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High-accuracy binary black hole simulations are presented for black holes with spins anti-aligned with

the orbital angular momentum. The particular case studied represents an equal-mass binary with spins of

equal magnitude S=m2 ¼ 0:437 57� 0:000 01. The system has initial orbital eccentricity�4� 10�5, and

is evolved through 10.6 orbits plus merger and ringdown. The remnant mass and spin are Mf ¼
ð0:961 109� 0:000 003ÞM and Sf=Mf

2 ¼ 0:547 81� 0:000 01, respectively, where M is the mass during

early inspiral. The gravitational waveforms have accumulated numerical phase errors of & 0:1 radians

without any time or phase shifts, and & 0:01 radians when the waveforms are aligned with suitable time

and phase shifts. The waveform is extrapolated to infinity using a procedure accurate to& 0:01 radians in

phase, and the extrapolated waveform differs by up to 0.13 radians in phase and about 1% in amplitude

from the waveform extracted at finite radius r ¼ 350M. The simulations employ different choices for the

constraint damping parameters in the wave zone; this greatly reduces the effects of junk radiation,

allowing the extraction of a clean gravitational wave signal even very early in the simulation.

DOI: 10.1103/PhysRevD.80.124051 PACS numbers: 04.25.D�, 04.25.dg, 04.30.�w, 04.30.Db

I. INTRODUCTION

Much progress has been made in recent years in the
numerical solution of Einstein’s equations for the inspiral,
merger, and ringdown of binary black hole systems. Since
the work of Pretorius [1] and the development of the
moving puncture method [2,3], numerical simulations
have been used to analyze post-Newtonian approximations
[4–19], to investigate the recoil velocity of the final black
hole [20–38], and to explore the orbital dynamics of spin-
ning binaries [28,39–43].

Numerical simulations can provide an accurate knowl-
edge of gravitational waveforms, which is needed to make
full use of the information obtained from gravitational
wave detectors such as LIGO and LISA. Not only can
detected gravitational waveforms be compared with nu-
merical results to measure astrophysical properties of the
sources of gravitational radiation, but the detection proba-
bility itself can be increased via the technique of matched
filtering [44], in which noisy data are convolved with
numerical templates to enhance the signal.

The production of accurate numerical waveforms is
computationally expensive, making it challenging to con-
struct an adequate waveform template bank covering a
sufficiently large region of the parameter space of black
hole masses and spins. One way of increasing efficiency is
to adopt techniques known as spectral methods. For
smooth solutions, spatial discretization errors of spectral
methods decrease exponentially with increasing numerical
resolution. In contrast, errors decrease polynomially for the
finite difference methods used in most binary black hole
simulations. Not only have spectral methods been used to
prepare very accurate initial data [45–59], but they have

been used to generate the longest and most accurate binary
black hole simulation to date [60].
Following the previous work of [60], this paper presents

the first spectral simulation of an orbiting and merging
binary with spinning black holes: an equal mass system
with spins of the black holes anti-aligned with the orbital
angular momentum. Simulations of binaries with spins
parallel to the orbital momentum are certainly not new,
e.g. [11,28,34,38,39,42,61]. Our goal here is to show that
such systems can be simulated with spectral methods, and
that the high accuracies achieved for the nonspinning case
carry over into this more general regime.
The spin of each black hole is S=m2 ¼ 0:437 57�

0:000 01. The determination of this quantity, as well as
other spin measures, is explained in more detail in
Sec. IVB. The evolution consists of 10.6 orbits of inspiral
with an orbital eccentricity of e� 4� 10�5, followed by
the merger and ringdown. We find that this simulation has
accuracy comparable to that of the simulation presented in
[60]. We also present different choices for the constraint
damping parameters in the wave zone; these choices cause
the initial noise (‘‘junk radiation’’) to damp more rapidly,
resulting in a useable, almost noise-free waveform much
earlier in the simulation.
This paper is organized as follows: In Sec. II, we discuss

the construction of our initial data. In Sec. III, we describe
the equations, gauge conditions, and numerical methods
used to solve Einstein’s equations. In Sec. IV, we present
several properties of our simulations, including constraints,
and the spins and masses of the black holes. In Sec. V, we
explain the extraction of gravitational waveforms from the
simulation, and the extrapolation of the waveforms to
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infinity. Finally, in Sec. VI, we discuss outstanding diffi-
culties and directions for future work.

II. INITIAL DATA

The initial data are almost identical to those used in the
simulation of an equal-mass, nonspinning black hole bi-
nary presented in Refs. [9,60]. We use quasiequilibrium
initial data [52,55,62] (see also [48,49]), built using the
conformal thin sandwich formalism [63,64], and employ-
ing the simplifying choices of conformal flatness and
maximal slicing. Quasiequilibrium boundary conditions
are imposed on spherical excision boundaries for each
black hole, with the lapse boundary condition given by
Eq. (33a) of Ref. [55]. The excision spheres are centered
at Cartesian coordinates Ci

1 ¼ ðd=2; 0; 0Þ and Ci
2 ¼

ð�d=2; 0; 0Þ, where we choose the same coordinate dis-
tance d and the same excision radii as in [9].

Within this formalism, the spin of each black hole is
determined by a parameter �r and a conformal Killing
vector �i (tangential to the excision sphere); these enter
into the boundary condition for the shift �i at an excision
surface [52]. We will use the sign convention of Eq. (40) in
Ref. [57], so that positive �r corresponds to corotating
black holes. The same value of �r is chosen at both
excision surfaces, resulting in black holes with equal spins.
In Refs. [9,60],�r was chosen to ensure that the black hole
spins vanish [55]. In this paper, we instead fix �r at some
negative value, resulting in moderately spinning black
holes that counterrotate with the orbital motion.

Two more parameters need to be chosen before initial
data can be constructed: The orbital angular frequency �0

and the radial velocity vr of each black hole. These pa-
rameters are determined by an iterative procedure that

minimizes the orbital eccentricity during the subsequent
evolution of the binary: We start by setting �0 and vr to
their values in the nonspinning evolution of Ref. [65], we
solve the initial value equations with a pseudospectral
elliptic solver [51], and we evolve for about 1–2 orbits
using the techniques described in Sec. III. Analysis of this
short evolution yields an estimate for the orbital eccentric-
ity, and improved parameters �0 and vr that result in a
smaller orbital eccentricity. This procedure is identical to
Ref. [9], except that we include a term quadratic in t for the
function used to fit the radial velocity (ds=dt), to obtain
better fits. We repeat this procedure until the eccentricity of
the black hole binary is reduced to e� 4� 10�5.
Properties of this low-eccentricity initial data set are sum-
marized in the top portion of Table I.
The data in the upper part of Table I are given in units of

MID, the sum of the black hole masses in the initial data.
For any black hole (initial data, during the evolution, the
remnant black hole after merger), we define its mass using
Christodoulou’s formula,

m2 ¼ m2
irr þ

S2

4m2
irr

: (1)

We use the apparent horizon area AAH to define the irre-

ducible mass mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH=ð16�Þ

p
. The nonnegative spin S

of each black hole is computed with the spin diagnostics
described in [57]. Unless noted otherwise, we compute the
spin from an angular momentum surface integral [66,67]
using approximate Killing vectors of the apparent hori-
zons, as described in [57,68] (see also [69,70]). We define
the dimensionless spin by

TABLE I. Summary of the simulation presented in this paper. The first block lists properties of
the initial data, the second block lists properties of the evolution.

Initial Data

Coordinate Separation d=MID ¼ 13:354 418
Radius of Excision Spheres rexc=MID ¼ 0:382 604
Orbital Frequency �0MID ¼ 0:018 786 2
Radial Velocity vr ¼ �7:471 012 3� 10�4

Orbital Frequency of Horizons �rMID ¼ �0:242 296
Black Hole Spins �ID ¼ 0:437 85
ADM Energy MADM=MID ¼ 0:992 351
Total Angular Momentum JADM=M

2
ID ¼ 0:865 01

Initial Proper Separation s0=MID ¼ 16:408 569

Evolution

Initial Orbital Eccentricity e � 4� 10�5

Mass after Relaxation M ¼ ð1:000 273� 0:000 001ÞMID

Spins after Relaxation � ¼ 0:437 57� 0:000 01
Time of Merger (Common AH) tCAH ¼ 2399:38 M
Final Mass Mf ¼ ð0:961 109� 0:000 003ÞM
Final Spin �f ¼ 0:547 81� 0:000 01

TONY CHU, HARALD P. PFEIFFER, AND MARK A. SCHEEL PHYSICAL REVIEW D 80, 124051 (2009)

124051-2



� ¼ S

m2
: (2)

III. EVOLUTIONS

A. Overview

The Einstein evolution equations are solved with the
pseudospectral evolution code described in Ref. [60].
This code evolves a first-order representation [71] of the
generalized harmonic system [72–74] and includes terms
that damp away small constraint violations [71,74,75]. The
computational domain extends from excision boundaries
located just inside each apparent horizon to some large
radius, and is divided into subdomains with simple shapes
(e.g. spherical shells, cubes, and cylinders). No boundary
conditions are needed or imposed at the excision bounda-
ries, because all characteristic fields of the system are
outgoing (into the black hole) there. The boundary con-
ditions on the outer boundary [71,76,77] are designed to
prevent the influx of unphysical constraint violations [78–
84] and undesired incoming gravitational radiation
[85,86], while allowing the outgoing gravitational radia-
tion to pass freely through the boundary. Interdomain
boundary conditions are enforced with a penalty method
[87,88].

The gauge freedom in the generalized harmonic formu-
lation of Einstein’s equations is fixed via a freely specifi-
able gauge source function Ha that satisfies the constraint

0 ¼ Ca � �ab
b þHa; (3)

where �a
bc are the spacetime Christoffel symbols. We

chooseHa differently during the inspiral, plunge, and ring-
down, as described in detail in Secs. III C, III D, and III E.

In order to treat moving holes using a fixed grid, we
employ multiple coordinate frames [89]: The equations are
solved in ‘‘inertial frame’’ that is asymptotically
Minkowski, but the grid is fixed in a ‘‘comoving frame’’
in which the black holes do not move. The motion of the
holes is accounted for by dynamically adjusting the coor-
dinate mapping between the two frames.1 This coordinate
mapping is chosen differently at different stages of the
evolution, as described in Secs. III C, III D, and III E.

The simulations are performed at four different resolu-
tions, N1 to N4. The approximate number of collocation
points for these resolutions is given in Table II.

B. Relaxation of Initial Data

The initial data do not precisely correspond to two black
holes in equilibrium, e.g., because tidal deformations are
not incorporated correctly, and because of the simplifying
choice of conformal flatness. Therefore, early in the evo-

lution the system relaxes and settles down into a new
steady-state configuration. Figure 1 shows the change in
irreducible mass and spin relative to the initial data during
the evolution. During the first�10 M of the evolution,Mirr

increases by about 3 parts in 104 while the spin decreases
by about 1 part in 104. These changes are resolved by all
four numerical resolutions, labeled N1 (lowest) to N4
(highest), and converge with increasing resolution. After
the initial relaxation, for 10 M & t & 2350 M, the mass is
constant to about 1 part in 106, as can be seen from the

TABLE II. Approximate number of collocation points and
CPU usage for the evolutions performed here. The first column
indicates the name of the run. Npts is the approximate number of

collocation points used to cover the entire computational do-
main. The three values for Npts are those for the inspiral, plunge,

and ringdown portions of the simulation, which are described in
Secns. III C, III D, and III E, , respectively. The total run times T
are in units of the total Christodoulou mass M [cf. Equation (1)]
of the binary.

Run Npts CPU-h CPU-h=T

N1 ð643; 653; 653Þ 9930 3.4

N2 ð703; 723; 723Þ 16 195 5.6

N3 ð763; 783; 803Þ 28 017 9.7

N4 ð823; 843; 873Þ 44 954 15.5
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M
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) ir
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FIG. 1 (color online). Irreducible mass (top panel) and spin
(bottom panel) of the black holes during the relaxation of the
initial data to the equilibrium (steady-state) inspiral configura-
tion. Shown are four different numerical resolutions, N1 (lowest)
to N4 (highest), cf. Table II. Up to t� 10 M, both mass and spin
change by a few parts in 104, then they remain approximately
constant (as indicated by the dashed horizontal lines) until
shortly before merger. These steady-state values are used to
define M and �.

1All coordinate quantities (e.g. trajectories, waveform extrac-
tion radii) in this paper are given with respect to the inertial
frame unless noted otherwise.
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convergence of the different resolutions in the upper panel
of Fig. 1. In the last �50 M before merger, the mass
increases slightly (seen as a vertical feature at the right
edge of the plot), an effect we will discuss in more detail in
the context of Fig. 5. The spin is likewise almost constant
for 10 & t=M & 1000, although some noise is visible for
t & 100 M.

We shall take the steady-state masses and spins eval-
uated at t� 200 M as the physical parameters of the binary
being studied. Specifically, all dimensionful quantities will
henceforth be expressed in terms of the mass scale M,
which we define as the total mass after relaxation.

The relaxation of the black holes in the first �10 M of
the evolution is also accompanied by the emission of a
pulse of unphysical junk radiation. This pulse passes
through the computational domain, and leaves through
the outer boundary after one light-crossing time. The
junk radiation contains short wavelength features, which
are not resolved in the wave zone. It turns out that the
constraint damping parameters �0 and �2 (see [71]) influ-
ence how the unresolved junk radiation interacts with the
numerical grid. Large constraint damping parameters en-
hance the conversion of the outgoing junk radiation (at the
truncation error level) into incoming modes. This incoming
radiation then lingers for several light-crossing times
within the computational domain, imprinting noise into
the extracted gravitational radiation. For small constraint
damping parameters, this conversion is greatly suppressed,
and numerical noise due to junk radiation diminishes much
more rapidly. The simulations presented here use �0 ¼
�2 � 0:002 25=M in the wave zone; these values are
smaller by a factor of 100 than those used in [9,60].
(Even smaller constraint damping parameters fail to sup-
press constraint violations. Note that constraint damping
parameters are much larger, �0 ¼ �2 � 3:56=M, in the
vicinity of the black holes.) The waveforms presented
here show consequently reduced contaminations in the
early part of the evolution and will be discussed in
Sec. VI, cf. Fig. 15.

C. Inspiral

During the inspiral, the mapping between the comoving
and inertial frames is chosen in the same way as in
Refs. [9,60] and is denoted byMI: x

0i ! xi, where primed
coordinates denote the comoving frame and unprimed
coordinates denote the inertial frame. Explicitly, this map
is

r ¼
�
aðtÞ þ ð1� aðtÞÞ r

02

R02
0

�
r0; (4)

� ¼ �0; (5)

� ¼ �0 þ bðtÞ; (6)

where ðr; �; �Þ and ðr0; �0; �0Þ denote spherical polar coor-

dinates relative to the center of mass of the system in
inertial and comoving coordinates, respectively. We
choose R0

0 ¼ 467 M. The functions aðtÞ and bðtÞ are de-

termined by a dynamical control system as described in
Ref. [89]. This control system adjusts aðtÞ and bðtÞ so that
the centers of the apparent horizons remain stationary in
the comoving frame.
While each hole is roughly in equilibrium during inspi-

ral, we choose the gauge source function Ha in the same
way as in Refs. [9,60]: A new quantity ~Ha is defined that
has the following two properties: (1) ~Ha transforms like a
tensor, and (2) in inertial coordinates ~Ha ¼ Ha. Ha is
chosen so that the constraint Eq. (3) is satisfied initially,
and ~Ha0 is kept constant in the comoving frame, i.e.,

@t0 ~Ha0 ¼ 0: (7)

D. Plunge

We make two key modifications to our algorithm to
allow evolution through merger. The first is a change in
gauge conditions, as in Ref. [60]. The second is a change in
coordinate mappings that allows the excision boundaries to
more closely track the horizons. We describe both of these
changes here.
Following Ref. [60], at some time t ¼ tg (where g stands

for ‘‘gauge’’) we promote the gauge source function Ha to
an independent dynamical field that satisfies

rcrcHa ¼ Qaðx; t; c abÞ þ �2t
b@bHa: (8)

Here rcrc is the curved space scalar wave operator (i.e.
each component of Ha is evolved as a scalar), c ab is the
spacetime metric, and ta is the timelike unit normal to the
hypersurface. The driving functions Qa are

Qt ¼ fðx; tÞ�1

1� N

N� ; (9)

Qi ¼ gðx; tÞ�3

�i

N2
; (10)

where N and �i are the lapse function and the shift vector,
�, �1, �2, and �3 are constants, and fðx; tÞ and gðx; tÞ are
prescribed functions of the spacetime coordinates.
Equation (8) is evolved in first-order form, as described
in Ref. [60]. Equation (8) requires values ofHa and its time
derivative as initial data; these are chosen so that Ha and
@tHa are continuous at t ¼ tg.

This gauge is identical to the one used in Ref. [60],
except that the parameters and functions that go into
Eq. (8) are chosen slightly differently: We set � ¼ 4, �1 ¼
0:1, �2 ¼ 6:5, �3 ¼ 0:01, and

fðx; tÞ ¼ ð2� e�ðt�tgÞ=	1Þð1� e�ðt�tgÞ2=	2
2Þe�r02=	2

3 ; (11)
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gðx; tÞ ¼ ð1� e�ðt�tgÞ=	4Þð1� e�ðt�tgÞ2=	2
5Þðt� tgÞe�r02=	2

3 ;

(12)

where r0 is the coordinate radius in comoving coordinates,
and the constants are 	1 � 62 M, 	2 � 44:5 M, 	3 �
35 M, 	4 � 4:5 M, and 	5 � 3 M. The function gðx; tÞ
in Qi, which drives the shift towards zero near the black
holes, has a factor ðt� tgÞ that is absent in Ref. [60].

Prescribing gðx; tÞ in this way drives the shift towards
zero more strongly at late times, which for this case is
more effective in preventing gauge singularities from
developing.

The second change we make at t ¼ tg is to control the

shape of each excision boundary so that it matches the
shape of the corresponding apparent horizon. In the co-
moving frame, where the excision boundaries are spherical
by construction, this means adjusting the coordinate map-
ping between the two frames such that the apparent hori-
zons are also spherical. Without this ‘‘shape control,’’ the
horizons become sufficiently distorted with respect to the
excision boundaries that the excision boundaries fail to
remain outflow surfaces and our excision algorithm fails.
For the nonspinning black hole binary in Ref. [60], shape
control was not necessary before merger. To control the
shape of black hole 1, we define the map MAH1: x

0i ! ~xi,

~� ¼ �0; (13)

~� ¼ �0; (14)

~r � r0 � q1ðr0Þ
X‘max

‘¼0

X‘
m¼�‘


1
‘mðtÞY‘mð�0; �0Þ; (15)

where

q1ðr0Þ ¼ e�ðr0�r0
0
ðtÞÞ3=	3

q ; (16)

and ðr0; �0; �0Þ are spherical polar coordinates centered at
the (fixed) comoving-coordinate location of black hole 1.
The function q1ðr0Þ limits the action of the map to the
vicinity of hole 1. The constant 	q is chosen to be

�4:5 M, and r00ðtÞ ¼ r00 þ �1ðt� tgÞ2:1 is a function of

time that approximately follows the radius of the black
hole, with constants r00 � 1:2 M and �1 � 0:000 46 M.

Similarly, we define the map MAH2 for black hole 2.
Then the full map Mm: x

0i ! xi from the comoving coor-
dinates x0i to the inertial coordinates xi is given by

M m :¼ MI �MAH2 �MAH1: (17)

The functions 
1
‘mðtÞ and 
2

‘mðtÞ are determined by dy-

namical control systems as described in Refs. [60,89], so
that the apparent horizons are driven to spheres (up to
spherical harmonic component l ¼ lmax) in comoving co-
ordinates. Note thatMAH1: x

0i ! ~xi is essentially the same
map that we use to control the shape of the merged horizon

during ringdown, and the control system for that map (and
for the map MAH2) is the same as the one described in
Ref. [60] for controlling the shape of the merged horizon.
In addition to the modifications to the gauge conditions

and coordinate map described above, the numerical reso-
lution is also increased slightly around the two black holes
during this more dynamical phase, and the evolution is
continued until time tm, shortly after the formation of a
common horizon. The coordinate trajectories of the appar-
ent horizon centers are shown in Fig. 2 up until tm, at which
point the binary has gone through 10.6 orbits.

E. Ringdown

Our methods for continuing the evolution once a com-
mon horizon has formed are the same as in Ref. [60]. After
a common apparent horizon is found, all variables are
interpolated onto a new computational domain that has
only a single excised region. Then, a new comoving coor-
dinate system (and a corresponding mapping to inertial
coordinates) is chosen so that the new excision boundary
tracks the shape of the apparent horizon in the inertial
frame, and also ensures that the outer boundary behaves
smoothly in time. The gauge conditions are modified as
well: the shift vector is no longer driven to zero, so that the
solution can relax to a time-independent state. This is done
by allowing the gauge function gðx; tÞ that appears in
Eq. (10) to gradually approach zero; the gauge source
function Ha still obeys Eqs. (8)–(10) as during the plunge.

-6 -4 -2 0 2 4 6

x/M

-6

-4

-2

0

2

4

6

y/
M

FIG. 2 (color online). Coordinate trajectories of the centers of
the apparent horizons represented by the blue and red curves, up
until the formation of a common horizon. The closed curves
show the coordinate shapes of the corresponding apparent hori-
zons.
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Specifically, we change the functions fðx; tÞ and gðx; tÞ
from Eqs. (11) and (12) to

fðx; tÞ ¼ ð2� e�ðt�tgÞ=	1Þ � ð1� e�ðt�tgÞ2=	2
2Þe�r002=	2

3 ;

(18)

gðx; tÞ ¼ ð1� e�ðt�tgÞ=	4Þ � ð1� e�ðt�tgÞ2=	2
5Þðt� tgÞ

� e�r002=	2
3 � e�ðt�tmÞ=	2

6 ; (19)

where r00 is the coordinate radius in the new comoving
coordinates, 	6 � 3:1 M, and tm (here m stands for
‘‘merger’’) is the time we transition to the new domain
decomposition.

IV. PROPERTIES OF THE NUMERICAL
SOLUTIONS

A. Constraints

We do not explicitly enforce either the Einstein con-
straints or the secondary constraints that arise from writing
the system in first-order form. Therefore, examining how
well these constraints are satisfied provides a useful con-

sistency check. Figure 3 shows the constraint violations for
the evolutions at different resolutions. The top panel shows
the L2 norm of all the constraint fields of our first-order
generalized harmonic system, normalized by the L2 norm
of the spatial gradients of the dynamical fields [see Eq. (71)
of Ref. [71]]. The bottom panel shows the same quantity,
but without the normalization factor [i.e., just the numera-
tor of Eq. (71) of Ref. [71]]. The L2 norms are taken over
the portion of the computational volume that lies outside
the apparent horizons.
The constraints increase as the black holes approach

each other and become increasingly distorted. At tg ¼
2372:05 M for N4 (tg ¼ 2372:05 M for N3, tg ¼
2376:5 M for N2, tg ¼ 2376:5 M), the gauge conditions

are changed (cf. Sec. III D) and the resolution around the
holes is increased slightly. Because of the change in reso-
lution, the constraints drop by more than an order of
magnitude. Close to merger, the constraints grow larger
again. The transition to a single-hole evolution (cf.
Sec. III E) occurs at tm ¼ 2399:64 M for N4 (tm ¼
2399:66 M for N3, tm ¼ 2401:27 M for N2, and tm ¼
2404:23 M for N1). Shortly after this time, the constraints
drop by about 2 orders of magnitude. This is because the
largest constraint violations occur near and between the
individual apparent horizons, and this region is newly
excised from the computational domain at t ¼ tm.

B. Black hole spins and masses

There are different ways to compute the spin �ðtÞ of a
black hole. The approach we prefer computes the spin from
an angular momentum surface integral [66,67] using ap-
proximate Killing vectors of the apparent horizons, as
described in [57,68] (see also [69,70]). We shall denote
the resulting spin by �AKVðtÞ. Another less sophisticated
method simply uses coordinate rotation vectors, and we
denote the resulting spin by �CoordðtÞ. We also use two
more spin diagnostics that are based on the minimium and
maximum of the instrinsic scalar curvature of the apparent
horizon for a Kerr black hole [57]; we call these�min

SC ðtÞ and
�max
SC ðtÞ. These last two measures of spin are expected to

give reasonable results when the black holes are suffi-
ciently far apart and close to equilibrium, and after the
final black hole has settled down to a time-independent
state. However, they are expected to be less accurate near
merger and at the start of the evolution.
Figure 4 shows these four spin measures for black hole 1

in the N4 evolution during inspiral and plunge. From the
lower left panel we see that �min

SC ðtÞ and �max
SC ðtÞ differ from

�CoordðtÞ and �AKVðtÞ by more than a factor of 2 at t ¼ 0.
This indicates that the initial black holes do not have the
appropriate shape for the Kerr solution; i.e. they are dis-
torted because of the way the initial data is constructed. As
the black holes relax, �min

SC ðtÞ and �max
SC ðtÞ approach the

other two spin measures. The relaxed spin at t� 200 M
is � ¼ 0:437 57� 0:000 01, where the uncertainty is
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FIG. 3 (color online). Constraint violations of runs on different
resolutions. The top panel shows the L2 norm of all constraints,
normalized by the L2 norm of the spatial gradients of all
dynamical fields. The bottom panel shows the same data, but
without the normalization factor. The L2 norms are taken over
the portion of the computational volume that lies outside appar-
ent horizons. Note that the time when we change the gauge
before merger, tg � 2370 M, and the time when we regrid onto a

new single-hole domain after merger, tm � 2400 M, are slightly
different for different resolutions.
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based on the variation in �AKV between t ¼ 100 M and
t ¼ 1000 M. During the inspiral, �AKVðtÞ decreases slowly
and monotonically, dropping by 10�4 at 90 M before
merger, and dropping by 0.01 at the time of merger. Tidal
dissipation should slow down the black holes, so this
decrease is physically sensible. In contrast, the other three
spin diagnostics show a mild increase in spin, suggesting
that they are less reliable. Close to merger, �min

SC ðtÞ and

�max
SC ðtÞ increase dramatically, with �max

SC ðtÞ growing as

large as 0.92. In this regime, the shapes of the individual
black holes are dominated by tidal distortion, and are
therefore useless for measuring the spin.

The Christodoulou mass m of one black hole, as defined
in Eq. (1), depends on the spin. We take �AKVðtÞ as the
preferred spin measure, and use it to compute the total
Christodoulou mass MðtÞ during the inspiral and plunge.
This is shown in the top panel of Fig. 5. The Christodoulou
mass settles down to MðtÞ=M ¼ 1:000 000 after t ¼
150 M (this defines M), and increases to MðtÞ=M ¼
1:001 14 at the time of merger. Most of the increase in
mass occurs very close to merger, as can be seen from the
inset of Fig. 5. Until about 30 M before merger (i.e. t ¼
2370 M), the mass is constant to a few parts in 106. For
comparison, in the bottom panel we also display MirrðtÞ,
the sum of the irreducible masses, which does not depend
on the spin. This quantity settles down to MirrðtÞ=M ¼
0:974 508 at t ¼ 200 M, and increases to MirrðtÞ=M ¼
0:976 68 at t ¼ 2400 M. Again, almost all of this increase
happens shortly before merger. During the inspiral up to

30 M before merger, MirrðtÞ=M increases by only 6�
10�5, but in the last 30 M the increase is �0:002.
The merger results in one highly distorted black hole,

which subsequently rings down into a stationary Kerr black
hole. Figure 6 shows our four spin diagnostics during the
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ringdown. The spin measures �min
SC ðtÞ and �max

SC ðtÞ assume a

Kerr black hole. Just after merger, the horizon is highly
distorted, so these two spin diagnostics are not valid there.
However, as the remnant black hole rings down to Kerr,
�max
SC ðtÞ and �min

SC ðtÞ approach the quasilocal AKV spin to

better than 1 part in 105 (see the inset of Fig. 6). The
quasilocal spin based on coordinate rotation vectors,
�CoordðtÞ, also agrees with the other spin measures to a
similar level at late times. The spin of the final black hole
points in the direction of the initial orbital angular
momentum.

The Christodoulou mass MfðtÞ of the final black hole in

the N4 evolution, again evaluated using �AKVðtÞ, is shown
in the top panel of Fig. 7. The mass settles down to a final
value of Mf=M ¼ 0:961 109� 0:000 003. The bottom

panel shows the irreducible massMirr;fðtÞ of the final black
hole, which settles down to a final value of Mirr;f ¼
0:921 012� 0:000 003. The uncertainties are determined
from the difference between runs N4 and N3, so they
include only numerical truncation error and not any sys-
tematic effects. The uncertainty in the mass is visible in the
insets of Fig. 7.

V. COMPUTATION OF THE WAVEFORM

A. Waveform extraction

Gravitational waves are extracted from the simulation
on spheres of different values of the coordinate radius r,
following the same procedure as in Refs. [60,65,90]. The
Newman-Penrose scalar �4 in terms of spin-weighted
spherical harmonics of weight 2

�4ðt; r; �; �Þ ¼ X
lm

�lm
4 ðt; rÞ�2Ylmð�;�Þ; (20)

where the �lm
4 are expansion coefficients defined by this

equation. Here we also focus on the dominant ðl; mÞ ¼
ð2; 2Þ mode, and split the extracted waveform into real
phase � and real amplitude A, defined by (see e.g. [3,91])

�22
4 ðr; tÞ ¼ Aðr; tÞe�i�ðr;tÞ: (21)

The gravitational wave frequency is given by

! ¼ d�

dt
: (22)

The minus sign in Eq. (21) is chosen so that the phase
increases in time and ! is positive.
The coordinate radius of our outer boundary is located at

Rmax ¼ 427 M at t ¼ 0 and Rmax ¼ 365 M at t >
2500 M; it shrinks slightly during the evolution because
of the mappings [cf. Equation (4)] used in our dual frame
approach. The ðl; mÞ ¼ ð2; 2Þ waveform, extracted at a
single coordinate radius r ¼ 350 M for the N4 evolution,
is shown in Fig. 8. The short pulse at t� 360 M is due to
junk radiation. The magnitude of this pulse is about twice
as large as for nonspinning black holes, cf. Ref. [9,60].

B. Convergence of extracted waveforms

In this section we examine the convergence of the gravi-
tational waveforms extracted at fixed radius, without ex-
trapolation to infinity. This allows us to study the behavior
of our code without the complications of extrapolation.
The extrapolation process and the resulting extrapolated
waveforms are discussed in Sec. VC.
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Figure 9 shows the convergence of the gravitational
wave phase � and amplitude A with numerical resolution.
For this plot, the waveform was extracted at a fixed inertial-
coordinate radius of r ¼ 350 M. Each line in the top panel
shows the absolute difference between � computed at
some particular resolution and � computed from our high-
est resolution N4 run. The curves in the bottom panel
similarly show the relative amplitude differences. When
subtracting results at different resolutions, no time or phase
adjustment has been performed. The noise at early times is
due to junk radiation generated near t ¼ 0. Most of this
junk radiation leaves through the outer boundary after one
crossing time. The plots show that the phase difference
accumulated over 10.6 orbits plus merger and ringdown—
in total 31 gravitational wave cycles—is less than 0.1
radians, and the relative amplitude differences are less
than 0.017. These numbers can be taken as an estimate of
the numerical truncation error of our N3 run. Because of
the rapid convergence of the code, we expect that the errors
of the N4 run are significantly smaller.

Figure 10 is the same as Fig. 9 after the N1, N2, N3
waveforms have been time shifted and phase shifted to best
match the waveform of the N4 evolution. This best match
is determined by a simple least-squares procedure: we
minimize the function

X
i

ðA1ðtiÞei�1ðtiÞ � A2ðti þ t0Þeið�2ðtiþt0Þþ�0ÞÞ2; (23)

by varying t0 and �0. Here A1, �1, A2, and �2 are the
amplitudes and phases of the two waveforms being

matched, and the sum goes over all times ti at which
waveform 1 is sampled. This type of comparison is relevant
for analysis of data from gravitational wave detectors:
when comparing experimental data with numerical detec-
tion templates, the template will be shifted in both time and
phase to best match the data. For this type of comparison,
Fig. 10 shows that the numerical truncation error of our N3
run is less than 0.01 radians in phase and 0.1% in amplitude
for t > 550 M. At earlier times, the errors are somewhat
larger and are dominated by residual junk radiation.

C. Extrapolation of waveforms to infinity

Gravitational wave detectors measure waveforms as
seen by an observer effectively infinitely far from the
source. Since our numerical simulations cover only a finite
spacetime volume, after extracting waveforms at multiple
finite radii, we extrapolate these waveforms to infinite
radius using the procedure described in [60] (see also
[90] for more details). This is intended to reduce near-field
effects as well as gauge effects that can be caused by the
time dependence of the lapse function or the nonoptimal
choice of tetrad for computing �4.
The extrapolation of the extracted waveforms involves

first computing each extracted waveform as a function of
retarded time u ¼ ts � r� and extraction radius rareal (see
[60] for precise definitions). Then at each value of u, the
phase and amplitude are fitted to polynomials in 1=rareal:

�ðu; rarealÞ ¼ �ð0ÞðuÞ þ
Xn
k¼1

�ðkÞðuÞ
rkareal

; (24)

0.0001

0.001

0.01

0.1

1
∆φ

 (
ra

di
an

s)

0 500 1000 1500 2000 2500 3000
t/M

0.0001

0.001

0.01

0.1

1

|∆
A

|/A

N3-N4

N2-N4

N1-N4

N1-N4

N3-N4

N2-N4

FIG. 9 (color online). Convergence of gravitational waveforms
with numerical resolution. Shown are phase and amplitude
differences between numerical waveforms �22

4 computed using

different numerical resolutions. All waveforms are extracted at
r ¼ 350 M, and no time shifting or phase shifting is done to
align waveforms.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|∆
φ|

 (
ra

di
an

s)

0 500 1000 1500 2000 2500 3000
t/M

10
-6

10
-4

10
-2

|∆
A

|/A

N1-N4

N2-N4

N3-N4

N1-N4

N2-N4

N3-N4

FIG. 10 (color online). Convergence of gravitational wave-
forms with numerical resolution. The same as Fig. 9 except all
other waveforms are time- shifted and phase shifted to best
match the waveform of the N4 run.

HIGH ACCURACY SIMULATIONS OF BLACK HOLE . . . PHYSICAL REVIEW D 80, 124051 (2009)

124051-9



rarealAðu; rarealÞ ¼ Að0ÞðuÞ þ
Xn
k¼1

AðkÞðuÞ
rkareal

: (25)

The phase and amplitude of the desired asymptotic wave-
form are thus given by the leading-order term of the
corresponding polynomial, as a function of retarded time:

�ðuÞ ¼ �ð0ÞðuÞ; (26)

rarealAðuÞ ¼ Að0ÞðuÞ: (27)

Figure 11 shows phase and amplitude differences be-
tween extrapolated waveforms that are computed using
different values of polynomial order n in Eqs. (24) and
(25). The extrapolation is based on waveforms extracted at
20 different radii between 75 M and 350 M. As in [60], our
preferred extrapolation order is n ¼ 3, which gives a phase
error of less than 0.004 radians and a relative amplitude
error of less than 0.006 during most of the inspiral, and a
phase error of less than 0.01 radians and a relative ampli-
tude error of 0.006 in the ringdown.

Figure 12 is the same as the top panel of Fig. 11, except
zoomed to late times. During merger and ringdown, the
extrapolation procedure does not converge with increasing
extrapolation order n: the phase differences are slightly
larger for larger n. This was also seen for the extrapolated
waveforms of our equal-mass nonspinning black hole bi-
nary [60], and is possibly due to gauge effects that do not
obey the fitting formulas, Eqs. (24) and (25).

Figure 13 shows the phase and amplitude differences
between our preferred extrapolated waveform using n ¼ 3
and the waveform extrapolated at coordinate radius r ¼
350 M, both for the N4 run. The extrapolated waveform
has been shifted in time and phase so as to best match the
n ¼ 3 extrapolated waveform, using the least-squares fit of
Eq. (23). The phase difference between the extrapolated
waveform and the waveform extracted at r ¼ 350 M be-
comes as large as 0.13 radians, and the amplitude differ-
ence is on the order of 1%.
Figure 14 presents the final waveform after extrapolation

to infinite radius. There are 22 gravitational wave cycles
before the maximum of j�4j, and 9 gravitational wave
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cycles during ringdown, over which the amplitude of j�4j
drops by 4 orders of magnitude.

VI. DISCUSSION

We have presented the first spectral computation of a
binary black hole inspiral, merger, and ringdown with
spinning black holes, and find that we can achieve similar
accuracy for the final mass, final spin, and gravitational
waveforms as in the nonspinning case [60]. For initial spins
of � ¼ 0:437 57� 0:000 01, the mass and spin of the final
hole are Mf=M ¼ 0:961 109� 0:000 003 and �f ¼
0:547 81� 0:000 01. The uncertainties are based on com-
paring runs at our highest two resolutions, and do not take
into account systematic errors (e.g. the presence of a finite
outer boundary or gauge effects). Note that for the non-
spinning case [60], we found that changing the outer
boundary location produced a smaller effect on the final
mass and spin than changing the resolution, and that the
outer boundary for the evolutions presented here is more
distant (at late times, when most of the radiation passes
through the boundary) than it was in Ref. [60]. The un-
certainties in the gravitational waveforms are & 0:01 radi-
ans in phase and & 0:6 percent in amplitude (when
waveforms are time and phase shifted). These uncertainties
are based on comparisons between our two highest reso-

lution runs and comparisons between different methods of
extrapolating waveforms to infinite extraction radius.
The methods used here to simulate plunge and ringdown

are similar to those in Ref. [60]. The primary disadvantage
of these methods is that they require fine tuning during the
plunge (Sec. III D). For example, the function gðx; tÞ de-
fined in Eq. (12) must be chosen carefully or else the
simulation fails shortly (a few M) before a common hori-
zon forms. There are at least two reasons that fine tuning is
currently necessary. First, the gauge conditions must be
chosen so that no coordinate singularities occur before
merger. Second, the excision boundaries do not coincide
with the apparent horizons, but instead they lie somewhat
inside the horizons. If the excision boundaries exactly
followed the horizons, then the characteristic fields of the
system would be guaranteed to be outflowing (into the
holes) at the excision boundaries, so that no boundary
condition is required there. But for excision boundaries
inside the horizons, the outflow condition depends on the
location of the excision boundary, its motion with respect
to the horizon, and the gauge. Indeed, the most common
mode of failure for improperly-tuned gauge parameters is
that the outflow condition fails at some point on one of the
excision boundaries. We have been working on improved
gauge conditions [92] and on improved algorithms for
allowing the excision boundary to more closely track the
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apparent horizon. These and other improvements greatly
reduce the amount of necessary fine tuning and allow
mergers in generic configurations, and will be described
in detail elsewhere [93].

Another quite important improvement lies in the choice
of constraint damping parameters. To illustrate this effect,
Fig. 15 compares the gravitational wave phase extrapola-
tion for the simulation presented here with the similar plot
for an earlier run [9] with different constraint damping
parameters. As can be seen in Fig. 15, the improved con-
straint damping parameters result in significantly reduced
noise. For the earlier simulation, the waveform was unus-
able for t� r� < 1000 M, and was still noticeably noisy at
1000 M< t� r� < 2000 M. For the new simulation, the
smaller constraint damping parameters result in clean
waveforms as early as t� r� � 250 M, despite the obser-
vation that the spinning black holes result in a pulse of junk
radiation of about twice the amplitude of the earlier run.
The new simulation also shows smaller extrapolation er-
rors, presumably because the new simulation uses larger
extraction radii (up to r ¼ 350 M, whereas Ref. [9] uses a
largest extraction radius of r ¼ 240 M).

We employ four techniques to measure black hole spin:
Two of these are based on the surface integral for quasilo-
cal linear momentum, and utilize either simple coordinate
rotation vectors �CoordðtÞ or approximate Killing vectors,
�AKVðtÞ; the other two are based on the shape of the
apparent horizon, and infer the spin from the extrema of
the scalar curvature [�min

SC ðtÞ, �max
SC ðtÞ]. The four spin mea-

sures agree to better than 1% during the inspiral. The AKV

spin �AKVðtÞ shows the least variations during the simula-
tion, and is the only spin diagnostic that results in a
monotonically decreasing spin during the inspiral, as ex-
pected from the effects of tidal friction. These results may
be compared with those that can be found from tidal multi-
pole moments (e.g. [94–96]), which we defer to future
work. The other three spin measures [�coordðtÞ, �max

SC ðtÞ,
�min
SC ðtÞ] show various undesired and physically unreason-

able behaviors: All three result in increasing spin during
the inspiral, inconsistent with tidal friction (cf. Fig. 4).
�min
SC ðtÞ and �max

SC ðtÞ, furthermore show very strong varia-

tions during the initial transients, just before merger, and
just after the common horizon forms. This is expected, as
in those regions of the evolution, the black holes can not be
approximated as isolated Kerr black holes. The behavior of
�min
SC ðtÞ and �max

SC ðtÞ contain information about the defor-

mation of the black holes. The final state of the simulation
is expected to be a single, stationary Kerr black hole, for
which �min

SC ðtÞ and �max
SC ðtÞ should result in the correct spin.

Indeed, all four spin diagnostics agree at very late time to
five significant digits (cf. Fig. 6). The accuracy of our
simulation places new constraints on analytic formulas
that predict the final black hole spin from the initial spins
and masses of a black hole binary. Table III lists some of
these predictions.
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TABLE III. Predictions of final black hole spin and mass from
analytical formulas in the literature, applied to the simulation
considered here. References [97,98] do not predict the final
mass, but instead assume zero mass loss.

Prediction Formula �f Mf=M

Kesden [99] 0.521 153 0.970 39

Buonanno, Kidder, and Lehner [97] 0.505 148 1.0

Tichy and& Marronetti [100] 0.548 602 0.962 877

Boyle and Kesden [101] 0.547 562 0.964 034

Barausse and Rezzolla [98] 0.546 787 1.0

Numerical Result (This Paper) 0.547 81 0.961 109
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Brügmann, Phys. Rev. D 77, 044020 (2008).

[9] M. Boyle, D.A. Brown, L. E. Kidder, A.H. Mroué, H. P.
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Pan, H. P. Pfeiffer, and M.A. Scheel, Phys. Rev. D 78,
104020 (2008).
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Brügmann, Phys. Rev. D 78, 044039 (2008).

[18] T. Damour and A. Nagar, Phys. Rev. D 79, 081503
(2009).

[19] A. Buonanno, Y. Pan, H. P. Pfeiffer, M.A. Scheel, L. T.
Buchman, and L. E. Kidder, Phys. Rev. D 79, 124028
(2009).

[20] M. Campanelli, Classical Quantum Gravity 22, S387
(2005).

[21] F. Herrmann, I. Hinder, D. Shoemaker, and P. Laguna,
Classical Quantum Gravity 24, S33 (2007).

[22] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. R. van
Meter, and M.C. Miller, Astrophys. J. 653, L93 (2006).

[23] J. A. Gonzalez, U. Sperhake, B. Brügmann, M. Hannam,
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