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Two complementary techniques are developed for obtaining the asymptotic form of gravitational-wave

data at large radii from numerical simulations, in the form of easily implemented algorithms. It is shown

that, without extrapolation, near-field effects produce errors in extracted waveforms that can significantly

affect LIGO data analysis. The extrapolation techniques are discussed in the context of Newman-Penrose

data applied to extrapolation of waveforms from an equal-mass, nonspinning black-hole binary simula-

tion. The results of the two methods are shown to agree within error estimates. The various benefits and

deficiencies of the methods are discussed.
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I. INTRODUCTION

As numerical simulations of black-hole binaries im-
prove, the criterion for success moves past the ability of
a code to merely persist through many orbits of inspiral,
merger, and ringdown. Accuracy becomes the goal, as
related work in astrophysics and analysis of data from
gravitational-wave detectors begin to rely more heavily
on results from numerical relativity. One of the most
important challenges in the field today is to find and
eliminate systematic errors that could pollute results built
on numerics. Though there are many possible sources of
such error, one stands out as being particularly easy to
manage and—as we show—a particularly large effect: the
error made by extracting gravitational waveforms from a
simulation at finite radius, and treating these waveforms as
though they were the asymptotic form of the radiation.

The desired waveform is the one to which post-
Newtonian approximations aspire, and the one sought by
gravitational-wave observatories: the asymptotic wave-
form. This is the waveform as it is at distances of over
1014M from the system generating the waves. In typical
numerical simulations, data extraction takes place at a
distance of order 100M from the black holes. At this
radius, the waves are still rapidly changing because of
real physical effects. Near-field effects [1–3] are plainly
evident, scaling with powers of the ratio of the reduced
wavelength to the radius, ð�=rÞk.1 Extraction methods
aiming to eliminate the influence of gauge effects alone
[e.g., improved Regge-Wheeler-Zerilli (RWZ) or quasi-
Kinnersley techniques] will not be able to account for these
physical changes.

Even using a rather naive, gauge-dependent extraction
method, near-field effects dominate the error in extracted
waves throughout the inspiral for the data presented in this
paper [2]. For extraction at r ¼ 50M, these effects can
account for a cumulative error of roughly 50% in ampli-

tude or a phase difference of more than 1 rad, from begin-
ning to end of a 16-orbit equal-mass binary merger. Note
that near-field effects should be proportional to—at leading
order—the ratio of �=r in phase and ð�=rÞ2 in amplitude,
as has been observed previously [2,4]. Crucially, because
the wavelength changes most rapidly during the merger,
the amplitude and phase differences due to near-field ef-
fects also change most rapidly during merger. This means
that coherence is lost between the inspiral and merger/
ringdown segments of the waveform.
We can see the importance of this decoherence by look-

ing at its effect on the matched-filtering technique fre-
quently used to analyze data from gravitational-wave
detectors. Matched filtering [5–7] compares two signals,
s1ðtÞ and s2ðtÞ. It does this by Fourier transforming each
into the frequency domain, taking the product of the sig-
nals, weighting each inversely by the noise—which is a
function of frequency—and integrating over all frequen-
cies. This match is optimized over the time and phase
offsets of the input waveforms. For appropriately normal-
ized waveforms, the result is a number between 0 and 1,
denoted hs1js2i, with 0 representing no match, and 1 rep-
resenting a perfect match. If we take the extrapolated
waveform as s1 and the waveform extracted at finite radius
as s2, we can evaluate the match between them. If the
extrapolated waveform accurately represents the ‘‘true’’
physical waveform, the mismatch (defined as 1� hs1js2i)
shows us the loss of signal in data analysis if wewere to use
the finite-radius waveforms to search for physical wave-
forms in detector data.
The waveforms have a simple scaling with the total mass

of the system, which sets their frequency scale relative to
the noise present in the detector. In Figs. 1 and 2, we show
mismatches between finite-radius and extrapolated data
from the Caltech-Cornell group for a range of masses of
interest to LIGO data analysis, using the initial- and
advanced-LIGO noise curves, respectively, to weight the
matches. The value of R denotes the coordinate radius of
extraction for the finite-radius waveform.1We use the standard notation � � �=2�.
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The data in these figures are exclusively numerical data
from the simulation used throughout this paper, with no
direct contributions from post-Newtonian (PN) wave-
forms. However, to reduce ‘‘turn-on’’ artifacts in the
Fourier transforms, we have simply attached post-
Newtonian waveforms to the earliest parts of the time-
domain waveforms, performed the Fourier transform, and
set to zero all data at frequencies for which post-Newtonian
data are used. The match integrals are performed over the
intersection of the frequencies present in each waveform,
as in Ref. [8].

This means that the data used here are not truly complete
for masses below 40M� in initial LIGO and 110M� in
advanced LIGO, and that a detected signal would actually
be dominated by data at lower frequencies than are present
in these data for masses below about 10M�. These masses
are correspondingly larger for shorter waveforms, which
begin at higher frequencies. It is important to remember
that this type of comparison can only show that a given
waveform (of a given length) is as good as it needs to be for
a detector. If the waveform does not cover the sensitive
band of the detector, the detection signal-to-noise ratio
would presumably improve given a comparably accurate
waveform of greater duration. Thus, the bar is raised for
longer waveforms, and for lower masses.

These figures demonstrate that the mismatch can be of
order 1% when extracting at a radius of R ¼ 50M. For
extraction at R ¼ 225M, the mismatch is never more than
about 0.2%. The loss in event rate would be—assuming
homogeneous distribution of events in space—roughly 3
times the mismatch when using a template bank based on
imperfect waveforms [9]. Lindblom, Owen, and Brown
[10] cite a target mismatch of less than 0.5% between the
physical waveform and a class of model templates to be
used for detection of events in current LIGO detector data.2

Thus, for example, if these numerical waveforms were to
be used in construction of template banks,3 the waveform
extracted at R ¼ 50M would not be entirely sufficient, in

FIG. 2 (color online). Data-analysis mismatch between finite-
radius waveforms and the extrapolated waveform for advanced
LIGO. This plot shows the mismatch between extrapolated
waveforms and waveforms extracted at several finite radii,
scaled to various values of the total mass of the binary system,
using the advanced-LIGO noise curve. The waveforms are
shifted in time and phase to find the optimal match. Note that
the data used here are solely numerical, with no direct post-
Newtonian contribution. Thus, for masses below 110M�, these
data represent only a portion of the physical waveform.

FIG. 1 (color online). Data-analysis mismatch between finite-
radius waveforms and the extrapolated waveform for initial
LIGO. This plot shows the mismatch between extrapolated
waveforms and waveforms extracted at several finite radii,
scaled to various values of the total mass of the binary system,
using the initial-LIGO noise curve. The waveforms are shifted in
time and phase to find the optimal match. Note that the data used
here are solely numerical, with no direct post-Newtonian con-
tribution. Thus, for masses below 40M�, these data represent
only a portion of the physical waveform.

2This number of 0.5% results from assumptions about typical
event magnitude, template bank parameters, and requirements on
the maximum frequency of missed events. The parameters used
to arrive at this number are typical for initial LIGO.

3We emphasize that these waveforms do not cover the sensi-
tive band of current detectors, and thus would not likely be used
to construct template banks without the aid of post-Newtonian
extensions of the data. Longer templates effectively have more
stringent accuracy requirements, so the suitability of these ex-
traction radii would change for waveforms of different lengths.
In particular, our results are consistent with those of Ref. [8],
which included nonextrapolated data of shorter duration.

MICHAEL BOYLE AND ABDUL H. MROUÉ PHYSICAL REVIEW D 80, 124045 (2009)

124045-2



the sense that a template bank built on waveforms with this
level of inaccuracy would lead to an unacceptably high
reduction of event rate. The waveforms extracted at R ¼
100M and 225M, on the other hand, may be acceptable for
initial LIGO. For the loudest signals expected to be seen by
advanced LIGO, the required mismatch may be roughly
10�4 [10]. In this case, even extraction at R ¼ 225M
would be insufficient; some method must be used to obtain
the asymptotic waveform. For both initial and advanced
LIGO, estimating the parameters of the waveform—
masses and spins of the black holes, for instance—requires
still greater accuracy.

Extrapolation of certain quantities has been used for
some time in numerical relativity. Even papers announcing
the first successful black-hole binary evolutions [11–13]
showed radial extrapolation of scalar physical quantities—
radiated energy and angular momentum. But waveforms
reported in the literature have not always been extrapo-
lated. For certain purposes, this is acceptable—extrapola-
tion simply removes one of many errors. If the precision
required for a given purpose allows it, extrapolation is
unnecessary. However, for the purposes of LIGO data
analysis, we see that extrapolation of the waveform may
be very important.

We can identify three main obstacles to obtaining the
asymptotic form of gravitational-wave data from numeri-
cal simulations:

(1) Getting the ‘‘right’’ data at any given point, inde-
pendent of gauge effects (e.g., using quasi-
Kinnersley techniques and improved Regge-
Wheeler-Zerilli techniques).

(2) Removing near-field effects.
(3) Extracting data along a physically relevant path.

Many groups have attempted to deal with the first of these
problems.4 While this is, no doubt, an important objective,
even the best extraction technique to date is imperfect
at finite radii. Moreover, at finite distances from the source,
gravitational waves continue to undergo real physical
changes as they move away from the system [17], which
are frequently ignored in the literature. Some extraction
techniques have been introduced that attempt to incorpo-
rate corrections for these physical near-field effects
[18–20]. However, these require assumptions about the
form of those corrections, which we prefer not to impose.
Finally, even if we have the optimal data at each point
in our spacetime, it is easy to see that extraction along
an arbitrary (timelike) path through that spacetime could
produce a nearly arbitrary waveform, bearing no resem-
blance to a waveform that could be observed in a nearly
inertial detector. In particular, if our extraction point is
chosen at a specific coordinate location, gauge effects

could make that extraction point correspond to a physical
path which would not represent any real detector’s motion.
It is not clear how to estimate the uncertainty this effect
would introduce to the waveforms, except by removing the
effect entirely.
We propose a simple method using existing data-

extraction techniques which should be able to overcome
each of these three obstacles, given certain very basic
assumptions. The data are to be extracted at a series of
radii—either on a series of concentric spheres, or at various
radii along an outgoing null ray. These data can then be
expressed as functions of extraction radius and retarded
time using either of two simple methods we describe. For
each value of retarded time, the waveforms can then be fit
to a polynomial in inverse powers of the extraction radius.
The asymptotic waveform is simply the first nonzero term
in the polynomial. Though this method also incorporates
certain assumptions, they amount to assuming that the data
behave as radially propagating waves, and that the metric
itself is asymptotically Minkowski in the coordinates
chosen for the simulation.
Extrapolation is, by its very nature, a dangerous proce-

dure. The final result may be numerically unstable, in the
sense that it will fail to converge as the order of the
extrapolating polynomial is increased. This is to be ex-
pected, as the size of the effects to be removed eventually
falls below the size of noise in the waveform data. There
are likely better methods of determining the asymptotic
form of gravitational waves produced by numerical simu-
lations. For example, characteristic evolution is a promis-
ing technique that may become common in the near future
[21–24]. Nonetheless, extrapolation does provide a rough
and ready technique which can easily be implemented by
numerical-relativity groups using existing frameworks.
This paper presents a simple method for implementing

the extrapolation of gravitational-wave data from numeri-
cal simulations, and the motivation for doing so. In Sec. II,
we begin by introducing an extrapolation method that uses
approximate tortoise coordinates, which is the basic
method used to extrapolate data in various papers [7,25–
28] by the Caltech-Cornell Collaboration. The method is
tested on the inspiral, merger, and ringdown waveform data
of the equal-mass, nonspinning, quasicircular 15-orbit bi-
nary simulation of the Caltech-Cornell Collaboration. We
present the convergence of the wave phase and amplitude
as the extrapolation order increases, and we also compare
data extrapolated using various extraction radii. In Sec. III,
we propose a different extrapolation method using the
wave phase—similar to the method introduced in
Ref. [4]—to independently check our results, again dem-
onstrating the convergence properties of the method. In
Sec. IV, we compare the extrapolated waveforms of both
methods at various extrapolation orders, showing that they
agree to well within the error estimates of the two methods.
A brief discussion of the pitfalls and future of extrapolation

4See [14,15] and references therein for descriptions of quasi-
Kinnersley and RWZ methods, respectively. Also, an interesting
discussion of RWZ methods, and the possibility of finding the
‘‘exact’’ waveform at finite distances, is found in [16].
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is found in Sec. V. Finally, we include a brief Appendix on
techniques for filtering noisy data, which is particularly
relevant here because extrapolation amplifies noise.

II. EXTRAPOLATION USING APPROXIMATE
TORTOISE COORDINATES

There are many types of data that can be extracted from
a numerical simulation of an isolated source of gravita-
tional waves. The two most common methods of extracting
gravitational waveforms involve using the Newman-
Penrose�4 quantity, or the metric perturbation h extracted
using Regge-Wheeler-Zerilli techniques. Even if we focus
on a particular type of waveform, the data can be extracted
at a series of points along the z axis, for example, or
decomposed into multipole components and extracted on
a series of spheres around the source. To simplify this
introductory discussion of extrapolation, we ignore the
variety of particular types of waveform data. Rather, we
generalize to some abstract quantity f, which encapsulates
the quantity to be extrapolated and behaves roughly as a
radially outgoing wave.

We assume that f travels along outgoing null cones,
which we parametrize by a retarded time tret. Along each
of these null cones, we further assume that f can be ex-
pressed as a convergent (or at least asymptotic) series in
1=r—where r is some radial coordinate—for all radii of
interest. That is, we assume

fðtret; rÞ ¼
X1
k¼0

fðkÞðtretÞ
rk

; (1)

for some functions fðkÞ. The asymptotic behavior of f is

given by the lowest nonzero fðkÞ.
5

Given data for such an f at a set of retarded times, and a
set of radii frig, it is a simple matter to fit the data for each
value of tret to a polynomial in 1=r. That is, for each value
of tret, we take the set of data ffðtret; riÞg and fit it to a finite
polynomial so that

fðtret; riÞ ’
XN
k¼0

fðkÞðtretÞ
rki

: (2)

Standard algorithms [29] can be used to accomplish this
fitting; here we use the least-squares method. Of course,
because we are truncating the series of Eq. (1) at k ¼ N,
some of the effects from k > N terms will appear at lower
orders. We will need to choose N appropriately, checking
that the extrapolated quantity has converged sufficiently
with respect to this order.

A. Radial parameter

One subtlety to be considered is the choice of r parame-
ter to be used in the extraction and fitting. For numerical
simulation of an isolated system, one simple and obvious
choice is the coordinate radius R used in the simulation.
Alternatively, if the data are measured on some spheroidal
surface, it is possible to define an areal radius Rareal by
measuring the area of the sphere along with f, and setting

Rareal �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=4�

p
. Still other choices are certainly

possible.
One objective in choosing a particular r parameter is to

ensure the physical relevance of the final extrapolated
quantity. If we try to detect the wave, for example, we
may want to think of the detector as being located at some
constant value of r. Or we may want r to asymptotically
represent the luminosity distance. These conditions may be
checked by inspecting the asymptotic behavior of the
metric components in the given coordinates. For example,
if the metric components in a coordinate system including
r asymptotically approach those of the standard
Minkowski metric, it is not hard to see that an inertial
detector could follow a path of constant r parameter.
Suppose we have two different parameters r and ~rwhich

can be related by a series expansion

r ¼ ~r½1þ a=~rþ . . .�: (3)

For the data presented in this paper, we can show that the
coordinate radiusR and areal radius Rareal are related in this

way. Introducing the expansion coefficients ~fðkÞ, we can

write

fðtret; rÞ ¼
X1
k¼0

fðkÞðtretÞ
rk

¼ X1
k¼0

~fðkÞðtretÞ
~rk

: (4)

We can solve for the new expansion coefficients in terms of
the old ones by inserting Eq. (3) into this formula, Taylor
expanding, and equating terms of equal order k. This shows

that fð0Þ ¼ ~fð0Þ and fð1Þ ¼ ~fð1Þ. Thus, if the asymptotic

behavior of f is given by fð0Þ or fð1Þ, the final extrapolated
data should not depend on whether r or ~r is used. On the
other hand, in practice we truncate these series at finite
order. This means that higher-order terms could ‘‘pollute’’
fð0Þ or fð1Þ. The second objective in choosing an r parame-

ter, then, is to ensure fast convergence of the series in
Eq. (2). If the extrapolated quantity does not converge
quickly as the order of the extrapolating polynomial N is
increased, it may be due to a poor choice of r parameter.
The coordinate radius used in a simulation may be

subject to large gauge variations that are physically irrele-
vant, and hence are not reflected in the wave’s behavior.
That is, the wave may not fall off nicely in inverse powers
of that coordinate radius. For the data discussed later in this
paper, we find that using the coordinate radius of extraction
spheres is indeed a poor choice, while using the areal

5For example, if f ¼ r�4, then fð0Þ gives the asymptotic
behavior; if f ¼ �4, then fð1Þ gives the asymptotic behavior.
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radius of those extraction spheres improves the conver-
gence of the extrapolation.

B. Retarded-time parameter

Similar considerations must be made for the choice of
retarded-time parameter tret to be used in extrapolation. It
may be possible to evolve null geodesics in numerical
simulations, and use these to define the null curves on
which data are to be extracted. While this is an interesting
possibility that deserves investigation, we propose two
simpler methods here based on an approximate retarded
time constructed using the coordinates of the numerical
simulation and the phase of the waves measured in that
coordinate system.

Again, we have two criteria for choosing a retarded-time
parameter. First is the physical suitability in the asymptotic
limit. For example, we might want the asymptotic tret to be
(up to an additive term constant in time) the proper time
along the path of a detector located at constant r. Again,
checking the asymptotic behavior of the metric compo-
nents with respect to tret and r should be a sufficient test of
the physical relevance of the parameters. Second, we wish
to have rapid convergence of the extrapolation series using
the chosen parameter, which also needs to be checked.

As before, we can also show the equivalence of different
choices for the tret parameter. Suppose we have two differ-
ent approximations tret and �tret that can be related by a
series expansion

tret ¼ �tret½1þ b=rþ . . .�: (5)

Using the new expansion coefficients �fðkÞ, we can write

fðtret; rÞ ¼
X1
k¼0

fðkÞðtretÞ
rk

¼ X1
k¼0

�fðkÞð�tretÞ
rk

: (6)

Now, however, we need to assume that the functions fðkÞ
can be well approximated by Taylor series. If this is true,

we can again show that fð0Þ ¼ �fð0Þ or, if we have fð0Þ ¼
�fð0Þ ¼ 0, that fð1Þ ¼ �fð1Þ. The condition that f be well

approximated by a Taylor series is nontrivial, and can
help to inform the choice of f. Similarly, the speed of
convergence of the extrapolation can help to inform the
choice of a particular tret parameter. While it has been
shown [30] that a retarded-time parameter as simple as
tret ¼ T � R is sufficient for some purposes, we find that
convergence during and after merger is drastically im-
proved when using a somewhat more careful choice.

Since we will be considering radiation from an isolated
compact source, our basic model for tret comes from the
Schwarzschild spacetime; we assume that the system in
question approaches this spacetime at increasing distance.
In analogy with the time-retardation effect on outgoing
null rays in a Schwarzschild spacetime [31], we define a

‘‘tortoise coordinate’’ r� by

r� � rþ 2MADM ln

�
r

2MADM

� 1

�
; (7)

where MADM is the Arnowitt-Deser-Misner mass of the
initial data.6 In standard Schwarzschild coordinates, the
appropriate retarded time would be given by tret ¼ t� r�.
It is not hard to see that the exterior derivative dtret is null
with respect to the Schwarzschild metric.
Taking inspiration from this, we can attempt to account

for certain differences from a Schwarzschild background.
Let T and R denote the simulation’s coordinates, and
suppose that we extract the metric components gTT , gTR,
and gRR from the simulation. We seek a tretðT; RÞ such that

dtret ¼ @tret
@T

dT þ @tret
@R

dR (8)

is null with respect to these metric components. That is, we
seek a tret such that

gTT
�
@tret
@T

�
2 þ 2gTR

�
@tret
@T

��
@tret
@R

�
þ gRR

�
@tret
@R

�
2 ¼ 0: (9)

We introduce the ansatz tret ¼ t� r�, where t is assumed
to be a slowly varying function of R,7 and r� is given by
Eq. (7) with R in place of r on the right side. If we ignore
@t=@R and insert our ansatz into Eq. (9), we have

gTT
�
@t

@T

�
2 � 2gTR

�
@t

@T

��
1

1� 2MADM=R

�

þ gRR
�

1

1� 2MADM=R

�
2 ¼ 0: (10)

We can solve this for @t=@T:

@t

@T
¼ 1

1� 2MADM=R

gTR � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgTRÞ2 � gTTgRR
p

gTT
: (11)

Substituting the Schwarzschild metric components shows
that we should choose the negative sign in the numerator of
the second factor. Finally, we can integrate (numerically)
to find

6Kocsis and Loeb [32] pointed out that the propagation of a
roughly spherical gravitational wave should be affected primar-
ily by the amount of mass interior to the wave. Because the
waves from a merging binary can carry off a significant fraction
(typically a few percent) of the binary’s mass, this suggests that
we should allow the mass in this formula to vary in time, falling
by perhaps a few percent over the duration of the waveform.
However, this is a small correction of a small correction; we have
not found it necessary. Perhaps with more refined methods, this
additional correction would be relevant.

7More specifically, we need j@t=@Rj � j@r�=@Rj. This con-
dition needs to be checked for all radii used, at all times in the
simulation. For the data presented below, we have checked this,
and shown it to be a valid assumption, at the radii used for
extrapolation.
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t ¼
Z T

0

1

gTT
gTR � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgTRÞ2 � gTTgRR

p
1� 2MADM=R

dT0: (12)

Now, in the case where gTR is small compared to 1, we may
wish to ignore it, in which case we have

t ¼
Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gRR=gTT
p
1� 2MADM=R

dT0: (13)

It is not hard to see that this correctly reduces to t ¼ T in
the Schwarzschild case.

For the data discussed later in this paper, we make
further assumptions that gRR ¼ 1� 2MADM=R, and that
R ¼ Rareal. That is, we define the corrected time

tcorr �
Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=gTT

1� 2MADM=Rareal

s
dT0 (14a)

and the retarded time

tret � tcorr � r�: (14b)

We find that this corrected time leads to a significant
improvement over the naive choice of tðTÞ ¼ T, while no
improvement results from using Eq. (12).

C. Application to a binary inspiral

To begin the extrapolation procedure, we extract the
(spin-weight s ¼ �2) ðl; mÞ ¼ ð2; 2Þ component of �4

data on a set of spheres at constant coordinate radius in
the simulation.8 In the black-hole binary simulations used
here (the same as those discussed in Refs. [2,25–27]), these
spheres are located roughly9 every �R � 10Mirr (where
Mirr is the sum of the irreducible masses of the black holes
in the initial data) from an inner radius of R ¼ 75Mirr to an
outer radius of R ¼ 225Mirr, where Mirr denotes the total
apparent-horizon mass of the two holes at the beginning of
the simulation. This extraction occurs at time steps of
�T � 0:5Mirr throughout the simulation. We also measure
the areal radius, Rareal, of these spheres by integrating the
induced area element over the sphere to find the area, and

defining Rareal �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=4�

p
. This typically differs from the

coordinate radius R by roughly Mirr=R. Because of gauge
effects, the areal-radius of a coordinate sphere changes as a
function of time, so we measure this as a function of time.
Finally, we measure the average value of gTT as a function
of coordinate time on the extraction spheres to correct for

the dynamic lapse function. The areal radius and gTT are
then used to compute the retarded time tret defined in
Eq. (14).
The gravitational-wave data �4, the areal radius Rareal,

and the lapse N are all measured as functions of the code
coordinates T and R. We can use these to construct the
retarded time defined in Eq. (14), using Rareal in place of r.
This, then, will also be a function of the code coordinates.
The mapping between ðtret; RarealÞ and ðT; RÞ is invertible,
so we can rewrite �4 as a function of tret and Rareal.
As noted in Sec. II B, we need to assume that the

extrapolated functions are well approximated by Taylor
series. Because the real and imaginary parts of �4 are
rapidly oscillating in the data presented here, we prefer
to use the same data in smoother form. We define the
complex amplitude A and phase � of the wave:

RarealMirr�4 � Aei�; (15)

where A and� are functions of tret and Rareal. Note that this
definition factors out the dominant 1=r behavior of the
amplitude. This equation defines the phase with an ambi-
guity of multiples of 2�. In practice, we ensure that the
phase is continuous as a function of time by adding suitable
multiples of 2�. The continuous phase is easier to work
with for practical reasons, and is certainly much better
approximated by a Taylor series, as required by the argu-
ment surrounding Eq. (6).
A slight complication arises in the relative phase offset

between successive radii. Noise in the early parts of the
waveform makes the overall phase offset go through multi-
ples of 2� essentially randomly. We choose some fairly
noise-free (retarded) time and ensure that phases corre-
sponding to successive extraction spheres are matched at
that time by simply adding multiples of 2� to the phase of
the entire waveform—that is, we add a multiple of 2� to
the phase at all times.
Extrapolation of the waveform, then, basically consists

of finding the asymptotic forms of these functions, A and
�, as functions of time. We apply the general technique
discussed above to A and �. Explicitly, we fit the data to
polynomials in 1=Rareal for each value of retarded time:

Aðtret; RarealÞ ’
XN
k¼0

AðkÞðtretÞ
Rk
areal

; (16a)

�ðtret; RarealÞ ’
XN
k¼0

�ðkÞðtretÞ
Rk
areal

: (16b)

The asymptotic waveform is fully described by Að0Þ and
�ð0Þ. When the order of the approximating polynomials is

important, we will denote by AN and �N the asymptotic
waveforms resulting from approximations using polyno-
mials of order N.
We show the results of these extrapolations in the figures

below. Figures 3–5 show convergence plots for extrapola-
tions using orders N ¼ 1–5. The first two figures show the

8See Ref. [27] for details of the extraction procedure. We use
�4 data here, rather than Regge-Wheeler-Zerilli data because
the �4 data from this simulation are of higher quality; it appears
that the RWZ data are more sensitive to changes in gauge
conditions after the merger. This problem is still under
investigation.

9Explicitly, the extraction spheres are at radii R=Mirr ¼f75; 85; 100; 110; 120; . . . ; 190; 200; 210; 225g, though we find
that the final result is not sensitive to the exact placement of
the extraction spheres.
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relative amplitude and phase difference between succes-
sive orders of extrapolation, using the corrected time of
Eq. (14). Here, we define

�A

A
� ANa

� ANb

ANb

(17a)

and

�� � �Na
��Nb

: (17b)

When comparing waveforms extrapolated by polynomials
of different orders, we use Nb ¼ Na þ 1. Note that the
broad trend is toward convergence, though high-frequency
noise is more evident as the order increases, as we discuss
further in the next subsection. The peak amplitude of the
waves occurs at time tret=Mirr � 3954. Note that the scale
of the horizontal axis changes just before this time to better

show the merger/ringdown portion. We see that the ex-
trapolation is no longer convergent, with differences in-
creasing slightly as the order of the extrapolating
polynomial is increased. The oscillations we see in these
convergence plots have a frequency equal to the frequency
of the waves themselves. Their origin is not clear, but may
be due to numerics, gauge, or other effects that violate our
assumptions about the outgoing-wave nature of the data. It
is also possible that there are simply no higher-order
effects to be extrapolated, so low-order extrapolation
suffices.
Figure 5 shows the same data as in Fig. 4, except that no

correction is used for dynamic lapse. That is, for this figure
(and only this figure), we use tret � T � r�, where T is
simply the coordinate time. This demonstrates the need for
improved time-retardation methods after merger. Note that
the extrapolated data during the long inspiral is virtually
unchanged (note the different vertical axes). After the
merger—occurring at roughly tret=Mirr ¼ 3954—there is
no convergence when no correction is made for dynamic
lapse. It is precisely the merger and ringdown segment
during which extreme gauge changes are present in the
data used here [27]. On the other hand, the fair conver-
gence of the corrected waveforms indicates that it is pos-
sible to successfully remove these gauge effects.

FIG. 3 (color online). Convergence of the amplitude of the
extrapolated �4, with increasing order of the extrapolating
polynomial, N. This figure shows the convergence of the relative
amplitude of the extrapolated Newman-Penrose waveform, as
the order N of the extrapolating polynomial is increased. [See
Eq. (16).] That is, we subtract the amplitudes of the two wave-
forms, and normalize at each time by the amplitude of the second
waveform. We see that increasing the order tends to amplify the
apparent noise during the early and late parts of the waveform.
Nonetheless, the broad (low-frequency) trend is towards con-
vergence. Note that the differences decrease as the system nears
merger; this is a first indication that the extrapolated effects are
due to near-field influences. Also note that the horizontal axis
changes in the right part of the figure, which shows the point of
merger, and the ringdown portion of the waveform. After the
merger, the extrapolation is nonconvergent, though the differ-
ences grow slowly with the order of extrapolation.

FIG. 4 (color online). Convergence of the phase of the ex-
trapolated �4, with increasing order of the extrapolating poly-
nomial, N. This figure is the same as Fig. 3, except that it shows
the convergence of phase. Again, increasing the extrapolation
order tends to amplify the noise during the early and late parts of
the waveform, though the broad (low-frequency) trend is towards
convergence. The horizontal-axis scale changes just before
merger.
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D. Choosing the order of extrapolation

Deciding on an appropriate order of extrapolation to be
used for a given purpose requires balancing competing
effects. As we see in Fig. 3, for example, there is evidently
some benefit to be gained from using higher-order extrapo-
lation during the inspiral; there is clearly some conver-
gence during inspiral for each of the orders shown. On the
other hand, higher-order methods amplify the apparent
noise in the waveform.10 Moreover, late in the inspiral,
and on into the merger and ringdown, the effects being
extrapolated may be present only at low orders; increasing

the extrapolation order would be useless as higher-order
terms would simply be fitting to noise.
The optimal order depends on the accuracy needed, and

on the size of effects that need to be eliminated from the
data. For some applications, little accuracy is needed, so a
low-order extrapolation (or even no extrapolation) is pref-
erable.11 If high-frequency noise is not considered a prob-
lem, then simple high-order extrapolation should suffice.
Of course, if both high accuracy and low noise are re-
quired, data may easily be filtered, mitigating the problem
of noise amplification. (See the Appendix for more dis-
cussion.) There is some concern that this may introduce
subtle inaccuracies: filtering is more art than science, and it
is difficult to establish precise error bars for filtered data.

E. Choosing extraction radii

Another decision needs to be made regarding the num-
ber and location of extraction surfaces. Choosing the num-
ber of surfaces is fairly easy, because there is typically little
cost in increasing the number of extraction radii (especially
relative to the cost of, say, running a simulation). The only
restriction is that the number of data points needs to be
significantly larger than the order of the extrapolating
polynomial; more can hardly hurt. More careful considera-
tion needs to be given to the location of the extraction
surfaces.
For the extrapolations shown in Figs. 3 and 4, data were

extracted on spheres spaced by 10 to 15Mirr, from R ¼
75Mirr to R ¼ 225Mirr. The outer radius of 225Mirr was
chosen simply because this is the largest radius at which
data exist throughout the simulation; presumably, we al-
ways want the outermost radii at which the data are re-
solved. In choosing the inner radius, there are two
competing considerations.
On one hand, we want the largest spread possible be-

tween the inner and outer extraction radii to stabilize the
extrapolation. A very rough rule of thumb seems to be that
the distance to be extrapolated should be no greater than
the distance covered by the data. Because the extrapolating
polynomial is a function of 1=R, the distance to be ex-
trapolated is 1=Router � 1=1 ¼ 1=Router. The distance cov-
ered by the data is 1=Rinner � 1=Router, so if the rule of
thumb is to be satisfied, the inner extraction radius should
be no more than half of the outer extraction radius, Rinner &
Router=2 (noting, of course, that this is a very rough rule of
thumb).
On the other hand, we would like the inner extraction

radius to be as far out as possible. Extracting data near the
violent center of the simulation is a bad idea for many

FIG. 5 (color online). Convergence of the phase of �4, ex-
trapolated with no correction for the dynamic lapse. This figure
is the same as Fig. 4, except that no correction is made to account
for the dynamic lapse. [See Eq. (14) and surrounding discus-
sion.] Observe that the convergence is very poor after merger (at
roughly tret=Mirr ¼ 3954). This corresponds to the time after
which sharp features in the lapse are observed. We conclude
from this graph and comparison with the previous graph that the
correction is crucial to convergence of �4 extrapolation through
merger and ringdown.

10So-called junk radiation is a ubiquitous feature of initial data
for current numerical simulations of binary black-hole systems.
It is clearly evident in simulations as large-amplitude, high-
frequency waves that die out as the simulation progresses.
While it is astrophysically extraneous, it is nevertheless a correct
result of evolution from the initial data. Better initial data would,
presumably, decrease its magnitude. This is the source of what
looks like noise in the waveforms at early times. It is less
apparent in h data than in �4 data because �4 effectively
amplifies high-frequency components, because of the relation
�4 � � €h.

11We note that—as expected from investigations of near-field
effects [1–3]—the second-order behavior of the amplitude
greatly dominates its first-order behavior [4]. Thus, there is no
improvement to the accuracy of the amplitude when extrapolat-
ing with N ¼ 1; it would be better to simply use the data from
the largest extraction radius.
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reasons. Coordinate ambiguity, tetrad errors, near-field
effects—all are more severe near the center of the simula-
tion. The larger these errors are, the more work the ex-
trapolation needs to do. This effectively means that higher-
order extrapolation is needed if data are extracted at small
radii. The exact inner radius needed for extrapolation
depends on the desired accuracy and, again, the portion
of the simulation from which the waveform is needed.

We can compare data extrapolated using different sets of
radii. Figure 6 shows a variety, compared to the data used
elsewhere in this paper. The extrapolation order is N ¼ 3
in all cases. Note that the waveforms labeled R=Mirr ¼
f50; . . . ; 100g and R=Mirr ¼ f100; . . . ; 225g both satisfy the
rule of thumb that the inner radius should be at most half of
the outer radius, while the other two waveforms do not; it
appears that violation of the rule of thumb leads to greater
sensitivity to noise. One waveform is extrapolated using
only data from small radii, R=Mirr ¼ f50; . . . ; 100g. It is
clearly not converged, and would require higher-order
extrapolation if greater accuracy is needed. The source of
the difference is presumably the near-field effect [2], which
is proportionally larger at small radii.

Clearly, there is a nontrivial interplay between the radii
used for extraction and the order of extrapolation. Indeed,
because of the time dependence of the various elements of
these choices, it may be advisable to use different radii and

orders of extrapolation for different time portions of the
waveform. The different portions could then be joined
together using any of various methods [7,33].

III. EXTRAPOLATIONUSINGTHE PHASEOFTHE
WAVEFORM

While the tortoise-coordinate method just described
attempts to compensate for nontrivial gauge perturbations,
it is possible that it does not take account of all effects
adequately. As an independent check, we discuss what is
essentially a second—very different—formulation of the
retarded-time parameter, similar to one first introduced in
Ref. [4]. If waves extrapolated with the two different
methods agree, then we can be reasonably confident that
unmodeled gauge effects are not diminishing the accuracy
of the final result. As we will explain below, the method in
this section cannot be used naively with general data (e.g.,
data on the equatorial plane). In particular, we must assume
that the data to be extrapolated consist of a strictly mono-
tonic phase. It is, however, frequently possible to employ a
simple technique to make purely real, oscillating data into
complex data with strictly monotonic phase, as we describe
below. The results of this technique agree with those of the
tortoise-coordinate extrapolation as we show in Sec. IV.
Instead of extrapolating the wave phase� and amplitude

A as functions of time and radius, we extrapolate the time
tret and the amplitude A as functions of wave phase � and
radius Rareal. In other words, we measure the amplitude and
the arrival time to some radius Rareal of a fixed phase point
in the waveform. This is the origin of the requirement that
the data to be extrapolated consist of a strictly monotonic
phase �ðtret; RarealÞ (i.e., it must be invertible). For the data
presented here, the presence of radiation in the initial
data—junk radiation—and numerical noise cause the ex-
tracted waveforms to fail to satisfy this requirement at
early times. In this case, the extrapolation is performed
separately for each invertible portion of the data. That is,
the data are divided into invertible segments, each segment
is extrapolated separately, and the final products are joined
together as a single waveform.

A. Description of the method

This extrapolation technique consists of extrapolating
the retarded time and the amplitude as functions of the
wave phase � and the radius Rareal. In other words, when
extrapolating the waveform, we are estimating the ampli-
tude and the arrival time of a fixed phase point at infinity.
Here, we extract the same �4, g

TT , and areal-radius data
used in the previous section. As in the previous method, we
first shift each waveform in time using tret ¼ tcorr � r�,
where tcorr is defined in Eq. (14) and the basic tortoise
coordinate r� is defined in Eq. (7) with areal radius as the
radial parameter. The amplitude and wave phase are again
defined using Eq. (15), and the phase is made continuous as

FIG. 6 (color online). Comparison of extrapolation of �4

using different sets of extraction radii. This figure compares
the phase of waveforms extrapolated with various sets of radii.
All comparisons are with respect to the data set used elsewhere
in this paper, which uses extraction radii R=Mirr ¼
f75; 85; 100; 110; 120; . . . ; 200; 210; 225g. The order of the ex-
trapolating polynomial is N ¼ 3 in all cases.
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in Sec. II C. Thus, we begin with the same data, shifted as
with the tortoise-coordinate method.

Now, however, we change the method, in an attempt to
allow for unmodeled effects. Instead of extrapolating
�ðtret; RarealÞ and Aðtret; RarealÞ, as with the previous
method, we invert these functions to get tretð�;RarealÞ and
Að�;RarealÞ as functions of the wave phase �. In other
words, we extrapolate the arrival time and the amplitude
of a signal to a coordinate radius R for each wave-phase
value. This is done by fitting the retarded time tret and the
amplitude A data to polynomials in 1=Rareal for each value
of the wave phase:

AðRareal; �Þ ’ XN
k¼0

AðkÞð�Þ
Rk
areal

; (18a)

tðRareal; �Þ ’ r� þ
XN
k¼0

tðkÞð�Þ
Rk
areal

; (18b)

where the asymptotic waveform is fully described by
Að0Þð�Þ and tð0Þð�Þ.

With these data in hand, we can produce the asymptotic
amplitude and phase as functions of time by plotting curves
in the t� A and t�� planes parametrized by the phase. In
order to be true, single-valued functions, we again need
monotonicity of the tð0Þð�Þ data, which may be violated by

extrapolation. The usable data can be obtained simply by
removing data from times before which this condition
holds.

Choosing the extraction radii and extrapolation order for
this method follows the same rough recommendations
described in Secs. II D and II E. Note also that the restric-
tion that the data have an invertible phase as a function of
time is not insurmountable. For example, data for�4 in the
equatorial plane are purely real, and hence have a phase
that simply jumps from 0 to � discontinuously. However,
we can define a new quantity

wðtÞ � �4ðtÞ þ i _�4ðtÞ: (19)

This is simply an auxiliary quantity used for the extrapo-
lation, with a smoothly varying, invertible phase. The
imaginary part is discarded after extrapolation.

B. Results

In Figs. 7 and 8 we plot the convergence of the relative
amplitude and phase of the extrapolated ðl; mÞ ¼ ð2; 2Þ
mode of the �4 waveform for extrapolation orders N ¼
1; . . . ; 5. A common feature of both plots is that during the
inspiral, the higher the extrapolation order, the better the
convergence. However, the noise is amplified significantly
for large orders of extrapolation. This method of extrapo-
lation amplifies high-frequency noise significantly, com-
pared to the tortoise-coordinate method.

In the inspiral portion, we have a decreasing error in the
extrapolation of the phase and the amplitude as the wave-
length of the gravitational waves decreases. In the merger/

ringdown portion, a more careful choice of the radii and
order of extrapolation needs to be made. Since near-field
effects are less significant in the data extracted at larger
radii, extrapolation at low order (N ¼ 2, 3) seems suffi-
cient. Data extrapolated at large order (N ¼ 4, 5) have a
larger error in the phase and amplitude after merger than
data extrapolated at order N ¼ 2 or 3. Moreover, the out-
ermost extraction radius could be reduced, say, to
Router=Mirr ¼ 165 instead of Router=Mirr ¼ 225, without
having large extrapolation error at late times. Using the
radius range R=Mirr ¼ 75; . . . ; 160 instead of the range
R=Mirr ¼ 75; . . . ; 225 would leave the extrapolation error
during the merger/ringdown almost unchanged, while the
extrapolation error during the inspiral would increase by
about 70%.
We note that this method allows easy extrapolation of

various portions of the waveform using different extraction
radii and orders since—by construction—thewave phase is
an independent variable. For example, solve for the phase
value of the merger �merger (defined as the phase at which

the amplitude is a maximum), then use the radius range
R=Mirr ¼ 75; . . . ; 225 for all phase values less than �merger

and the range R=Mirr ¼ 75; . . . ; 160 for all larger phase
values.

FIG. 7 (color online). Convergence of the amplitude of �4

extrapolated using the wave phase, with increasing order N of
the extrapolating polynomial. This figure shows the convergence
of the relative amplitude of the extrapolated Newman-Penrose
waveform extrapolated using the wave phase, as the order N of
the extrapolating polynomial is increased. [See Eq. (18).]
Increasing the extrapolation order tends to amplify the apparent
noise during the early and late parts of the waveform, but it
improves convergence. The vertical axis at tret=Mirr � 3950
denotes merger.
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This method has been tested also using the coordinate
radius R and the naive time coordinate T, in place of areal
radius and corrected time. We found results similar to those
discussed in Sec. II. Using the new time coordinate tcorr
instead of the naive time coordinate T improved the ex-
trapolation during the merger/ringdown, as found in
Sec. II.

As with the previous extrapolation method, increasing
the extrapolation order gives a faster convergence rate of
waveform phase and amplitude, but it amplifies noise in the
extrapolated waveform. To improve convergence without
increasing the noise, we need a good filtering technique for
the inspiral data. The junk-radiation noise decreases sig-
nificantly as a function of time, disappearing several orbits
before merger. However, this noise could be reduced by
using more extraction radii in the extrapolation process, or
by running the data through a low-pass filter. See the
Appendix for further discussion of filtering.

IV. COMPARISON OF THE TWO METHODS

Both methods showed good convergence of the ampli-
tude and the phase of the waveform as N increased in the
inspiral portion. (See Figs. 3 and 7 for the amplitude, and
Figs. 4 and 8 for the phase.) The wave-phase extrapolation
method was more sensitive to noise. In the merger/ring-
down portion, both methods have similar convergence asN
increases, especially when the correction is taken to ac-

FIG. 9 (color online). Relative difference in the amplitude of
the two extrapolation methods as we increase the order of
extrapolation. The best agreement between both methods is at
low orders of extrapolation, for which the relative difference in
the amplitude is less than 0.1% during most of the evolution.

FIG. 8 (color online). Convergence of the phase of �4 as a
function of time extrapolated using the wave phase, with in-
creasing order N of the extrapolating polynomial. Again, in-
creasing the extrapolation order tends to amplify the apparent
noise during the early and late parts of the waveform, though
convergence is improved significantly.

FIG. 10 (color online). Phase difference of the two extrapola-
tion methods as we increase the order of extrapolation. This
figure shows the phase difference between waveforms extrapo-
lated using each of the two methods. The best agreement
between the methods is at orders N ¼ 2 and 3. The relative
difference in the phase is less than 0.02 radians during most of
the evolution.
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count for the dynamic lapse. The use of the time parameter
tcorr improved the agreement between the methods signifi-
cantly in the merger/ringdown portion for all extrapolation
orders. Extrapolating at order N ¼ 2 or 3 seems the best
choice as the noise and phase differences are smallest for
these values.

In Fig. 9, we show the relative amplitude difference
between data extrapolated at various orders (N ¼
1; . . . ; 5). There is no additional time or phase offset used
in the comparison. Ignoring high-frequency components,
the difference in the relative amplitude is always less than
0.3% for different extrapolation orders. Even including
high-frequency components, the differences between the
two methods are always smaller than the error in each
method, as judged by convergence plots. In Fig. 10, we
show the phase difference between the data extrapolated
using both methods. As in the relative amplitude-
difference plots, the best agreement is achieved during
the inspiral portion. Ignoring high-frequency components,
the difference is less than 0.02 radians for all orders. In the
merger/ringdown portion, the best agreement between ex-
trapolated waveforms is at order N ¼ 2 or 3 where the
phase difference is less than 0.01 radians.

V. CONCLUSIONS

We have demonstrated two simple techniques for ex-
trapolating gravitational-wave data from numerical-
relativity simulations. We took certain basic gauge infor-
mation into account to improve convergence of the ex-
trapolation during times of particularly dynamic gauge,
and showed that the two methods agree to within rough
error estimates. We have determined that the first method
presented here is less sensitive to noise, and more imme-
diately applies to arbitrary wavelike data; this method has
become the basic standard in use by the Caltech-Cornell
Collaboration. In both cases, there were problems with
convergence after merger. The source of these problems
is still unclear, but will be a topic for further investigation.

As with any type of extrapolation, a note of caution is in
order. It is entirely possible that the ‘‘true’’ function being
extrapolated bears little resemblance to the approximating
function we choose, outside of the domain on which we
have data. We may, however, have reason to believe that
the true function takes a certain form. If the data in ques-
tion are generated by a homogeneous wave equation, for
instance, we know that well-behaved solutions fall off in
powers of 1=r. In any case, there is a certain element of
faith that extrapolation is a reasonable thing to do. While
that faith may be misplaced, there are methods of checking
whether or not it is: goodness-of-fit statistics, error esti-
mates, and convergence tests. To be of greatest use,
goodness-of-fit statistics and error estimates for the output
waveform require error estimates for the input waveforms.
We leave this for future work.

We still do not know the correct answers to the questions
numerical relativity considers. We have no analytic solu-
tions to deliver the waveform that Einstein’s equations—
solved perfectly—predict would come from a black-hole
binary merger, or the precise amount of energy radiated
from any given binary, or the exact kick or spin of the final
black hole. Without being able to compare numerical
relativity to exact solutions, we may be leaving large sys-
tematic errors hidden in plain view. To eliminate them, we
need to use multiple, independent methods for our calcu-
lations. For example, we might extract �4 directly by
calculating the Riemann tensor and contracting appropri-
ately with our naive coordinate tetrad, and extract the
metric perturbation using the formalism of Regge-
Wheeler-Zerilli and Moncrief. By differentiating the latter
result twice and comparing to �4, we could verify that
details of the extraction methods are not producing system-
atic errors. (Just such a comparison was done in Ref. [28]
for waveforms extrapolated using the technique in this
paper.) Nonetheless, it is possible that infrastructure used
to find both could be leading to errors.
In the same way, simulations need to be performed using

different gauge conditions, numerical techniques, code
infrastructures, boundary conditions, and even different
extrapolation methods. Only when multiple schemes arrive
at the same result can we be truly confident in any of them.
But to arrive at the same result, the waveforms from each
scheme need to be processed as carefully as possible. We
have shown that extrapolation is crucial for highly accurate
gravitational waveforms, and for optimized detection of
mergers in detector data.
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APPENDIX: FILTERING

Extrapolating waveforms containing poorly resolved
high-frequency components amplifies the magnitude of
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the noise in the signal at infinity. One possible solution to
the problem is to filter out the junk radiation from the
gravitational waveform. This is possible when the noise
has higher frequency than the physical data of interest. The
MATLAB function filtfilt, using a low-pass Butter-

worth filter with cutoff frequency between the noise fre-
quency and the highest gravitational-wave frequency, is
satisfactory for many uses when applied to the early parts
of the data. This filtering may be applied either to the com-
plex data or to its amplitude and phase—the latter allowing
for a lower cutoff frequency. There is also a marginal
benefit to be gained when the input data are filtered before
extrapolation, though filtering of the final result is also
necessary. It is also possible to fit a low-order polynomial
to the data, filter the residual, and add the filtered data back
to the fit; this removes very low-frequency components,
reducing the impact of Gibbs phenomena.

For the data presented here, we use a sixth-order
Butterworth filter with a physical cutoff frequency of
!cutoff ¼ 0:075=Mirr,

12 which is roughly 8 times the maxi-
mum frequency of the physical waveforms expected in the
filtered region. The filter is applied individually (using the
filtfilt function) to the amplitude and phase data, in
turn. Because of remaining Gibbs phenomena at late times,
we use unfiltered data after tret=Mirr ¼ 3000.

One basic diagnostic of the filtering process is to simply
look at the difference between filtered and unfiltered data.
If there are low-frequency components in these curves, we
know the cutoff frequency needs to be raised. In Fig. 11, we
show the difference in relative amplitude (upper panel),
and phase (lower panel). Because there is no difference
between the filtered and unfiltered waveforms on the time-
scale of the physical gravitational waves ( * 100Mirr), we
conclude that the filter’s cutoff frequency is high enough to
retain the physical information.

On the other hand, to check that the filter’s cutoff
frequency is low enough to achieve its purpose, we look
at data which previously showed the undesirable high-
frequency characteristics. In Fig. 12, we show the same
data as in Fig. 4, when the data are filtered before sub-
traction. The size of the noise at early times is greatly
reduced. There are still significant high-frequency features
in the plot, though they are much smaller than in the
unfiltered data. Presumably these features are simply so
large in the input data that even with the large suppression
from the filter, they are still noticeable. It may be possible
to remove them by further decreasing the filter’s cutoff
frequency, though this would require better handling of
Gibb’s phenomena from the beginning and end of the
wave. We find the present filter sufficient for the demon-
stration purposes of this Appendix.

FIG. 11 (color online). Difference between the filtered and
unfiltered amplitude and phase of the waveform with third-order
extrapolation. The upper panel shows the relative amplitude
difference between the filtered and unfiltered waveforms; the
lower panel shows the phase difference.

FIG. 12 (color online). The filtered version of Fig. 4. We
filtered the extrapolated waveforms and redid Fig. 4, which
shows the phase difference between waveforms extrapolated at
various orders. This plot shows much smaller high-frequency
components at early times.

12Note that MATLAB expects the input frequency as a fraction of
the data’s Nyquist frequency.
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