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We study past horizons in the class of type II Robinson-Trautman vacuum spacetimes with a

cosmological constant. These exact radiative solutions of Einstein’s equations exist in the future of any

sufficiently smooth initial data, and they approach the corresponding spherically symmetric

Schwarzschild–(anti-)de Sitter metric. By analytic methods we investigate the existence, uniqueness,

location, and character of the past horizons in these spacetimes. In particular, we generalize the Penrose-

Tod equation for marginally trapped surfaces, which form such white-hole horizons, to the case of a

nonvanishing cosmological constant, and we analyze the behavior of its solutions and visualize their

evolutions. We also prove that these horizons are explicit examples of an outer trapping horizon and a

dynamical horizon, so that they are spacelike past outer horizons.
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I. INTRODUCTION

Various aspects of an important Robinson-Trautman
family of expanding, shear-free, and twist-free spacetimes
[1–4] were studied during the past decades. The existence,
asymptotic behavior, possible extensions, global structure,
and other specific properties of vacuum solutions of alge-
braic type II with spherical topology were investigated in
[5–17] and, in particular, the works of Chruściel and
Singleton [18–20]. These studies, based on a rigorous
analysis of solutions to the nonlinear Robinson-Trautman
equation for generic, arbitrarily strong smooth initial data
prescribed at ui, proved that the spacetimes exist globally
for all retarded times u > ui, and that they converge
asymptotically to a corresponding Schwarzschild metric
as u ! þ1. Interestingly, extensions across the
‘‘Schwarzschild-like’’ future event horizon Hþ located
at u ¼ þ1 can, in general, only be madewith a finite order
of smoothness.

In [21,22], these results were generalized to Robinson-
Trautman vacuum spacetimes which admit a nonvanishing
cosmological constant �. It was demonstrated that these
cosmological solutions settle down exponentially fast to a
Schwarzschild–(anti-)de Sitter solution at large u. In cer-
tain cases with �> 0 the interior of the corresponding
Schwarzschild–de Sitter black hole can be joined to an
‘‘external’’ cosmological Robinson-Trautman region
across the horizon Hþ with a higher order of smoothness
than in the analogous case with � ¼ 0. For the extreme
value 9�m2 ¼ 1, the extension is smooth but not analytic
(and not unique). The models with �> 0 also exhibit the
cosmic no-hair conjecture under the presence of gravita-
tional waves. On the other hand, when �< 0 the smooth-
ness of such an extension is lower.

Further generalization of the Chruściel-Singleton analy-
sis of the Robinson-Trautman equation, namely, by includ-
ing a cosmological constant and pure radiation, was also
performed [23]. Such spacetimes generically approach the
Vaidya (anti–)de Sitter metric asymptotically, analogously
as in the previously investigated case with� ¼ 0; see [24].
The existence of spherically symmetric future (black-

hole) event horizon Hþ located at u ¼ þ1 in such
Robinson-Trautman spacetimes is thus established and
well known. However, the existence, uniqueness, location,
and specific properties of an expected past (white-hole)
horizon in this family remains a nontrivial question. These
spacetimes are not global in the ‘‘retarded past’’ because
general solutions of the Robinson-Trautman equation di-
verge as u ! �1. The past event horizon, determined by
the complete global structure (namely, the past null infinity
I�), thus cannot be defined in such a context. To overcome
this problem, it is necessary to employ an appropriate
quasilocal characterization of a black-/white-hole bound-
ary. Many different concepts have already been introduced
and widely applied. The most important of them are ap-
parent horizon [25,26], trapping horizon [27], or isolated
and dynamical horizons [28–30] (see also [31,32]). The
main idea which underlies these quasilocal concepts is
basically the same: the horizon is assumed to be sliced
by a marginally trapped 2-surfaces on which outgoing (or
ingoing for past) null congruences orthogonal to the sur-
face have vanishing expansion. Such horizons have been
frequently used, above all, in studies of black-hole ther-
modynamics and in numerical relativity for locating black
holes in the evolved spacetime.
In the context of vacuum Robinson-Trautman space-

times with � ¼ 0, past (white-hole) horizons were already
studied [11,14–17]. Following the approach outlined by
Penrose [33,34], Tod in [11] explicitly derived the equation
for an outer boundary of marginally past-trapped 2-
surfaces at any constant retarded time u, and subsequently

*podolsky@mbox.troja.mff.cuni.cz
†ota@matfyz.cz

PHYSICAL REVIEW D 80, 124042 (2009)

1550-7998=2009=80(12)=124042(13) 124042-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.124042


proved the existence and uniqueness of its smooth solu-
tions. The 3-surface formed from these 2-surfaces for all u
is then a natural analog of the past horizon in the Robinson-
Trautman spacetimes. Further properties of such horizon
were investigated by Chow and Lun [14,15]. In particular,
they demonstrated that the past apparent horizon is not
timelike and that its surface area is a decreasing function of
u. In addition, they performed numerical simulations of its
evolution (see also [16]). Recently, Natorf and Tafel [17]
also investigated the past quasilocal horizons in vacuum
Robinson-Trautman spacetimes. They showed that the
marginally trapped 2-surfaces cross the surface r ¼ 2m,
and that the only spacetime which admits a null nonex-
panding horizon with sections diffeomorphic to S2 is the
Schwarzschild spacetime. Weakening this condition leads
to the C metric with conical singularities. Interestingly,
Hoenselaers and Perjés [35] demonstrated that for non-
smooth initial data at ui there exists a class of Robinson-
Trautman spacetimes that asymptotically decay to the
C metric which represents a uniformly accelerating pair
of black holes, as opposed to the single spherically sym-
metric and static Schwarzschild black hole.

Our aim here is to extend these analyses to include an
arbitrary value of the cosmological constant �.
Generalizing [11,15,17], we investigate the existence and
specific properties of past (white-hole) horizons. In Sec. II
we briefly review the family of Robinson-Trautman space-
times with a cosmological constant. In Sec. III we derive a
generalization of the Penrose-Tod equation for marginally
past-trapped surfaces. Subsequently, in Sec. IV we prove
the existence and uniqueness of the corresponding past
horizon, and we clarify its character. In the final Sec. V
we investigate the asymptotic behavior of the past horizon
by linearizing the equations, and we visualize the results.

II. ROBINSON-TRAUTMAN METRIC AND FIELD
EQUATION

The general metric for a vacuum Robinson-Trautman
spacetime has the standard form [1–4]

ds2 ¼ �2Hdu2 � 2dudrþ 2
r2

P2
d�d ��; (2.1)

in which 2H ¼ �ðlnPÞ � 2rðlnPÞ;u � 2m=r� ð�=3Þr2,
� � 2P2@�@ �� ; (2.2)

and � is the cosmological constant. The metric contains
two functions, namely, Pð�; ��; uÞ and mðuÞ, which for
vacuum solutions must satisfy the nonlinear equation

��ðlnPÞ þ 12mðlnPÞ;u � 4m;u ¼ 0; (2.3)

referred to as the Robinson-Trautman equation.
The spacetime admits a geodesic, shear-free, twist-free,

and expanding null congruence generated by k ¼ @r. Thus,
r is an affine parameter along the rays of this congruence, u
is a retarded time coordinate, and � is a complex spatial

stereographic-type coordinate. The Gaussian curvature of
the 2-surfaces�2 spanned by � , on which u is any constant
and r ¼ 1, is given by

Kð�; ��; uÞ � �ðlnPÞ: (2.4)

For general fixed values of r and u, the Gaussian curvature
of these 2-spaces with the metric 2r2P�2d�d �� is K=r2 so
that, as r ! 1, they locally become flat.
Using the natural null tetrad k ¼ @r, l ¼ @u �H@r,

m ¼ ðP=rÞ@ �� , the nonzero components of the Weyl tensor

for the metric (2.1) are

�2 ¼ �m

r3
; �3 ¼ � P

2r2
K;� ;

�4 ¼ � 1

r

�
P2ðlnPÞ;u�

�
;�
þ 1

2r2
ðP2K;� Þ;� :

(2.5)

When m � 0, there is a scalar polynomial curvature sin-
gularity at r ¼ 0. The spacetimes are of type II or D.
The conformal infinity I is located at r ¼ 1 where, as

can be seen from (2.5), the spacetimes become conformally
flat (i.e. they are asymptotically Minkowski, de Sitter or
anti–de Sitter). Indeed, introducing an inverse radial coor-
dinate l ¼ r�1, and taking the conformal factor to be
� ¼ l, the Robinson-Trautman metric becomes

ds2 ¼ ��2½ð13�þ 2lðlnPÞ;u � l2� lnPþ 2ml3Þdu2
þ 2dudlþ 2P�2d�d ���: (2.6)

This is conformal to the metric in the square brackets that
for smooth Pð�; ��; uÞ is regular at conformal infinity I ,
located at l ¼ � ¼ 0. Moreover, I is null, spacelike, or
timelike according to the sign of the cosmological con-
stant, i.e. whether � ¼ 0, �> 0, or �< 0, respectively.
For a nontrivial m, the coordinate freedom

u0 ¼ UðuÞ; r0 ¼ r

U;u

; P0 ¼ P

U;u

; m0 ¼ m

U3
;u

(2.7)

can be used to set m to a positive constant. The Robinson-
Trautman equation (2.3) for P then simplifies to

ðlnPÞ;u ¼ � 1

12m
�K; (2.8)

and the general vacuum metric can be written as

ds2 ¼ �
�
K � 2rðlnPÞ;u � 2

m

r
��

3
r2
�
du2 � 2dudr

þ 2r2P�2d�d ��: (2.9)

In particular, this includes the spherically symmetric
Schwarzschild–(anti-)de Sitter solution which arises for

P0 ¼ 1þ 1
2�

��: (2.10)

Indeed, replacing the stereographic coordinate � by angu-
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lar coordinates as � ¼ ffiffiffi
2

p
ei� tanð�=2Þ, we obtain

2P�2
0 d�d �� ¼ d�2 þ sin2�d�2 and K0 ¼ 1.
It is thus natural to reformulate the evolution equa-

tion (2.8) by introducing a u-dependent family of 2-metrics
on a submanifold r ¼ const, u ¼ const, such that

P ¼ fð�; ��; uÞP0; (2.11)

where f is a function on a 2-sphere S2, corresponding to
P0. By rigorous analysis Chruściel [18,19] proved that, for
an arbitrary, sufficiently smooth initial data fð�; ��; uiÞ on
an initial surface u ¼ ui, such Robinson-Trautman type II
vacuum spacetimes (2.9) globally exist for all values
u � ui. Moreover, they asymptotically converge to the
Schwarzschild–(anti-)de Sitter metric with the correspond-
ing mass m and cosmological constant � as u ! þ1,
because f asymptotically behaves as

f ¼ X
i;j�0

fi;ju
je�2iu=m

¼ 1þ f1;0e
�2u=m þ f2;0e

�4u=m þ � � � þ f14;0e
�28u=m

þ f15;1ue
�30u=m þ f15;0e

�30u=m þ � � � ; (2.12)

where fi;j are smooth functions of the spatial coordinates

� , �� . For large retarded times u, the function P given by

(2.11) thus exponentially approaches P0 which describes
the corresponding spherically symmetric solution.
Consequently, the future boundary of the Robinson-

Trautman region located at u ¼ þ1 is a null surface
and, by attaching the interior part of the
Schwarzschild–(anti-)de Sitter metric to it (with the same
m and �), it becomes the future event horizon Hþ of the
resulting black-hole spacetime; see Fig. 1. However, such
an extension only possesses a finite degree of smoothness.
When� ¼ 0, the metric is C5 throughHþ in general, and
can be of class C117 [20]. There also exists an infinite
number of alternative extensions through Hþ, which are
obtained by gluing the initial Robinson-Trautman space-
time to any similar Robinson-Trautman spacetime with the
samem. When the cosmological constant� is positive, the
extension acrossHþ generally becomes smoother but not
analytic [21,22].

III. PAST HORIZON

The future (black-hole) event horizonHþ in this family
of Robinson-Trautman spacetimes is thus well defined, and
many of its properties are already known. On the other
hand, the existence, precise location, and character of
complementary past (white-hole) horizon H� is less ob-
vious because the spacetimes do not exist globally in the
retarded past. Solutions of the Robinson-Trautman equa-
tion (2.8) generally diverge as u ! �1, cf. (2.12), so that
the spacetime cannot be extended up to past conformal
infinity I�. Past event horizon, which would be deter-
mined from the complete past global structure [25], is
thus not defined.
Therefore, an appropriate quasilocal characterization of

a white-hole boundary H� has to be adopted. As in
[11,14–17], we will consider the past horizon to be a
hypersurface foliated by (an outer boundary of) marginally
past-trapped closed 2-surfaces for all constant values of the
retarded time u. In [15], this was called an apparent
horizon (notice, however, subtle differences with respect
to definitions given in [25,26]). It will be shown below that
such past horizon H� is, in fact, the trapping horizon,
according to the definition given in [27], and also the
dynamical horizon defined in [29,30].
All previous published studies of past horizons in

Robinson-Trautman spacetimes concentrated on the case
with a zero cosmological constant, � ¼ 0. Our aim here is
to investigate the existence, location, and specific proper-
ties of the past horizons H� in cases when the cosmo-
logical constant is nonvanishing, both �> 0 and �< 0.
Specifically, we define here the past horizonH� to be a

smooth three-dimensional hypersurface

r ¼ Rð�; ��; uÞ; (3.1)

such that, on each section u ¼ u0 ¼ const, the spacelike
surface r ¼ Rð�; ��; u0Þ> 0 is a marginally past-trapped
surface T u with topology S

2. The marginally past-trapped

FIG. 1. Schematic Penrose conformal diagram (for a fixed �)
of Robinson-Trautman exact spacetimes with �> 0 (the shaded
region) which exist for any smooth initial data prescribed on ui.
For u ! þ1 the solutions approach the spherically symmetric
Schwarzschild–de Sitter metric, and can be extended through the
future event horizon Hþ to the interior of the corresponding
black hole (with the horizon at rh). Zigzag lines indicate the
curvature singularities at r ¼ 0, thick lines at r ¼ 1 represent
future and past de Sitter-like conformal infinities Iþ and I�,
and rc locates the cosmological horizon. The null past event
horizon is not well defined in the Robinson-Trautman region
because the metrics diverge as u ! �1 (dotted lines). Instead,
the white hole is localized by H�, which is the past horizon
defined by marginally past-trapped surfaces T u (see also Fig. 5).
The boundary H c indicates another expected horizon, namely,
the de Sitter-like cosmological horizon in the dynamical
Robinson-Trautman region which contains gravitational radia-
tion.
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2-surfaces T u are defined by the local condition that the
family of ingoing future directed null normals to T u have
vanishing divergence, while the outgoing future directed
null normals are diverging.

To determine the explicit equation for the location of
such past horizon, we introduce the null tetrad

k ¼ @r;

l ¼ @u þ P2

r2
R; ��@� þ

P2

r2
R;�@ �� þ

�
P2

r2
R;�R; �� �H

�
@r;

m ¼ P

r
@ �� þ

P

r
R; ��@r; (3.2)

which is easily obtained from the natural tetrad given in
Sec. II by a null rotation with k fixed and the parameter
being ðP=rÞR �� .

The vectors m and �m are obviously tangent to the 2-
surfaces T u given by (3.1), whose gradient is

N ¼ dr�R;�d� �R; ��d �� �R;udu; (3.3)

sinceN�m
� ¼ 0 ¼ N� �m�. It can also be seen that the null

vector k is outgoing, while the null vector l is ingoing, both
being future oriented and normal to T u.

The expansion scalars of these null vector fields k and l
are (real parts of) the corresponding NP spin coefficients
�� ¼ k�;�m

� �m� and � ¼ l�;� �m
�m� (see the Appendix):

�k ¼ 1

r
;

�l ¼ �1

2r

�
K � 2m

r
��

3
r2 � 2P2

rR;� �� �R;�R; ��

r2

�
:

(3.4)

Outgoing null normals k are always diverging since
�k > 0, while ingoing null normals l, evaluated at
the marginally past-trapped 2-surfaces T u given by
r ¼ Rð�; ��; u0Þ, have vanishing expansion (�l ¼ 0) when

K � 2m

R
��

3
R2 ��ðlnRÞ ¼ 0: (3.5)

This is a generalization of the Penrose-Tod equation
[11,14–17] to the case of a nonvanishing cosmological
constant �. It is a nonlinear partial differential equation
for the functionRð�; ��; uÞwhich localizes the past horizon
H� as the three-dimensional hypersurface r ¼ Rð�; ��; uÞ
in the Robinson-Trautman spacetimes, with the retarded
time u being a parameter. Recall that � is the Laplacian of
the 2-surface �2 spanned by � , and Kð�; ��; uÞ is its
Gaussian curvature; see (2.2) and (2.4). The geometry of
these 2-surfaces is determined by the function P which is a
solution of the Robinson-Trautman equation (2.8). For a
generalization of Eq. (3.5) to an arbitrary dimension, see
[36].

IV. THE EXISTENCE, UNIQUENESS, AND
CHARACTER OF THE PAST HORIZON

For analysis of solutions to the nonlinear partial differ-
ential equation (3.5) which localizes the past horizon H�
it is convenient to introduce a substitution

R ¼ 2mce��; (4.1)

where c > 0 is a suitable dimensionless constant. The
Penrose-Tod equation (3.5) thus takes the form

�� ¼ 1

c
e� þ 4

3
�m2c2e�2� � K; (4.2)

for the function�ð�; ��; uÞ. In the following wewill assume
that �> 0.
In the case when � ¼ 0, the existence, uniqueness, and

character of smooth solutions of the quasilinear partial
differential equation (4.2) was proved by Tod [11], assum-
ing that the Robinson-Trautman 2-surfaces �2 spanned by
� are regular and have spherical topology. Therefore, there
exists a unique marginally past-trapped surface given posi-
tive solutions R of (3.5) on each hypersurface u ¼ const,
and it is the outermost boundary of all past-trapped sur-
faces of such hypersurface. Considering u as a parameter,
the corresponding 3-surface formed of these unique mar-
ginally past-trapped 2-surfaces is a past horizon H�.
We will now generalize these results to the cases when

the cosmological constant � is nonvanishing.

A. Existence

For a general � � 0, the theorems used by Tod for
proving the existence of solutions of Eq. (4.2) cannot be
directly applied. We will have to use a different approach,
namely, a specific version of the sub- and supersolution
methods [37], which in the context of general relativity was
introduced by Isenberg [38]. This is based on the following
theorem.
Theorem 1.—Let �2 be a closed manifold, and ’: �2 �

Rþ ! R be a C1 function. Assume the existence of a pair
of functions ��, �þ: �2 ! Rþ called sub- and super-
solutions, from the Sobolev space W2

p for p > 2, such that

for all x 2 �2:

0<��ðxÞ � �þðxÞ;
��� � ’ðx;��Þ;
��þ � ’ðx;�þÞ:

(4.3)

Then there exists a function �: �2 ! Rþ, from the
Hölder space C2;� for � 2 ð0; 1–2=pÞ, for which

��ðxÞ � �ðxÞ � �þðxÞ; �� ¼ ’ðx;�Þ: (4.4)

Obviously, we can apply this theorem to the quasilinear
equation (4.2) for �ðxÞ if we identify

’ðx;�Þ ¼ 1

c
e� þ 4

3
�m2c2e�2� � KðxÞ; (4.5)
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where x stands for (real representations of) two transverse
spatial coordinates � , �� , and an additional fixed parameter
u ¼ u0.

As the simplest sub- and supersolutions we can take
suitable constants, namely,

�� ¼ lnðcKminÞ; �þ ¼ lnðcKmax � 4
3�m2c3Þ;

(4.6)

where the constants Kmin and Kmax denote the minimal and
maximal values of the Gaussian curvature over �2 (at a
given u); see [16]. Because of the asymptotic behavior
(2.12) it follows that KðxÞ ! 1 as u ! þ1. Without loss
of generality we may thus assume that, for a sufficiently
large u, there is Kmin > 0. Moreover, it is always possible
to take a large enough value of the constant c such that
cKmin > 1. Then, the conditions (4.3) are satisfied, pro-
vided 4

3�m2c2 � Kmax � Kmin.

This is valid for any � � 0, and we obtain

’ðx;��Þ ¼ ðKmin � KÞ þ
4
3�m2

K2
min

� 0;

’ðx;�þÞ ¼ ðKmax � KÞ
� 4

3�m2ðc2 � ðKmax � 4
3�m2c2Þ�2Þ � 0;

(4.7)

because the expression within the last large brackets is
positive. Theorem 1 thus guarantees the existence of a
solution �ðxÞ of Eq. (4.4) with (4.5), which is Eq. (4.2).
This is equivalent to the Penrose-Tod equation which
locates the past horizon H�.

For �> 0 it is convenient to use different constant sub-
and supersolutions, namely,

�� ¼ lnðcKmin � 4
3�m2c3Þ; �þ ¼ lnðcKmaxÞ:

(4.8)

If cKmin � 4
3�m2c3 > 1, we obtain 0<�� <�þ and

’ðx;��Þ ¼ ðKmin � KÞ
� 4

3�m2c2ð1� ðcKmin � 4
3�m2c3Þ�2Þ< 0;

’ðx;�þÞ ¼ ðKmax � KÞ þ
4
3�m2

K2
max

> 0: (4.9)

The existence of a solution �ðxÞ of (4.4) and (4.5) again
follows from Theorem 1. However, there is the constraint
4
3 �m2 < c�3ðcKmin � 1Þ. The best choice of the constant c
is such that the expression on the right-hand side reaches its
maximum value, which is 4

27K
3
min for cKmin ¼ 3

2 . The con-

straint thus requires

9�m2 <K3
min: (4.10)

Since KðxÞ ! 1 as u ! þ1, we conclude that the past
horizon H� may only exist for the Robinson-Trautman
spacetimes with a cosmological constant such that

�< 1=ð9m2Þ. In fact, this is the familiar condition which
guarantees that the corresponding spherically symmetric
Schwarzschild–de Sitter spacetime admits two event hori-
zons, namely, the black-/white-hole horizon at rh and the
cosmological horizon at rc (rh < 3m< rc); see the left part
of Fig. 1. For 9�m2 > 1 there is no horizon in the
Schwarzschild–de Sitter spacetime, and the curvature sin-
gularities are naked.
We have thus demonstrated that the Penrose-Tod equa-

tion (3.5) for the past horizon H� admits a solution for
any � � 0, and also for �> 0 provided the condition
(4.10) is satisfied. From the above choice of sub- and
supersolutions we also obtain estimates for the minimal
and maximal values of Rð�; ��; uÞ on each u, namely,
Rmin � Rð�; ��; uÞ � Rmax, which follow from relation
�þðxÞ � �ðxÞ � ��ðxÞ using (4.1). For � � 0 we get

R min ¼ 2m

Kmax � 4
3�m2c2

; Rmax ¼ 2m

Kmin

: (4.11)

In particular, for � ¼ 0 this implies

2m

Kmax

� Rð�; ��; uÞ � 2m

Kmin

; (4.12)

which is consistent with the observation made in [17] that
regular spheroidal marginally trapped surfaces T u cross
the surface r ¼ 2m. For �> 0 we obtain

R min ¼ 2m

Kmax

; Rmax ¼ 2m

Kmin � 4
3�m2c2

; (4.13)

which in the limit u ! þ1 implies the relation

2m � Rð�; ��Þ � 2m

1–3�m2
< 3m; (4.14)

so that it corresponds to the white-hole horizon at rh.
We now summarize the above main results as follows:
Corollary 1 (existence of H�).—Consider the

Robinson-Trautman vacuum spacetimes of algebraic
type II, with closed spatial sections �2, which evolve
from arbitrary smooth initial data. In such spacetimes there
always exists the past (white-hole) horizon H�, provided
the cosmological constant� satisfies 9�m2 < 1 (including
any � � 0). On each section u ¼ const, this horizon is a
marginally past-trapped closed 2-surface r ¼ Rð�; ��; uÞ,
where the function R is the solution of the Penrose-Tod
equation (3.5).

B. Uniqueness

To prove uniqueness of the solution of Eq. (3.5) we
modify Tod’s approach [11] by adding a cosmological
constant �. SupposeR1 andR2 are two (strictly positive)
solutions of the Penrose-Tod equation (3.5). Subtracting
the corresponding equations for R1 and R2 we obtain

� 2m

R1

ð1� zÞ þ�

3
R2

2ð1� z2Þ ¼ �ðlnzÞ; (4.15)
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where z ¼ R1=R2 > 0. Multiplying both sides by factor
(1� z), integrating over the compact spatial surface �2

(which is diffeomorphic to S2), and applying Green’s
theorem

Rð1� zÞ�ðlnzÞ ¼ �Rrð1� zÞ � rðlnzÞ, we get

�
Z
�2

�
2m

R1

��

3
R2

2ð1þ zÞ
�
ð1� zÞ2 ¼

Z
�2

jrzj2
z

:

(4.16)

Inspecting the signs on both sides of this equation, we
arrive at the following conclusions:

For � � 0 the signs are always opposite, so that both
sides must vanish identically. From the strict positivity of
the first factor on the left-hand side it then follows that the
only possibility is z ¼ 1 everywhere. This implies the
uniqueness, R1 ¼ R2.

For�> 0 we analogously obtain opposite signs on both
sides of Eq. (4.16) if 2m=R1 > ð�=3ÞR2

2ð1þ zÞ.
Assuming, without loss of generality, 0< z � 1, i.e.
R1 ¼ zR2 � R2, this condition reads

R 3
2 <

6m

�

1

zþ z2
: (4.17)

The lowest bound for R2 (and hence R1) occurs when
z ¼ 1, which guarantees the uniqueness. Therefore, we
obtain the condition

R ð�; ��; uÞ<
ffiffiffiffiffiffiffi
3m

�

3

s
: (4.18)

When this condition is fulfilled for all � (and u), the
corresponding solution of the Penrose-Tod equation (3.5)
is unique.

The constraint (4.18) is most restrictive for the maximal
possible value of the positive cosmological constant,
namely, 9�m2 ¼ 1. In such a case, the Robinson-
Trautman spacetimes approach extreme Schwarzschild–
de Sitter black-hole solutions at future event horizon
Hþ located at r ¼ 3m (for a detailed discussion see
[22]). Interestingly, in this limiting case the condition
(4.18) for uniqueness of the past horizon H� becomes
R< 3m, which is consistent with relation (4.14).

An alternative proof of uniqueness ofH� follows from
the Lemma presented (and proved) by Isenberg in Sec. 6 of
[38], namely:

Theorem 2.—Let �2 be a closed manifold, and ’: �2 �
Rþ ! R be a C1 function. Assume that

@’

@s
ðx; sÞ � 0 (4.19)

for s 2 I, where I is some (possibly infinite) interval in
Rþ. Now, if �1, �2 are both solutions of the equation

�� ¼ ’ðx;�ðxÞÞ; (4.20)

such that �1ðxÞ and �2ðxÞ take values in I for all x 2 �2,
then �1ðxÞ ¼ �2ðxÞ for all x 2 �2.

In our case, ’ is given by (4.5), with s � �. The
necessary condition (4.19) for uniqueness of the solution
thus reads

e3� � 8
3�m2c3; (4.21)

which, in terms of R given by (4.1), takes a very simple
form

1

R3
� �

3m
: (4.22)

Obviously, this is always satisfied when � � 0. For �> 0
it reproduces the condition (4.18) discussed above (includ-
ing its extreme limit with R ¼ 3m).
Let us summarize these results as follows:
Corollary 2 (uniqueness of H�).—For the Robinson-

Trautman spacetimes with � � 0, the past horizon H�,
whose existence is guaranteed by Corollary 1, is unique.
For �> 0 it is also unique in the region r � 3m (in

r <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m=�3

p
, in fact).

C. Character

Now we will investigate the character of the past white-
hole horizon H�. In particular, we will first prove that
it is an outer trapping horizon. Then we will demonstrate
that it must be spacelike or null. Since the null regular
horizon occurs only in the spherically symmetric
Schwarzschild–(anti-)de Sitter spacetime without gravita-
tional waves, we may conclude that H� is also an inter-
esting explicit example of a dynamical horizon.
From Eqs. (3.4) and (3.5) it follows that the expansion

scalars for the null vector fields k and l, introduced in (3.2),
are �k � 0 and �l ¼ 0 on H� (and on each T u).
Moreover, the Lie derivative Lk�l ¼ @r�l is in general
nonvanishing onH�. According to the definition given by
Hayward [27], the closure of this three-surface is thus a
trapping horizon.
In fact, we can prove that Lk�l < 0 on H�, which

means that it is an outer trapping horizon. Straightforward
calculation gives

L k�ljH� ¼ � 1

R

�
m

R2
��

3
R� 1

2
�

�
1

R

��
; (4.23)

so that the horizon is outer if, and only if,

m

R2 ��

3
R>

1

2
�

�
1

R

�
: (4.24)

Integrating over the compact spatial surface �2, the right-
hand side vanishes, so thatZ

�2

1

R2

�
m��

3
R3

�
> 0: (4.25)

This condition is obviously satisfied for any � � 0 (in full
agreement with the results found previously [11,15] for the
case � ¼ 0). For �> 0, it is valid if
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R 3 <
3m

�
: (4.26)

This is consistent with condition (4.18) that guarantees
uniqueness of the solution of the Penrose-Tod equation.
Therefore, the past white-hole horizon H� is an outer
trapping horizon.

Notice that the same conclusion follows directly from
expression (4.24) by considering its value at the maximum
of R over � , where �ð 1RÞ> 0. Alternatively, we can also

argue that asymptotically (as u ! 1) the function R
approaches a constant (see Sec. V), and the term with the
Laplacian thus becomes negligible for large u, which again
leads to the condition (4.26).

Let us now explicitly demonstrate that the past white-
hole horizon H� is necessarily spacelike (or null). The
character of the horizon is determined by the norm N�N�

of the normalN to the hypersurface r ¼ Rð�; ��; uÞ, whose
gradient is given by (3.3). Interestingly, in terms of the null
tetrad (3.2) this normal can be expressed as

N ¼ 1
2ðN�N�Þk� l; (4.27)

where

1

2
ðN�N�Þ ¼ H þR;u þ P2

r2
R;�R; �� : (4.28)

To evaluate the sign of this expression on H�, we may
follow the procedure applied in [15] in the case� ¼ 0, and
generalize it to any value of the cosmological constant.
Consider an auxiliary vector

Z ¼ 1
2ðN�N�Þkþ l; (4.29)

which is also orthogonal to the spacelike 2-surfaces T u.
However, it is tangent to the horizon H� because
N�Z

� ¼ 0. Consequently, the directional derivative of

the expansion scalar �l along the vector Z must be trivial,
Z�r��ljH� ¼ 0, that is

1
2 ðN�N�Þk�r��þ l�r�� ¼ 0; (4.30)

where the spin coefficient � is given by (A1). To perform
the calculation explicitly, it is useful to employ the Ricci
identities for derivatives of�, specifically Eqs. (7.21h) and
(7.21n) in [3]. Some of the spin coefficients vanish in our
case (see the Appendix), and also � ¼ 0 on H�, so that
the equations simplify to

k�r�� ¼ m�r��þ �ð ��� ��þ 	Þ þ�2 þ R=12;

l�r�� ¼ m�r��� 
 �
þ ���þ 2	�: (4.31)

Straightforward calculation, using the restriction of (A1)
on H� and relation (4.28), then gives

k�r�� ¼ P2

R

�
1

R

�
;� ��

� m

R3
þ�

3
;

l�r�� ¼ P2

2R

��
N�N�

R

�
;� ��

� ðN�N�Þ
�
1

R

�
;� ��

�
� 
 �
:

(4.32)

Substituting into (4.30) we finally obtain the equation

�

�
N�N�

R

�
þ 2

R

�
�

3
R3 �m

��
N�N�

R

�
¼ 4R
 �
;

(4.33)

where 
 ¼ ðP2R�2R;� Þ;� measures the shear of the con-

gruence generated by the null vector field l, evaluated on
the past horizon.
The differential equation (4.33) is a generalization to

� � 0 of Eq. (16) presented in [15]. It enables us to
determine the character of the past white-hole horizon
H� for any value of the cosmological constant �.
Indeed, the maximum principle [37] for equations of the
form ��þ �ðxÞ� ¼ ’ðxÞ � 0 states that if �ðxÞ< 0
then �ðxÞ � 0. We thus immediately conclude that

�

3
R3 <m ) N�N� � 0: (4.34)

It means that the past horizon H� is spacelike or null for
any � � 0. The same is true for a positive cosmological
constant �> 0, but only provided R3 < 3m

� . Of course,

this is the same condition as (4.26) which guarantees that
H� is an outer trapping horizon [and also condition (4.18)
for its uniqueness] which localizes the white hole. We have
thus demonstrated that (non-null) H� is an example of a
dynamical horizon, as defined by Ashtekar and Krishnan in
[29,30] for the white holes.
Notice that in the case �> 0, another possible trapping

horizon for which R3 > 3m
� would have to be timelike or

null (N�N� � 0), at least in the maximum of � ¼
N�N�=R where �� � 0. Otherwise, there would be a

contradiction in Eq. (4.33). Although such timelike hori-
zons are not too familiar, they were already identified in
[27] as inner trapping horizons in some vacuum space-
times, or as timelike dynamical horizons; see Appendix B
in [29]. In the present context of Robinson-Trautman
spacetimes with �> 0 this would represent the
‘‘de Sitter-like’’ cosmological horizon H c, indicated
schematically in Fig. 1.
In addition, we can prove the following equivalence:

H � is null , 
 ¼ 0: (4.35)

Indeed, for N�N� ¼ 0 Eq. (4.33) immediately implies that

the shear 
 of l vanishes. Conversely, assuming 
 ¼ 0 in
(4.33) and integrating it over the compact surface �2 we
obtain
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Z
�2

2

R2

�
�

3
R3 �m

�
ðN�N�Þ ¼ 0: (4.36)

In view of (4.34), this implies that the horizon must be null

for any � � 0 and also for �> 0 such that �3 R
3 <m (or

�
3 R

3 >m) everywhere on �2. This generalizes the pre-

vious analogous result presented in [17] which was ob-
tained for the case � ¼ 0 (see also Theorem 2 in [27]).

It is also possible to generalize to � � 0 another result
of [17] which concerns all admitted geometries for the
above case when the horizon is null. Using Eqs. (7.21j)
and (7.21m) of [3], namely,

l�r�
� �m�r�� ¼ �
ð�þ ��þ 3�� ��Þ
þ �ð3�þ �	þ �� �Þ ��4;

m�r�
� �m�r�� ¼ ð�� ��Þ�þ ð�� ��Þ�
þ�ð�þ �	Þ þ 
ð ��� 3	Þ ��3;

(4.37)

and assuming � ¼ 0 ¼ N�N�, so that 
 ¼ 0 and � ¼ 0

[obtained by applying the relation � ¼ 1
2
�m�r�ðN�N�Þ], it

follows that�4 ¼ 0 ¼ �3. The spacetime thus must be of
type D at the horizon and, considering the Robinson-
Trautman geometry, of type D everywhere. Since here
we only consider vacuum solutions with regular compact
spatial sections, the only metric with a null past horizon
H� is the Schwarzschild–(anti-)de Sitter spacetime.

It is useful to summarize the above results as follows:
Corollary 3 (character of H�).—For the Robinson-

Trautman spacetimes with � � 0 the past horizon H�,
whose existence and uniqueness is guaranteed by
Corollaries 1 and 2, is always spacelike or null. The

same is true also for �> 0 in the region r <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m=�3

p
.

Such horizon is, in general, an outer trapping horizon [27]
and a dynamical horizon [29,30], i.e., it is a spacelike past
outer horizon (SPOTH). H� is null if, and only if, the
shear 
 vanishes. This only occurs in spacetimes of
type D, namely (since we assume regular compact spatial
sections) in the spherically symmetric Schwarzschild–
(anti-)de Sitter spacetime, in which case H� coincides
with the corresponding past white-hole event horizon.

V. ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
THE PENROSE-TOD EQUATION

In this final part of our paper we will investigate specific
behavior of the past horizon H� for large values of the
retarded time u. This covers the region near the future
black-hole event horizon Hþ where the Robinson-
Trautman region is merged to the spherically symmetric
Schwarzschild–(anti-)de Sitter interior solution.

A. Linearization

For u ! þ1 the smooth solutions Pð�; ��; uÞ of the
Robinson-Trautman equation (2.8) asymptotically behave
as

P ¼ ð1þ gÞð1þ 1
2�

��Þ; (5.1)

in which the function gð�; ��; uÞ exponentially approaches
zero; see Eqs. (2.10), (2.11), and (2.12). For large u the
function g quickly becomes small, and it is possible to
linearize the Robinson-Trautman equation (2.8) by ne-
glecting terms with higher orders of g and its spatial
derivatives. For an axially symmetric g, this was consid-
ered already by Foster and Newman [5], for a general
perturbation function g; see [11].
Similarly, for large u it is natural to perform lineariza-

tion of the Penrose-Tod equation (3.5) for the function
Rð�; ��; uÞ locating the position of the past horizon H�.
We will assume that

R ¼ ð1þ hÞrh; (5.2)

where h is a small function hð�; ��; uÞ, and rh is a constant
which solves the algebraic equation

1� 2m

rh
��

3
r2h ¼ 0; (5.3)

that locates the horizon of the corresponding
Schwarzschild–(anti-)de Sitter ‘‘static’’ black hole.
Neglecting all higher-order terms in g, h and their

derivatives, the linearized Robinson-Trautman and
Penrose-Tod equations simplify, respectively, to

� 3mg;u ¼ DDgþDg; (5.4)

Dhþ
�
1� 3m

rh

�
h ¼ Dgþ g; (5.5)

where the operator is D � ð1þ 1
2 �

��Þ2@�@ �� . In terms of

spherical polar coordinates �, � given by

� ¼ ffiffiffi
2

p
ei� tanð�=2Þ; (5.6)

this becomes

D ¼ 1
2sin

�2�ðsin2�@2� þ sin� cos�@� þ @2�Þ: (5.7)

Notice that this operator is proportional to the standard
quantum-mechanical operator of the square of the angular
momentum, for which the eigenfunctions are spherical
harmonics Y‘nð�;�Þ, i.e.,

DY‘nð�;�Þ ¼ �1
2‘ð‘þ 1ÞY‘nð�;�Þ; (5.8)

� i@�Y‘nð�;�Þ ¼ nY‘nð�;�Þ: (5.9)

Therefore, we may solve Eqs. (5.4) and (5.5) by consider-
ing the expansions of functions g and h in the form
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gð�;�; uÞ ¼ Re
X1
‘¼2

X‘
n¼�‘

a‘nðuÞY‘nð�;�Þ; (5.10)

hð�;�; uÞ ¼ Re
X1
‘¼2

X‘
n¼�‘

b‘nðuÞY‘nð�;�Þ; (5.11)

(due to a coordinate freedom, the terms ‘ ¼ 0, 1 need not
be included). Using relations (5.8) and (5.9), and orthogo-
nality of Y‘nð�;�Þ, Eqs. (5.4) and (5.5) reduce to

� 3ma‘n;u ¼ ½14‘2ð‘þ 1Þ2 � 1
2‘ð‘þ 1Þ�a‘n;

½12‘ð‘þ 1Þ � ð1� 3m=rhÞ�b‘n ¼ ½12‘ð‘þ 1Þ � 1�a‘n;
(5.12)

so that

a‘nðuÞ ¼ a‘nðuiÞ exp
�
�ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ u� ui

12m

�
;

b‘nðuÞ ¼ ‘ð‘þ 1Þ � 2

‘ð‘þ 1Þ � 2þ 6m=rh
a‘nðuÞ: (5.13)

Here the constants a‘nðuiÞ represent initial data at ui for the
specific solution of the Robinson-Trautman equation in the
form (5.10). The corresponding solution of the Penrose-
Tod equation for the past horizon H� is given by expres-
sion (5.11) with the coefficients b‘nðuÞ determined by
Eq. (5.13).

We have thus obtained explicit asymptotic solutions of
these equations for large values of the retarded time u. It
follows from Eq. (5.1) that the Robinson-Trautman vacuum
spacetimes with a cosmological constant � exponentially
approach spherically symmetric Schwarzschild–(anti-)
de Sitter solution, in agreement with the expansion (2.12);
see [5,11,18–22]. From expression (5.2) we observe that
the corresponding past horizon H�, located at r ¼
Rð�; ��; uÞ, approaches exponentially the constant rh as
u ! 1. It means that across the future event horizon
Hþ (at the point of bifurcation) it smoothly joins the
‘‘second’’ black-hole event horizon of the interior
Schwarzschild–(anti-)de Sitter solution; see Fig. 1.

B. Visualization

It may now be useful to visualize the above analytic
results by plotting the corresponding functions in suitable
pictures and to discuss them.

We start with axially symmetric Robinson-Trautman
spacetimes [5,15], for which the spherical harmonics Y‘0

(with n ¼ 0) reduce to Legendre polynomials in x ¼ cos�,
independent of �. Instead of drawing Cartesian-like
graphs, in which the independent parameters would be x
and u, we prefer to plot solutions to the Robinson-
Trautman and Penrose-Tod equations, and their asymptotic
behavior, in more natural spherical, polar, and cylindrical
graphs. Specifically, we will consider � as the polar coor-
dinate, u as the cylindrical axis, and Pð�; uÞcos2ð�=2Þ ¼

1þ gð�; uÞ or Rð�; uÞ ¼ rhð1þ hð�; uÞÞ as the radial co-
ordinates, respectively. For typical values of the parameters
m ¼ 1, � ¼ 0:1 (so that rh ¼ 2:558) and initial data
a‘nðui ¼ 0Þ given by a2;0ð0Þ ¼ 0:2, a3;0ð0Þ ¼ 0:3, we

thus obtain the graphs shown in Figs. 2 and 3.
In the left part of Fig. 2 we plot the axially symmetric

initial data 1þ gð�; ui ¼ 0Þ for the Robinson-Trautman
equation. The precise shape of the corresponding margin-
ally past-trapped 2-surfaceT u (which is the section ui ¼ 0
through the past horizon H�) given by the function
Rð�; ui ¼ 0Þ is shown in the right part of Fig. 2. It is
also closed and axially symmetric. However, it looks
more ‘‘round’’ or ‘‘oblate’’ than the surface on the left.

FIG. 2. Typical axially symmetric initial data at ui ¼ 0 for the
Robinson-Trautman equation (left), and the corresponding mar-
ginally past-trapped surface (right). The angles �, � are taken as
standard spherical polar coordinates, while the radial distance is
determined by 1þ g and R, respectively.

FIG. 3. Visualization of the asymptotic behavior of typical
solutions to the Robinson-Trautman equation (top) and the
Penrose-Tod equation for the past horizon H� (bottom). The
pictures show their evolution given by the u dependence. The
right parts of each of the four pictures represent the section
� ¼ 0, while the left parts are the sections � ¼ �. For large u,
the shapes shown become circular and thus, with� reintroduced,
the corresponding 2-surfaces become spherically symmetric.
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In fact, this is true in general. It follows directly from
relation (5.13) that

b‘n ¼ a‘n
1þ �

; where � ¼ 6m

rhð‘2 þ ‘� 2Þ> 0: (5.14)

The coefficients b‘n, which determine the function h in
R ¼ rhð1þ hÞ, are thus always smaller than the coeffi-
cients a‘n, which determine the function g in
Pcos2ð�=2Þ ¼ 1þ g. We conclude that g > h at any fixed
values of �, �, and u. Deviations of 1þ g from a round
sphere are thus always greater than the corresponding
deviations of R from rh. Moreover, we observe that
� ! 0 for large ‘. The differences between a‘n and b‘n
are thus significant only for low modes given by ‘ ¼ 2;
3; . . . . The biggest difference occurs when ‘ ¼ 2, in which
case

� ¼ 3m

2rh
: (5.15)

This enables us to investigate the influence of the cosmo-
logical constant � on the shape of the past horizon H�.
Such an influence is only indirect, through the particular
value of the static black-/white-hole horizon rh, as defined
by expression (5.3). For � ¼ 0, there is rh ¼ 2m so that
(for ‘ ¼ 2) b‘n ¼ 4

7a‘n. With a growing �> 0, the posi-

tion of the horizon rh monotonously grows from 2m to 3m.
For the extreme case 9�m2 ¼ 1, the degenerate horizon is
located at rh ¼ 3m, which (for ‘ ¼ 2) implies b‘n ¼ 2

3a‘n.

The coefficients b‘n are thus somewhat greater than in the
corresponding case � ¼ 0, and the marginally past-
trapped surfaces T u are more distorted. On the other
hand, for a negative cosmological constant, the constant
parameter rh ! 0 as � ! �1. In such a case the parame-
ter � grows to very large values, and the shape of the
corresponding surfaces T u would be less deformed.

In the graphs shown in Fig. 3 we present the evolution of
the solutions of the Robinson-Trautman (top) and Penrose-
Tod (bottom) equations. We consider the same initial data
as in Fig. 2. On the left we plot the sequence of the
functions 1þ gð�; uÞ ¼ Pð�; uÞcos2ð�=2Þ and Rð�; uÞ ¼
rhð1þ hð�; uÞÞ, respectively, for various values of the re-
tarded time u. On the right we visualize the same depen-
dence in the form of ‘‘evolution tubes.’’ It can be
immediately seen that they both quickly become cylindri-
cally symmetric. With the coordinate � suppressed here,
this illustrates the fact that these Robinson-Trautman
spacetimes become spherically symmetric as u ! þ1.
Also, the corresponding past horizon H�, described by
the function Rð�; uÞ, approaches the constant rh which
locates the spherical horizon of static Schwarzschild–
(anti-)de Sitter black/white holes. As described in Sec. II,
such an interior region is naturally attached to the
Robinson-Trautman region across the future event horizon
at Hþ.
Notice also that, on any fixed u, the horizonH� crosses

(several times, in fact) the surface r ¼ rh. This property
was emphasized for the case � ¼ 0 in [17]; see
Proposition 5.1 therein.
For more general Robinson-Trautman spacetimes which

are not axially symmetric we obtain a similar behavior. In
Fig. 4 we present evolution of marginally past-trapped 2-
surfaces T u which are particular sections through the past
horizonH� at u ¼ 0, 0.002, 0.005, and 0.05, respectively.
Here we consider the parameters m ¼ 1, � ¼ 0:1 and
nonvanishing a2;�2 ¼ �a2;2 ¼ a3;3 ¼ �a3;�3 ¼ 0:2,
a4;�4 ¼ �a4;4 ¼ 0:1, a5;5 ¼ �a5;�5 ¼ a6;�6 ¼ �a6;6 ¼
a7;�i ¼ �a7;i ¼ a8;�i ¼ �a8;i ¼ 0:05 at ui ¼ 0. The sur-
facesT u are closed, with their radius given by the function
Rð�;�; uÞ ¼ rhð1þ hð�;�; uÞÞ, where �, � are spherical
polar coordinates, the constant rh is given by (5.3), and
hð�;�; uÞ by expansion (5.11). It can be seen that for large

FIG. 4. Past horizon H� in a nonaxially symmetric Robinson-Trautman spacetime with a positive cosmological constant. The
pictures visualize four marginally past-trapped 2-surfaces T u for sections u ¼ 0, 0.002, 0.005, and 0.05, respectively. Their radius is
R ¼ rhð1þ hð�;�; uÞÞ, where �, � are taken as spherical coordinates. For large u, the marginally past-trapped surfaces approach a
round sphere of radius rh.
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values of u the marginally past-trapped surfaces T u

approach a round sphere of radius rh, as in the case of
axially symmetric Robinson-Trautman spacetimes. It can
also be observed that higher-order components (with large
‘) decay faster. Indeed, it follows from the expression
(5.13) for a‘nðuÞ that the rate of an exponential decay is
determined by the coefficient 1

12m ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ.
Therefore, the lowest decay occurs for the basic mode
‘ ¼ 2, for which b2;nðuÞ / a2;nðuÞ / expð�2u=mÞ. This
is consistent with a general asymptotic behavior of solu-
tions to the Robinson-Trautman equation given by expres-
sion (2.12).

Finally, it is illustrative to construct the convenient
three-dimensional representation of the global structure
of such Robinson-Trautman spacetimes with a positive
cosmological constant, as shown in Fig. 5. This is

obtained by reintroducing the spatial coordinate � ¼ffiffiffi
2

p
ei� tanð�=2Þ to the two-dimensional Penrose conformal

diagram for a section � ¼ const, presented in Fig. 1. In the
equatorial plane � ¼ �

2 , say, the additional coordinate� 2
½0; 2�Þ is a standard polar coordinate. On each (vertical)
plane cut � ¼ const, the section has the form of (the right
part of) the two-dimensional diagram of Fig. 1. We thus
construct a three-dimensional axially symmetric body
bounded by the initial null (that is conical) boundary
u ¼ ui, past white-hole singularity r ¼ 0, future black-

hole singularity r ¼ 0, and future conformal infinity Iþ
which is located at the horizontal circular ring r ¼ 1 and
has a de Sitter-like (that is a spacelike) character.
The future event horizon Hþ of the black hole is given

by the null cone u ¼ þ1. The past horizon H�, which
localizes the white hole, is formed by marginally past-
trapped surfaces T u at each u ¼ const. Recall that on
T u, the family of outgoing null geodesics generated by k
is diverging, while the ingoing null geodesics generated by
l have vanishing divergence.
On a general u, the past horizon H� is a hypersurface

r ¼ Rð�;�; uÞ ¼ rhð1þ hð�;�; uÞÞ, where the (small)
function h is explicitly given by the expansion (5.11) and
(5.13). It can thus be seen that H� has a complicated
shape which becomes spherical (circular at the section
� ¼ const) only as u ! þ1 because h ! 0 exponentially
in this limit.
Moreover, R> rh for some ranges of �, �, while

R< rh and R ¼ rh for other ranges and values of �, �
(cf. the bottom left picture in Fig. 3). The horizon surface
H� thus intersects the past null cone given by rh ¼ const
(which is indicated by the dashed lines in Fig. 5). This
geometrical insight explains the observation made in [17]
that, for the analogous case � ¼ 0, a regular spheroidal
marginally trapped surface crosses the surface r ¼ rh ¼
2m.

FIG. 5. Schematic representation of the global structure of a Robinson-Trautman spacetime with �> 0 for section � ¼ const (the
equatorial plane � ¼ �

2 , say), where � ¼ arg� . Here u ¼ ui is the initial null boundary, and the horizontal circular ring Iþ denotes

future de Sitter-like conformal infinity at r ¼ 1. The black-hole singularity at r ¼ 0 is hidden behind the future event horizon Hþ
given by the null cone u ¼ þ1, while the white-hole singularity at r ¼ 0 is localized by the past horizon H�, which is formed by
marginally past-trapped surfaces T u. For more details see the text.
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Obviously, for some sections � ¼ const, the past horizon
H� in the two-dimensional Penrose conformal diagram
would extend to larger values R> rh and would thus be
pictured as a spacelike line, as in Fig. 1. However, for other
sections � ¼ const, the past horizonH� in the conformal
diagram would extend to smaller valuesR< rh and would
be pictured as a timelike line. This is not a contradiction:
the past horizon H� as a three-dimensional hypersurface
has a spacelike character, but some of its sectionsmay look
as a timelike line (for a detailed discussion of an analogous
effect concerning the character of the anti–de Sitter-like
conformal infinity in two-dimensional Penrose diagrams of
the C metric with �< 0, see [39]).

VI. CONCLUDING REMARKS

We analyzed exact type II vacuum spacetimes of the
Robinson-Trautman family which admit a nonvanishing
cosmological constant �. In particular, we thoroughly
investigated the existence, uniqueness, precise location,
and character of the past horizon H� which forms a
boundary of the white-hole region near the initial singu-
larity at r ¼ 0.

Properties of the future event ‘‘black-hole’’ horizonHþ
in this class of spacetimes are well known [18–22],
but analogous past event horizon does not exist since
the spacetimes are not globally defined in the past, as
u ! �1. Therefore, convenient quasilocal characteriza-
tion of such a horizon H� must be employed, for ex-
ample, by considering marginally past-trapped surfaces of
ingoing null congruences. This was previously done in
[11,14–17] for the case of vanishing cosmological constant
�. Here, we extended and generalized these studies to
� � 0.

Specifically, we first generalized the Penrose-Tod equa-
tion for marginally trapped surfaces to include any value of
the cosmological constant. By various analytic approaches
we then proved the existence and uniqueness of its solu-
tions under certain natural assumptions, and we elucidated
the character ofH�. For any� � 0, it is always spacelike

(or null), and this is also true in the region r <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m=�3

p
when �> 0. Therefore, the past horizon H� in the
Robinson-Trautman spacetimes is an example of a dynami-
cal horizon and an outer trapping horizon. In analogy with
the definition introduced in [30], such a horizon may be
referred to as a SPOTH. It is null only in the spherically
symmetric Schwarzschild–(anti-)de Sitter spacetime, in
which case H� coincides with the past white-hole event
horizon.

Asymptotic behavior can be studied by linearization. We
explicitly solved both the linearized Robinson-Trautman
and the Penrose-Tod equations and proved that their solu-
tions decay exponentially fast to spherically symmetric
situations. In particular, the marginally trapped surfaces
forming H� approach a round sphere r ¼ rh, which is
exactly the location of an event horizon of the correspond-

ing Schwarzschild–(anti-)de Sitter black/white hole.
Finally, we visualized the past horizon H� in some ax-
ially symmetric and general cases.
We may conclude that the presence of the cosmological

constant� has a crucial effect on the global structure of the
spacetimes ‘‘at large distances’’ (the conformal infinity I
at r ¼ 1 becomes spacelike for �> 0 and timelike for
�< 0). It influences the degree of smoothness of a natural
extension of the spacetime across the future event horizon
Hþ; see [21,22]. We demonstrated here that � � 0 also
changes the specific shape of the past horizonH�. With a
growing �, the marginally trapped surfaces become more
distorted, but this effect is quite weak.
In our contribution we generalized and complemented

previous studies of horizons in Robinson-Trautman vac-
uum spacetimes with� ¼ 0 [11,14–17], and in spherically
symmetric Vaidya–(anti-)de Sitter metric with pure radia-
tion [29]. The past horizons, whose properties were inves-
tigated above, are interesting explicit examples of trapping
and dynamical horizons in the family of radiative, non-
spherically symmetric spacetimes with a cosmological
constant.
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APPENDIX

The nonvanishing Newman-Penrose spin coefficients for
the frame (3.2) are

� ¼ � 1

r
; 	 ¼ �P; ��

2r
;

 ¼ �� ¼ ��þ 	 ¼ � P

r2
R; �� ;


 ¼ ð@� þR;�@rÞ
�
P2

r2
R;�

�
;

� ¼ � 1

2r

�
K � 2m

r
��

3
r2 � 2P2

rR;� �� �R;�R; ��

r2

�
;

� ¼ � 1

2

�
ðlnPÞ;u � 1

r2
ðmþ PP;�R; �� � PP; ��R;� Þ

þ 1

r3
ð2P2R;�R; �� Þ þ

�

3
r

�
;

� ¼ P

r
ð@� þR;�@rÞ

�
K

2
� rðlnPÞ;u �m

r
��

6
r2

þR;u þ P2

r2
R;� R; ��

�

¼ P

r
ð@� þR;�@rÞ

�
H þR;u þ P2

r2
R;� R; ��

�
: (A1)
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Since � ¼ 0 ¼ �, the null vector field k ¼ @r is geode-
sic and affinely parametrized. Its expansion �k ¼ �Re�
can thus be very easily calculated as �k ¼ 1

2 k
�
;� ¼ 1

2 �
ð ffiffiffi

g
p Þ�1ð ffiffiffi

g
p

k�Þ;� where, for the metric (2.9),
ffiffiffi
g

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg��

p ¼ r2=P2. However, since � � 0, the null vec-

tor field l is not geodesic so that the expression for its
expansion is more complicated, and it is given by �.

For completeness, let us also write the corresponding
components of the Weyl tensor,

�2 ¼ �m

r3
; �3 ¼ � P

2r2
K;� � 3mP

r4
R;� ;

�4 ¼ � 1

r
½P2ðlnPÞ;u� �;� þ 1

2r2
ðP2K;� Þ;� �

2P2K;�

r3
R;�

� 6mP2

r5
ðR;� Þ2: (A2)

They are explicitly independent of the cosmological con-
stant �, and for R;� ¼ 0 they reduce to expressions (2.5)

in the natural Robinson-Trautman null tetrad.
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