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We discuss the particle production due to a semitransparent mirror accelerating on the trajectories

which simulate the Hawking effect. We find in accordance with a previous result [3] that the number of

emitted particles up to infinite times remains finite, but in contrast to the cited paper, we obtain that for

large, but finite reflectivities of the mirror, the radiated spectrum is Bose-Einstein and not Fermi-Dirac. We

compare the beta coefficients �ð!0; !Þ for the perfectly reflecting and the semitransparency case and point

out the differences in the sector of large frequencies !0. For the perfect mirror, the source of the infinite

number of particles are the frequencies !0 ! 1, while for the semitransparent one this contribution is

eliminated due to the cutoff effects introduced by the finite barrier energy of the mirror.
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I. INTRODUCTION

It is well known that the quantum radiation due to a
collapsing body can be reproduced with a great degree of
accuracy by an accelerated mirror in Minkowski space [1].
Calculations exploiting this analogy are traditionally based
on the two-dimensional perfect mirror model of Fulling
and Davies [1,2]. Recently, an investigation [3] considered
the implications for the effect if using instead a semitrans-
parent mirror. The calculation in [3] relied on the mirror
model originally proposed by Barton and Calogeracos [4],
in which the mirror-field interaction is described by a
repulsive delta-like potential localized on the mirror. The
analysis revealed a significantly different picture from that
based on the perfect reflector. Two main conclusions in [3]
were that (1) the numbers of emitted particles up to infinite
times remain finite, and (2) for sufficiently large, but finite
reflectivities of the mirror, the radiated spectrum obeys a
reversed statistics, i.e. it is Fermi-Dirac. We recall that in
the standard calculation the particle numbers at infinite
times diverge and that in this limit the radiated spectrum
is precisely Bose-Einstein.

The intention of this paper is to reinvestigate the prob-
lem, and to point out that some of the results in [3] are
incorrect. More exactly, we shall show that, while the first
conclusion is correct, the second is not. We shall find that,
for sufficiently large reflectivities of the mirror, the spec-
trum remains Bose-Einstein. Another significant disagree-
ment with [3] concerns the dependence of the total number
of emitted particles on the energy �, which characterizes
the reflectivity of the mirror. The result in the cited paper
implies that for � large the particle numbers diverge like
�2. Our calculation will show that the divergence is� ln�.

Note that our statement concerning the point (2) above
simply means that the emitted spectrum continuously ap-
proaches that of the perfect mirror in the limit of infinite
barrier energies � ! 1, which is indeed what one would
naturally expect from a physical point of view. To our
knowledge, the discontinuity reported by [3] seems to be

unique in the literature on semitransparent moving mirrors.
For example, a list of quantities for which one can explic-
itly see that semitransparency leads to the expected perfect
reflectivity limit can include the scattering amplitudes for a
uniformly accelerated mirror [5], the force acting on a
mirror in arbitrary motion [6], the Casimir force for a
cavity with trembling walls [7], or the effective action for
a dynamically moving mirror [8].
Another question that we felt required a more thorough

discussion is that of the relevance of the various sectors of
the virtual frequencies !0. Even for the perfect reflector,
the existing results are somehow incomplete, in the sense
that the beta coefficients �ð!0; !Þ from which the thermal
spectrum is usually derived [1,2,9–11] are systematically
obtained in the limit of large frequencies!0, and assuming
that the mirror accelerates for an infinite period of time.1 It
seems that there exists no precise picture concerning the
contribution of the various frequencies !0 to the creation
process, if one considers a finite acceleration time. We
shall offer an intuitive answer to this question with the
aid of a series of graphical representations.
The paper is organized as follows: We shall use the same

mirror trajectories as in [3], in which the mirror is initially
at rest and accelerates for a finite period of time. We
describe these trajectories in Sec. II. In Sec. III, we focus
on the case of the perfect mirror. We present a rigorous
derivation for the thermal flux at infinite times and discuss
the picture for finite acceleration times. In Sec. IV, we
extend the analysis to the semitransparent mirror. Our
main result is the formula for the total number of emitted
particles in the limit of very large, but finite barrier ener-
gies of the mirror. The last section contains the conclusions
and a number of connections with other works. In the
Appendices we detail some of the calculations used in
the body of the text. In order to make our paper self-

1More recent calculations also considered the case of finite
acceleration times [12–14], but in these papers too the evolution
of the beta coefficients in the !0 space is not fully clarified.
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contained, we included a description of the semitranspar-
ent mirror model in Appendix A. It is essentially the same
model of Barton and Calogeracos [4], but in a different
treatment [15], which allows an exact construction of the
quantum field.

II. THE MIRROR TRAJECTORIES

The mirror is assumed to be static up to the moment t ¼
0, after which it accelerates for a finite interval, and then
continues to move inertially up to infinite times t ! þ1.
The accelerated part of the trajectory is that which provides
the analogy with the Hawking effect, i.e. (for simplicity we
choose the null coordinate of the horizon to be vH ¼ 1=kÞ

uðvÞ ¼ � 1

k
lnð1� kvÞ; k > 0: (1)

We denote by tA the maximum acceleration time, which
means that trajectory (1) is restricted to the interval

0 � t � tA: (2)

Imposing the continuity of the mirror’s position and veloc-
ity at t ¼ 0 and t ¼ tA, the complete form of the trajectory
is (uA ¼ uðvAÞ)

uðvÞ ¼
8<
:
v if v � 0
�k�1 lnð1� kvÞ if 0 � v � vA < 1=k
uA þ "�1

A ðv� vAÞ; if v � vA;
;

(3)

where we denoted by uA, vA the null coordinates corre-
sponding to the final acceleration time tA ¼ ðuA þ vAÞ=2
and

"A ¼ 1� kvA; "A 2 ½0; 1Þ: (4)

This parameter will replace in many formulas the depen-
dence on tA. An approximation that will be useful is that for
very large acceleration times the "A parameter is

"A ’ e�2ktA ; ktA � 1: (5)

We shall also need the trajectory function uð�Þ, with �
the proper time of the mirror. Using Eq. (3) a convenient

form is (d� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
dudv

p
)

uð�Þ ¼
8<
:
�� �0 if � � �0
�ð2=kÞ lnð�=�0Þ if �0 � � � �A < 0
uA þ ð�� �AÞ ffiffiffiffiffiffi

"A
p

; if � � �A;
;

(6)

where

�0 ¼ � 2

k
; �A ¼ � 2

k

ffiffiffiffiffiffi
"A

p
(7)

are the proper times at the extremities of the acceleration
interval � 2 ½�0; �A�. It is important to note that the limit of
infinite acceleration times t ! 1 is equivalent to

vA ! 1=k; "A ! 0; or �A ! 0: (8)

III. THE CASE OF THE PERFECT MIRROR

This section is primarily intended as a preliminary step
for the more complex case of the semitransparent mirror.
The quantity of main interest is the number of particles
emitted in the ! mode as a function of the acceleration
time tA. We denote this number by N!ðtAÞ. In terms of the
beta coefficients, the particle numbers are

N!ðtAÞ ¼
Z 1

0
d!j�ð!0; !Þj2: (9)

An essential point in our calculation will be to distinguish
in �ð!0; !Þ between a contribution that corresponds to a
transient phase associated to the initial inertial part of the
trajectory, and a ‘‘significant part,’’ which describes the
late time creation process. The same procedure will be
applied in the next section to the semitransparent mirror.

A. The coefficients �ð!0; !Þ
We are interested in the beta coefficients (we focus as

usual on the field on the right side R of the mirror)

�ð!0; !Þ ¼ ð’in�
!0;R; ’

out
!;RÞ with !;!0 > 0: (10)

The quantum modes are [1]

’in
!;Rðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ðe�i!v � e�i!gðuÞÞ; (11)

’out
!;Rðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ðe�i!u � e�i!fðvÞÞ; (12)

where the functions

v ¼ gðuÞ; u ¼ fðvÞ (13)

define the mirror trajectory in null coordinates. In order to
evaluate the scalar products (10), we identify the integra-
tion hypersurface with the right past null infinityJ�

R (more
precisely, with the null ray u ¼ t0, v 2 ½t0;þ1Þ and let
t0 ! �1). This gives

�ð!0; !Þ ¼ i
Z þ1

�1
dv’in

!0;R@
$
v’

out
!;R

¼ �2i
Z þ1

�1
dvð@v’in

!0;RÞ’out
!;R

¼ 1

2�

ffiffiffiffiffiffi
!0

!

s Z þ1

�1
dve�i!0v�i!fðvÞ; (14)

where the second integral follows from an integration by
parts and neglecting the boundary term from infinite dis-
tances v ! 1. The boundary term from v ¼ t0 is absent
because the modes vanish on the mirror. In the last integral
we also ignored a delta-like quantity ��ð!0Þ, which is
identically null because all frequencies are !0 > 0.
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We separate next in Eq. (14) the contributions from the
uniform (U) and the accelerated (A) part of the trajectory.
We write the integral as

Z þ1

�1
¼

Z 0

�1
þ
Z vA

0
þ
Z þ1

vA

; (15)

and define, in obvious notations,

�ð!0; !Þ ¼ �Uð!0; !Þ� þ �Að!0; !Þ þ �Uð!0; !Þþ:
(16)

Using Eq. (3) a simple calculation gives (introducing the
usual convergence factor to deal with the oscillatory func-
tions at v ! �1):

�Uð!0; !Þ� ¼ þ i

2�

ffiffiffiffiffiffi
!0

!

s
1

!0 þ!
; (17)

�Uð!0; !Þþ ¼ � i

2�

ffiffiffiffiffiffi
!0

!

s
e�i!0vA�i!uA

!0 þ!="A
; (18)

�Að!0; !Þ ¼ 1

2�k

ffiffiffiffiffiffi
!0

!

s
e�i!0=k

Z 1

"A

dzeiz!
0=kzi!=k; (19)

where in the last relation we integrated with respect to z ¼
1� kv.

We now concentrate on the integral (19). The integrand
is analytical in the semiplane Imz > 0, so that we can apply
the Cauchy theorem. We choose for the integration contour
the rectangle defined by (1) one edge identified with the
real interval z 2 ½"A; 1�, two edges running parallel with
the imaginary positive semi-axis passing through (2) z ¼
"A and (3) z ¼ 1, and (4) the last edge closing the contour

at Imz ! þ1. Because of the factor eiz!
0=k with!0=k > 0,

the contribution of the last edge is null. We add the con-
tributions from the second/third edge to the components

�Uð!0; !Þþ=� and denote the sums by ~�ð!0; !Þþ=�. The
result is

�ð!0; !Þ ¼ ~�ð!0; !Þ� þ ~�ð!0; !Þþ; (20)

where [e�ic is the phase factor in the long fraction in Eq.
(18)]

~�ð!0; !Þ� ¼ i

2�

ffiffiffiffiffiffi
!0

!

s �
1

!0 þ!
� ð!0=kÞ�i!=k

!0

	
Z 1

0
dte�tð!0=kþ itÞi!=k

�
; (21)

~�ð!0; !Þþ ¼ � ie�ic

2�

ffiffiffiffiffiffi
!0

!

s �
1

!0 þ!="A
� ð!0"A=kÞ�i!=k

!0

	
Z 1

0
dte�tð!0"A=kþ itÞi!=k

�
: (22)

The essential observation at this point is that only the plus

component (22) is relevant for the particle numbers at tA !
1, and hence for the late time flux. This can be already

guessed from the fact that ~�ð!0; !Þ� is independent of "A,
and thus of tA. More precisely, the argument is that (i) for
very large frequencies !0 the two components behave as2

~�ð!0; !Þ� � 1

!03=2 ;
~�ð!0; !Þþ � 1

!01=2ð!0e�2ktAÞ ;
(23)

and (ii) for infinite times or "A ! 0 the plus component is

�!0�1=2, from which it is immediate that only ~�ð!0; !Þþ
can produce an infinite quantity in Eq. (9) when tA ! 1.
The conclusion is that for tA sufficiently large the number
of particles can be approximated by

N!ðtAÞ ’
Z 1

!0
0

d!0j ~�þð!0; !Þj2; tA ! 1: (24)

Note that we introduced in Eq. (24) an inferior nonzero
integration limit !0

0 > 0, which is necessary in order to

eliminate the infrared divergence implied by the �!0�1=2

behavior in Eq. (22). [This is however only an artefact due
to the integration in the complex plane; the divergence
does not appear in the original expressions, see Eqs. (17)–
(19).] We emphasize that the value of!0

0 is of no relevance

for the particle numbers at very large times. This follows
from the fact that the ‘‘low’’ frequencies !0 � !0

0 contrib-

ute only with a finite quantity in N!ðtAÞ, since the coef-
ficients remain finite and bounded for all tA and !0 > 0.
In the limit tA ! 1, the integrand in Eq. (24) takes the

form

lim
"A!0

j ~�þð!0; !Þj2 ¼ 1

4�2!!0

��������
Z 1

0
dte�tðitÞi!=k

��������
2

;

¼ 1

4�2

e��!=k

!!0 j�ð1þ i!=kÞj2

¼ 1

2�k!0

�
1

e2�!=k � 1

�
: (25)

Formula (25) reproduces the known result for the squared
beta coefficients in the limit of large frequencies !0, im-
plying a Bose-Einstein flux at infinite times [1]. The fact
that one can restrict to the contribution of !0 large in the
late time flux is rigorously justified by the second relation
in Eq. (23), which shows that as tA increases the sector
!0 ! 1 becomes increasingly relevant in the sum over
frequencies (24). The exact picture concerning the contri-
bution of ‘‘low’’ and ‘‘high’’ frequencies !0 will be dis-
cussed in Sec. C.

2This follows from Eqs. (21) and (22) writing e�t as a
derivative and integrating by parts. In the second relation we
assumed !0 � k="A and the large tA approximation (5).
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B. The particle flux at infinite times

We now extract the late time flux from Eq. (24). It is
evident that it is sufficient to determine the divergent
behavior of N!ðtAÞ with respect to tA ! 1. We present
the calculation in detail,3 as the same procedure will be
applied in the next section. The main difference will be that
for the semitransparent mirror we shall assume from the
start tA ! 1 and consider the divergent behavior of
N!ðtA ! 1Þ with respect to the barrier energy of the
mirror.

We observe that introducing

w ¼ !0"A=k; (26)

the relevant component (22) can be rewritten as

~�þð!0; !Þ ¼ 1ffiffiffiffiffiffi
!0p b!ðwÞ; (27)

where the function b! is (we ignore an irrelevant phase
factor)

b!ðwÞ ¼ 1

2�
ffiffiffiffi
!

p
�

1

1þ!=ðkwÞ � w�i!=k

	
Z 1

0
dte�tðwþ itÞi!=k

�
: (28)

Integrating with respect to w in Eq. (24) one finds

N!ðtAÞ ’
Z 1

wA

dw

w
jb!ðwÞj2; wA ¼ "A!

0
0=k; (29)

where a key observation is that the dependence on tA is
now completely included in the inferior integration limit
wA. Since the limit of interest "A ! 0 is equivalent to
wA ! 0, it is clear from the behavior of the integrand
�1=w for w small that the divergence can only come
from the ‘‘infrared’’ contributions w ! 0. We isolate the
divergence writing

Z 1

wA

¼
Z �

wA

þ
Z 1

�
; (30)

where we introduced a fixed number �> wA. Note that the
second integral leads to a finite quantity independent of tA,
so that it is irrelevant for the divergent behavior. We now
use the fact that we are interested in the limit wA ! 0. This
allows to consider wA 
 1, and thus � 
 1. In these
conditions we can assume in the first integral

b!ðwÞ ’ b!ðw ! 0Þ; (31)

which makes the integral trivial. The result is

N!ðtAÞ ’ jb!ðw ! 0Þj2
Z �

wA

dw

w

¼ 2ktAjb!ðw ! 0Þj2 þ . . . ; (32)

where we used that lnwA ¼ �2ktA þ . . . . An essential fact
in Eq. (32) is that the neglected terms, which contain the
dependence on � and !0

0, remain finite for tA ! 1, and

thus give no contribution in the derivative that defines the
limit flux below (at this point !0

0 disappears from the

calculation).
The particle flux emitted by the mirror can be reasonably

identified with

F !ðtAÞ ¼ dN!ðtAÞ=dtA: (33)

It is then immediate that [the limit w ! 0 can be read from
Eq. (28)]

F !ðtA ! 1Þ ¼ 2kjb!ðw ! 0Þj2

¼ k

2�2!
j�ð1þ i!=kÞj2

¼ 1

�

1

e2�!=k � 1
: (34)

The result (34) is practically the standard flux in the
literature [1,2], with the only difference that the last quan-
tity is smaller by a factor of 2. The discrepancy can be
explained as follows: The observation is that Eq. (33)
represents the emitted flux, which, for a source in motion,
will differ from the flux detected by a static observer
(which is the quantity evaluated in literature). If the source
recedes from the observer with a velocity close to the speed
of light, as is the case of the mirror for tA ! 1, it easy to
show that the observed flux is smaller than the emitted flux
precisely by the factor of 2 (see [13] for details).

C. Observations on the evolution at finite acceleration
times

It is interesting to consider the form of the beta coef-
ficients as a function of !0 for different times tA. We recall
that, intuitively, the quantum flux emitted by the mirror can
be seen as resulting from the zero point oscillations, which
come from the past null infinity J�

R (the frequencies !0)
and which due to the reflection on the mirror can absorb
energy, and be transformed thus into real quanta (the
frequencies !). In a loose sense, the coefficient �ð!0; !Þ
can then be interpreted as an amplitude for this process.
We shall consider instead of �ð!0; !Þ the new quantity

B !ð!0Þ ¼ !0j�ð!0; !Þj2; (35)

in terms of which

N!ðtAÞ ¼
Z 1

�1
dðln!0ÞB!ð!0Þ: (36)

It is more convenient to refer to Eq. (35) because we shall
deal with exponentially shifted frequencies !0 � e2ktA , for
which it is more suited to the logarithmic scale in Eq. (36).
A plot forB!ð!0Þ as a function of lnð!0=kÞ for different

times tA is presented in Fig. 1. According to Eq. (36), the

3The derivation of the thermal flux that follows is a simplified
version of our earlier calculation in [13].
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areas below the curves are practically4 the numbers
N!ðtAÞ. One sees that the areas increase with tA, and that
this happens because of the contribution of increasingly
large frequencies !0. In particular, it becomes evident that
the flux at infinite times is determined only by the infinite
frequencies !0 ! 1.

A notable property of the curves is that for each time tA
there exists a cutoff frequency !0

max beyond which the
coefficients are negligibly small. In other words, frequen-
cies larger than !0

max do not essentially contribute to the
creation process. A simple evaluation for !0

max can be
made using the ray tracing method [1]. We recall that
this states that, adopting the geometric optics approxima-
tion, the frequencies !0 which contribute to the creation of
a particle of frequency ! at t ! þ1 are obtained by
propagating the associated emergent wave backwards in
time to t ! �1. In our case, the relation between the two
frequencies is simply given by the Doppler shift due to the
reflection on the mirror. For a mirror trajectory defined by
uðvÞ, the frequency shift is !0=! ¼ ðdu=dvÞref , where the
derivative is evaluated at the reflection point v ¼ vref .
Using Eq. (1) one finds (it is evidently sufficient to consider
only the reflection for the accelerated part of the trajectory)

!0

!
¼ 1

1� kvref

; vref 2 ½0; vA�: (37)

It is immediate then that the maximum frequencies !0 are

obtained for the reflection at the end of the accelerated
trajectory (where the velocity, and thus the Doppler shift is
maximum)

vref ¼ vA; (38)

from which

!0
max

!
¼ 1

"A
; or lnð!0

max=kÞ ’ 2ktA þ lnð!=kÞ
for ktA � 1: (39)

This is indeed in good agreement with the cutoff frequen-

FIG. 1. The coefficients B!ð!0Þ ¼ !0j�ð!0; !Þj2 for the per-
fect mirror represented as a function of lnð!0=kÞ for !=k ¼ 1.
The time tA is shown near the curves. The square on the curves
indicate the theoretical cutoff frequencies (39). In this and all
other diagrams the unit scale for the dimension full quantities is
fixed by k ¼ 1.

FIG. 2. The particle numbers for the perfect mirror N!ðtAÞ
represented as a function of tA. The frequency !=k is indicated
near the curves.

FIG. 3. The particle flux emitted by the perfect mirror F !ðtAÞ
represented as a function of !. The time tA is indicated near the
curves. The upper curve reproduces the Bose-Einstein spectrum
(34).

4One should also add the invisible contribution due to the low
frequency sector lnð!0=kÞ< 0, but the curves clearly indicate
that this contribution is the same for all tA, so that it is irrelevant
for the flux.
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cies determined numerically (see Fig. 1). Note the linear
dependence ln!0

max � tA, which basically explains the lin-
ear divergence N!ðtAÞ � tA.

A representation of N!ðtAÞ as a function of tA for differ-
ent frequencies ! is shown in Fig. 2. One sees that, as
expected, the evolution becomes linear for tA sufficiently
large. Numerical calculations show that N!ðtAÞ on the
linear piece of the curves is well approximated by
Eq. (24) with a lower integration limit !0

0 ’ k.
In Fig. 3 we represented the emitted flux (33) as a

function of ! for different times tA. The curves illustrate
the progressive evolution of the flux toward the final spec-
trum (34). [In passing, it is interesting to remark that the
stationary flux at tA ! 1 is obtained with a great degree of
accuracy already for tA of the order of a few units 1=k. This
might well be considered a short time at a ‘‘macroscopic’’
scale, if one has in mind that the characteristic period of the
thermal quanta in the final flux is also �1=k.]

IV. THE CASE OF THE SEMITRANSPARENT
MIRROR

We first present some preliminary facts. The mirror
model is discussed in Appendix A. The basic input is the
barrier energy �, which defines the reflectivity of the
mirror.

A. The modes and beta coefficients for an arbitrary
mirror trajectory

It is clear that the modes for the semitransparent mirror
extend both in the R and L region, and that they can be
grouped into two classes, corresponding to the incident/
emergent unperturbed waves e�i!u and e�i!v. We denote
the two sets of modes by U! and V!. The in modes have
the following form:

Uin
!;Lðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p fe�i!u �Rin
!;LðvÞe�i!fðvÞg; (40)

Uin
!;Rðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p T in
!;RðuÞe�i!u; (41)

and

Vin
!;Rðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p fe�i!v �Rin
!;RðuÞe�i!gðuÞg; (42)

V in
!;Lðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p T in
!;LðvÞe�i!v: (43)

It is also clear that the out modes, which have to be
considered in our problem of interest, are only those de-
scribing the right-moving particles, corresponding to the
emergent waves e�i!u. Their form is

Uout
!;Rðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p fe�i!u �Rout
!;RðvÞe�i!fðvÞg; (44)

Uout
!;Lðu; vÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p T out
!;LðuÞe�i!u: (45)

The expression of the reflection (R) and transmission (T )
coefficients as a function of the mirror’s trajectory is given
in Appendix A. (We emphasize that no approximations are
involved.) In the limit of infinite barrier energies, the
coefficients assume the expected values

lim
�!1R ¼ 1; lim

�!1T ¼ 0: (46)

In this case the wave functions in the R region containing
the reflected component V in

!;R, U
out
!;R reduce to the perfect

mirror modes ’in
!;R, ’

out
!;R, and the transmitted wave func-

tions Uin
!;R are identically null.

The two types of in modes determine two sets of beta
coefficients:

�ðVÞð!0; !Þ ¼ ðUout�
! ; V in

!0 Þ;
�ðUÞð!0; !Þ ¼ ðUout�

! ;Uin
!0 Þ:

(47)

We shall call them for obvious reasons ‘‘reflected’’ (V) and
‘‘transmitted’’ (U) coefficients [see Eqs. (48) and (49)],
and similarly for the particle numbers in Eq. (51).
The coefficients (47) as a function of R, T for an

arbitrary mirror trajectory are determined in Appendix B.
The result is

�ðVÞð!0; !Þ ¼
Z þ1

�1
dvRout

!;RðvÞe�i!0v�i!fðvÞ; (48)

�ðUÞð!0; !Þ ¼
Z þ1

�1
duT out

!;RðuÞe�i!0u�i!u: (49)

In the perfect reflectivity limit (46), the reflected coeffi-
cients reduce, as it should, to the quantities for the perfect
reflector (14) and the transmitted coefficients are null,5

lim
�!1�

ðVÞð!0; !Þ ¼ �ð!0; !Þ; lim
�!1�

ðUÞð!0; !Þ ¼ 0:

(50)

We define corresponding to the two sets of coefficients

NðVÞ
! ðtAÞ ¼

Z 1

0
d!0j�ðVÞð!0; !Þj2;

NðUÞ
! ðtAÞ ¼

Z 1

0
d!0j�ðUÞð!0; !Þj2:

(51)

The physically measurable number of particles in the !
mode is

N!ðtAÞ ¼ NðVÞ
! ðtAÞ þ NðUÞ

! ðtAÞ: (52)

Our interest will lie in the evaluation of N!ðtA ! 1Þ in the
limit of large, but finite energies �. We first make a couple
of observations on the two terms in Eq. (52).

5In fact this is not generally true, as the case under considera-
tion shows; see the comments concerning Eq. (54).
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An immediate consequence from the first limit in
Eq. (50) and the fact that for the perfect mirror N!ðtA !
1Þ ¼ 1 is that the reflected numbers diverge with �,

lim
�!1N

ðVÞ
! ðtA ! 1Þ ¼ 1: (53)

As concerns the transmitted numbers, one would naturally
expect from the second limit in Eq. (50) that they vanish for
� ! 1. Quite surprisingly, an explicit calculation shows
that

lim
�!1 lim

tA!1�ðUÞð!0; !Þ � 0; (54)

and

lim
�!1N

ðUÞ
! ðtA ! 1Þ ¼ finite: (55)

The nonzero result (54) is not in contradiction with
lim�!1T ¼ 0, because the coefficient T in Eq. (49) is
under an integral that extends over a noncompact domain,
in which case the limit and the integral do not necessarily
commute. For finite acceleration times tA < 0, one can
show that the integration domain in (49) can be reduced
to a finite interval, and the vanishing property in Eq. (50)
will always follow. The nonzero coefficients have to be
viewed thus as strictly related to the case tA ! 1.

We shall however not insist on the quantity in Eq. (55),
since it is of no relevance for the final result. We are content

to mention that one can prove that NðUÞ
! ðtA ! 1Þ admits a

fixed finite upper bound for all barrier energies �> 0. It is
immediate then from Eqs. (53) and (55) that for � large
enough one can approximate the particle numbers with the
reflected component, i.e.

N!ðtA ! 1Þ ’ NðVÞ
! ðtA ! 1Þ; � large: (56)

(The same conclusion was reached in [3].) It will suffice
thus for discussing the divergent behavior of N!ðtA ! 1Þ
to focus only on the reflected coefficients �ðVÞð!0; !Þ.

B. The reflection coefficients Rout
!;R

We need as a first step the coefficients Rout
!;RðvÞ, which

appear in Eq. (48). They are defined by the integral formula
(A13) as a function of the mirror’s proper time � in terms of
the trajectory function uð�Þ [see Eq. (6)]. It is clear that the
analytical form of Rout

!;Rð�Þ will depend on the interval to

which � belongs. A simple calculation leads to the follow-
ing expressions:

(1) � � �A: The integral (A13) can be exactly per-
formed and yields (note that the coefficients are
independent of �):

R out
!;R ¼ �

ffiffiffiffiffiffi
"A

p
2i!þ �

ffiffiffiffiffiffi
"A

p : (57)

(2) �0 � � � �A: The integration variable can belong in
this case both to the uniform part of the trajectory

�0 � �A and to the accelerated part �0 2 ½�; �A�. We
separate the integral as

Z 1

�
¼

Z �A

�
þ

Z 1

�A

; (58)

and define, corresponding to the two terms,

R out
!;Rð�Þ ¼ RUð�Þ þRAð�Þ: (59)

The two components are

R Uð�Þ ¼
�
�A
�

�
2i!=k

e��ð�A��Þ=2 	 �
ffiffiffiffiffiffi
"A

p
2i!þ �

ffiffiffiffiffiffi
"A

p ;

(60)

R Að�Þ ¼
Z �ð�A��Þ=2

0
dse�s

�
1þ 2s

��

�
2i!=k

: (61)

The coefficients as a function of coordinate v follow
from substituting in Eqs. (60) and (61) [the function
�ðvÞ uniquely follows from Eqs. (3) and (6)]

� ! �ðvÞ ¼ � 2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kv

p
: (62)

(3) � � �0: A decomposition like that in Eq. (58) would
lead in this case to a complicated expression con-
taining three terms. We use at this point the fact that
we are interested in the case of � large. More
precisely, we shall assume that

�=k � 1: (63)

We show in Appendix C that in these conditions the
coefficients can be approximated with the coeffi-
cients for the mirror at rest, i.e. [compare with Eq.
(57)]

R out
!;R ¼ �

2i!þ �
: (64)

For a more intuitive picture, we presented in Fig. 4 a plot
for jRout

!;Rð�Þj as a function of � for different energies �.

We considered the case of infinite acceleration times �A !
0 and restricted to the accelerated part of the trajectory
k� 2 ½�2; 0Þ. The decreasing behavior with � can be
understood as follows: The essential observation is that,
according to Eq. (44), one can interpret Rout

!;R as the

coefficients that describe the reflection on the mirror of
the emergent wave e�i!u which propagates backwards in
time (with the mirror also moving backwards in time).
Assuming a sharply localized packet, the argument � in
Rin

!;Rð�Þ can be interpreted as the proper time at which the

wave collides with the mirror. In the time reversed picture,
the wave and the mirror are in ‘‘head-on’’ collision,6 so that
the! frequencies appear blue shifted in the mirror’s proper

6The reversed velocities of the mirror and wave packet are
positive and, respectively, negative.
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frame. This is equivalent to a diminishing of the reflectivity
of the mirror, and thus of the R coefficients. The decreas-
ing behavior with � reflects the fact that the velocity of the
mirror increases with �. Note also that the coefficients
completely vanish at the end of the acceleration interval,
i.e.

lim
�A!0

Rout
!;Rð� � �AÞ ¼ 0: (65)

This is a consequence of the fact that for �A ! 0 the final
velocity of the mirror approaches the speed of light, which
means an infinite blue shift in the mirror’s proper frame,
and thus a null reflectivity.

C. The coefficients �ðVÞð!0; !Þ
We follow the same steps as in Sec. III. With a similar

separation of the U and A components in Eq. (48) we find

�ðVÞ
U ð!0; !Þ� ¼ þ i

2�

ffiffiffiffiffiffi
!0

!

s
1

!0 þ!
Rout

!;Rð0Þ; (66)

�ðVÞ
U ð!0; !Þþ ¼ � i

2�

ffiffiffiffiffiffi
!0

!

s
e�i!0vA�i!uA

!0 þ!="A
Rout

!;RðvAÞ; (67)

where the R coefficients are given by Eqs. (57) and (64).
The A component is

�ðVÞ
A ð!0; !Þ ¼ 1

2�k

ffiffiffiffiffiffi
!0

!

s
e�i!0=k

Z 1

"A

dz �Rout
!;RðzÞeiz!0=kzi!=k;

(68)

where �Rout
!;RðzÞ is the coefficient (59) seen as a function of

z ¼ 1� kvð�Þ, which amounts to make in Eqs. (60) and
(61)

� ! �ðzÞ ¼ � 2

k

ffiffiffi
z

p
: (69)

We transform Eq. (68) with the rectangular integration
contour in the complex plane and make an identical re-
grouping of terms. The complex integration requires
�Rout
!;RðzÞ to be an analytical function of z. We discuss this

property in Appendix D. The result is

�ðVÞð!0; !Þ ¼ ~�ðVÞð!0; !Þ� þ ~�ðVÞð!0; !Þþ; (70)

where [compare with Eqs. (21) and (22)]

~�ðVÞð!0; !Þþ ¼ � ie�ic

2�

ffiffiffiffiffiffi
!0

!

s �
1

!0 þ!="A

�
ffiffiffiffiffiffi
"A

p
2i!þ �

ffiffiffiffiffiffi
"A

p

� 1

!0
Z 1

0
dte�t �Rout

!;Rð"A þ itk=!0Þ

	 ð"A þ itk=!0Þi!=k

�
; (71)

~�ðVÞð!0; !Þ� ¼ �identical to Eq:ð71Þ
with "A ¼ 1; c ¼ 0: (72)

Note that the minus component (72) is again independent
of tA. The plots in Sec. E are based on the expressions (71)
and (72).

D. The numbers N!ðtA ! 1Þ for large energies �
We begin by observing that, since for � ! 1 the reflec-

tion coefficients are R ! 1, for � sufficiently large the
same distinction between the plus and minus components
as for perfect mirror will be valid: i.e., the minus compo-

nent will produce only a finite quantity inNðVÞ
! ðtA ! 1Þ, so

that for tA very large the particle numbers can be approxi-
mated with [compare with Eq. (24)]

N!ðtAÞ ’
Z 1

k
d!0j ~�ðVÞð!0; !Þþj2: (73)

For simplicity, we have chosen in the integral !0
0 ¼ k,

which as mentioned provides a good approximation for
the perfect mirror.
We now concentrate on Eq. (73) for tA ! 1. In this limit

the plus component (71) reduces to (we neglect an irrele-
vant phase factor)

lim
tA!1

~�ðVÞð!0; !Þþ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffi
!!0p

Z 1

0
dte�t �R!ðitk=!0Þ

	 ðitk=!0Þi!=k; (74)

where we defined [see Eqs. (60), (61), and (69)]

FIG. 4. The modulus of the coefficient Rout
!;Rð�Þ for !=k ¼ 1

represented as function of � on the accelerated part of the
trajectory �A ! 0. The numbers near the curves represent the
energy �=k. Note the nearly constant values around k�0 ¼ �2
for � large, making the junction with the time independent
coefficients (64) on the initial part of the trajectory � � �0.

NISTOR NICOLAEVICI PHYSICAL REVIEW D 80, 125003 (2009)

125003-8



�R!ðzÞ � lim
"A!0

�Rout
!;RðzÞ ¼

Z �
ffiffi
z

p
=k

0
dse�s

�
1� ks

�
ffiffiffi
z

p
�
2i!=k

:

(75)

For infinite barrier energies � ! 1 the above quantity is
�R!ðzÞ ! 1 and Eq. (74) reproduces, as it should, the
perfect mirror coefficients (25).

One of the main results in [3] was that if one keeps �
finite, the particle numbers N!ðtA ! 1Þ remain finite. We
present rapid proof of this fact in Appendix E, although the
property will be immediate from the calculation below.
The reader will also find there a connection between
Eq. (74) and the beta coefficients obtained in [3], as well
as a discussion of the source of error behind the affirmation
that the radiated spectrum is Fermi-Dirac.

We now evaluate N!ðtA ! 1Þ. We introduce

u ¼ k!0

�2
; (76)

and observe that Eq. (74) can be rewritten as

lim
tA!1

~�ðVÞð!0; !Þþ ¼ 1ffiffiffiffiffiffi
!0p bðVÞ! ðuÞ; (77)

where the function bðVÞ! is (up to an irrelevant phase factor)

bðVÞ! ðuÞ ¼ 1

2�
ffiffiffiffi
!

p
Z 1

0
dte�tðitÞi!=k

	
�Z ffiffiffiffiffiffiffi

it=u
p

0
dse�s

�
1� sffiffiffiffiffiffiffiffiffi

it=u
p

�
2i!=k

�
: (78)

Integrating with respect to u in Eq. (73) one finds

N!ðtA ! 1Þ ’
Z 1

u�

du

u
jbðVÞ! ðuÞj2; u� ¼ k2=�2; (79)

with the essential observation that the dependence on � is
completely included in the integration limit u�. The cal-
culation from now on becomes identical with that for the
particle numbers for the perfect mirror for tA large [com-
pare Eqs (29) and (79)]. We separate as in Eq. (30) the
contributions from u� < u < � with � fixed and use the
fact that, since we are interested in the case of large
energies k=� 
 1, we can choose � 
 1. This allows to
approximate

bðVÞ! ðuÞ ’ bðVÞ! ðu ! 0Þ: (80)

Performing the integral one finds

N!ðtA ! 1Þ ’ 2jbðVÞ! ðu ! 0Þj2 	 lnð�=kÞ þ . . . ; (81)

where dots stand for a quantity that does not depend on �.
In order to determine the squared modulus in Eq. (81), we
observe that for u ! 0 the integral in the brackets in
Eq. (78) is

lim
u!0

�Z ffiffiffiffiffiffiffi
it=u

p

0
ds . . .

�
¼ 1: (82)

It is then immediate comparing with Eqs. (28) and (34) that

2bðVÞ! ðu ! 0Þ ¼ F !ðtA ! 1Þ=k; (83)

and thus Eq. (81) can be rewritten as

N!ðtA ! 1Þ
TA

’ F !ðtA ! 1Þ; TA ¼ ð1=kÞ lnð�=kÞ:
(84)

We emphasize that Eq. (84) becomes a strict identity for
� ! 1.
The above formula represents our main result. It implies

that, for a sufficiently large barrier energy of the mirror, (1)
the total particle numbers are proportional to the Bose-
Einstein flux emitted by the perfect reflector (34) and (2)
the numbers diverge as� ln�. The physical significance of
the parameter TA will be clarified in the next subsection.
Numerical calculations show that Eq. (84) becomes a good
approximation for energies larger than �=k ’ 103 [with
N!ðtA ! 1Þ including the neglected transmitted compo-

nent NðUÞ
! ðtA ! 1Þ].

An interesting point in our calculation is that in arriving
to Eq. (84) we have not used the explicit form of Rout

!;RðvÞ.
Note that these coefficients enter the final result only via
the u ! 0 limit (82). If one observes that the integral under
the limit is the (analytically extended) coefficient (75) with

�
ffiffiffi
z

p
=k � ffiffiffiffiffiffiffiffiffi

it=u
p

, one sees that the unit limit is nothing but

the generally expected relation lim�!1 �Rðz; �Þ ¼ 1. This
invites to conjecture that Eq. (84) could be valid in a wider
class of situations. It is thus plausible that the same formula
will apply for any semitransparent mirror, with an appro-
priate interpretation of � as an ‘‘effective’’ barrier energy
of the mirror. In the last section we shall mention an
independent result that supports this idea.

E. Observations on the evolution for finite acceleration
times

We first focus on the beta coefficients �ðVÞð!0; !Þ. In
analogy with Eq. (35), we introduce

B ðVÞ
! ð!0Þ ¼ !0j�ðVÞð!0; !Þj2; (85)

in terms of which

NðVÞ
! ðtAÞ ¼

Z 1

�1
dðln!0ÞBðVÞ

! ð!0Þ: (86)

A plot for BðVÞ
! ð!0Þ as a function of lnð!0=kÞ for different

times tA is shown in Fig. 5. As for the perfect mirror, the
areas below the curves are practically the numbers

NðVÞ
! ðtAÞ. A comparison with Fig. 1 shows the evolution

of curves for tA large is significantly different now. The
essential fact is that the extension into the region of large
frequencies !0 stops beyond a certain tA. (On our graphic
the curves ktA ¼ 10 and tA ! 1 are indistinguishable.) It
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becomes clear thus the mechanism that makes N!ðtA !
1Þ finite.

It is interesting to determine the cutoff frequency !0
max

for the limit curve tA ! 1. We similarly apply the ray
tracing method. The main observation is that for the semi-
transparent mirror the amplitude of the back propagated
wave will be reduced by the coefficient Rout

!;Rð�refÞ, where
�ref is the proper time corresponding to the reflection point.
Recall now that in the limit of interest �A ! 0 the coef-
ficients at the end of the acceleration interval are null, i.e.
Rð�ref ¼ �AÞ ! 0 [see Eq. (65)], which means that the
back scattered frequencies !0 determined by Eq. (39) will
be relevant only as long as �ref is not very close to �A ¼ 0.
This implies an upper limit for the Doppler shifts that
define !0

max, which basically explains why !0
max remains

finite for tA ! 1.
Let us suppose that (as on the graphic) the barrier energy

is�=k � 1 and that! is comparable to k, so that the initial
coefficients (64) areR ’ 1. As a simple approximation, let
us admit that the back scattered waves are relevant only as
long as

R out
!;Rð�AÞ ’ 1: (87)

Using Eq. (57) this implies for the "A parameter the
inferior limit

ffiffiffiffiffiffi
"A

p ’ !

�
; (88)

which gives in combination with the first relation in
Eq. (39)

!0
max ’ �2

!
or lnð!0

max=kÞ ’ 2 lnð�=kÞ þ lnðk=!Þ:
(89)

The maximum frequencies (89) are in good agreement
with the cutoff frequencies determined by numerical cal-
culations (see Fig. 5).
A plot for the particle numbersN!ðtAÞ as a function of tA

for different energies � is shown in Fig. 6. (The transmitted

component NðUÞ
! ðtAÞ is also included; however, because of

the large energies �=k � 1 the curves practically repre-

sentNðVÞ
! ðtAÞ.) One sees that for tA sufficiently largeN!ðtAÞ

becomes constant. Note also that, as intuitively expected,
for tA fixed the numbers increase with �.
A question that can be naturally asked considering the

curves in Fig. 6 is for which time tA � TA the number
N!ðtAÞ becomes close to N!ðtA ! 1Þ (in other words, the
emission process can be considered to stop around TA).
The answer follows from the same argument that led to
Eq. (89). Assuming as before a large barrier energy�=k �
1, one can admit that the interval within which the majority
of particles is emitted is characterized by a not very small
value of Rout

!;R, which is equivalent to condition (87). The

time TA is then simply determined by the inferior limit of
the "A parameter (88). It is clear that a large � implies a
large emission time TA, so that we can assume the large tA
approximation (5). One finds

TA ’ ð1=kÞ lnð�=!Þ: (90)

This is in acceptable agreement with the evolution in
Fig. 6. Note also that condition (87) can be equivalently
interpreted by saying that TA is the interval �t ’ TA within

FIG. 6. The particle numbers for the semitransparent mirror
N!ðtAÞ represented as a function of tA for !=k ¼ 1. The energy
�=k is indicated by the numbers near the curves. The squares are
placed at the time (90), which approximates the end of the
emission phase.

FIG. 5. The coefficients BðVÞ
! ð!0Þ ¼ !0j�ðVÞð!0; !Þj2 for the

semitransparent mirror represented as a function of lnð!0=kÞ for
!=k ¼ 1 and the barrier energy �=k ¼ 103. The time tA is
shown near the curves. The square on the tA ! 1 curve marks
the theoretical cutoff frequency (89).

NISTOR NICOLAEVICI PHYSICAL REVIEW D 80, 125003 (2009)

125003-10



which the mirror radiates in an ‘‘almost perfect reflector’’
regime. With this interpretation, the physical significance
of Eq. (84) becomes obvious.

[The definition of TA in Eq. (90) is different from that in
Eq. (84) via ! ! k, but this is inessential in the limit of �
large: the two times differ only by a finite quantity inde-
pendent of �, which is irrelevant in Eq. (84), where both
the numerator and the denominator diverge with �.]

We represented the ratio N!ðtAÞ=TA as a function of !
for different times tA in Fig. 7 [for TA we used Eq. (90)].
We have chosen a large barrier energy, in order to assure a
great degree of accuracy in Eq. (84). In accordance with
our result, the curve tA ! 1 practically reproduces the
Bose-Einstein spectrum (34).

It is interesting that the curves have a very similar shape
with those for the perfect mirror flux in Fig. 3. However, a
closer look reveals a significative difference in the high
frequency sector: i.e., the curves in Fig. 7 approach more
rapidly the horizontal axis. In other words, semitranspar-
ency suppresses the emission at high frequencies. This is of
course not unexpected, and can be naturally understood as
a consequence of the fact that semitransparency tends to
eliminate the high frequencies from the theory.

Finally, we included in Appendix F a few more com-
ments related to the high frequency spectrum and the fact
that we use a trajectory with discontinuous derivatives.

V. CONCLUSIONS

We investigated in this paper the particle production
phenomenon due to a semitransparent mirror, which accel-
erates on the trajectories which provide the analogy with
the Hawking effect. We confirmed a previous conclusion
[3] that, in contrast to the case of the perfect reflector, the

numbers of particles emitted up to infinite times remain
finite. In disagreement to [3], however, we showed that for
sufficiently large, but finite barrier energies of the mirror,
the radiated spectrum remains Bose-Einstein. More ex-
actly, in this limit the final numbers of particles in a certain
!mode can be approximated with the thermal flux emitted
by the perfect mirror at infinite times, multiplied by a time
� ln�. We conjectured that a similar result might apply for
any semitransparent mirror.
We also discussed the relevance of the various large

frequencies !0 to the creation process, considering trajec-
tories with a finite acceleration time tA. For the perfect
mirror, we showed that the beta coefficients become neg-
ligible beyond a maximum frequency!0

max, which behaves
as ln!0

max � tA. This frequency is well approximated by
the emergent frequency propagated backwards in time,
considering that the reflection on the mirror occurs at the
end of the accelerated trajectory, where the frequency shift
is maximum. The infinite numbers of particles for tA ! 1
emitted by the perfect reflector can be seen as a conse-
quence of the indefinite increase of !0

max with tA.
By contrast, for the semitransparent mirror, the frequen-

cies !0
max remain finite for tA ! 1, and thus the particle

numbers remain finite. The finiteness of!0
max in this case is

as a consequence of the fact that the out reflection coef-
ficients, on which the beta coefficients depend, vanish at
the end of the accelerated part of the trajectory tA ! 1.
More exactly, in the time reversed picture the coefficients
Rout

! reduce the amplitude of the back scattered waves, and
thus the vanishing behavior Rout

! ! 0 introduces a cutoff
for the shifted frequencies !0.
An important feature which automatically follows from

the finiteness of the particle numbers at tA ! 1 is that the
particle flux vanishes at infinite times. As remarked in [3],
this is consistent with a previous result [16], which states
that the energy flux radiated by the mirror vanishes in the
infinite future. (The calculation in [16] refers to the same
mirror model and the same trajectories; the energy flux
means more exactly the renormalized energy-momentum
tensor).
Let us make a few comments in connection to the

Hawking effect. First of all, one has to admit that it remains
an open question whether the semitransparent mirror
model has any relevance at all to the gravitational problem.
If one has in mind that the effect of semitransparency is
practically to eliminate the high frequencies !0 from the
theory, one possible view is that it might offer a model for
the Hawking flux in the presence of a frequency cutoff.
From this perspective, the vanishing of the flux is of no
surprise, as it confirms the well-known fact that the fre-
quencies !0 ! 1 are essential for the existence of the
Hawking flux at infinite times (see e.g. [17]).
In the same context, it is worth mentioning a recent

investigation [18] that explicitly displayed the vanishing
of the Hawking flux in the absence of the high frequencies

FIG. 7. The plot for N!ðtAÞ=TA as a function of ! for the
barrier energy �=k ¼ 104. The time tA is indicated near the
curves. The upper curve is identical with the Einstein-Bose
spectrum (34).
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!0, and which arrived to a result very similar to our formula
(84). The calculation considered the usual collapse sce-
nario,7 assuming a cutoff frequency !0 <�. The relation
obtained in [18] between the particle numbers at infinite
times and the late time flux8 is the same with Eq. (84), with
the only difference that the barrier energy � is replaced by
�. This supports the conjecture that Eq. (84) might apply
to a wider class of situations.

Let us draw attention to the tempting idea that the
vanishing flux of the mirror might somehow be an indica-
tion for the vanishing of the Hawking flux at infinite times,
due to the complete evaporation of the black hole. We
think, however, that this analogy is purely superficial.
Most probably the flux of the semitransparent mirror can
not be a model for the flux of an evaporating black hole. A
simple argument is that in the evaporation process the
temperature of the flux increases in time, while no such
behavior can be seen in our case. The increased tempera-
ture should have left an imprint in the ! dependence of
N!ðtA ! 1), in contradiction with the spectrum (84) with
the fixed temperature T ¼ k=2�.

It might be also useful to point out that the vanishing of
the flux in our investigation has nothing in common with
the moving mirror model for the evaporation process pro-
posed by Carlitz and Wiley [19]. Their analysis is com-
pletely based on the perfect reflector model, and the
vanishing of the flux, as well as the increase of tempera-
ture, are direct consequences of a suitably devised mirror
trajectory. (The acceleration parameter k is considered a
time dependent quantity which is chosen to vanish at large
times in the future.)

As a final question, let us discuss a more delicate aspect
concerning the frequency cutoff. In recent years, it became
increasingly clear from the study of acoustic black holes
(see e.g. [20]) that the existence of the Hawking effect is
actually not incompatible with a cutoff. It is important to
recall that in these models the cutoff acts not relative to the
static Minkowski frame, but with respect to the comoving
frame of the fluid. (In the gravitational problem, this would
translate into a cutoff relative to a freely falling observer.)
It should be clear that this is not the case here, where the
frequencies are defined with respect to the fixed
Minkowski frame.

However, the attentive reader might raise the following
question. The observation is that the finite barrier energy
introduces a well defined cutoff with respect to the rest
frame of the mirror, while we are dealing here with a mirror
in motion.We recall that the trajectories of interest are such
that the mirror recedes from the R region with a velocity
that steadily increases in time, and which for the trajecto-

ries tA ! 1 becomes infinitely close to the speed of light
at t ! þ1. The point is that, from the perspective of a
static observer, this implies for the !0 frequencies incident
from the R zone (i.e. the virtual frequencies relevant for the
emergent flux) a blue shifted cutoff that indefinitely in-
creases in time, from which the natural conclusion would
be that the cutoff will be ultimately eliminated (i.e. become
infinite) at t ! þ1. This might appear to be in contra-
diction with the finite cutoff in the beta coefficients.
Although the argument seems correct, the conclusion

regarding the elimination of the cutoff is not. In a rigorous
way, the question can be reformulated by asking if the
coefficients that describe the reflection on the mirror of the
waves thatcome from the R region still posses the usual
vanishing behavior with the incident frequency at infinite
acceleration times (i.e. for � ! 0when �A ! 0). As can be
seen from Eq. (42), these coefficients areRin

!;R (the role of

!0 is played now by !). An explicit calculation using
Eq. (A9) shows that in the limits of interest the coefficients
for large frequencies behave as

lim
�!0

Rin
!;Rð�Þ � �=

ffiffiffiffiffiffiffi
!k

p
; �A ! 0: (91)

This confirms that a cutoff exists also with respect to the
Minkowksi frame, and not only in the mirror’s proper
frame. (Note that Eq. (91) implies that the cutoff is
��2=k. This is similar, but not identical with the cutoff
in the beta coefficients (89). One could not have expected a
complete identity between the two quantities, since the last
one contains the extra dependence on the out frequency!.)
From a physical point of view, the finite cutoff implied

by Eq. (91) can be understood as follows: The idea is that
the nonlocality of the wave/quantum particle makes it
impossible to localize the reflection point strictly at � !
0, i.e. when the velocity of the mirror becomes infinitely
close to the speed of light. This means that the reflection
process has to be viewed as taking place also at subluminal
velocities, in which conditions the finite cutoff from the
mirror’s proper frame can survive.

APPENDIX A

We present here the construction of the quantum modes9

in the semitransparent mirror model [15]. The interaction
between the mirror and the field is described by an external
delta-like potential V, which for the static mirror located in
z ¼ 0 has the form

7In two dimensions the problem is completely equivalent to
the accelerated mirror model with an infinite acceleration time.

8The relation is actually not explicitly written in [18]. It
follows from combining Eqs. (15) and (19)–(22) in the cited
paper. Notably, the result appears now as a strict identity.

9We include these facts since [15] contains only the derivation
of the in modes, while we also need here the out modes. Note,
however, that our calculation of the beta coefficients does not use
the explicit form of the in coefficients (A9). On the other hand,
the calculation in [3] uses the in coefficients and does not use the
out coefficients (A13). The difference originates in the fact that
in [3] the scalar products (47) are evaluated with the integration
hypersurface � identified with the future null infinity, while in
our case � is the past null infinity; see Appendix B.
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V̂ðzÞ ¼ ��ðzÞ; � > 0: (A1)

The equation imposed on the quantum field is

ðhþ VÞ’ ¼ 0; (A2)

where Vðt; zÞ is the generalization of V̂ðzÞ to an arbitrary
trajectory. The explicit form of Eq. (A2) is however not
necessary for determining the modes. Let ’L=R denote the

field at the left/right of the mirror. It is clear that within the
L and R regions

h’L ¼ h’R ¼ 0: (A3)

Equation (A3) has to be supplemented with the junction
conditions on the mirror (M). In obvious notations, the
continuity condition is

’L ¼ ’RjM: (A4)

The equation for the derivatives of ’ can be most easily
established considering first the mirror at rest and then
covariantly generalizing the result. One finds (the overdot
represents derivation with respect to the mirror’s proper
time)

n�@�’L � n�@�’R þ �’ ¼ 0jM; n� ¼ ð _z; _tÞ:
(A5)

For the fixed mirror n̂� ¼ ð0; 1Þ and Eq. (A5) reduces as it
should to the equation for the static case [which follows as
usual by integrating Eq. (A2) with respect to z in the
vicinity of the mirror].

1. The in modes

The wave functions (42) are an evident generalization of
the modes for the perfect reflector (11). Note that the
dependence on u, v in R, T in all cases is chosen such
that the free field Eq. (A3) is automatically satisfied. The
coefficients R, T can be determined as follows. The
continuity condition implies (we refer for economy only
to the V in

! modes)

R in
!;R þT in

!;L ¼ 1: (A6)

The essential point is that Eq. (A5) can be transformed into
an evolution equation for R. To this end, we consider the
coefficients as functions of the proper time of the mirror �
via

R in
!;Rð�Þ � Rin

!;Rðuð�ÞÞ; (A7)

and eliminate T in favor of R. After expressing all
derivatives in terms of d=d�, the equation translates into

d

d�
Rin

!;R �
�
i!

dv

d�
� �

2

�
Rin

!;R ¼ �

2
: (A8)

The solution of Eq. (A8) will depend on the initial condi-
tion at some time �0. If one chooses �0 ! �1, one finds
that the initial condition becomes irrelevant and the solu-

tion is

R in
!;Rð�Þ ¼

�

2

Z �

�1
d�0ei!ðvð�Þ�vð�0ÞÞ��ð���0Þ=2: (A9)

For the corresponding formulas for the Uin
! modes it is

sufficient to make everywhere in the expressions above
L $ R and u $ v (and the same for the outmodes below).
This completes the derivation of the in modes.

2. The out modes

A similar construction applies to the coefficients in the
out modes. The continuity condition implies

R out
!;R þT out

!;L ¼ 1: (A10)

Eliminating T and considering R as a function of the
proper time � via

R out
!;Rð�Þ � Rout

!;Rðvð�ÞÞ; (A11)

Eq. (A4) becomes

d

d�
Rout

!;R �
�
i!

du

d�
þ �

2

�
Rout

!;R ¼ ��

2
: (A12)

Choosing this time �0 ! þ1 the solution is

R out
!;Rð�Þ ¼

�

2

Z þ1

�
d�0ei!ðuð�Þ�uð�0ÞÞþ�ð���0Þ=2: (A13)

Note that, as it should, the in coefficients depend on the
past trajectory, while the out coefficients on the future
trajectory of the mirror.

APPENDIX B

Here, we determine the form of the beta coefficients for
an arbitrary trajectory of the mirror. We refer only to the
reflected coefficients (48), since the calculation for the
transmitted coefficients (49) is basically the same. It is
clear that in the semitransparency case the scalar products
(47) have to be evaluated using a Cauchy hypersurface �
for the entire Minkowski space. In obvious notations, we
have

� ¼ �L [ �R )
Z
�
¼

Z
�L

þ
Z
�R

: (B1)

This allows to decompose the beta coefficients as

�ðVÞð!0; !Þ ¼ �ðVÞð!0; !ÞL þ �ðVÞð!0; !ÞR: (B2)

We identify �R as for the perfect mirror with the right past
null infinity J�

R [see above Eq. (14)] and �L with the left
past null infinity J�

L (more exactly the ray v ¼ t0, u 2
½t0;1Þ with t0 ! �1). One finds for the R component
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�ðVÞð!0; !ÞR ¼ i
Z þ1

�1
dvVin

!0;R@
$
vU

out
!;R

¼ �2i
Z þ1

�1
dvð@vV in

!0;RÞUout
!;R

� iV in
!0;RU

out
!;RjM; (B3)

where the second expression follows from an integration
by parts and neglecting the boundary term from infinite
distances v ! 1. TheM term is the contribution due to the
extremity on the mirror at v ¼ t0.

10 A similar calculation
gives for the L component

�ðVÞð!0; !ÞL ¼ i
Z þ1

�1
duV in

!0;L@
$
uU

out
!;L

¼ þ2i
Z þ1

�1
duV in

!0;Lð@uUout
!;LÞ

þ iV in
!0;LU

out
!;LjM: (B4)

We now observe that, because of the continuity of the
modes on the mirror, the two M terms are equal (and of
opposite signs), so that they cancel in Eq. (B2). Introducing

Eqs. (42) and (44) in the integral term in �ðVÞð!0; !ÞR one
obtains formula (48). It remains to justify the vanishing of

the integral term in �ðVÞð!0; !ÞL. Using Eqs. (43) and (45)
one finds that the integral is [the integrand is of the form
FðvÞ@uGðuÞ, which makes the result immediate]

Z þ1

t0

du . . .�T in
!0;Lðt0ÞT out

!;Lðt0Þe�ið!0þ!Þt0 ;

t0 ! �1:

(B5)

If one considers wave packets, this is indeed a vanishing

quantity because distributionally limt0!�1e�ið!0þ!Þt0 ¼ 0,

since !0 þ!> 0. The T factors do not interfere with the
vanishing property, because u ¼ v ¼ t0 ! �1 corre-
sponds to the initial static part of the trajectory at t !
�1, for which T ¼ 1�R reduces to the finite, time
independent solution for the mirror at rest.

APPENDIX C

We justify here that for large barrier energies �=k � 1
the coefficients Rout

!;Rð� � �0Þ can be approximated with

the coefficients for the static mirror (64). The simplifying
idea is that it is sufficient to show that the approximation is
valid for � ¼ �0. The conclusion then follows from the
facts that (1) the solution Routð� � �0Þ of the differential
Eq. (A12) is uniquely determined by the initial condition at
�0 and the velocity of the mirror for � � �0, and (2) the
velocity of the mirror on this interval is exactly null. To
prove the first statement, we consider Eq. (59) for � ¼

�0 ¼ �2=k. For economy, we only refer to the case of
interest "A, �A ! 0. Note from Eq. (60) that in this limit
the U term is identically null,

lim
"A!0

RUð�Þ ¼ 0: (C1)

In the A term (61), we observe that condition k=� 
 1
together with the factor e�s under the integral allows to
make the approximation (we use lnð1� zÞ ’ �z for z
small)

lim
�A!0

RAð�0Þ ¼
Z �=k

0
dse�s exp

�
2i!

k
ln

�
1� sk

�

��

’
Z 1

0
dse�s�2i!s=� ¼ �

2i!þ �
; (C2)

which reproduces Eq. (64).

APPENDIX D

We discuss here the analytical extension of the coeffi-
cient (59) as a function of the complex z variable in
Eq. (69). The analyticity of the nonintegral term (60) is
evident from the analyticity with respect to � � �2

ffiffiffi
z

p
=k.

In the integral term (61), the situation is a bit more com-
plicated, because � also appears in one of the integration
limits, which requires Eq. (61) to be seen as an integral in
the complex s plane, and thus one has to prescribe an
integration contour for s. A simple solution is to rewrite
first the integral using the real integration variable � de-
fined by s ¼ �ð�A � �Þ�=2, after which to perform the
analytical extension. The result is

�RAðzÞ ¼
�ð ffiffiffi

z
p � ffiffiffiffiffiffi

"A
p Þ

k

Z 1

0
d�e��ð ffiffi

z
p � ffiffiffiffi

"A
p Þ�=k

	
�
1þ

ffiffiffiffiffiffi
"A

p � ffiffiffi
z

p
ffiffiffi
z

p �

�
2i!=k

: (D1)

In this way the analytical extension is unambiguously
fixed.
It is clear that the only source of nonanalyticity in

Eq. (D1) can be the power function ð1þ fðz; �ÞÞ2i!=k.
Let us consider that the cut in the complex z plane is along
the negative real semi-axis. Recall now that the edges of
the rectangular contour parallel with the imaginary axis are
located at z ¼ "A and z ¼ 1, so that everywhere within the
contour Rez > "A. In these conditions one can easily check

that jfðz; �Þj< 1, and thus the argument in ð. . .Þ2i!=k never

crosses the cut. This proves the analyticity of �Rout
!;RðzÞ

within the integration contour.
In the discussion of the coefficients for "A ! 0 and

!0 ! 1 in Appendix E, we shall need the small z approxi-
mation of Eq. (75). Note that in the first limit only the A
contribution (D1) survives [see Eq. (C1)], i.e.

10This term is not null in the semitransparency case, because
the modes do not vanish on the mirror.
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�R!ðzÞ � lim
"A!0

�RAðzÞ: (D2)

The observation is that for z very small in Eq. (D1), one can
admit that in the exponential under the integral �

ffiffiffi
z

p
=k ’ 0

and thus e��ð...Þ�=k ’ 1. More precisely, the approximation
is allowed when11

�2=ðk!0Þ 
 1: (D3)

A simple calculation then gives

lim
"A!0

�RAðzÞ ’ �
ffiffiffi
z

p
k

Z 1

0
d�ð1� �Þ2i!=k

¼ �
ffiffiffi
z

p
k

1

2i!=kþ 1
: (D4)

APPENDIX E

We have to check that Eq. (73) remains finite for tA !
1. It is clear that it is sufficient to consider the integrand
for !0 large. We note that for !0 ! 1 the argument of the
function �R! in Eq. (74) is

z � ikt=!0 ! 0; (E1)

so that we can use the small z approximation
(D2) and (D4). Inserting Eq. (D4) in the limit coefficients
(74), a simple integration leads to

lim
tA!1

~�ðVÞð!0; !Þþ ’ �

4�k
ffiffiffiffiffiffiffiffiffiffi
!!0p

�
ik

!0

�
i!=kþ1=2

	 �ð1=2þ i!=kÞ; !0 large:

(E2)

This shows that the integrand in Eq. (73) is �1=!02 and
thus the integral converges.

Notably, Eq. (E2) reproduces (modulo a not so relevant
numerical factor) the beta coefficients obtained in [3] [see
Eq. 35 therein]. The expression suggests indeed Fermi-
Dirac statistics with respect to the energy ! (the 1=2 term
in the argument of the Gamma function) and a number of
particles ��2. Our observation is that, however, the coef-
ficients (E2) cannot be used to establish the number of
particles, since they correctly apply only in the limit of !0
large.

To be more precise, let us estimate the error one makes
in N!ðtA ! 1Þ if one uses Eq. (E2). Consistency requires

of course to restrict to the frequencies for which the result
is valid, i.e. condition (D3), or equivalently !0 � �2=k.
We appeal at this point to our analysis in Sec. E, where we
conclude that for !0 large compared with the cutoff fre-
quency !0

max ’ �2=!, the beta coefficients are negligibly
small. Consider now, for the sake of the argument, a
frequency !� k (i.e. the typical frequency in the thermal
flux of the perfect reflector) or larger. It is then immediate
that for such frequencies Eq. (E2) will apply only within
the irrelevant sector !0 � !0

max. Most probably, with a
more accurate analysis one can show that the same prop-
erty applies for all frequencies !> 0. The conclusion is
thus that the Fermi-Dirac form of the coefficients (E2) is
valid precisely within that part of the spectrum of the
frequencies !0 that gives a practically null contribution
in N!ðtA ! 1Þ. An illustrative picture is provided by
Fig. 5, which shows indeed that frequencies much larger
than !0

max contribute in the area below the curves with a
negligible quantity.

APPENDIX F

We make here a few observations related to the high
frequency behavior of the spectrum and the fact that we use
a piecewise defined trajectory. Recall that the acceleration
of the mirror is discontinuous at t ¼ 0 and t ¼ tA. Since the
beta coefficients (14) are basically the Fourier transform of
a function depending on the trajectory u ¼ fðvÞ, one
would naturally expect that the discontinuities will make
the particle numbers slowly decreasing functions of !.
This might seem to be in contradiction with the perfect
mirror flux at infinite times (34), which exponentially

decreases as �e�2�!=k. A similar remark can be made
for the particle numbers for the semitransparent mirror in
Eq. (84).
The basic observation is that the beta contain indeed a

slowly decreasing part, but in the limit of large acceleration
times this contribution becomes negligible in the flux or the
particle numbers. For simplicity, let us focus on the perfect
mirror flux. One sees from Eqs. (17) and (18) that the U
terms in the beta coefficients have the slowly decreasing

behavior �1=!3=2. The idea is that, as tA increases, these
quantities become less and less relevant in F !ðtAÞ ¼
dN!ðtAÞ=dtA. For the U plus term (18), this is immediate
from the fact that for infinite times "A ! 0 the term is
identically null. For the U minus term (17), the property
follows from the fact that, as part of the minus component
(21), it introduces only a finite quantity in N!ðtA ! 1Þ,
and thus it gives a vanishing contribution in the limit flux.
The bottom line is that for tA ! 1 the flux will be deter-
mined only by the infinitely differentiable trajectory t 2
½0; tA�, in agreement with the exponential form of
F !ðtA ! 1Þ. The progressive disappearance of the slowly
decreasing behavior with ! in the flux can be nicely
observed from the tails of the curves in Fig. 3.

11The exponent can take in fact arbitrary large values for any
given !0 since

ffiffiffi
z

p � ffiffiffiffiffiffiffiffiffiffi
t=!0p 2 ½0;1Þ, but condition (D3) still

makes sense because the e�t factor in Eq. (74) practically
restricts t below a quantity around unity.
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