
Inverse problem: Reconstruction of the modified gravity action in the Palatini formalism
by supernova type Ia data

Shant Baghram and Sohrab Rahvar

Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
(Received 23 November 2009; published 30 December 2009)

We introduce in fðRÞ gravity-Palatini formalism the method of the inverse problem to extract the action

from the expansion history of the Universe. First, we use an ansatz for the scale factor and apply the

inverse method to derive an appropriate action for the gravity. In the second step we use the supernova

type Ia data set from the Union sample and obtain a smoothed function for the Hubble parameter up to the

redshift 1.7. We apply the smoothed Hubble parameter in the inverse approach and reconstruct the

corresponding action in fðRÞ gravity. In the next step we investigate the viability of reconstruction

method, doing a Monte Carlo simulation we generate synthetic SNIa data with the quality of the Union

sample and show that roughly more than 1500 SNIa data is essential to reconstruct correct action. Finally,

with enough SNIa data, we propose two diagnosis in order to distinguish between the �CDM model and

an alternative theory for the acceleration of the Universe.
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I. INTRODUCTION

A combination of SNIaþ CMB data shows that the
Universe is in the positive acceleration phase [1,2]. This
result is in contradiction with our expectation from the
behavior of the ordinary matter. The simplest solution is
assuming a cosmological constant in the Einstein field
equation as a constant of integration [3]. While this simple
modification explains the observational data [4], however
the cosmological constant suffers from the fine-tuning and
coincidence problems [5]. One of the solutions is introduc-
ing a scalar field that provides a time-dependent negative
equation of state [6].

The other possibility is the modification of the law of
gravity in such a way that it behaves as standard general
relativity in strong gravitational regimes and repulses par-
ticles in the low density cosmological scales [7]. The
modified gravity models can be examined with three cat-
egories of observations: (a) cosmological dynamics [8],
(b) local gravity [9], and (c) the evolution of large scale
structure [10].

In this work we use SNIa data to reconstruct an appro-
priate fðRÞ gravity model in Palatini formalism [11] with
the inverse method. The method is the extension of the
work introduced for the metric formalism by Rahvar and
Sobouti in [12]. The inverse method also is introduced in
the work by Capozziello et al. [13] in the metric formal-
ism. In this method we need to know the dynamics of
Hubble parameter from the observational data. Many
methods for the extraction of the Hubble parameter have
been introduced in the literature [14]. Here, we use the
smoothing method suggested by Shafieloo et al. [15] and
apply it to the SNIa Union sample [16]. We useHðzÞ in the
inverse method algorithm to reconstruct the corresponding
action. We test the reliability of this method by doing a
Monte Carlo simulation and generating the synthetic SNIa

data according to an action and comparing the recon-
structed action with the original one. Finally, we introduce
two diagnoses for distinguishing the standard �CMD
model from the alternative models.
The structure of this article is as follows: In Sec. II, we

introduce fðRÞ modified gravity in Palatini formalism,
derive the equation of motion, and obtain the dependence
of Hubble parameter to the Ricci scalar and scale factor. In
Sec. III, we introduce the method of the inverse problem in
Palatini fðRÞ gravity. In Sec. IV, we use the method to the
real data of SNIa, smoothing the supernova data we extract
the Hubble parameter in terms of redshift and apply it to
extract the action [15]. Also, in order to show the level of
confidence of our results, we simulate 100 realization of
SNIa data to extract the Hubble parameter and compare it
with that obtained directly from fitting to the model. In the
Sec. V, we examine the viability of the reconstruction
method and dependence of the results to the number of
SNIa data. In Sec. VI, we propose two diagnoses as a probe
to distinguish between the �CDM and the alternative
models. Section VII concludes the paper.

II. MODIFIED GRAVITY IN PALATINI
FORMALISM

For fðRÞ gravity, there are two main approaches to
obtain the field equation. The first one is the so-called
metric formalism, which is obtained by the variation of
the action with respect to the metric. In this case the
derived field equation is a fourth order nonlinear differen-
tial equation. In the second approach, which is called
Palatini formalism, the connection and metric are consid-
ered as independent fields, and the variation of action with
respect to these fields results in a set of second order
differential equations. The Palatini formalism is a plausible
candidate to be the effective classical theory of gravity
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from a more fundamental theory of loop quantum gravity
[17].

Let us take a general form of the action in Palatini
formalism as

S½f; g; �̂;�m� ¼ � 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Sm½g��;�m�;
(1)

where � ¼ 8�G and Sm½g��;�m� is the action of matter

dependent on the metric g�� and the matter field �m. R ¼
Rðg; �̂Þ ¼ g��R��ð�̂Þ is the generalized Ricci scalar, and

R�� is the Ricci tensor made of affine connection. Varying

action with respect to the metric results in

f0ðRÞR��ð�̂Þ � 1
2fðRÞg�� ¼ �T��; (2)

where prime is the derivative with respect to the Ricci
scalar, and T�� is the energy-momentum tensor

T�� ¼ �2ffiffiffiffiffiffiffi�g
p �Sm

�g�� : (3)

On the other hand, varying the action with respect to the
connection results in

r̂ �½f0ðRÞ ffiffiffiffiffiffiffi�g
p

g��� ¼ 0; (4)

where r̂ is the covariant derivative defined from parallel
transformation and is given by the affine connection. From
Eq. (4), we define a new metric, h�� ¼ f0ðRÞg�� confor-

mally related to the physical metric where the connection
is the Christoffel symbol of this new metric.

We apply the flat Friedmann- Robertson-Walker (FRW)
metric (namely, K ¼ 0) for the Universe

ds2 ¼ �dt2 þ aðtÞ2�ijdx
idxj; (5)

and assume that the Universe is filled with a perfect
fluid with the energy-momentum tensor of T�

� ¼
diagð��; p; p; pÞ. Using the metric and energy-
momentum tensor in Eq. (2), we obtain the generalized
FRW equations. It should be noted that the conservation
law of energy-momentum tensor, T��

;� ¼ 0 is satisfied

according to the covariant derivative with respect to the
metric, and this definition guarantees the motion of parti-
cles on geodesic [18]. The combination of G00 and Gi

i

results in [19]

�
H þ 1

2

_f0

f0

�
2 ¼ 1

6

�ð�þ 3pÞ
f0

þ 1

6

f

f0
: (6)

Taking the trace of Eq. (2) results in

Rf0ðRÞ � 2fðRÞ ¼ �T; (7)

where T ¼ g��T�� ¼ ��þ 3p. The time derivative of

this equation results in _R in terms of the time derivative
of density and pressure. Using the equation of state of
cosmic fluid p ¼ pð�Þ and the continuity equation, the

time derivative of Ricci is obtained as

_R ¼ 3�H
ð1� 3dp=d�Þð�þ pÞ

Rf00 � f0ðRÞ : (8)

To obtain generalized first FRW equation we start with
Eq. (7) and obtain the density of matter in terms of Ricci
scalar as

�� ¼ 2f� Rf0

1� 3!
; (9)

where w ¼ p=�. We substitute Eq. (9) in (6), and use
Eq. (8) to change the time derivative to d=dR. We rewrite
Eq. (6) as follows:

H2 ¼ 1

6ð1� 3!Þf0
3ð1þ!Þf� ð1þ 3!ÞRf0
½1þ 3

2 ð1þ!Þ f00ð2f�Rf0Þ
f0ðRf00�f0Þ �2

: (10)

On the other hand, using Eq. (7) and the continuity equa-
tion, the scale factor can be obtained in terms of Ricci
scalar

a ¼
�

1

��0ð1� 3!Þ ð2f� Rf0Þ
��ð1=ð3ð1þ!ÞÞÞ

; (11)

where �0 is the energy density and a0 is the scale factor (set
to one, i.e. a0 ¼ 1) at the present time. Now for a generic
modified action, omitting the Ricci scalar in favor of the
scale factor between Eqs. (10) and (11) we can obtain the
dynamics of the Universe (i.e. H ¼ HðaÞ).
For the simple case of a matter dominant epoch ! ¼ 0,

which is our concern, these equations reduce to

H2 ¼ 1

6f0
3f� Rf0

½1þ 3
2
f00ð2f�Rf0Þ
f0ðRf00�f0Þ�2

; (12)

a ¼
�

1

��0

ð2f� Rf0Þ
��ð1=3Þ

: (13)

III. INVERSE METHOD IN PALATINI
FORMALISM

In this section we introduce the inverse method to extract
fðRÞ action in Palatini formalism from the dynamics of the
Universe. This method has been studied in the work by
Rahvar and Sobuti in the metric formalism [12], and we
extend it to the Palatini formalism.
Replacing f with the first derivatives of action from the

Eq. (7),

fðRÞ ¼ 1
2½RF� �ð3p� �Þ�; (14)

Eq. (6) can be written as follows:

�
H þ 1

2

_F

F

�
2 ¼ R

12
þ �

4F
ð�þ pÞ; (15)

where F is defined as F ¼ df=dR. It should be noted that
the Ricci tensor in the Palatini formalism is given in terms
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of the conformal metric of h�� ¼ FðRÞg��. Substituting

the new metric in the definition of Ricci scalar results in

R�� ¼ R��ðgÞ þ 3

2

r�Fr�F

F2
�r�r�F

F

� 1

2
g��

r�r�F

F
; (16)

where R��ðgÞ is the Ricci tensor defined in terms of the

metric g��. By taking a trace from Eq. (16) we obtain the

relation between the Ricci scalar in Palatini and metric as

R ¼ RðgÞ þ 3

2

r�Fr�F

F2
� 3r�r�F

F
: (17)

On the other hand, using the FRWmetric, RðgÞ as the Ricci
scalar in the metric formalism is given by the Hubble
parameter as

RðgÞ ¼ 6 _H þ 12H2; (18)

where for simplicity in the calculation we rewrite this
equation by changing the time derivative to the redshift
derivative. In what follows we use prime for the derivative
with respect to the redshift.

RðgÞ ¼ �6HH0ð1þ zÞ þ 12H2: (19)

For the Ricci scalar in Palatini formalism from Eq. (17),
we obtain

R ¼ �6HH0ð1þ zÞ þ 12H2 � 3

2
H2ð1þ zÞ2

�
F0

F

�
2

þ 3ð1þ zÞ2HH0 F
0

F
� 6H2ð1þ zÞF

0

F

þ 3H2ð1þ zÞ2 F
00

F
: (20)

Substituting this equation in (15) results in a differential
equation for the evolution of F as a function of redshift

F00 � 3

2

F02

F
þ F0

�
H0

H
þ 2

1þ z

�
� 2H0

Hð1þ zÞF

þ �

H2ð1þ zÞ2 ð�þ pÞ ¼ 0: (21)

In the matter dominant epoch we rewrite this equation by
putting p ¼ 0 and � ¼ �0ð1þ zÞ3, where we can replace
��0 with 3H2

0�m. It should be noted that the definition of

the �m is different from that in the standard FRW
equations.

For a given dynamics of the Universe (i.e. aðtÞ), we can
extract the Hubble parameter in terms of redshift, and
applying it in Eq. (21) will provide F in terms of redshift.
On the other side, we can calculate the Ricci scalar from
Eq. (20) in terms of redshift. Eliminate z in favor of Ricci
scalar results in FðRÞ. Finally, by the numerical integration
of this function we can obtain the modified gravity action
fðRÞ.

In the rest of this section to test this algorithm we use an
ansatz for the scale factor and try to extract the correspond-
ing action from a given dynamic. We apply the following
ansatz for the scale factor proposed in [12]:

að�Þ ¼ 1

1þ p
ð�Þð2=3Þ½1þ p�ð2�=3Þ� (22)

in which � ¼ tH0 is a dimensionless time parameter de-
fined in the interval of 0 to 1 and H0 is the Hubble
parameter at the present time. This proposed dynamic
has two free parameters of � and p. We obtain the corre-
sponding Hubble parameter from this scale factor and
consequently the distance modulus and compare the model

z

ξ
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1/R Modified gravity

Reconstructed from Ansatz

FIG. 1 (color online). Deviation parameter 	 ¼ FðRÞ � 1 ob-
tained from the ansatz scale factor (solid line) is compared with
	 parameter of 1=R modified gravity (dashed line) in terms of
redshift. For the redshifts z > 1, the fðRÞ gravity model converge
to the Einstein-Hilbert action.
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FIG. 2 (color online). The difference of modified gravity ac-
tion from the Einstein-Hilbert action is plotted versus Ricci

scalar (solid line) and compared with the action of fðRÞ ¼ R�
�4

R (dashed line). The Ricci scalar is normalized to its value at the

present time, Rp.
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with the observed SNIa data. The best value for the pa-
rameters of model has been obtained roughly as p ¼ 1

3 and

� ¼ 2 in [12]. Substituting the scale factor in Eq. (21), we
obtain the deviation parameter of 	 � F� 1 from general
relativity as a function of redshift, which is plotted in
Fig. 1.

In order to reconstruct the action in terms of Ricci
action, we obtain the Ricci scalar in terms of redshift and
finally by eliminating redshift between F and the Ricci
scalar, we obtain F ¼ FðRÞ. Integrating this function pro-
vides the action in terms of Ricci scalar. We also plot the 	
parameter of 1=Rmodified gravity for comparison with the
reconstructed modified gravity in Fig. 1 and R� fðRÞ as a
function of R in Fig. 2. Comparison of the extra term with
the Einstein-Hilbert action roughly resembles the �4=R
function with �2 � 10�1Rp, where Rp is the present value

of Ricci scalar.

IV. RECONSTRUCTION OF THE DYNAMIC
OF THE UNIVERSE BY SNIA DATA

In Sec. III, we showed that it is possible to reconstruct
the modified gravity action by knowing the dynamics of
the Universe. In this section, we use SNIa cosmological
data to obtain the Hubble parameter and consequently
reconstruct the action of modified gravity.

The dynamics of the Hubble parameter, HðzÞ, can be
obtained if the distance modulus of supernovas data as a
function of redshift is known. In a FRW-flat universe, the
Hubble parameter is related to the distance modulus of
SNIa as follows:

HðzÞ ¼
�
d

dz

�
dLðzÞ
1þ z

���1
: (23)

The main challenging point in this procedure is the limited
number of observed SNIa, which impose an uncertainty in
calculating the continues function for HðzÞ. The overall
number of supernovas which has been detected is in the
order of 300–400. We use the latest supernova data of the
Union sample to extract the Hubble parameter [16]. To
make a continues Hubble parameter, we follow the proce-
dure known as reconstruction method, proposed by
Shafieloo et al. in [15]. In this algorithm, a nonparametric
function is used for smoothing the distance modulus of
supernova data over the redshift. Here, we choose a guess
model resemble to the observed distance modulus of the
supernova data. In the next step we subtract the distance
modulus of the observed data from the guess model using a
Gaussian function for smoothing the observed data as
follows:

�dðzÞ ¼ NðzÞX
i

½�gðzÞ ��obsðziÞ� exp�ðz� ziÞ2
2�2

; (24)

where

NðzÞ�1 ¼ X
i

exp

��ðz� ziÞ2
2�2

�
; (25)

where zi represents the redshift of each SNIa in the Union
sample. The sum term is considered for all 307 Union
sample data, �obsðziÞ is the observed distance modulus
and �gðzÞ is a continues guess model for the distance
modulus. NðzÞ is a normalization factor, and� is a suitable
redshift window function. �dðzÞ is a smoothed continues
function for the residual of luminosity distance in terms of
redshift. Now the corrected distance modulus is added to
the guess model to generate the new smooth function for
the distance modulus:

�sðzÞ ¼ �gðzÞ þ�dðzÞ: (26)

We repeat this procedure using �sðzÞ as the new guess
function. It can be shown that after a finite time of this
irritation, 
2 of the smoothed function with respect to
observed data will converge to a fixed value. It means
that we will find a continues distance modulus function
with the best fit to the real data. It is shown in [15] that the
result of the best continues function is independent of the
choice of the first guess model. Having the smoothed
luminosity distance we use Eq. (23) to obtain the Hubble
parameter HðzÞ. Another point is that the results will
clearly depend upon the value of � in Eq. (24). A large
value of � produces a smooth result, but the accuracy of
reconstruction worsens, while small value � gives a more
accurate, but noisy result. Considering the frequency of

SNIa data observed in the Union sample, we choose � ¼ffiffiffiffiffi
M

p ð1þ zÞ�0 for the window function, where M is the

number of irritation need to converge 
2 and �0 ¼ N�1=3

where N is the number of SNIa [15].
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FIG. 3 (color online). The uncertainty in EðzÞ ¼ H
H0

from the
smoothing method, resulting from the Monte Carlo simulation.
We generate 100 realizations for the distance modulus and obtain
the Hubble parameter and all these continues functions reside
inside the boundaries of the figure.

SHANT BAGHRAM AND SOHRAB RAHVAR PHYSICAL REVIEW D 80, 124049 (2009)

124049-4



In what follows we find the uncertainty inHðzÞ from this
method to use it for reconstructing the appropriate action in
the Palatini formalism. For this purpose we do a
Monte Carlo simulation, generating 100 realization of
SNIa data and using the same distribution of SNIa in terms
of redshift reported by Kowalski et al. [16]. Also, we use
the same error bars of distance modulus in the observed
data. In order to simulate the synthetic distance modulus of
SNIa, we assume a dark energy model for the Universe
with a constant equation of state of ! ¼ �0:75. Choosing
�CDM as the guess model for these data, we obtain the
Hubble parameter EðzÞ ¼ HðzÞ=H0 for 100 realization of
supernova data. Figure 3 shows the boundaries for EðzÞ,
resulted from 100 realization of supernova data.

Now we can apply this uncertainty to HðzÞ, resulting
from the smoothing procedure on the real Union sample
[20]. We plot the Hubble parameter from the Union sample
as shown in Fig. 4 with a margin represents the uncertainty
that is obtained form the Monte-Carlo simulation. Using
the method described in Sec. III, we extract the corre-
sponding modified gravity in Palatini formalism. The pa-
rameter of 	 ¼ dfðRÞ=dR� 1 in terms of Ricci scaler
shows a small deviation from the Einstein-Hilbert action
as shown in Fig. 5 with the uncertainty of this parameter.
Here, the deviation from the Einstein-Hilbert action is in
the order of 	� 10�3. We ask the reliability of this result
in terms of the number of SNIa data. In the next section we
will discuss this issue.

V. VIABILITY OF SMOOTHING METHOD AND
THE NUMBER OF SNIA DATA

In this section we examine the viability of smoothing of
the Hubble parameter. The results will be applied to the
modified gravity models in the next section.
According to the methodology of the smoothing proce-

dure, the Hubble parameter depends on the quantity and
quality of the SNIa data. Similar to the simulation in the
previous section we generate 100 realization of 307 SNIa
data, using the redshift and the uncertainty of the distance
modulus in the Union sample within the framework of the
�CDM model. We generate continues Hubble parameter
with the margin of uncertainty which is shown in Fig. 6. On
the other hand, we obtain the Hubble parameter in the
�CDM model through fitting the observed distance modu-
lus of the data to the model as shown in Fig. 6. The margin
represents 1� level of confidence for the Hubble parame-
ter. Comparing the uncertainties from these two methods

z
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3.5
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4.5

5

FIG. 4 (color online). The dashed line is the reconstructed
Hubble parameter from the SNIa Union sample data. The bold
lines are the confidence level of the Hubble parameter.
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FIG. 5 (color online). The bold line shows the reconstructed
modified gravity 	 � F� 1 parameter versus the Ricci scalar
normalized to its present value. The dashed lines show that the
confidence level of the 	 parameter corresponds to the uncer-
tainty of the Hubble parameter resulting from the smoothing
procedure.
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3.5 CDM model - 307-data fit

CDM model - 1535-data fit

Λ
Λ
Reconstruction- 307 data
Reconstruction- 1535 data

FIG. 6 (color online). The dashed lines and dotted-dashed line
are the reconstructed Hubble parameters from 307 and 1535
SNIa data, respectively. The solid lines are the 1-� confidence
level of the Hubble parameter from data fitting to 307 and 1535
data in the �CDM model.
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shows that the smoothing method is not reliable with 307
number of supernova data.

We increase the number of SNIa data with the quality of
Union sample to have the same uncertainty in the Hubble
parameter from the two methods. For N > 1500 as shown
in Fig. 6 we can rely on the smoothing method. We can
repeat this simulation with precise data than the Union
sample to achieve this goal with a smaller number of
supernova data.

VI. DISTINGUISHING BETWEEN THE MODIFIED
GRAVITY MODELS AND �CDM

In this section we present two diagnosis in order to
distinguish between �CDM from an alternative model.
The first method is (a) comparison of the Hubble parame-
ters and the second method is (b) the � function. Both
diagnoses are applicable by using the inverse method.

A. Comparison of the Hubble parameters

In the previous section we have seen the smoothing
method generate a continues Hubble parameter from the
observed data. If the dynamics of the Universe follow
rather than the �CDM model, can we distinguish the real
model of the Universe, knowing the Hubble parameter
from the data?

We can compare the reconstructed Hubble parameter
directly from the observed data with that obtained from
fitting data to the �CDM model. We subtract the two
Hubble parameters and compare it with 1� deviation of
the smoothed Hubble parameter. As we simulated in the
previous section using N > 1500 is sufficient to reliable on
the uncertainty of the Hubble parameter.

We use the fðRÞ ¼ R� �4

R action in the Palatini formal-

ism and generate 1535 supernova data with the quality of
the Union sample. Using the smoothing method we obtain
the Hubble parameter. On the other hand we fit the gen-
erated data with the �CDM model. Figure 7 compares the
two Hubble parameters and shows that for the redshifts
with z > 1, the two models are distinguishable.

B. The method of the � function

We define a new criterion to distinguish the�CDM from
an alternative model as follows:

� � 2EðzÞE0ðzÞ
3ð1þ zÞ2 ; (27)

where prime is differential with respect to the redshift. For
the case of F ¼ 1 in a �CDM universe, from Eq. (21), �
reduces to � ¼ �0

m. If we have the smoothed normalized
Hubble parameter from the observed data, EðzÞ, then� can
be obtained. Any deviation from a constant value for this
function is a diagnosis for the �CDM universe. This
method is applicable both for the dark energy and modified
gravity models. Let us take !ðzÞ as the equation of state of
dark energy, we can use FRW equations to obtain � as
follows:

� ¼ �0
m þ ð1��0

mÞ 1þ!ðzÞ
ð1þ zÞ3 ; (28)

where for the constant value of the equation of state,
!ðzÞ ¼ �1, this equation reduces to � ¼ �0

m.
In order to show the deviation from the Einstein-Hilbert

action, we can calculate���ð0Þ
m as a function of redshift.

Here, we know �ð0Þ
m from a direct cosmological observa-

tions such as gravitational weak lensing. To show how

z

E
(z

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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ΛCDM

Modified Gravity

FIG. 7 (color online). The solid line is the Hubble parameter
with 1-� error bar from fitting the simulated data to the �CDM
model. The dashed line is the confidence level of the Hubble
parameter extracted from the smoothing method of the Hubble
parameter. The figure shows the deviation of the two curves for
z > 1.

z
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FIG. 8 (color online). � function versus redshift is plotted for
two series of SNIa data, with 1� level of confidence. The dashed
lines and dashed-dotted lines indicate 307 and 1535 data, re-
spectively. The solid lines indicate the matter density of the
Universe derived from gravitational weak lensing.
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this method works, we generate SNIa data from fðRÞ ¼
R��4=R action resemble to the Union sample and after
smoothing the Hubble parameter, we plot � as a function
of redshift. We generate� function for two cases with 307
and 1535 supernova data as represented in Fig. 8. To

compare this function with a direct measurement of �ð0Þ
m ,

we use the weak lensing data, which puts a limit on the

matter content of the Universe in the range of �ð0Þ
m ¼

0:2�0:2
0:2 [21]. As shown in Fig. 8, increasing SNIa data

will pin down the� function more precisely where today’s
SNIa data is not sufficient. On the other hand, direct
observations of matter density of the Universe are precise
enough to claim any model with distinguishing results.

VII. CONCLUSION

One of the most puzzling questions in the cosmology is
the physical mechanism for the acceleration of the
Universe. Is it driven by a cosmological constant or is the
Universe filled with an exotic dark energy or should the
Einstein gravity be modified? In this work we proposed an

inverse method to extract the action of a modified gravity
in the Palatini formalism from the expansion history of the
Universe.
We used the smoothing method to obtain a continues

Hubble parameter from the supernova type Ia Union sam-
ple data. We showed that more than 1500 supernova data
with the quality of the Union sample is essential to have a
reliable Hubble parameter. Finally, we proposed two cos-
mological diagnoses in order to distinguish between
�CDM and alternative models. The first one compares
the smoothed Hubble parameter from the SNIa data with
the standard �CDM model. In the second approach we
define a new parameter where it is constant, equal to the
�m for the�CDM universe and varies with the redshift for
any alternative model. A precise measurement of the mat-
ter content of the Universe from one hand and enough
number of supernova data from the other hand will enable
us to identify either our Universe follows �CDM universe
or some modification is necessary.
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