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We consider a supersymmetric matrix quantum mechanics. This is obtained by adding Myers and mass

terms to the dimensional reduction of 4D N ¼ 1 super Yang-Mills theory to one dimension. Using this

model we construct 4D N ¼ 1 super Yang-Mills theory in the planar limit by using the Eguchi-Kawai

equivalence. This regularization turns out to be free from the sign problem at the regularized level. The

same matrix quantum mechanics is also used to provide a nonperturbative formulation of 4D N ¼ 1

super Yang-Mills theory on a noncommutative space.
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I. INTRODUCTION

Supersymmetry is a promising framework for physics
beyond the standard model. For this reason it is important
to understand its nonperturbative aspects such as confine-
ment and the mechanism of supersymmetry breaking.
Usually lattice regularization provides a tool to study field
theories in the nonperturbative regime. However, a techni-
cal obstacle arises in this type of regularization, namely, it
is difficult to keep supersymmetry (although some progress
has been achieved for some specific kind of theories, for a
review see [1]). In order to avoid this obstacle for large-N
supersymmetric Yang-Mills (SYM) theories, we can use
another regularization method known as Eguchi-Kawai
reduction [2].

Another motivation to study SYM theories in the
large-N limit is that they are expected to describe the
nonperturbative dynamics of string theory [3–7]. For in-
stance, (0þ 1)-dimensional maximally supersymmetric
UðNÞ gauge theory is conjectured to be dual to type IIA
superstring theory on a black 0-brane background [7]. This
specific example has been studied usingMonte Carlo simu-
lation [8–10]; using these numerical techniques the stringy
�0 corrections can be evaluated [10]. There have been
much efforts to study the 0þ 0-dimensional theory [4]
numerically, too. See e.g. [11–14]. Finally, large-N Yang-
Mills theories are interesting on their own because
they might be solvable analytically [15] while preserving
essential features of QCD with N ¼ 3 (for a recent review,
see [16]).

As previously mentioned, the Eguchi-Kawai equiva-
lence [2] can be used as an alternative method to regularize
large-N SYM. The main idea of this method is that large-N
gauge theories are equivalent to certain lower dimensional
matrix models. Furthermore in this prescription the degrees
of freedom of the reduced spaces are embedded in the

infinitely large matrices. A UV regularization can be in-
troduced by taking the size of the matrices to be large but
finite. This regularization, differently from the lattice one,
does not break supersymmetry. With such a motivation, in
[17] a nonperturbative formulation of the maximally super-
symmetric Yang-Mills in four dimensions was proposed.
The authors of [17] have considered a particular solution of
the Berenstein-Maldacena-Nastase (BMN) matrix model
[18], namely, a set of concentric fuzzy spheres, which has
been argued to be stable due to its Bogomol’nyi-Prasad-
Sommerfield (BPS) nature. Expanding the BMN matrix
model about this background, the 4D N ¼ 4 SYM was
recovered through the Eguchi-Kawai equivalence.
In this paper, we provide a nonperturbative formulation

of 4D N ¼ 1 (pure) SYM in the planar limit by using the
technique introduced in [17]. There are two main motiva-
tions to extend the results presented in [17]. First, 4DN ¼
1 supersymmetric theories are more interesting as a candi-
date of new physics in the LHC, and it is important to
consider the N ¼ 1 (pure) SYM as a simplest example.
4D N ¼ 1 SYM is dynamically richer than 4D N ¼ 4
and given that there is no known gravity dual of 4D N ¼
1 SYM providing analytical results, numerical simulations
are a valuable tool. Even though in principle 4D N ¼ 1
SYM on the lattice can be studied without fine-tuning1 it is
computationally very demanding, and a detailed study is
difficult (for recent numerical studies see [19]). On the
contrary, our supersymmetric matrix models would require
less resources, and allow a better numerical analysis of
N ¼ 1 SYM.
Second, several groups are seriously studying 4D N ¼

1 SYM on the lattice, using conventional computationally
demanding numerical techniques. When the results of
these studies become available they could be used to
further check the validity of the Eguchi-Kawai regulariza-
tion. After its validity has been further confirmed, the
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1In the context of lattice regularization, fine-tuning means
adding counterterms in order to restore supersymmetry in the
continuum limit.
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Eguchi-Kawai construction could be used to analyze field
theories with extended supersymmetries [17], which can-
not be studied by using the lattice unless we introduce fine-
tuning.

In the first part of this paper we formulate the Eguchi-
Kawai reduction of 4DN ¼ 1 SYM by using a BMN-like
mass-deformed matrix quantum mechanics with four
supersymmetries. In the regularization of 4D N ¼ 4
SYM introduced by [17], only 16 out of 32 supercharges
are kept unbroken and the restoration of the other 16
supersymmetries is not obvious, although supporting evi-
dence has been found in [17,20]. In the present case, all 4
supercharges are manifestly kept unbroken and hence we
expect that 4DN ¼ 1 SYM is recovered in the continuum
limit.

In the second part of this paper we consider noncommu-
tative super Yang-Mills theories in four dimensions. These
appear, for example, in string theory as effective theories
on D-branes with flux. Given that noncommutative Yang-
Mills theories have a D-brane origin, they can be regular-
ized by using matrix models as explained in [21]. Super
Yang-Mills in flat noncommutative space is obtained by
studying the theory in a background satisfying the
Heisenberg algebra ½x̂; ŷ� ¼ i�, which cannot be realized
using finite-N matrices. It turns out that the Heisenberg
algebra can be described at finite-N level by considering
compact fuzzy manifolds like the fuzzy sphere embedded
in flat space. The flat noncommutative space is then recov-
ered as the tangent space to these fuzzy manifolds. One
unsatisfactory property of this prescription is that trans-
verse directions are necessary for embedding the compact
fuzzy spaces into flat space (for example, if we embed S2

intoR3 there is one transverse direction). In the field theory
description these directions turn into scalar fields, and
therefore, only noncommutative gauge theories with sca-
lars can be realized in this way. In the case of supersym-
metric models, this implies that it is only possible to
regularize theories with extended supersymmetries.2 In
this article we show that by using our matrix model with
the background proposed in [17] in an appropriate limit,
we can regularize 4D N ¼ 1 noncommutative pure super
Yang-Mills. Using this construction, the transverse direc-
tion becomes an ordinary commutative coordinate and as a
consequence we recover pure N ¼ 1 SYM with no addi-
tional scalars.

This paper is organized as follows. In Sec. II we review
the Eguchi-Kawai equivalence. In Sec. II A we explain its
deformation, namely, the ‘‘quenched’’ Eguchi-Kawai
model, which we then use to formulate 4D N ¼ 1
SYM. In Sec. III we provide a supersymmetric matrix
quantum mechanics, and applying the method explained

in Sec. II A, we provide the Eguchi-Kawai formulation of
4DN ¼ 1 SYM. In Sec. III C we prove that this regulari-
zation does not suffer from the sign problem. In Sec. IV we
provide a nonperturbative formulation of 4DN ¼ 1 SYM
on noncommutative space. In the appendix we introduce
four-dimensional N ¼ 1 SYM on the three-sphere and
express it in a form which is convenient for our purpose.

II. THE EGUCHI-KAWAI REDUCTION

In this section we review the Eguchi-Kawai equivalence
[2]. The equivalence guarantees that D-dimensional
SUðNÞ gauge theory and its one-point reduction are
equivalent if the global ðZNÞD symmetry of the latter is
not broken. In the bosonic case, however, this symmetry is
broken for D> 2 in the 0D theory; it is unbroken only
above a critical volume [23]. To cure this problem, defor-
mations of the 0D theory, the quenched [24,25] and twisted
[22] Eguchi-Kawai models (QEK, TEK, respectively)
were proposed soon after the original one.3 In these mod-
els, deformations are introduced such that ðZNÞD-unbroken
backgrounds become stable. However, recently it was
found that both TEK [27–29] and QEK [30] fail at very
large-N—their deformations cannot stabilize the back-
grounds completely. On the other hand, by combining
quenched and/or twisted prescriptions with supersymme-
try, the background can be stabilized [27,31].
In Sec. II Awe review the diagrammatic approach to the

quenched Eguchi-Kawai model [25] (for the case of com-
pact spaces, see also[17,32]). First we consider the sim-
plest case, namely, the equivalence between matrix
quantum mechanics and the zero-dimensional matrix
model, and then we proceed with the Eguchi-Kawai con-
struction of the field theory on S3 [17].

A. Quenched Eguchi-Kawai model

We consider a matrix quantum mechanics with a mass
term,

S1d ¼ N
Z

dtTr

�
1

2
ðDtXiÞ2 � 1

4
½Xi; Xj�2 þm2

2
X2
i

�
; (1)

where Xi (i ¼ 1; 2; � � � ; d) are N � N traceless Hermitian
matrices. The covariant derivative Dt is given by DtXi ¼
@tXi � i½A; Xi�. At large-N, this model can be reproduced
starting from the zero-dimensional model

S0d ¼ 2�

�
� N Tr

�
� 1

2
½Y; Xi�2 � 1

4
½Xi; Xj�2 þm2

2
X2
i

�
;

(2)

where Y and Xi are N � N traceless Hermitian matrices.
We embed the (regularized) translation generator into the
matrix Y,

2If we use the twisted Eguchi-Kawai model [22], which is
written in terms of unitary matrices, we do not need transverse
directions. However it is difficult to supersymmetrize it. 3Another recent proposal can be found in [26].
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Yb:g: ¼ diagðp1; � � � ; pNÞ; pk ¼ �

N

�
k� N

2

�
: (3)

By expanding Y around this background, Y ¼ Yb:g: þ A,
the Feynman rules of the one-dimensional theory are re-
produced at large-N, as we will see in the following.

The action can be rewritten as

S0d ¼ 2�

�
� N

�
1

2

X
i;j

jðpi � pjÞðXkÞij � i½A; Xk�ijj2

þ Tr

�
� 1

4
½Xi; Xj�2 þm2

2
X2
i

��
: (4)

We add to it the gauge-fixing and Faddeev-Popov terms
2�
� � N Trð12 ½Yb:g:; A�2 � ½Yb:g:; b�½Y; c�Þ. Then, the planar

diagrams are the same as in the 1D theory up to a normal-
ization factor. For example, a scalar two-loop planar dia-
gram with a quartic interaction (see Fig. 1) is

dðd� 1Þ
2

�
1

2
� 2�N

�

� XN
i;j;k¼1

ð�=2�NÞ
ðpi � pkÞ2 þm2

� ð�=2�NÞ
ðpj � pkÞ2 þm2

’ dðd� 1Þ
4

� 2�
�
� N2

Z �=2

��=2

dp

2�

Z �=2

��=2

dq

2�

� 1

ðp2 þm2Þðq2 þm2Þ : (5)

The essence of this expression is that the adjoint action of
the background matrix can be identified with the derivative
and the matrix elements of the fluctuations can be identified
with the Fourier modes in momentum space. The corre-
sponding diagram in the 1D theory is

dðd� 1Þ
4

� Vol � N2
Z �=2

��=2

dp

2�

Z �=2

��=2

dq

2�

� 1

ðp2 þm2Þðq2 þm2Þ ; (6)

where Vol is the spacetime volume, and hence by interpret-
ing � and �=N to be UV and IR cutoffs, those diagrams

agree up to the factor �
2� � Vol. The other planar diagrams

also correspond up to the same factor.
The nonplanar diagrams do not have such a correspon-

dence, but in an appropriate limit they are negligible. In the
1D theory, by taking a planar limit they are suppressed by a

factor N�2. In the reduced model, they are suppressed if
the IR cutoff�=N goes to zero. To see this, let us calculate
the two-loop nonplanar diagram in Fig. 1, for example. It

reads � dðd�1Þ
4m4

�
2� , which is suppressed by a factor ð�=NÞ2

compared with planar diagrams.
Therefore, by taking the limit

N ! 1; �! 1; �

N
! 0 (7)

the 1D model on R is reproduced from the 0D model.

B. Eguchi-Kawai construction of Yang-Mills on S3

Next let us construct the Yang-Mills theory on three-
sphere by using the Eguchi-Kawai equivalence. The es-
sence of QEK is to find a background whose adjoint action
can be identified with the spacetime derivative. So, the
strategy is to find a set of three matrices whose adjoint
action can be identified with the derivative on S3. Such
matrices were found in [17,33]. As in the Appendix, we
take the radius of the sphere to be 2=�.
We introduce matrices Li which satisfy the commutation

relation of the SUð2Þ generators,
½Li; Lj� ¼ i�ijkLk: (8)

Since these matrices cannot be diagonalized simulta-
neously, we embed them in the following block diagonal
form:

Li ¼

. .
.

L
½js�1=2�
i

L
½js�
i

L
½jsþ1=2�
i

. .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
; (9)

where L½js�i is a ð2js þ 1Þ � ð2js þ 1Þmatrix which acts on
the spin js representation. The size of the matrix N is

N ¼X
s

ð2js þ 1Þ: (10)

We introduce a regularization by restricting the represen-
tation space to a limited number of js. Furthermore we take
the integer s satisfying

� T

2
� s � T

2
; (11)

where T is an even integer. We introduce another integer
P � T=2 and take js to be

js ¼ Pþ s

2
: (12)

The large-N limit is taken in the following way

P! 1; T ! 1; N ! 1; T=P! 0: (13)

k ki j i i i i

FIG. 1. Two-loop planar and nonplanar diagrams with quartic
interaction vertex.

FOUR-DIMENSIONAL N ¼ 1 SUPER YANG- . . . PHYSICAL REVIEW D 80, 125001 (2009)

125001-3



By using these matrices we can relate a matrix model to
a gauge theory on S3 as follows. The action of 3D theory
can be written as

S3d ¼ N

�3d

�
2

�

�
3 Z

d�3 Tr

�
��2

4
ðLiXj �LjXiÞ2

þ�

2
ðLiXj �LjXiÞ½Xi; Xj� � 1

4
½Xi; Xj�2

þ�2

2
X2
i � i��ijkXiXjXk þ i�2�ijkXiðLjXkÞ

�
;

(14)

where the derivative Li is defined by (A10). This can be
reproduced from the bosonic three matrix model

S ¼ N

�

�
� 1

4
½Xi; Xj�2 � i��ijkX

iXjXk þ�2

2
X2
i

�
; (15)

where ��1 ¼ ð16�2=�3NPÞ��13d (16�2=�3NP is a nor-

malization factor analogous to �=2�), by expanding the
action around a classical solution

Xi ¼ ��Li; (16)

and identifying Li and Xð3dÞi with the counterparts in 0D
theory as

L i ! ½Li; ��; Xð3dÞi ! Xð0dÞi þ�Li; (17)

and replacing the trace and the integral by trace,�
2

�

�
3 Z

d�3 tr! Tr: (18)

The UVand IR momentum cutoffs are given by�T and�,
respectively, and we will take the limit so that

�! 0; �T ! 1: (19)

We also require �2P! 1 so that spacetime noncommu-
tativity disappears (see Sec. IV).

Finally we would like to add few remarks. First, the
background is a classical solution and hence as long as it is
stable we do not need to quench it. Second, when we take
the large-N limit fixing the IR momentum cutoff �, to
suppress the nonplanar diagrams it is necessary to change
the background to ��Li � 1k and take k! 1 limit.

III. 4D N ¼ 1 SYM FROM MATRIX QUANTUM
MECHANICS

In [17], a regularization of 4D N ¼ 4 SYM on R� S3

has been proposed by using the BMNmatrix model [18]. In
this section we will generalize this regularization to the
case of N ¼ 1 SYM. We consider the 4-supercharge
matrix quantum mechanics given by the dimensional re-
duction of 4D N ¼ 1 SYM to one dimension. We con-
sider its BMN-like deformation [34] in order for the matrix
model to have the matrices (9) as a solution. Then, apply-
ing a similar identification to the one introduced in [17], we

obtain a regularization of N ¼ 1 SYM on R� S3. This
regularization keeps all 4 supersymmetries unbroken.

A. BMN-like matrix quantum mechanics

We start by considering the following matrix quantum
mechanics:

S0 ¼ N

�

Z
dtTr

�
1

2
ðDtXiÞ2 þ 1

4
½Xi; Xj�2 � i

2
�c�0Dtc

� 1

2
�c�i½Xi; c �

�
: (20)

Here Xi (i ¼ 1, 2, 3) are N � N traceless Hermitian ma-
trices, the covariant derivative Dt is defined by Dt ¼ @t �
i½A; ��, �� are gamma matrices in four dimensions, and c �

are fermionic matrices with four-component Majorana
spinor index �. This matrix model is obtained by dimen-
sional reduction of 4DN ¼ 1 SYM to one dimension, and
has 4 supercharges which correspond to 4D N ¼ 1 su-
persymmetry. We deform it by adding BMN-like terms
[34],4

S ¼ S0 þ Sm; (21)

where

Sm ¼ N

�

Z
dtTr

�
i�

2
� �c�123c þ i��ijkXiXjXk

��2

2
X2
i

�
: (22)

The additional terms contains a ‘‘mass’’ parameter �. We
also introduced a constant �, which will be fixed later. It is
straightforward to see that this action is invariant under the
SUSY transformations

	�A ¼ �i ���0c ; 	�Xi ¼ �i ���ic ;

	�c ¼
�
ðDtXiÞ�0i � i

2
�ij½Xi; Xj� þ 1

2
�Xi�

ijk�jk

�
�:

(23)

Here � is a time-dependent parameter

�ðtÞ ¼ e���t�0123
�0; (24)

where � is a constant which satisfies �� � ¼ 1, and �0 is
a constant Majorana spinor. Note that �ðtÞ satisfies the
Majorana condition. In fact different choices of � and �
are related by a time-dependent field redefinition [34]. As
we will see, a specific choice of � and � is convenient to
see the correspondence to 4D N ¼ 1 SYM manifestly.
It turns out that this matrix model has the fuzzy sphere

solution. To see this we set c ¼ 0 in the equations of
motion

4In [34] more general kind of mass deformations to (20) has
been studied systematically.
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� ½Xj; ½Xj; Xi�� þ 3i

2
��ijk½Xj; Xk� ��2Xi ¼ 0: (25)

Hence,

Xi ¼ ��Li (26)

is a classical solution if Li satisfies the commutation rela-
tion of the SUð2Þ generators (8). Here we take Li to be a
matrices given in (9) in order to obtain the four-
dimensional theory. Furthermore, this solution is invariant
under the SUSY transformation.

B. Correspondence to 4D N ¼ 1

Now, we consider the correspondence to the N ¼ 1
SYM onR� S3. By expanding around the solution of (26),
Xi ¼ ��Li þ ai, the bosonic part of the action becomes

Sbosonic ¼ N

�

Z
dtTr

�
1

2
ðDtai � i�½Li; At�Þ2

þ�2

4
ð½Li; aj� � ½Lj; ai�Þ2

��

2
ð½Li; aj� � ½Lj; ai�Þ½ai; aj� þ 1

4
½ai; aj�2

��2

2
a2i þ i��ijkaiajak � i�2�ijkai½Lj; ak�

�
:

(27)

We can easily see that, by formally replacing

½Li; �� ! Li; At ! AtðxÞ; ai ! XiðxÞ;
Tr! ð2=�Þ3

Z
d�3 Tr; �! �4d;

(28)

the matrix model and the field theory can be identified.
Similarly, we can identify the fermionic part of the action.
The fermionic part of the matrix model can be expressed as

Sfermionic ¼ N

�

�
� i

2

�Z
dtTrð �c�0Dtc

þ �c�iði�½Li; c � � i½ai; c �Þ � �� �c�123c Þ:
(29)

Hence, by taking the parameters � and � of the matrix
model as � ¼ 1

4 and � ¼ � 3
4 , the fermionic part of the

SYM and matrix model become manifestly equivalent.
Using the replacement (28), we can see the correspon-

dence of the SUSY transformations defined in (23) and
(A14). The time dependence of the parameter � is also
same for the SYM on R� S3 (A16) and the matrix model
(24). Furthermore when we take the continuum limit, we
have to scale the gauge coupling constant appropriately
with the UV momentum cutoff.

Before concluding this section, an important remark is in
order. In 4D N ¼ 1 SYM, there is a ðZNÞ4-unbroken
phase [35], that is volume independent. (For related works,

see [36,37]). One may think that, because of this volume
independence, 4d N ¼ 1 SYM is related to the dimen-
sionally reduced model (20). However, the situation is not
so simple. In order for the small volume limit of 4D N ¼
1 to be described by (20), the ZN symmetry must be broken
[38]. If the ZN is not broken, the derivative @� and the

commutator ½A�; �� in the covariant derivative give contri-

butions of the same order. As a consequence the Kaluza-
Klein excited modes and the zero modes as well give
effective masses of the same order. Therefore, even in the
small volume limit, we cannot simply truncate the Kaluza-
Klein modes. In the original Eguchi-Kawai model, this
problem is avoided by using the unitary matrix. However
it is difficult to keep supersymmetry unbroken with unitary
variables. This is the reason why we have used the tech-
nique introduced in [17].

C. Absence of the sign problem

It is easy to see that the regularization described above
does not suffer from the notorious sign problem after the
Wick rotation. First, the bosonic part of the action is real.
Therefore it is sufficient to see that the Pfaffian (or the
determinant in the Weyl representation) of the Dirac op-
erator is free from the sign problem.
When � ¼ 0, the determinant is the same as that of the

undeformed model and in the nonlattice regularization
method there is no sign problem [8]. The proof is a
straightforward generalization of that of the zero-
dimensional model [12]. For the proof, the Weyl represen-
tation is more convenient. First let us briefly summarize the
proof in 0D theory. In the Weyl representation, the Dirac
operator M�ij;�kl, which is defined by

�c �jiM�ij;�klc �kl ¼ Tr �c��½A�; c �; (30)

reads5

M�ij;�kl ¼ ��
��ðA�ik	jl � A�lj	ikÞ; (31)

where A� (� ¼ 1; � � � ; 4) are Hermitian matrices and c ,
�c are complex matrices with two-component Weyl indi-
ces. �� can be chosen as

�� ¼ 
�ð� ¼ 1; 2; 3Þ; �4 ¼ i � 12; (32)

where 
� are the Pauli matrices. Let ’�;ij to be an eigen-

vector of M of the eigenvalue �. Then, noticing that the
adjoint operators N�;ij;kl � A�ik	jl � A�lj	ik satisfy

N�;ji;lk ¼ �N	�;ij;kl, and 
2��
2 ¼ �ð��Þ	, we obtain

5Strictly speaking we have to project the Uð1Þ part because it
gives zero eigenvalue of the Dirac operator, but we omit it here
just for notational simplicity. In the 1D theory at finite tempera-
ture it is not necessary.
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2
��0M�0ji;�0lk


2
�0� ¼ ðM�ij;�klÞ	: (33)

Therefore,

M�ij;�klð
2’yÞ�kl ¼ 
2
��ðM�ji;�lk’�lkÞ	 ¼ �	ð
2’yÞ�ij;

(34)

and hence ð
2’yÞ�ij is eigenvector of the eigenvalue �	.
Note that they are linearly independent and hence the
determinant is written as

detM ¼Y
i

j�ij2 � 0; (35)

where i is a label for pairs of eigenvalues. It is manifestly
free from the sign problem.

Next let us consider the 1D theory. First let us consider
the case when � ¼ 0 [8]. After the Wick rotation, the
fermionic part of the action is

Z
dtTr

�
�cDtc �

X3
�¼1

�c 
�½X�; c �
�
: (36)

In the momentum cutoff prescription [8], we compactify
the time direction with period 1=T (T is the temperature)
and fix the gauge symmetry so that the gauge field becomes
static and diagonal,

AðtÞ ¼ T � diagð�1; � � � ; �NÞ; �� � �i < �: (37)

Furthermore we introduce the momentum cutoff � 2 Z
such that

X�ðtÞ ¼
X�

n¼��
~X�ðnÞei!nt;

c �ðtÞ ¼
X��1=2

r¼��þ1=2
~c �ðrÞei!rt;

�c �ðtÞ ¼
X��1=2

r¼��þ1=2
~�c �ðrÞe�i!rt;

(38)

where ! ¼ 2�T. Here n and r run integer and half-integer
values, respectively. Then the fermionic part becomes

~�c �jiðpÞM�ijp;�klq
~c �klðqÞ; (39)

where

M�ijp;�klq ¼ iðp!� Tð�i � �jÞÞ	��	ik	jl	pq

� X3
�¼1



�
��ð ~X�ikðp� qÞ	jl

� ~X�ljðp� qÞ	ikÞ: (40)

Note that M has momentum indices p and q in this case.
Because ð ~X�ijðpÞÞ	 ¼ ~X�jið�pÞ, the Dirac operator M

satisfies


2
��0M�0jið�pÞ;�0lkð�qÞ
2

�0� ¼ ðM�ijp;�klqÞ	; (41)

and hence if M’ ¼ �’ then Mð
2’yÞ ¼ �	ð
2’yÞ.
Therefore the determinant ofM is always equal to or larger
than zero.
For generic values of�, the Dirac operator is shifted by a

mass term �� � 1 and the eigenvalues are shifted simply as
�þ ��, �	 þ �� ¼ ð�þ ��Þ	. Therefore the determi-
nant is equal to or larger than zero also in this case.
The same discussion is applicable in any dimension, as

long as the theory is obtained from 4D N ¼ 1, and hence
with the momentum cutoff the sign does not appear. Of
course in higher dimensions we need to use the lattice
regularization and hence the positivity of the determinant
is violated. However the sign problem is treatable in the
following sense, at least in less than three dimensions.
Suppose that one simulates the model by using the phase
quenched action Squench ¼ Sbosonic � logj detMj, where

detM is the fermion determinant. Then the effect of the
phase factor detM=j detMj can be taken into account by the
reweighting as hOi ¼ hO � phaseiq=hphaseiq, where h�i and
h�iq represent the expectation value of the original and

phase quenched models, respectively. If fluctuation of the
phase becomes large, both of the numerator and denomi-
nator in the right-hand side become small and the numeri-
cal error cause fatal problem. For lower dimensional
theories which is obtained from 4D N ¼ 1 SYM, how-
ever, as one approaches to the continuum limit, the phase
factor goes close to 1 for most of the configurations; see [9]
for 1D and [39,40] for 2D. In such a case, the reweighting
method works. In this sense the sign problem is treatable. It
would be nice if similar property can be seen in the three-
and four-dimensional lattices.
Although the sign problem is treatable in the sense

explained above, however, at finite cutoff level small sign
effect remains and hence in order to calculate the expec-
tation value precisely one has to perform the reweighting
procedure. For that, one has to calculate the fermion deter-
minant. One of the advantages of the present method is that
the positivity is kept exactly, the reweighting is not neces-
sary and hence by using the rational hybrid Monte Carlo
algorithmwe do not need to calculate the determinant. This
property reduces the computational cost drastically.

IV. 4D N ¼ 1 NONCOMMUTATIVE SYM

In this section we provide a matrix model formulation of
4D N ¼ 1 noncommutative SYM. First we explain how
gauge theories on noncommutative space are obtained
from the large-N matrix models [21]. Then we discuss
the finite-N regularization.
Let us start with a bosonic D-matrix model

S ¼ � 1

4g2

X
���

Tr½X�;X��2: (42)
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The model has a classical solution6

Xð0Þ� ¼ p̂�ð� ¼ 1; � � � ; dÞ;
Xð0Þ� ¼ 0ð� ¼ dþ 1; � � � ; DÞ;

½p̂�; p̂�� ¼ i��� � 1N;
(43)

where 1N is anN � N unit matrix. By expanding the action
(42) around it we obtain the Uð1Þ noncommutative Yang-
Mills theory (NCYM) on the fuzzy space Rd with (D� d)
scalar fields. The construction goes as follows: let us define
the ‘‘noncommutative coordinate’’ x̂� ¼ ð��1Þ��p̂� they
satisfy

½x̂�; x̂�� ¼ �ið��1Þ�� � 1N: (44)

This commutation relation is the same as for the coordi-
nates on the fuzzy space Rd with noncommutativity pa-
rameter �. As a consequence the functions of x̂ can be
mapped to functions on the fuzzy space Rd. More pre-
cisely, we have the following mapping rule:

fðx̂Þ ¼X
k

~fðkÞeikx̂ $ fðxÞ ¼X
k

~fðkÞeikx;

fðx̂Þgðx̂Þ $ fðxÞ ? gðxÞ;
i½p̂�; �� $ @�;

Tr$
ffiffiffiffiffiffiffiffiffi
det�
p
4�2

Z
ddx;

(45)

where ? represents the Moyal product,

fðxÞ ? gðxÞ ¼ fðxÞ exp
�
� i

2
@
 
�ð��1Þ��@

!
�

�
gðxÞ: (46)

Using this prescription we obtain Uð1Þ NCYM with cou-
pling constant

g2NC ¼ 4�2g2=
ffiffiffiffiffiffiffiffiffi
det�
p

: (47)

Similarly, by taking the background to be Að0Þ� ¼
p̂� � 1kð� ¼ 1; � � � ; dÞ we obtain UðkÞ NCYM. The UV

cutoff is �
 ððN=kÞ ffiffiffiffiffiffiffiffiffi
det�
p Þ1=d, and gNC should be renor-

malized appropriately.
Next let us combine the above technique with the

Eguchi-Kawai prescription. We consider the three matrix
model, D ¼ 3, and take the background to be

Xð0Þ1 ¼ p̂n1 � 1n2 ; Xð0Þ2 ¼ q̂n1 � 1n2 ;

Xð0Þ3 ¼ 1n1 � diagðp1; � � � ; pn2Þ;
(48)

where

½p̂n1 ; q̂n1� ¼ �i� � 1n1 (49)

and

pk ¼ �

n2

�
k� n2

2

�
: (50)

Intuitively, the fuzzy planes extending into the
ðx1; x2Þ-direction are located at each value of x3 (Fig. 2,
left). Then, in the large-N limit (n1, n2 ! 1) we obtain
two noncommutative directions using the previous con-
struction and one ordinary (commutative) direction by
the Eguchi-Kawai prescription. Note that the gauge group
is Uð1Þ.
To realize this configuration at finite-N, we can use the

background (9). First let us consider the single fuzzy
sphere of spin j, described by ð2jþ 1Þ � ð2jþ 1Þ matri-
ces. By zooming in the north pole, i.e. by looking only
close to L3 ¼ j, we have

½�L1; �L2� ’ �i�2j: (51)

Hence, we can identify �L1 and �L2 to be p̂ and q̂ with
the noncommutative parameter

� ¼ �2j: (52)

The tangent space at the north pole, which is identified with
the noncommutative plane, is located at

x3 ¼ �j: (53)

In order to obtain the three-dimensional noncommutative
flat space described in (48) we must consider the tangent
spaces for the whole family of concentric fuzzy spheres
defined in (9). These planes must be required to have the
same noncommutative parameter �, but will be placed at
different positions x3 ¼ �js. In this description, the dis-
tance between the neighboring spheres � turns into the
infrared momentum cutoff along the commutative direc-
tion. Therefore, we have to take the following limit

�2js ! �; �! 0: (54)

Let us now consider how to impose this limit in the
background (9). We first define the infinitesimal parameter
� as � ¼ �. Then, j0 ¼ P will behave as

P
 ��2: (55)

x3x3

FIG. 2. Fuzzy planes extending to ðx1; x2Þ-direction placed
along x3 (left) can be obtained by zooming in the north pole
of a set of concentric fuzzy spheres (right).

6This solution cannot be realized at finite N.
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In order for the noncommutative parameter to coincide, the
maximum and minimum of �2js must go to same value

�2

�
P� T

2

�
! �2P: (56)

Hence, T must scale as

T 
 ��; (57)

with � >�2. We must also send the distance �T between
the first and last tangent planes, which corresponds to the
UV cutoff in the Eguchi-Kawai reduction, to infinity,

�
�T ! 1: (58)

From the previous relation we obtain � <�1. In summary,
by sending T and P to infinity in the following way:

�
 �; P
 ��2; T 
 ��; �! 0; (59)

where �2< �<�1, we obtain the 3D (Euclidean) non-
commutative space from three matrices.

Similarly, we can obtain (1þ 3)-dimensional N ¼ 1
noncommutative super Yang-Mills by applying this proce-
dure to the BMN-like matrix model.

Stability of the background

For the bosonic models, noncommutative backgrounds
which lead to the ordinary flat noncommutative space are
unstable [27,29,31]. Such an instability was originally
argued in [41] from the point of view of UV/IR mixing
[42]. The argument in [27,31] can be applied to the present
case as well and hence the 4D bosonic NCYM cannot be
constructed in this way, as also expected from the NCYM
calculation [41].7

In supersymmetric models this type of instability does
not seem to exist. Given that the concentric fuzzy sphere
background is supersymmetric, we can expect it to be
stable in the limit discussed above at least at zero-
temperature. It would be interesting to study the stability
explicitly by using the Monte Carlo simulation.8 Given that
noncommutative spaces in bosonic models are unstable, as
mentioned previously, we expect the existence of a critical
temperature above which the noncommutative space
destabilizes.

V. CONCLUSION AND DISCUSSIONS

In this article we have introduced a BMN-like super-
symmetric deformation of the 4-supercharge matrix quan-

tum mechanics which can be obtained from 4D N ¼ 1
SYM through dimensional reduction. By using it, we
provided nonperturbative formulation of 4D N ¼ 1 pla-
nar SYM and 4D N ¼ 1 noncommutative SYM. These
models can be studied numerically by using the nonlattice
simulation techniques of supersymmetric matrix quantum
mechanics [8].9 An important application which we have
in mind is the analysis of the finite temperature phase
structure of N ¼ 1 SYM. In theories that have a gravity
dual, as N ¼ 4 SYM, it is possible to infer the existence
of a deconfinement phase transition at strong coupling.
This is just the usual transition from pure anti-de Sitter
space to a black hole that takes place on the gravity side.
Using the formulation of [17], we may reproduce the
transition from gauge theory. In the case of N ¼ 1
SYM the gravity dual is not known and as a consequence
it is difficult to study the phase structure of the theory
analytically. Our nonperturbative formulation allow us to
study the finite temperature theory numerically and to
investigate the presence of a deconfinement phase transi-
tion. However a possible subtlety is that the background (9)
, which is necessary for the Eguchi-Kawai equivalence,
may be destabilized before the phase transition takes place.
Also, it is important to confirm that the Eguchi-Kawai
construction works at strong coupling. For that, it is im-
portant to compare with the lattice calculation.
Another interesting direction is to use the formulation to

obtain insights into nonsupersymmetric theories. In [45], a
large-N nonsupersymmetric gauge theory with a quark in
the two-index representation has been discussed. This
model is interesting because it can be regarded as a certain
large-N limit of one-flavor QCD, in the sense that it
reduces to the ordinary one at N ¼ 3. It was found that
this theory can be embedded into 4D N ¼ 1 SYM, and a
class of interesting quantities such as the fermion conden-
sate take the same value as in the counterpart in SYM at
large-N. Our formulation would be used to obtain insights
into the nonsupersymmetric theory through this equiva-
lence. In this context, it is interesting to study the non-
supersymmetric theory itself, not necessarily with one
flavor, by using the Eguchi-Kawai equivalence. For such
systems, two kinds of the large-N reductions—the one on
S3 [17] discussed in this paper and the usual one with
unitary variables studied in [37]—are applicable. In this
case a possible disadvantage of the former formulation is
that it is necessary to put many fuzzy spheres on top of each
other in order to stabilize the background against the
repulsive force coming from many fermions. It would be
nice if we could study the system by using the Eguchi-
Kawai equivalence.
Another interesting direction is to formulate large-N

field theories on more complicated spacetime using the

7Recently it has been claimed that by using Eguchi-Kawai
model with double trace deformation [26] 4D bosonic NCYM
can be defined [43]. If so then the deformation should eliminate
UV/IR mixing somehow. It would be interesting to study this
point in detail.

8The stability of fuzzy sphere in zero-dimensional supersym-
metric matrix model has been studied by using Monte Carlo
simulation in [44].

9In one dimension lattice simulation also works, that is,
supersymmetry is restored in the continuum limit [9].
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Eguchi-Kawai equivalence. For example, from the discus-
sion in Sec. II B, one can easily see that, by restricting the
spin of SUð2Þ generators in (9) to be integer values, one
obtains super Yang-Mills theory on RP3. By noticing the
similarity of the ordinary QEK and Taylor’s T-dual pre-
scription for matrix models [46], a generalization of
Taylor’s work to nontrivial manifolds [47] may lead to
other examples of Eguchi-Kawai construction for more
complicated spaces. (Note that the original construction
[17] has been obtained in this way). Generalization to 4D
N ¼ 2 is also possible. For that purpose, we have to
introduce a mass deformation which preserves eight super-
charges. Such a deformation has been discussed in [34].

Furthermore the BMN-like matrix model has several
applications. For example, it could be used to numerically
confirm the existence of the conjectured ‘‘commuting ma-
trix phase’’ in the BMN matrix model proposed in [48,49].
(Originally such a phase has been conjectured in 4DN ¼
4 SYM on R� S3 [50]). Confirming the existence of this
phase is important because it would enable us to study
N ¼ 4 SYM in the strong coupling regime. This model
can also be used to study the stability of the fuzzy sphere
solution in a supersymmetric setup.10 This will provide
further intuition about the dynamic of the fuzzy sphere
solution for the BMN matrix model.

ACKNOWLEDGMENTS

The authors would like to thank B. Bringoltz, G. Ishiki,
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APPENDIX: N ¼ 1 SYM ON R� S3

In this section, we write down the action for N ¼ 1
SYM on R� S3 in a form convenient for our purpose [17]
(a detailed discussion of SYM on curved spaces can be
found in [52]). We take the radius of the sphere to be 2=�.
The action of UðNÞ SYM is given by

S ¼ � N

�4d

Z
dt

Z
S3
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
Tr

�
1

4
F2
ab þ

i

2
�c�aDac

�
;

(A1)

where �4d is the ’t Hooft coupling constant, g��ðxÞ is the
metric and gðxÞ is its determinant. The field strength is

F�� ¼ @�A� � @�A� � i½A�; A�� (A2)

and Da is the covariant derivative defined by

Dac ¼ @ac � i½Aa; c � þ 1

4
!abc�

bcc (A3)

for adjoint fermions. The Greek indices �, � refer to the

Einstein frame and the Latin indices to the local Lorentz
frame.
The sphere part of this geometry has the group structure

of SUð2Þ. Given this group structure, there exists a right-
invariant 1-form dgg�1 and dual Killing vectors Li, sat-
isfying the commutation relation

½Li;Lj� ¼ i�ijkLk: (A4)

Using the coordinates ð�; c ; ’Þ defined by g ¼
e�i’
3=2e�i�
2=2e�ic
3=2, the vielbein Ei can be expressed
as

E1 ¼ 1

�
ð� sin’d�þ sin� cos’dc Þ;

E2 ¼ 1

�
ðcos’d�þ sin� sin’dc Þ;

E3 ¼ 1

�
ðd’þ cos�dc Þ:

(A5)

In these coordinates the metric is given by

ds2 ¼ 1

�2
½d�2 þ sin2�d’2 þ ðdc þ cos�d’Þ2�: (A6)

The spin connection!abc can be read off from the Maurer-
Cartan equation,

dEi �!i
jkE

j ^ Ek ¼ 0; (A7)

!ijk ¼ �

2
�ijk: (A8)

And the Killing vectors are given by

L i ¼ � i

�
EM
i @M; (A9)

where

L1 ¼ �i
�
� sin’@� � cot� cos’@’ þ cos’

sin�
@c

�
;

L2 ¼ �i
�
cos’@� � cot� sin’@’ þ sin’

sin�
@c

�
;

L3 ¼ �i@’:

(A10)

The Killing vectors represent a complete basis for the
tangent space on S3. Furthermore given that the vielbeins
are defined everywhere on S3, the indices i can be used as a
label for the vector fields and 1-forms.11

By using the Killing vectors Li, the bosonic part of the
action can be rewritten as [17]

10Fuzzy sphere stability in the bosonic matrix quantum me-
chanics has been studied numerically in [51].

11This property is necessary in order to identify this index with
the one in the matrix model [53].
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Sboson ¼
�
2

�

�
3 N

�4d

Z
dt

Z
d�3 Tr

�
1

2
ðDtXi ��LiAtÞ2

þ�2

4
ðLiXj �LjXiÞ2 ��

2
ðLiXj �LjXiÞ

� ½Xi; Xj� þ 1

4
½Xi; Xj�2 ��2

2
X2
i þ i��ijkXiXjXk

� i�2�ijkXiðLjXkÞ
�
; (A11)

where Xi is defined in such a way that the 1-form of the
gauge field on S3 take the form A ¼ XiE

i, and d�3 is the
volume form of the unit three-sphere. The fermionic part
can be expressed as

Sfermion ¼ N

�4d

�
� i

2

��
2

�

�
3 Z

dt
Z

d�3 Tr

�
�c�0D0c

þ �c�iði�Lic � i½Xi; c �Þ þ 3

4
� �c�123c

�
:

(A12)

The SUSY transformations of N ¼ 1 SYM on curved
background are given by

	Aa ¼ i �c�a�; (A13)

	c ¼ 1

2
Fab�ab�: (A14)

The parameter � is related to the isometry of the geometry.
In the case of R� S3, � must satisfy

ra� ¼ �

4
�a�

123�; (A15)

which corresponds to the Killing spinor equation in super-
gravity. Actually, given two spinors � and � satisfying
(A15), ����� is a Killing vector. The solution to (A15) is
given by

� ¼ e�ð1=4Þ�t�0123
�0; (A16)

where �0 is a constant.
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