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We apply a dressed perturbation theory to better organize and economize the computation of high

orders of the 2-body effective action of an inspiralling post-Newtonian (PN) gravitating binary. We use the

effective field theory approach with the nonrelativistic field decomposition (NRG fields). For that purpose

we develop quite generally the dressing theory of a nonlinear classical field theory coupled to pointlike

sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no

dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which

succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-

Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely

many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they

contain nonlinear worldline vertices, and we classify all the possible topologies of irreducible diagrams

for low loop numbers. We apply the dressing program to our post-Newtonian case of interest. The dressed

charges consist of the dressed energy-momentum tensor after a nonrelativistic decomposition, and we

compute all dressed charges (in the harmonic gauge) appearing up to 2PN in the 2-body effective action

(and more). We determine the irreducible skeleton diagrams up to 3PN and we employ the dressed charges

to compute several terms beyond 2PN.
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I. INTRODUCTION AND SUMMARY

Gravitational wave observatories (see for example the
reviews [1] and references therein) demand knowledge of
the waveform emitted by an inspiralling binary system of
compact objects. Fully generally relativistic (GR) numeri-
cal simulations can now simulate such waveforms—see the
review [2] and references therein. Yet, as always, an ana-
lytic treatment is complementary and improves insight,
especially into the functional dependence of the results
on the parameters. A perturbative analytic treatment is
possible in two limits. The first is the post-Newtonian
(PN) approximation, and it holds whenever the velocities
are small compared with the speed of light, or equivalently
through the virial theorem whenever the separation be-
tween the compact objects is much larger than their
Schwarzschild radii. The second limit is that of an extreme
mass ratio. In this paper we shall concentrate on the PN
approximation which is always valid at the initial stages of
any inspiral.

The computation of the effective 2-body action in PN
was a subject of considerable research over the last decades
and the current state of the art is its determination up to
order 3.5PN, as summarized in the review [3] (see also the
recent [4]). Another approach, the effective field theory
(EFT) approach to this problem was suggested by
Goldberger and Rothstein in 2004 [5], where more tradi-

tional GR methods are replaced by field theoretic tools
including Feynman diagrams,1 loops and regularization. In
particular [5] reproduced the 1PN effective action (known
as Einstein-Infeld-Hoffmann) within the EFT approach. In
[7,8] the metric components in the post-Newtonian, non-
relativistic limit were conveniently decomposed into a
scalar Newtonian potential, a gravitomagnetic 3-vector
potential and a symmetric 3-tensor. These fields were
termed collectively ‘‘fields of nonrelativistic gravitation
(NRG fields),’’ and the derivation of 1PN was shown to
further simplify. In [9] the 2PN expression was reproduced
within the effective field theory approach together with
NRG fields.
Other recent developments related to either PN or the

EFT approach include: dissipative effects and effective
horizon degrees of freedom [10,11]; thermodynamics of
caged black holes [12,13] through the EFT approach
[7,14,15]; EFT [16] (see also [17,18]) Hamiltonians
[19,20] for rotating point particles; tidal effects for com-
pact objects [21,22]; approximate solutions for higher-
dimensional black object including rings [23] and black-
folds [24]; a mechanized EFT computation for 2PN [25];
‘‘De-Turek’’ gauge for numerical relativity [26]; and fi-
nally radiation reaction and waves within the EFT ap-
proach [27,28].
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1See also [6] for certain early day efforts to calculate classical
potentials to higher post-Newtonian orders using field theoretical
methods and Feynman graph techniques.
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The computation of order 2PN [9] demonstrates a pro-
liferation in the number of diagrams: from 4 at 1PN to 21 at
2PN, and furthermore the number is expected to continue
and grow at the next order. Clearly, it would be useful to
have an improved perturbative expansion. In this paper we
shall present a new method to better organize the calcu-
lation and economize it. The basic idea is to recognize
recurring subdiagrams which physically describe
‘‘dressed’’ charges and propagators. The simplest example
is furnished by the Newtonian potential Gm1m2=jr1 �
r2j � Seff which belongs to order 0PN. This term is asso-
ciated with the diagram in Fig. 1. At higher orders there is a
class of diagrams of the form shown in Fig. 2 where the
point masses are replaced by dressed energy distributions
defined on the top row of Fig. 3

mi�ðxi � riÞ ! �drðxi � riÞ (1.1)

and the bare propagator is replaced by the dressed (rela-
tivistic) one defined on the bottom of Fig. 3

1

k2
�ð�tÞ ! Gðk;�tÞ: (1.2)

The same subdiagrams which define the dressed energy
distribution and appear in the calculation of the dressed
Newtonian interaction (Fig. 2) appear also in other dia-
grams. It makes sense to record the values of these subdia-
grams and later reuse them. This is the basic idea of the
dressed perturbation theory.

In addition, the dressing procedure is shown to econo-
mize the calculation in a more significant way as follows.
We find that the dressed couplings satisfy a certain recur-
sive integral equation schematically described in Fig. 4. A
perturbative expansion of the solution to this equation
equals an infinite sum of diagrams, and in this sense it
encodes many diagrams. This is nothing but the classical
version of the Schwinger-Dyson equations which were first
written in the context of quantum electrodynamics [29].
Yet the current classical version is of a higher practical
value compared to its quantum counterpart since it does not
involve the infinitely many dressed bulk vertices.

Some discussions of classical versions of the Schwinger-
Dyson equations appeared already, yet they all appear to
consider a significantly different context. Reference [30]
studied unequal time correlation functions of a nonequi-
librium classical field theory, while [31] aims at giving a

construction of the local algebras of observables in quan-
tum gauge theories.
The paper is divided into two parts. In Sec. II we

describe and discuss the dressed perturbation theory for a
general classical (effective) field theory, while in Sec. III
we apply it to the post-Newtonian theory.We start in Sec. II
by considering a simple scalar classical field theory
coupled to pointlike particles as the context for introducing
the required dressing concepts. In Sec. II Awe characterize
the fully factorizable diagrams before turning in Sec. II B
to our main definition, that of the dressed quantities. In
Sec. II C we define the dressed perturbation theory and
assert that it is equivalent to the bare theory.
In Sec. II D we explain the recursive integral equation

à la Schwinger-Dyson and comment on its relation with
related concepts. We close the general theory section in
Sec. II E with a classification of irreducible skeletons at
low loop numbers—diagrams which are neither factoriz-
able nor do they include dressed subdiagrams.

FIG. 1. The diagram which represents the Newtonian-potential
interaction mediated through the Newtonian scalar field �. The
notations will be fully defined later in Sec. III.

FIG. 2. A class of diagrams that we interpret as the Newtonian-
potential interaction between dressed energy distributions of
each body through a dressed propagator. The dark blobs repre-
sent any subdiagram with an arbitrary number of vertices on the
worldline and a single external leg for the Newtonian potential.
There are no bulk loops, as always in classical physics. The light
blob represents any subdiagram with two external legs of the
Newtonian potential, which amounts to a propagator with an
arbitrary number of retardation insertions.

FIG. 3. The diagrammatic definition of the dressed energy
distribution (top) and the dressed propagator (bottom). The
dressed energy distribution is defined through the one point
function for � in the presence of a single source (after stripping
external propagators), while the dressed propagator is defined
through the full two point function for �.
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In Sec. III we apply these concepts of dressing theory to
better organize and economize the two-body PN effective
action. In Sec. III Awe set up the problem by displaying the
post-Newtonian effective action and the associated
Feynman rules. In Sec. III B we explicitly compute the
three charges in PN. The charge which couples to the
gravitational field is the energy-momentum tensor, and
since the gravitational field naturally decomposes in the
PN limit into three NRG fields the source decomposes too
into three corresponding parts: the energy density, the
momentum density and the stress. These charges are com-
puted both in k space and in position space up to the order
required to reproduce the 2PN results, and the stress is
determined to one additional order.

In Sec. III C we analyze qualitatively the diagrams rele-
vant to the computation of the two-body effective action.
Starting with 0PN and making our way to order 2PN we
explain how some of the diagrams can be expressed
through dressed charges, and which diagrams can be gen-
erated by the integral equation. Up to order 2PN only a
single (nontree) diagram is found to be irreducible. We
confirmed that the known 2PN effective action is repro-
duced after incorporating our expressions for the dressed
charges from the previous subsection. While thus far al-
most all the computations are related to the known [3] 2PN
effective action which was already reproduced within the
EFT approach with NRG fields in [9], here we list all the
skeletons required for the computation of 3PN, thereby
indicating the road map for organizing the 3PN computa-
tion. In Sec. III D we convincingly demonstrate the utility
of our method by computing certain novel 3PN and 4PN
diagrams.2 Finally, in the appendix we collect some useful
integrals.

II. DRESSED PERTURBATION THEORY IN CLEFT

In this section we define a dressed perturbation theory in
the general classical effective field theory (CLEFT) con-

text, namely for any classical nonlinear field theory
coupled to pointlike sources.
In order to illustrate the main ideas in a simple setting we

consider a scalar field model. The generalization to an
arbitrary CLEFT is straightforward and will be spelled
out at the end of Sec. II B.
Consider the following bulk action

Sbulk½�� ¼
Z

d4x

�
� 1

2
ð ~r�Þ2 þ 1

2c2
_�2 � �

6
�3

�
(2.1)

for a scalar field � with propagation speed c and coeffi-
cient of cubic interaction �, where � couples to any point
particle of mass m and charge q through

Sp ¼ �ðm� qÞ
Z

d�� q
Z

e�ðxð�ÞÞd�; (2.2)

d� is the proper time element and the particles will be
assumed nonrelativistic d~x=d� � c (or even static in part
of the discussion). The total action for a many body system
is

S ¼ Sbulk þ
X
a

Sp;a; (2.3)

where Sp;a is the worldline action (2.2) of the ath particle

characterized by ma, qa.
Let us briefly discuss the considerations for choosing

this form of the action. The retardation term proportional to
1=c2 is considered as a small perturbation in the nonrela-
tivistic limit and represents a general small perturbation of
the quadratic term. The term proportional to � was chosen
to represent any nonlinear interaction. The interaction term
�q

R
expð�ðxð�ÞÞÞ includes the charge coupling

�q
R
�ðxð�ÞÞ together with some representative nonlinear

terms (this exponential form of the interaction appears in
post-Newtonian theory, for example).
The bulk theory (2.1) has a vacuum at � ¼ 0 and we

consider the perturbation theory around it. As usual, we
note that while this vacuum is unstable, it could be stabi-
lized by adding a mass term to Sbulk, and it could even be
made a global minimum through the addition of a quartic
term in the potential.
In this paper we study the two-body problem rather than

the seemingly more general many body problem since it is
the simplest and currently the most interesting case. The
generalization to the many body problem seems
straightforward.
The Feynman rules involving � are shown in Fig. 5.

They are standard except for the CLEFT conventions
which makes them real—vertices are read from the action
and propagators are given schematically by �1=S2 where
S2 is the quadratic part of the action. See [7] for the original
definition and full detail.
The two-body effective action is defined by

Seff½x1; x2� :¼ S½x1; x2; �ðx1; x2Þ� (2.4)

FIG. 4. A schematic diagrammatic representation of the
Schwinger-Dyson recursive integral equation satisfied by the
dressed couplings. More details are given in the body of the
paper.

2The computed first post-Minkowskian approximation [32]
includes information about a certain class of diagrams to arbi-
trarily high PN orders, which are different however from the
ones we compute here.
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where the right-hand side (rhs) represents the action (2.3)
evaluated on the solution � ¼ �ðx1; x2Þ given the particle
trajectories x1ð�1Þ; x2ð�2Þ. The effective action is known to
be equal to the sum of all connected Feynman diagrams
made out of � propagators with arbitrary bulk vertices and
worldline vertices but without loops of propagating fields
(such classically forbidden loops are allowed quantum
mechanically).

A. Factorizable diagrams

There are several possible paths to classical dressed
perturbation theory. We shall build it from first principles
and later discuss its relations with both the quantum ver-
sion and the standard classical theory.

The main idea is to economize the perturbation theory
by identifying certain recurring subdiagrams. Before we
proceed to the more essential, dressed subdiagrams we
discuss a stronger and simpler form of reduction, namely
factorizable diagrams.

A Feynman diagram is called factorizable whenever the
expression which it represents factorizes (into a product of
factors), each one corresponding to a subdiagram. An
example is shown in Fig. 6. In CLEFT we have the inter-
esting property that a diagram of the 2-body effective
action is factorizable if and only if it contains a nonlinear
worldline (NL-WL) vertex, where a NL-WL vertex is a
vertex with more than a single bulk field.

Indeed, if a diagram contains a NL-WL vertex then since
quantum loops are not allowed, each leg of the vertex
generates a separate subdiagram. Conversely, a connected3

factorizable diagram necessarily factorizes at a vertex. A
bulk vertex would not serve since wave number conserva-
tion couples between all its legs.4

B. Dressed charge and propagator

Following our discussion of factorization we proceed to
consider only diagrams without any NL-WL vertices. Any
nonfactorizable diagram contains various subdiagrams. We
wish to further economize the perturbation theory by iden-
tifying in a unique and natural way a class of subdiagrams
which repeatedly show up at high orders of the two-body
effective action. We shall call them ‘‘dressed subdia-
grams.’’ We start with constructive definitions and an
explanation of the name’s origin, to be followed by a
more abstract characterization through an equivalence of
perturbation theories which serves to explain the rationale
behind the definitions.
Definitions
(i) The dressed charge of the particle, �drðk; tÞ is de-

fined diagrammatically through Fig. 7 (top). The
dressed charge is an infinite sum of subdiagrams,
where each summand will be called a dressed charge
subdiagram.

(ii) The dressed propagator, Gdrðk;�tÞ is defined dia-
grammatically through Fig. 7 (bottom). Each sum-
mand in the definition will be called a dressed
propagator subdiagram.

Let us inspect these definitions. In equations �drðrÞ is
defined through

�drðr; tÞ :¼ 4�ðr; tÞ

¼
Z

d�q�ð4Þðx� xð�ÞÞ þ 1

2
��2 þ @2t� (2.5)

where the second equality is a differential equation which
together with retarded boundary conditions defines�ðr; tÞ,

FIG. 6 (color online). An example of a factorizable diagram
(the simplest). The two factors are circled (in red) and they
intersect in a NL-WL vertex. A diagram of this type appears at
1PN—see Fig. 23.

FIG. 5. The Feynman rules involving � for the static scalar
field theory whose action is given by (2.3). The rules describe:
the propagator and the quadratic perturbation vertex—retarda-
tion (top), the cubic bulk vertex (middle), and the worldline
vertices (bottom) where the ellipsis stands for additional non-
linear worldline vertices. Hereafter k denotes a spatial wave
number.

3All the diagrams of the 2-body action are connected by
definition.

4In CLEFT we cannot have a factorizable diagram such as the
‘‘figure 8’’ diagram in �4 theory, since we cannot have k
conservation for any strict subset of propagators leaving the
bulk vertex, as each propagator connects to a distinct worldline
vertex (or vertices) where k is arbitrary.
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the full solution for the field � in presence of the given
source worldline. This equation is equivalent to the dia-
grammatic definition since� is given diagrammatically by
Fig. 8, and hence in k space �ðk; tÞ ¼ ��drðk; tÞ=k2 from
which (2.5) follows in position space.

The dressed charge describes the apparent particle
charge (distribution) at long distances. It arises from the
nonlinear interactions of the scalar field which ‘‘dress’’ the
point charge, and is useful for studying the dynamics of a
system composed of several such particles. The term which
we use, ‘‘dressed’’ charge (and propagator) is standard
terminology in quantum field theory (QFT) (see for ex-
ample [33]) as well as in classical field theory. For com-
pleteness we would like to mention some related terms.
The first is renormalization, where like here one replaces a
bare quantity by a scale-dependent renormalized quantity
which is defined through the divergences of the same
subdiagrams.5 Another related term is resummation where
one discusses partial sums of diagrams.

The equation form of the dressed propagator is

Gdr ¼ 1

h
¼ 1

k2 þ @2t =c
2
¼ 1

k2
1

1þ @2t =ðc2k2Þ
¼ 1

k2

�
1� 1

c2k2
@2t þ 1

c4k4
@4t þ � � �

�
(2.6)

where the last equality is a representation of the series on
the left of Fig. 7 (bottom), while the previous expressions
can be considered to be a closed form summation of that
series.

Physically, in this field theory and also in PN the dressed
propagator is nothing but the fully relativistic propagator.
However, this need not be the case in general.
Example. To illustrate these ideas let us discuss an

example. A detailed application to the post-Newtonian
theory will be given in Sec. III.
Consider the 6-loop Feynman diagram in Fig. 9(a)

which contributes in the bare theory to the 2-body effective
action. It has five dressed subdiagrams (circled)—two
dressed charges and three dressed propagators. Note that
all the worldline vertices of each dressed charge belong to
one and the same point particle. Note also that retardation
vertices are allowed inside the dressed charge but not on its

FIG. 8. The diagrammatic representation for the value of the
field in the presence of the point-particle source. The only
difference with the definition of the dressed charge in Fig. 7
(top) is an added propagator on the external leg.

(b)(a)

FIG. 9 (color online). An example for the correspondence
between diagrams of the bare theory, such as (a) and the
corresponding dressed diagram (b). Note a standard subtlety:
retardation insertions are allowed inside a dressed charge vertex,
but not on its external leg. See text for further discussion.

FIG. 7. The diagrammatic definition of the dressed charge distribution (top) as the one point function for� in the presence of a single
source and the dressed propagator (bottom) as the full two point function for � in vacuum. Retardation vertices are forbidden on the
external leg of the dressed charge.

5The idea of renormalization in the PN context appeared
already in the literature. Reference [34] associated renormaliza-
tion with the regularization of certain divergences which appear
in the particle’s effective action at order 3PN. Reference [5]
studied the same divergences from the EFT approach and in
particular they computed the renormalization of the energy-
momentum tensor of a static particle up to 2 loops. Later [35]
also studied the renormalization of the energy-momentum
tensor.
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external leg. Upon replacing the dressed subdiagrams by
dressed vertices and propagators we obtain the diagram’s
skeleton6 in 9(b). The resulting diagram is only two-loop.
The other loops were absorbed by the dressed charges.
Note that the 3-loop dressed charge subdiagram includes
in it other dressed subdiagrams, but these are not maximal.

Generalization. So far we worked in a simple setting of a
cubic scalar field model. Here we shall indicate how the
definitions given above for the dressed subdiagrams gen-
eralize to a general field theory.

In the scalar field theory we had a single dressed vertex
and a single dressed propagator. In a general classical field
theory interacting with pointlike particles we have a
dressed charge for each field. For the dressed charge to
be nontrivial the bulk theory must be interacting.

The dressed propagator in a general field theory is
labeled by any two fields that can ‘‘mix.’’ In case the fields
do not mix then we have a single dressed propagator for
each field. For the dressed propagator to be nontrivial we
need the quadratic Lagrangian to decompose into a leading
part and a perturbation, so that the leading part will deter-
mine the bare propagator, while the small part will deter-
mine the two-vertex. The dressed propagator will then be
proportional to the inverse of the full quadratic Lagrangian.
We note that one may choose to diagonalize the dressed
propagator and accordingly redefine the fields such that
there will be no mixing through dressed propagators.

C. Equivalence of perturbation theories

We proceed to define a dressed perturbation theory,
which is equivalent to the original one, but somewhat
more economic.

Definition. A Feynman diagram which includes a non-
trivial dressed subdiagram of the form shown in Fig. 7
(dressing subdiagram) will be called dressing-reducible.
Otherwise it will be called dressing-irreducible.

Definition. The dressed perturbation theory is defined as
follows

(i) Figure 10 shows the changes in Feynman rules rela-
tive to the original theory (Fig. 5).

(ii) Only dressing-irreducible diagrams are allowed.
The original perturbation theory will be distinguished

from the dressed one by referring to it as bare.
Property—The bare and dressed perturbation theories

are equivalent: each diagram of the bare theory is included
exactly once in a dressed diagram.

This property is analogous to a standard one holding for
dressed actions in QFT, and we shall outline a proof. Given
a bare diagram we claim that its maximal dressed subdia-
grams are unique. We find the uniqueness property to be
quite apparent when one thinks about it, but we shall not
attempt to provide a proof here, as it seems tedious. Given

the decomposition we replace the dressed subdiagrams by
propagators and vertices of the dressed theory according to
Fig. 10. The resulting reduced diagram is called the skel-
eton of the original diagram. The uniqueness of decom-
position implies now that each bare diagram is included
once and only once in the dressed perturbation theory, and
hence the two are equivalent.
Discussion. Before proceeding to describe another prop-

erty of the dressed theory, namely, the integral equation, let
us pause to discuss some aspects of the definitions and
property above.
Rationale behind definitions. The decomposition into a

skeleton with blobs which represent dressed subdiagrams
is natural in a practical, computational sense. When com-
puting a diagram, the dressed subdiagrams are almost
inevitably evaluated on the way, by their nature. Hence it
is computationally natural to prepare a list of dressed
subdiagrams and their value, in order to avoid their re-
peated evaluation, which is exactly what the dressed theory
does.
Yet, the computational argument alone does not fix our

definitions of the dressed subdiagram. The characterizing
property is precisely the equivalence property above,
namely that the dressed perturbation theory is equivalent
to the bare one, or in other words, the dressed theory is self-
sufficient or autonomous. We claim (again without proof)
that this property can be used to derive our definitions.
Analogy with effective action in QFT. The ideas above

are analogous to those of the effective action in standard
QFT. There one collects all the 1-particle-irreducible (1PI)
diagrams into the effective action and then allows in the
perturbative expansion only tree diagrams of the effective
action. In both cases it is important that the decomposition

FIG. 10 (color online). The dressed Feynman rules contain
changes relative to the bare Feynman rules in Fig. 5. The bare
worldline vertex (charge) Feynman rule changes into the dressed
one, the bare propagator changes into the dressed one, and the
retardation rule is omitted. The rest of the rules remain un-
changed.

6This term will be further discussed and defined in the next
subsection.
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is unique—any diagram can be uniquely divided into 1PI
subdiagrams which allow a reduction to a tree skeleton.

Relation of the dressed subdiagrams with the ‘‘dressed
source’’ in standard QFT. The two notions are essentially
the same. Note however that unlike some cases, for us it is
important that the dressed charge subdiagrams are only
those where all worldline vertices belong to one and the
same point particle.

Our notion of the dressed propagator is also essentially
the same as the dressed propagator and the associated field
strength renormalization in standard QFT. The 2-vertex in
CLEFT is the ‘‘self-energy’’ (the 1PI two point function),
and (2.6) is essentially the standard QFT relation between
the self-energy and the dressed propagator. The difference
is that in QFT many diagrams can contribute to the self-
energy (actually normally they are infinitely many corre-
sponding to an arbitrary number of possible loops) while in
CLEFT the 2-point vertex is read directly from the
Lagrangian.

Why is the dressed propagator necessary? Consider
doing away with the definition of the dressed propagator
by allowing the dressed vertex subdiagrams to include
retardation vertices on the external leg. In the classical
theory this would actually work in all but one important
class of diagrams, that of the dressed Newtonian interac-
tion—Fig. 2, where the correspondence between the bare
and dressed diagrams would break. For example, consider
the diagram in Fig. 11. There are two distinct ways to cut
the diagram into subdiagrams, the cuts being denoted by
(a) and (b). Accordingly this diagram is doubly counted in
the putative dressed theory, thereby disqualifying it. This is
all the better since the dressed propagator is an appealing
physical concept which we would not want to lose anyway.

D. Schwinger-Dyson recursive integral equation in
CLEFT

In this section we shall describe a second property of the
dressed perturbation theory: certain recursive relations
which generally take the form of integral equations. We
start by considering the static limit of the scalar theory
(2.3) where the idea is simpler to illustrate and later we
refine it to include the general nonstatic case.

Recall the definition of �drðrÞ in Fig. 7.

Property. The dressed quantities satisfy recursive rela-
tions. In the static limit �drðrÞ satisfies the recursive rela-
tion which is shown diagrammatically in Fig. 12. Its
equation form reads

�
Z d3k

ð2�Þ3�drðkÞ�ð�kÞ ¼ �q�j~r¼0 ��

2

Z d3k

ð2�Þ3
Z d3k1

ð2�Þ3

��drðk1Þ
k21

�drðk� k1Þ
ðk� k1Þ2

�ð�kÞ:

(2.7)

After factoring out
R
d3k�ð�kÞ=ð2�Þ3 we are left with the

following integral equation for �drðkÞ
�drðkÞ ¼ qþ �

2

Z d3k1
ð2�Þ3

�drðk1Þ
k21

�drðk� k1Þ
ðk� k1Þ2

: (2.8)

Given a small � the integral equation can be solved

perturbatively in � by expanding �drðkÞ¼
P
�n�ðnÞðkÞ.

The zeroth order is given by �ð0ÞðkÞ¼q, the first order is

given by �ð1ÞðkÞ¼ 1
2

R
d3k1=ð2�Þ3� q

k2
1

q
ðk�k1Þ2 and so on. This

iterative solution of the integral equation is precisely
equivalent to the diagrammatic expansion in Fig. 7 [be-
cause they both compute the same quantities, namely

�ðnÞðkÞ].
The advantage of the integral equation over the diagram-

matic expansion is that it is shorter and economizes the
computation by avoiding the need to identify all the neces-
sary diagrams and compute them. Some readers may bene-
fit from the following analogy: the relation between the
recursive relation and the full diagrammatic expansion is
analogous to the relation between defining a function
through a differential equation and defining it through the
corresponding power series which solves the differential
equation.
The nonstatic case. Once we restore time dependence

into the action (2.3) we expect the dressed propagator to
have a role in the recursive relations as well. First, it has a
recursive relation of its own given diagrammatically by
Fig. 13 (bottom). In this case the recursive relation is
actually algebraic rather than integral, and hence the closed
form solution (2.6) exists. Secondly, the recursive relation
for the dressed vertex (Fig. 12) is refined to include the
dressed propagator and is now given by Fig. 13 (top).

(a) (b)

FIG. 11 (color online). An overcounting problem with an
alternative definition of the (nonstatic) dressed perturbation
theory, as discussed in the text.

FIG. 12. The diagrammatic representation of the recursive
integral equation satisfied by the dressed charge in the static
limit.
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We now proceed to make several comments.
(i) The recursive relation [Figs. 12 and 13 and Eq. (2.8)]

can be considered as inherited from its quantum
version (see for example [36]), but there are interest-
ing differences. As it is, Fig. 12 does not hold in
quantum field theory7 because there can be addi-
tional � propagators connecting the two blobs on
the rhs. Since such additional propagators would
create a closed loop of propagating fields it is for-
bidden in CLEFT. In order for the recursive integral
relations to apply in the quantum case one must
generalize them to include the dressed bulk vertices
yielding the celebrated Schwinger-Dyson equations
[29]. However, as stated in several textbooks the
practical usefulness of the quantum version is rather
limited since more and more Green’s functions with
more external legs participate in the equations as the
order is increased8 while in CLEFT the equations are
more practical exactly because there are only a finite
number of dressed quantities.

(ii) The dressed mass �drðrÞ is closely related to the field
profile �ðrÞ generated by the pointlike source.
Indeed, each one of them is sufficient to determine
the other through (2.5). While �drðrÞ satisfies an
integral equation, �ðrÞ satisfies a ‘‘mirror’’ differen-
tial equation, namely the equation of motion given
by the second equality in (2.5). The perturbative
expansion of the integral equation is dual in turn to
the perturbative expansion of the differential equa-
tion into some sort of a power series (which will
generally include log factors as well).

(iii) Relation with the beta function. The recursive inte-
gral equation [(2.8), and Figs. 12 and 13] determines
�drðkÞ and so does the beta function. Yet, the two
equations are different as the beta function is a first
order differential equation for d�dr=d logðkÞ.
Therefore it must be that the beta function equation
is a special or limiting case (whose precise definition
will not be pursued here) when the leading behavior
of �dr is logarithmic in k.

E. Irreducible 2-body skeletons

Consider the nonlinear worldline vertices (NL-WL ver-
tices) in the scalar action (2.3), namely vertices with more
than a single bulk field. Our definition of the dressed
charge concerns a worldline vertex with a single bulk field.
It is possible to generalize the definition of the dressed
vertex to any number of bulk fields, such as the 2-field
vertex shown on the top line of Fig. 14. In this way one may
define a fully dressed one body effective action.
However, for the purpose of computing the 2-body

effective action we use only the dressed charges (and pro-
pagators) and for the NL-WL vertices we use the bare vert-
ices rather than the dressed ones because they would have
created a problem: the decomposition of diagrams would
not have remained unique (just as in our discussion around
Fig. 11). For example, the diagram on the second row of
Fig. 14 can be decomposed in two different ways by the
two shown cuts, and that corresponds to doubly counting
this diagram in the putative fully dressed perturbation
theory.
Recall (Sec. II A) that nonlinear worldline vertices are

interesting for another, complementary property: a dia-
gram of the 2-body effective action is factorizable if and
only if it contains a nonlinear worldline vertex. From this
perspective the above-mentioned issue with using dressed
WL-NL vertices is all the better since there is no need for
dressing—all diagrams with NL-WL vertices are factoriz-

. . .

(a) (b)

FIG. 14 (color online). The top line shows a possible definition
for a 2-field dressed worldline vertex. The second line demon-
strates the overcounting problem which occurs. The bare dia-
gram on the left can be cut into subdiagrams in two different
ways denoted (a) and (b).

FIG. 13. A diagrammatic representation of the full set of (the
two) recursive equations satisfied by the dressed charge (top) and
propagator (bottom) in the general, nonstatic case. Note a change
in the recursive relation for the dressed charge relative to the
static equation in Fig. 12.

7Except for the tree diagram limit of course.
8‘‘From the point of view of making a practical calculation we

have accomplished little; the unknown quantities . . . have been
expressed in terms of yet another unknown. . .’’ [36], ‘‘. . . the
system involves an infinite hierarchy of equations . . . their
usefulness is limited’’ [37].
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able and hence reduce to computations of lower order and
lower loop number.

It is interesting to classify the possible irreducible dia-
grams in the 2-body effective action—those which are both
nonfactorizable and dressing-irreducible. The possible top-
ologies are independent of the details of the specific field
theory. At 1-loop there are no irreducible diagram top-
ologies. At 2-loop (top line of Fig. 15) there is the ‘‘H’’
diagram on the left and its degeneration—the ‘‘X’’ diagram
where the two cubic bulk vertices degenerate into a quartic
vertex. At 3-loop (bottom line of Fig. 15) there is the
topology shown on the left, together with its two possible
degenerations. We did not list here the trivial 0-loop (tree-
level) diagram shown in Fig. 1.

III. DRESSING THE 2-BODY POST-NEWTONIAN
PROBLEM

In this section we apply the dressed perturbation theory
to the post-Newtonian expansion, thereby demonstrating
its utility. We start in Sec. III A by setting up the problem,
establishing the conventions, and displaying the post-
Newtonian effective action and the associated Feynman
rules. In Sec. III B we explicitly compute the three PN
charges both in k space and in position space up to the
order required to reproduce the 2PN results, apart from the
stress that is determined to one additional order. In
Sec. III C we analyze qualitatively the diagrams relevant
to the computation of the two-body effective action includ-
ing a list of all the skeletons required for the computation
of 3PN. In Sec. III D we compute certain novel 3PN and
4PN diagrams.

A. Effective action and Feynman rules

Consider a binary system composed of slowly moving
massive objects. Replacing the vicinity of each of these
objects by the relativistic point particle coupled to gravity
and neglecting the effects of the higher-dimensional tidal
terms, leads to the following effective action

S ¼ SEH þ Spp: (3.1)

In PN the gravitational metric field is naturally divided
into three fields of nonrelativistic gravity (NRG fields): �
the Newtonian potential, Ai the gravitomagnetic vector
potential and �ij a symmetric tensor (with spatial indices)

[8]. The field redefinition g�	 ! ð�;Ai; �ijÞ is defined by

[7–9]

ds2 ¼ g�	dx
�dx	

¼ e2�ðdt� Aidx
iÞ2 � e�2�=ðd�3Þ�ijdx

idxj; (3.2)

where we take the space-time dimension d to be arbitrary
and only at the end we shall specialize to 4D. The bulk
action is the Einstein-Hilbert action expressed in terms of
NRG fields

SEH½g� ¼ 1

16�G

Z
R½g� ! SEH½�; A;��: (3.3)

The point-particle trajectory is denoted by ~x ¼ ~xðtÞ and
we shall denote by ~v ¼ _~xðtÞ and ~a ¼ €~xðtÞ its 3-velocity and
3-acceleration, respectively. The point-particle action is
given by

Spp¼�X
a

ma

Z
d�

¼�X
a

ma

Z
dte�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~A � ~vaÞ2�e�2ðd�2Þ�=ðd�3Þ�ijv

i
av

j
a

q

¼�X
a

ma

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

a

q
�X

a

ma

Z
dt

� ðd�3Þþv2
a

ðd�3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

a

p

���
~A � ~vaffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

a

p � 
ijv
i
av

j
a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

a

p þ���
�
; (3.4)

FIG. 15. Classification of topologies for irreducible diagrams
of the 2-body effective action, both nonfactorizable and
dressing-irreducible. The top line shows the possibilities at 2-
loop, and the bottom line shows the possibilities at 3-loop.

FIG. 16. Feynman rules obtained from the expansion of (3.4)
up to linear order in �, Ai and 
ij. The undetermined wave

numbers flow into the vertex.
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where the dummy index a runs over all the masses in-
volved in the binary evolution, in the second equality
Eq. (3.2) was applied, the ellipsis denote terms nonlinear
in the bulk fields ð�;A; �Þ and we define


ij :¼ �ij � �ij: (3.5)

The Einstein-Hilbert action is invariant under repara-
metrizations and should be gauge fixed. Leaving aside the
question which gauge would be optimal for this problem,
we choose the harmonic gauge in order to facilitate com-
parison with the literature. Accordingly, we add the fol-
lowing gauge fixing term to the Einstein-Hilbert action

SGF ¼ 1

32�G

Z
ddx

ffiffiffi
g

p
���	g�	; (3.6)

where �� ¼ ��
��g

��.

The Feynman rules for �, Ai and 
ij coupled to the

worldline can be read from (3.4) and we list on Fig. 16
those couplings which are necessary to our discussion.
Solid lines, dashed lines and wavy lines of the figure are
associated with propagators of the instantaneous nonrela-
tivistic modes �, Ai and 
ij, respectively. In momentum

space these propagators are given by

with Pij;kl ¼ 1
2 ½�ik�jl þ �il�jk � 2

d�3�ij�kl�.
The Feynman rules for the bulk vertices are obtained

from expansion of the Einstein-Hilbert action (3.3) and the
gauge fixing term (3.6). The resulting set of vertices which
contribute to the calculations below are presented in
Figs. 17 and 18, where we separate vertices which involve
time derivatives in Fig. 18, from the static ones in Fig. 17.

In addition, one has to impose wave number9 conserva-
tion at each bulk vertex by assigning it a delta-function
factor, ð2�Þd�1�ðPikiÞ, where

P
iki is the total wave

number flow into a given vertex, and one must integrate
over each undermined wave number k of the diagram

Z
k

:¼
Z dd�1k

ð2�Þd�1
: (3.7)

Finally, one has to divide by the symmetry factor of the
diagram.

B. Dressed charges

Given the general theory, it is natural to inquire about the
form of the dressed quantities within PN. Accordingly we
would like to compute the dressed charges (the dressed
propagators are simple and are also discussed below).
Following our discussion at the end of Sec. II B on the

generalization of the definitions for dressed subdiagrams to
a multifield field theory we define three dressed charges for
the interaction of gravity with a compact pointlike object.
The � charge is usually referred to as energy, the A charge
is the energy current (or alternatively, momentum distri-
bution) and the 
 charge is the stress. Together they
describe the full energy-momentum tensor (in space-
time). In analogy with Fig. 3 we define the 3 dressed PN
charges in Fig. 19. All the dressed charges describe the
changing apparent charge due to nonlinear bulk interaction
at large, but not infinite, distances.
In PN we have a quadratic retardation vertex for all 3

fields just like in our scalar field example. Since the 3 fields
have different tensor characters they cannot mix, and we
have exactly 3 dressed propagators each one defined as in
Fig. 7 (bottom). Physically they all correspond to full

FIG. 17. Static bulk vertices obtained from the expansion of the Hilbert-Einstein action (3.3) and gauge fixing term (3.6) but
restricting to time-independent terms. The undetermined wave numbers flow into the vertex.

9Quantum mechanically the wave number k is equivalent to
momentum, and this is how k is usually referred to, but in
classical field theory it is not a momentum.
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relativistic propagators, even though A and 
 are spatial
rather than space-time tensors.

The Feynman diagrams required for the computation of
the dressed energy distribution, �,10 and the stress, sij, up
to 2PN as well as the dressed momentum distribution, ji,
up to 1.5PN are shown in Figs. 20–22.11 The PN order was
chosen as the one required for the 2PN effective action,
except for the case of the stress where we chose to compute
an additional PN order. All the results below apart from the
last term of the dressed stress 2PN were tested and con-
firmed against the known expression for 2PN effective
action. In addition we shall show in the next subsections
how to use the dressed charges to calculate diagrams
beyond 2PN.

Given the Feynman rules of the previous subsection, one
can write down the expressions for the Feynman integrals.
The integrals which are essential for the evaluation of the
loop integrals and the Fourier transforms are listed in the
appendix. Note also that since we compute the dressed
sources up to a definite order in the PN expansion there

is no need to keep the vertices of Fig. 16 as they are.
Instead, one has to expand each such vertex keeping only
those powers of ‘‘v’’ which contribute to the PN order
under consideration.
We proceed to present the results of all the diagrams. We

start from the dressed energy distribution. Let us denote

FIG. 18. Time-dependent bulk vertices obtained from the expansion of the Hilbert-Einstein action (3.3) and gauge fixing term (3.6).
Time derivative above the propagator indicates the direction on which it acts. The undetermined wave numbers flow into the vertex.

FIG. 19. The diagrammatic definition of the dressed charge
distributions in PN �, ji and sij as the one point function for �,
Ai and 
ij respectively in the presence of a single source.

Retardation vertices are forbidden from the external leg.

10In this section we shall shorten the notation and write � rather
than �dr.
11Alternatively, one may count PN orders relative to the leading
order. With this convention the dressed energy is computed to
order þ2PN relative to leading, while the dressed momentum
and stress are computing to þ1PN beyond leading.
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� :¼ Gm2 �ðð3� dÞ=2Þ�ððd� 1Þ=2Þ
ð16�Þðd�4Þ=2�ðd=2Þ ; (3.8)

then

Fig: 20ðaÞ ¼ �m
Z

dt
ðd� 3Þ þ v2

ðd� 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

p �ðt; ~xðtÞÞ

) ��ðt; ~xÞ
¼m

�
1þ d� 1

2ðd� 3Þv
2 þ 3d� 5

8ðd� 3Þv
4

�
�ð ~x� ~xðtÞÞ;

��ðt; ~kÞ ¼m

�
1þ d� 1

2ðd� 3Þv
2 þ 3d� 5

8ðd� 3Þv
4

�

� expð�i ~k � ~xðtÞÞ; (3.9)

Fig: 20ðbÞ ¼ �
ðd� 2Þ2
2ðd� 3Þ

Z
dt ~v2

�
Z
k
e�i ~k� ~xðtÞj ~kjd�3�ðt;� ~kÞ (3.10)

Fig: 20ðcÞ ¼ �
d� 2

2

Z
dt

�
Z
k
e�i ~k� ~xðtÞj ~kjd�5ð ~k � ~vÞ2�ðt;� ~kÞ (3.11)

Fig : 20ðdÞ ¼ ð16�GÞ2m3

24

ðd� 3Þ2
ðd� 2Þðd� 5Þ

�
Z

dt
Z
k
e�i ~k� ~xðtÞ ~k2Iðj ~kjÞ�ðt;� ~kÞ

) ��ðt; ~kÞ

¼ � ð16�GÞ2m3

24

� ðd� 3Þ2
ðd� 2Þðd� 5Þ e

�i ~k� ~xðtÞ ~k2Iðj ~kjÞ; (3.12)

with

Iðj ~kjÞ ¼ ffiffiffiffi
�

p �ð4� dÞ
ð4�Þd�1

�ðd=2� 3=2Þ2�ðd� 3Þ
�ðd=2� 1Þ�ð3d=2� 9=2Þ

�
� ~k2
2

�
d�4

: (3.13)

Apparently, the above expression possesses a pole when
d ¼ 4, and thus one needs to introduce a counterterm
which inevitably leads to a logarithmic behavior of the
dressed energy distribution with scale. Yet this pole is
unphysical. Indeed, applying a Fourier transform to
Eq. (3.12) yields

FIG. 22. Feynman diagrams which contribute to the dressed stress tensor distribution up to 2PN. Diagrams (a),(b) are leading (order
1PN) while the rest are þ1PN (2PN).

FIG. 20. Feynman diagrams which contribute to the dressed energy distribution up to 2PN. Diagram (a) is leading (order 0PN) while
the rest are 2PN.

FIG. 21. Feynman diagrams which contribute to the dressed momentum distribution up to 1.5PN. Diagram (a) is leading (order
0.5PN) while the rest are þ1PN (1.5PN).
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��ðt; ~rÞ ¼ ð8�GÞ2
�

m

�d�2

�
3 ðd� 3Þ
ðd� 2Þðd� 5Þ j~rj

7�3d;

(3.14)

where

�d�2 ¼ 2�ðd�1Þ=2

�ððd� 1Þ=2Þ ; ~r ¼ ~x� ~xðtÞ; (3.15)

and this expression is regular for d ¼ 4.
Alternatively, one could stay within the wave number

space (k space) by introducing the following counterterm

ct ¼ � G2m3

6ðd� 4Þ
Z

dt
Z
k
e�i ~k� ~xðtÞ ~k2�ðt;� ~kÞ

¼ G2m3

6ðd� 4Þ
Z

dth�ðt; ~xðtÞÞ: (3.16)

However, as explained in [5] such a term can be removed
from the Lagrangian by an appropriate field redefinition as
it is proportional to the leading order equation of motion
for the NRG field � and hence it is a redundant term.12

The contribution to the energy distribution of the dia-
grams which contain time derivatives is given by

Fig: 20ðeÞ ¼ ��

8

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5½ ~k2 ~v2 � ð3d� 5Þ

� ð ~k: ~vÞ2 � 4ðd� 2Þði ~k � ~aÞ��ðt;� ~kÞ
Fig: 20ðfÞ ¼ �d� 2

2
�
Z

dt
Z
k
e�i ~k� ~xðtÞj ~kjd�5

� ½i ~k � ~aþ 2ð ~k � ~vÞ2��ðt;� ~kÞ (3.17)

Combining altogether we get up to 2PN

�ðt; ~kÞei ~k� ~xðtÞ ¼ m

�
1þ d� 1

2ðd� 3Þv
2 þ 3d� 5

8ðd� 3Þv
4

�

� ð16�GÞ2m3

24

ðd� 3Þ2
ðd� 2Þðd� 5Þ

~k2Iðj ~kjÞ

� 4d2 � 17dþ 19

8ðd� 3Þ �j ~kjd�3v2

þ d� 3

8
�j ~kjd�5ð ~k � ~vÞ2; (3.18)

where the exponential on the left-hand side really belongs
on the right-hand side and was moved from there to
achieve a ‘‘cleaner’’ form. Transforming back to coordi-
nate space yields

�ðt; ~rÞ ¼ m

�
1þ d� 1

2ðd� 3Þv
2 þ 3d� 5

8ðd� 3Þv
4

�
�ð~rÞ

þ 8�G

�
m

�d�2

�
2
�
ð ~v � r̂Þ2 � 2

d� 2

d� 3
v2

�
j~rj4�2d

þ ð8�GÞ2
�

m

�d�2

�
3 ðd� 3Þ
ðd� 2Þðd� 5Þ j~rj

7�3d:

(3.19)

The results for the dressed momentum distribution up to
1.5PN are

Fig: 21ðaÞ ¼
Z

dt
mviffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p Aiðt; ~xðtÞÞ

) djiðt; ~xÞ ¼ mvi

�
1þ 1

2
v2

�
�ð ~x� ~xðtÞÞ;

�jiðt; ~kÞ ¼ mvi

�
1þ 1

2
v2

�
expð�i ~k � ~xðtÞÞ;

Fig: 21ðbÞ ¼ ��
d� 2

2

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�3 ~v � ~Aðt;� ~kÞ

Fig: 21ðcÞ ¼ ��
d� 3

8ðd� 2Þ
Z

dt
Z
k
e�i ~k� ~xðtÞj ~kjd�5ð ~k2vi

þ ðd� 3Þð ~k � ~vÞkiÞAiðt;� ~kÞ: (3.20)

Altogether we obtain up to 1.5PN

jiðt; ~kÞei ~k� ~xðtÞ ¼ mvi

�
1þ 1

2
v2

�

� 4d2 � 17dþ 19

8ðd� 2Þ �j ~kjd�3vi

þ ðd� 3Þ2
8ðd� 2Þ�j

~kjd�5ð ~k � ~vÞki: (3.21)

In coordinate space the dressed momentum distribution is

jiðt; ~rÞ ¼ mvi

�
1þ 1

2
v2

�
�ð ~rÞ þ 8�G

�
m

�d�2

�
2

�
�
d� 3

d� 2
ð ~v � r̂Þr̂i � 2vi

�
j~rj4�2d: (3.22)

Finally, the results for the dressed stress charge up to
2PN are given by

Fig: 22ðaÞ ¼ m

2

Z
dt

vivjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p 
ijðt; ~xÞ

) �sijðt; ~xÞ ¼ mvivj

�
1þ 1

2
v2

�
�ð ~x� ~xðtÞÞ;

�sijðt; ~kÞ ¼ mvivj

�
1þ 1

2
v2

�
expð�i ~k � ~xðtÞÞ; (3.23)

12In quantum field theory such an object is called a redundant
operator referring to its action on the Hilbert space of states. In
the classical theory it is not an operator and calling it a term is
more appropriate.
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Fig : 22ðbÞ ¼ ��
ðd� 3Þ2
16ðd� 2Þ

Z
dt

�
1þ d� 1

d� 3
v2

�

�
Z
k
e�i ~k� ~xðtÞj ~kjd�5½kikj � ~k2�ij�
ijðt;� ~kÞ

(3.24)

Fig: 22ðcÞ ¼ �
d� 3

32ðd� 2Þ
Z

dt
Z
k
e�i ~k� ~xðtÞj ~kjd�5

�ð3d� 5Þ2
d� 3

� ð ~k � ~vÞ2 þ ~k2 ~v2 þ 8ðd� 1Þðd� 2Þ
d� 3

i ~k � ~a
�

��ij

ijðt;� ~kÞ (3.25)

Fig: 22ðdÞ ¼ �
d� 2

2

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5

�
1

2
ð ~k � ~vÞ2�ij

þ ði ~k � ~aÞ�ij � ikiaj

�

ijðt;� ~kÞ (3.26)

Fig : 22ðeÞ ¼ �

8

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5

�
ðd� 3Þð ~k2 ~v2�ij

� ~v2kikjÞ � 2ðd� 2Þ ~k2vivj

�

ijðt;� ~kÞ

(3.27)

Fig: 22ðfÞ ¼ ��

4

d� 3

d� 2

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5

�
d� 2

8
~k2 ~v2 � ðd� 3Þðd� 4Þ

8
ð ~k � ~vÞ2 � d2 � 7dþ 11

4
ði ~k � ~aÞ

�
�ij


ijðt;� ~kÞ

��

4

d� 3

d� 2

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5

�
�d� 3

8
~v2kikj þ ðd� 3Þðd� 5Þ

8
ðk̂ � ~vÞ2kikj � 1

4
~k2vivj

�

ij

��

4

d� 3

d� 2

Z
dt

Z
k
e�i ~k� ~xðtÞj ~kjd�5

�
� ikiaj

2
þ ðd� 3Þðd� 5Þ

4
ð ~k � ~aÞik̂ik̂j

�

ij (3.28)

As a result, the dressed stress charge up to 2PN is given by

sijðt; ~kÞei ~k� ~xðtÞ ¼ mvivj

�
1þ 1

2
v2

�
� 4d2 � 17dþ 19

4ðd� 2Þ
�
ikðiajÞ þ

~k2

2
vivj

�
j ~kjd�5�þ ðd� 3Þ2

8ðd� 2Þ
�
1� v2

2
� d� 5

2
ð ~v � k̂Þ2

� ðd� 5Þ i ~a � ~k
~k2

�
kikjj ~kjd�5�þ

�ðd� 1Þðd2 þ 8d� 21Þ
16ðd� 2Þ ð ~k � ~vÞ2 þ d3 þ 2d2 � 12dþ 7

8ðd� 2Þ i ~a � ~k
�
j ~kjd�5��ij

� ðd� 3Þ2
8ðd� 2Þ

�
1� v2

2

�
j ~kjd�3��ij; (3.29)

where (ij) denotes symmetrization with respect to indices i and j with factor 1=2 included. In the coordinate space we
obtain

sijðt; ~rÞ ¼mvivj

�
1þ 1

2
v2

�
�ð ~rÞ � ð3d� 5Þ

ðd� 2Þðd� 3ÞfðrÞ ~r
ðiajÞ � 2fðrÞvivj � d2 þ 10d� 15

4ðd� 2Þðd� 3ÞfðrÞðv
2 � 2ðd� 2Þð ~v � r̂Þ2Þ�ij

� d� 3

d� 2
fðrÞ

�
ðd� 1Þð ~v � r̂Þ2r̂ir̂j � 2ð ~v � r̂Þvir̂j þ 1

2

�
1� v2

2

�
�ij � r̂ir̂j þ ð ~a � ~rÞr̂ir̂j

�

þ d2 þ 5d� 8

2ðd� 2Þðd� 3ÞfðrÞð ~a � ~rÞ�
ij; (3.30)

with

fðrÞ ¼ 8�G

j~rj2d�4

�
m

�d�2

�
2
: (3.31)

C. Skeletons for 2PN and 3PN

We shall now demonstrate how all the bare diagrams of
the two-body effective action up to 2PN, order by order
transform into their dressed form, including their corre-
sponding skeletons.

At 0PN (Newtonian order) a single diagram (Fig. 1)
contributes representing the interaction of two tree-level
masses.

At 1PN (Einstein-Infeld-Hoffmann Lagrangian) the four
diagrams shown in Fig. 23 contribute. The first is a v2

component of the mass vertex and can be considered to be
a trivial dressing of the energy. The second is the tree-level
interaction of two currents. The third represents a propa-
gator dressing (retardation) of the Newtonian potential.
Finally the fourth is due to a nonlinear worldline vertex
which accounts for the gravitating nature of potential
energy. Altogether none is irreducible with a topology
other than Newtonian. We note that the last diagram is of
orderOðG2m3v0Þ wherem represents a typical mass and v
a typical velocity while all the previous diagrams are of
order OðGm2v2Þ.
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At 2PN Gilmore and Ross [9] found 21 diagrams. We
shall see that many can be interpreted to represent dressing
effects while only one is both nonfactorizable and
dressing-irreducible. Indeed [9] find its computation to be
the core or essential computation at this order.

The six diagrams shown in Figs. 24(a)–24(f) contribute
at order OðGm2v4Þ. Figures 24(b), 24(c), and 24(e) repre-
sent propagator dressing to diagrams from lower orders,
while the rest involve only tree-level v-dependent vertices.

At order OðG2m3v2Þ there are 10 diagrams shown in
Fig. 25. Figures 25(a)–25(c) are V-shaped and as such
factorizable and at least one factor is the Newtonian po-
tential. Figures 25(d)–25(j) are Y-shaped and as such are
dressing-reducible. Four diagrams [25(d), 25(f), 25(g), and
25(i)]) represent mass dressing, the two [25(e) and 25(h)]
represent current dressing, while finally [25(j)] can be
thought to represent stress dressing.

At order OðG3m4v0Þ there are 5 diagrams. Both [26(a)
and 26(c)] factorize into 3 Newtonian-potential factors.
Figure 26(b) represents a mass dressing (the circled piece)
while 26(e) includes two 
 dressing subdiagrams. Finally
diagram 26(d) is the one and only truly irreducible diagram
at 2PN. Actually for some yet-unexplained reason the
computation reduces after several steps to a square of the
master one-loop integral. We speculate that this is special
to the GR action (and is not generic to classical field
theories) and in particular to the gauge symmetry which
may relate this diagram to other diagrams at 2PN.

As a result of this analysis we can extract all the non-
factorizable skeletons up to 2PN. These are listed in
Fig. 27, where the skeletons are labeled according to the
PN order in which they first appear. By evaluating the
dressed diagrams we successfully tested our expressions
for the dressed charges from the previous subsection
against the known expressions for the effective action.

3PN. As a step towards the determination of 3PN we
extend the list of skeletons up to that order using the
classification of possible topologies in Fig. 15 and some
knowledge on the Feynman rules of PN. Taken together

with the evaluation of the dressed vertices (partially ob-
tained in the last subsection) this list of skeletons leads the
way to a determination of the 3PN part of the 2-body
effective action. We note that the 3-loop topologies of
Fig. 15 are not realized at 3PN. The reason is the absence
in PN of certain bulk vertices such as �3.

D. Computing beyond 2PN

In this subsection we explicitly demonstrate the econo-
mizing ability of the proposed approach in several cases
(i) A certain economization during 2PN calculation.
(ii) Using the dressed energy distribution computed

above in Sec. III B to calculate terms of the
Newtonian interaction type of order 3PN and 4PN.

(iii) Similarly, using the computed dressed momentum
distributions we calculate a current-current interac-
tion term of order 3PN.

(iv) Finally, we use our highest order results for the
dressed stress in order to compute 3PN terms by
attaching the external 
 leg to the second compact
object.

An application at 2PN. The first nontrivial example
appears during the computation of the 2-body effective
Lagrangian at order 2PN. Indeed the dressed stress subdia-
gram in Fig. 22(b) appears twice at 2PN—both at Fig. 25(j)
and at Fig. 26(b), and of course it is enough to evaluate it
once. Another point of view is to obtain both dressed
energies corresponding to Figs. 20(c) and 20(d) from the
recursive relation shown in Fig. 28 after substituting in the
leading contribution to the dressed stress from Figs. 22(a)
and 22(b).
Proceeding beyond 2PN we shall now compute certain

3PN and 4PN terms in the 2-body effective action building
on the results of the previous section. Pictorially these
terms are shown on Fig. 29, where the bubbles represent
the dressed charges, and we explicitly indicate on each
bubble which piece of the dressed charge is essential to the
computation.

FIG. 24. 2PN Diagrams contributing at order OðGm2v4Þ (following [9]).

FIG. 23. The four diagrams which contribute to the two-body effective action at 1PN—the Einstein-Infeld-Hoffmann Lagrangian.
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FIG. 25 (color online). 2PN Diagrams contributing at order OðG2m3v2Þ (following [9]).

FIG. 26 (color online). 2PN Diagrams contributing at order OðG3m4v0Þ (following [9]).

FIG. 27. A listing of all nonfactorizable skeletons appearing in the dressed post-Newtonian perturbation theory up to 3PN, listed by
the PN order at which they first appear.
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Building on the Feynman rules of the previous section,
we obtain

Figs : 29ðaÞ; ð29dÞ ¼ 8�G
d� 3

d� 2

�
Z

dt
Z
k

�2ðt;� ~kÞ�1ðt; ~kÞ
~k2

;

(3.32)

Fig : 29ðbÞ ¼ �16�G
Z

dt
Z
k

~j2ðt;� ~kÞ: ~j1ðt; ~kÞ
~k2

; (3.33)

Fig : 29ðcÞ ¼ 8�G
Z

dt
Z
k

sij2 ðt;� ~kÞPij;kls
kl
1 ðt; ~kÞ

~k2
:

(3.34)

The 3PN j-j and s-s terms. Substituting (3.21) and (3.29)
and d ¼ 4 into (3.33) and (3.34) yields

Fig: 29ðbÞ ¼ �
Z

dt
Gm1m2

r
ð ~v1 � ~v2Þv2

1v
2
2 �

Z
dt

Gm1m2

2r

�
�
Gm2

r
v2
1 þ

Gm1

r
v2
2

�
½7ð ~v1 � ~v2Þ þ ð ~v1 � r̂Þ

� ð ~v2 � r̂Þ� þ 7�2

32

Z
dt

G3m2
1m

2
2

r3
ð ~v1 � ~v2

� 3ð ~v1 � r̂Þð ~v2 � r̂ÞÞ; (3.35)

Fig: 29ðcÞ ¼
Z

dt
Gm1m2

r
½ð ~v1 � ~v2Þ2 � v2

1v
2
2�v2

1 þ
Z

dt
G2m2

1m2

r2

�
1

2
ð ~v1 � ~v2Þ2 þ 203

12
v2
2v

2
1

�

þ
Z

dt
G2m2

1m2

r2

�
�22

3
ð ~v2 � ~rÞð ~a1 � ~v2Þ � 121

4
v2
2ð ~a1 � ~rÞ �

1

6
ð ~a1 � ~rÞð ~v2 � r̂Þ2

�
�

Z
dt

G2m2
1m2

r2

�
245

6
v2
2ð ~v1 � r̂Þ2

þ 1

4
v2
1ð ~v2 � r̂Þ2 þ 1

3
ð ~v1 � r̂Þ2ð ~v2 � r̂Þ2 þ 1

12
ð ~v1 � ~v2Þ2

�
þ 1

3

Z
dt

G2m2
1m2

r2
½ð ~v1 � ~v2Þð ~v1 � r̂Þð ~v2 � r̂Þ� þ ð1$ 2Þ;

(3.36)

where ~rðtÞ ¼ ~x2ðtÞ � ~x1ðtÞ denotes the radius vector be-
tween the particles, and we have neglected the contact term
proportional to �ð~rÞ since in CLEFT particles are widely
separated from each other.

The �-� terms. Let us now evaluate Fig. 29(b). First note
that since Eq. (3.12) contains a simple pole in d ¼ 4 one
concludes that the integrand of (3.32) possesses a double
pole, and thus in contrast to the previous case (3.14) a
Fourier transform will not lead to a regular expression.

. . .

FIG. 28. The diagrammatic representation of the recursive
integral equation satisfied by the dressed energy.

(a) (b) (c)

(d)

FIG. 29. The diagrammatic representation of terms beyond 2PN in the 2-body effective action: (a) a 3PN �-� term, (b) a 3PN j-j
term, (c) a 3PN s-s term and finally (d) a 4PN �-� term.
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Therefore, we expand Eq. (3.12) around d ¼ 4

Fig: 20ðdÞ ¼ G2m3
rL

�
Z

dt
Z
k
e�i ~k� ~xðtÞ ~k2�ðt;� ~kÞ

�
�
� 1

6
þ 1

12
ð�1þ 2�� 2 lnð8�2Þ

þ 2 lnð ~k2L2ÞÞ þOðÞ
�
; (3.37)

where � is Euler’s constant and motivated by the QFT
renormalization approach we introduced an arbitrary
length scale L and the following definitions13

 ¼ 4� d; Gm ¼ GmrL
�: (3.38)

In order to eliminate the divergence as  ! 0, we add
the following counterterm to the effective action

ct ¼ c
Z

dt��ðt; ~xðtÞÞ ¼ �c
Z

dt
Z
k
e�i ~k� ~xðtÞ ~k2�ðt;� ~kÞ;

(3.39)

where

c ¼ L�

�
cr �G2m3

r

6

�
: (3.40)

Since the renormalization scale L introduced above is
arbitrary, we must have

0 ¼ L
dm

dL
¼ L�

�
�mr þ L

dmr

dL

�

) L
dmr

dL
¼ mr;

0 ¼ L
dc

dL
¼ �L�

�
cr �G2m3

r

6

�

þ L�

�
L
dcr
dL

�G2m2
r

2
L
dmr

dL

�

) L
dcr
dL

¼ cr þG2m3
r

3
: (3.41)

Apparently, the theory exhibits a nontrivial RG flow. But
as argued in [5] this scaling is not physical in nature and
can be removed by a suitable field redefinition which is
tantamount to a coordinate transformation. Indeed, com-
bining (3.37) with (3.39) yields

��ðt; ~kÞ ¼
�
cr �G2m3

r

12
ð�1þ 2�� 2 lnð8�2Þ

þ 2 lnð ~k2L2ÞÞ
�
e�i ~k� ~xðtÞ ~k2: (3.42)

In coordinate space this expression is given by

��ðt; ~rÞ ¼
�
cr �G2m3

r

12
ð�1þ 2�� 2 lnð8�2ÞÞ

�
�ð ~rÞ

� 1

2�

G2m3
r

r5
; (3.43)

where ~r ¼ ~x� ~xðtÞ and the relation

ln ~k2 ¼ lim
�!0

d

d�
ðk2Þ� (3.44)

was used in order to apply the Fourier transform formulas
of the appendix.
However, the contact term in the above expression for

�� can be eliminated by the following field redefinition

� ! �þ 4�G

�
cr �G2m3

r

12
ð�1þ 2�� 2 lnð8�2ÞÞ

�
�ð ~rÞ:
(3.45)

As a result, we reproduced Eq. (3.14) for d ¼ 4 and also

obtained the regularized expression for �ðt; ~kÞ in four
dimensions14

�ðt; ~kÞei ~k� ~xðtÞ ¼ m

�
1þ 3

2
v2 þ 7

8
v4

�

þ �

8
Gm2j ~kjð15v2 � ðk̂ � ~vÞ2Þ

�G2m3

6
~k2 lnð ~k2L2Þ: (3.46)

A comment should be made regarding the field redefi-
nition (3.45). Obviously, such a shift introduces an extra
term to the worldline action as a side effect. This term is
proportional to the second derivative of the NRG field �
with respect to time. However, it can be removed by
including additional counterterm given by

ct ¼ ~c
Z

dt
@2�

@t2
ðt; ~xðtÞÞ: (3.47)

We will not elaborate the details of this elimination as they
are irrelevant to the computation of the 4PN term.
Substituting (3.46) into (3.32) leads to

Fig: 29ðaÞ ¼ 21

16

Z
dt

Gm1m2

r
v2
1v

4
2 þ

3

2

Z
dt

G2m2
2m1

r2
v2
1

�
�
7

2
v2
2 þ

ð ~v2 � r̂Þ2
2

þ 1

3

Gm2

r

�

þ ð1 $ 2Þ; (3.48)

and
13Index ‘‘r’’ stands for ‘‘renormalized,’’ though in the current
work we will not encounter divergences associated with non-
trivial RG flow of the mass. 14We omit index ‘‘r’’ to avoid abuse of notation.
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Fig: 29ðdÞ ¼ 49

64

Z
dt

Gm1m2

r
v4
1v

4
2 þ

7

8

Z
dt

G2m2
2m1

r2
v4
1

�
7

2
v2
2 þ

ð ~v2 � r̂Þ2
2

þ 1

3

Gm2

r

�
þ 7

8

Z
dt

G2m2
1m2

r2
v4
2

�
7

2
v2
1

þ ð ~v1 � r̂Þ2
2

þ 1

3

Gm1

r

�
þ �2

64

Z
dt

G3m2
1m

2
2

r3

�
ð ~v1 � ~v2Þ2 � 59

2
v2
1v

2
2 þ

87

2
v2
1ð ~v2 � r̂Þ2 þ 87

2
v2
2ð ~v1 � r̂Þ2

þ 15

2
ð ~v2 � r̂Þ2ð ~v1 � r̂Þ2 � 6ð ~v2 � r̂Þð ~v1 � r̂Þð ~v1 � ~v2Þ

�
þ 1

3

Z
dt

G4m2
1m

3
2

r4

�
v2
1

�
23

2
� 8�� 8 lnðr=LÞ

�

þ ð ~v1 � r̂Þ2
�
� 3

2
þ 2�þ 2 lnðr=LÞ

��
þ 1

3

Z
dt

G4m3
1m

2
2

r4

�
v2
2

�
23

2
� 8�� 8 lnðr=LÞ

�

þ ð ~v2 � r̂Þ2
�
� 3

2
þ 2�þ 2 lnðr=LÞ

��
� 4

9

Z
dt

G5m3
1m

3
2

r5
½3� 2�� 2 lnðr=LÞ�: (3.49)

To derive this expression we first applied (3.44) and then
used transform Fourier master integrals of the appendix.
Appearance of an arbitrary renormalization scale L in the
above expression should not be taken as a strong evidence
for a nontrivial RG flow, since if other terms in the full 4PN
potential are considered then cancellation of logs might
occur.
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APPENDIX: MASTER INTEGRALS

In this appendix we present master integrals which we
found useful during the calculations presented in the text.
We start with

J ¼
Z ddq

ð2�Þd
1

ðq2Þ�½ðq� kÞ2��

¼ ðk2Þd=2����

ð4�Þd=2
�ð�þ �� d=2Þ

�ð�Þ�ð�Þ

� �ðd=2� �Þ�ðd=2� �Þ
�ðd� �� �Þ (A1)

Ji ¼
Z ddq

ð2�Þd
qi

ðq2Þ�½ðq� kÞ2�� ¼ d=2� �

d� �� �
Jki (A2)

Jij ¼
Z ddq

ð2�Þd
qiqj

ðq2Þ�½ðq� kÞ2��

¼ 1

ð4�Þd=2
�ð�þ �� d=2� 1Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 1Þ�ðd=2� �Þ

�ðd� �� �þ 2Þ

�
�
ðd=2� �þ 1Þð�þ �� d=2� 1Þkikj þ ðd=2� �Þk

2

2
�ij

�
ðk2Þd=2���� (A3)

Jijk ¼
Z ddq

ð2�Þd
qiqjqk

ðq2Þ�½ðq� kÞ2��

¼ ðk2Þd=2����

ð4�Þd=2
�ð�þ �� d=2� 1Þ

�ð�Þ�ð�Þ
�ðd=2� �þ 2Þ�ðd=2� �Þ

�ðd� �� �þ 3Þ
�

�
ðd=2� �þ 2Þð�þ �� d=2� 1Þkikjkk þ ðd=2� �Þk

2

2
ð�ijkk þ �jkki þ �ikkjÞ

�
(A4)
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Jijkl ¼
Z ddq

ð2�Þd
qiqjqkql

ðq2Þ�½ðq�kÞ2��

¼ ðk2Þd=2����

ð4�Þd=2
�ðd=2��þ 2Þ�ðd=2��Þ

�ðd����þ 4Þ
�ð�þ�� d=2� 2Þ

�ð�Þ�ð�Þ
�
ðd=2��Þðd=2��þ 1Þð�ij�kl þ�ik�jl þ�il�jkÞ

� ðk2Þ2
4

þ ð�ijkkkl þ�ikkjkl þ�ilkjkk þ�jkkikl þ�jlkikk þ�klkikjÞk
2

2
ð�þ�� d=2� 2Þðd=2��þ 2Þ

� ðd=2��Þ þ kikjkkklð�þ�� d=2� 2Þð�þ�� d=2� 1Þðd=2��þ 2Þðd=2��þ 3Þ
�
: (A5)

As noticed in [9] the above integrals (A2)–(A5) of vector
nature can be reduced to a scalar integral (A1) on the basis
of their transformation properties under rotations. Yet such
a reduction becomes involved when the rank of the tensor
under consideration increases, and therefore we choose to
list all those which were relevant to this work.

In order to evaluate the above integrals we proceed as
follows. We first apply the generalized Feynman parame-
trization [38]

YN
i¼1

1

Ami

i

¼
Z 1

0

YN
i¼1

dxi�

�X
xi � 1

� Q
xmi�1
i

½P xiAi�
P

mi

� �ðm1 þm2 þ � � � þmNÞ
�ðm1Þ � � ��ðmNÞ (A6)

with N ¼ 2 and m1 ¼ �, m2 ¼ �. Next we integrate over
one of the Feynman parameters, e.g. x2, and subsequently
redefine the undetermined wave number q ! qþ x1k.

Now, in order to integrate over q, we build on the
following formula

Z ddq

ð2�Þd
1

ðzq2 þ�Þn ¼
z�d=2

ð4�Þd=2
�ðn� d=2Þ

�ðnÞ �d=2�n;

(A7)

computed by means of dimensional regularization. Thus,
for instance, differentiating it with respect to z a definite
number of times and setting z ¼ 1, one obtains

Z ddq

ð2�Þd
q2

ðq2 þ �Þn ¼
d=2

ð4�Þd=2
�ðn� d=2� 1Þ

�ðnÞ �d=2�nþ1;

Z ddq

ð2�Þd
ðq2Þ2

ðq2 þ�Þn ¼
dðdþ 2Þ
4ð4�Þd=2

� �ðn� d=2� 2Þ
�ðnÞ �d=2�nþ2:

(A8)

As a final step we integrate over x1.

Another set of useful identities is related to the following
d-dimensional Fourier transform

Z ddk

ð2�Þd
eikr

ðk2Þ� ¼ 1

ð4�Þd=2
�ðd=2� �Þ

�ð�Þ
�
r2

4

�
��d=2

: (A9)

Differentiating it with respect to r yields

Z ddk

ð2�Þd
ki

ðk2Þ� e
ikr ¼ ixi

�ðd=2��þ1Þ
2ð4�Þd=2�ð�Þ

�
r2

4

�
��d=2�1

;

Z ddk

ð2�Þd
kikj

ðk2Þ� e
ikr ¼�ðd=2��þ1Þ

ð4�Þd=2�ð�Þ
�
�ij

2
þð��d=2�1Þ

�xixj

r2

��
r2

4

�
��d=2�1

(A10)

Z ddk

ð2�Þd
kikjkl

ðk2Þ� eikr ¼ i�ðd=2� �þ 2Þ
16ð4�Þd=2�ð�Þ

�
r2

4

�
��d=2�3

� ½r2ð�ilxj þ �jlxi þ �ijxlÞ
� ðd� 2�þ 4Þxixjxl�; (A11)

Z ddk

ð2�Þd
kikjklkm

ðk2Þ� eikr

¼ �ðd=2� �þ 3Þ
32ð4�Þd=2�ð�Þ

�
r2

4

�
��d=2�4

�
ðd� 2�þ 6Þxixjxlxm

� r2ð�imxjxl þ �jmxixl þ �lmxixj þ �ilxmxj

þ �jlxixm þ �ijxlxmÞ

þ ðr2Þ2
ðd� 2�þ 4Þ ð�il�jm þ �jl�im þ �ij�lmÞ

�
: (A12)
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