but

we are now interested in couplings �k1;k2;k3;k4 , with ki large.

At very high energy (!k
n � M), the wave functions

hnkðrÞ are large near the center of the disk (r ¼ 0). The
integrals for the effective couplings will be saturated by
values close to r ¼ 0; therefore we make use of the small
argument expansion of the Laguerre functions

L�
�ðzÞ !z�1 �ð�þ �þ 1Þ

�ð�þ 1Þ
�

1

�ð�þ 1Þ �
�z

�ð�þ 2Þ þ . . .

�
:

(C1)

This expansion is introduced in the wave function hnk :

hnkðrÞ !rM�1
eþMðR�rÞ�rð�HÞ rnð2!Þnþð1=2Þ�ðM=2�HÞffiffiffiffiffiffi

2R
p

�ð2nþ 1Þ�ð�n� M
2�H

þ 1
2Þ
:

(C2)

While computing the effective action, we will identify

�k1;k2;k3;k4

8�R
¼ �

Z
r�dr

Y4
i¼1

hniki ðrÞ

� 2�e2MR

�2R2

Q
i

ffiffiffiffiffiffi
!i

p
P
i
!2

i

�ðn1; n2; n3; n4Þ; (C3)

with �ð0; 0; 0; 0Þ ¼ 1 and �ðn1; n2; n3; n4Þ of order unity.

APPENDIX D: VORTEX SITTING ON THE BRANE,
NUMERICAL ANALYSIS

To simplify slightly the analysis, we notice that the
vortex solution has a size of a few 1=mH which is in our
assumptions M � mH � 1=R much smaller than the ra-
dius of the disk. Furthermore what happens away from the
brane is damped by the warp factor. We can therefore
consider that the disk looks like a half plane in the region
where the vortex lies. The vortex on the brane still pos-
sesses one discrete symmetry: the reflection along the
perpendicular to the brane passing through its center. We
will therefore solve the equations on a quarter of a plane.
To get a better resolution of the instanton center, we
parametrize the quarter of a plane in polar coordinates r 2
�0;1½; � 2 ½0; �=2�.
We choose the A0 ¼ 0 gauge and use the remaining time

independent gauge freedom to cancel the radial component
of the vector field9: Ar ¼ 0. We also use dimensionless
variables as in (19). The energy functional reads

E½H;�; A�� ¼ v2�2
Z

rdrd�e�2Mrj sin�j
�
1

2

�
@rAþ A

r

�
2

þ 1

2
ð@rfÞ2 þ 1

2r2
ð@�fÞ2 þ f2

2

�
ð@r�Þ2

þ
�
1

r
@��� A

�
2
�
þ�2

4

�
f2 � 1

�2

�
2
�
:

(D1)

Numerically, we minimize the energy functional using
as a starting configuration the usual vortex configuration
AðrÞ; fðrÞ from (16) and (17).

Aðr; �Þ ¼ AðrÞ; fðr; �Þ ¼ fðrÞ; �ðr; �Þ ¼ �:

(D2)

The convergence to the exact solution is achieved by
introducing an artificial time dependency and solving
Hamiltonian equations:

d

dt
A� ¼ � 	E

	A�

;
d

dt
H ¼ � 	E

	H
;

d

dt
� ¼ � 	E

	�
:

(D3)

Note that an upper bound on the vortex energy can be

9We are dealing with a static (time independent) configuration.
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found integrating the energy functional (D1) with the usual
vortex configuration in a flat 2þ 1 dimensional space (16)
and (17).

To avoid trivial divergences at r ¼ 0, we start the inte-
gration at r ¼ "� 10�5 and consider a finite radius R to
end the integration.10 As we use polar coordinates to
describe the Higgs field, we should also arrange the bound-
ary conditions to avoidH vanishing near r ¼ " and rescale
the field � such that it is single valued at r ¼ 0, �ðr; �Þ !ffiffiffi
r

p
�ðr; �Þ; this allows correctly fixing the value of� so that

the action remains finite11 at r ! 0. Boundary conditions
are set on the four edges:

A�ð"; �Þ ¼ að"Þ � 0; Hð"; �Þ ¼ fð"Þ � 0;

�ð"; �Þ ¼ �
ffiffiffi
"

p � 0;
(D4)

@�A�ðr; 0Þ ¼ 0; @�Hðr; 0Þ ¼ 0; �ðr; 0Þ ¼ 0;

(D5)

A�ðR; �Þ þ R@rA�ðR; �Þ ¼ 0; HðR; �Þ ¼ 1

�
;

�ðr; �Þ � 2R@r�ðR; �Þ ¼ 0;

(D6)

@�A�

�
r;
�

2

�
¼ 0; @�H

�
r;
�

2

�
¼ 0; �

�
r;
�

2

�
¼ �

2

ffiffiffi
r

p
:

(D7)

The conditions at r ¼ 0 and r ¼ R are chosen to get a finite
action, and the conditions at � ¼ 0 and � ¼ �=2 are
dictated by the discrete symmetries and the topological
charge.
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