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We revisit the issue of the correct Lagrangian description of a perfect fluid (L1 ¼ P versus L2 ¼ ��)

in relation with modified gravity theories in which galactic luminous matter couples nonminimally to the

Ricci scalar. These Lagrangians are only equivalent when the fluid couples minimally to gravity and not

otherwise; in the presence of nonminimal coupling they give rise to two distinct theories with different

predictions.
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I. INTRODUCTION

Attempts to explain the present acceleration of the
Universe discovered with type Ia supernovae [1] without
invoking a mysterious and exotic dark energy [2] have led
to modifying gravity at the largest scales in the so-called
fðRÞ gravity ([3], see [4] for a comprehensive review and
[5] for brief introductions). fðRÞ theories of gravity have
been employed also in attempts to explain dark matter in
galaxies and clusters [6]. A recent proposal by Bertolami,
Böhmer, Harko, and Lobo (BBHL) [7] contemplates the
possibility of coupling matter explicitly to the Ricci curva-
ture, as described by the action1

SBBHL ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ff1ðRÞ þ ½1þ �f2ðRÞ�LðmÞg; (1)

where R is the Ricci curvature of spacetime, f1;2ðRÞ are
functions of R, � is a small parameter, and LðmÞ is the
matter Lagrangian density (see [9] for similar theories and
[10] for the special case of a gauge field coupling explicitly
to the curvature). The extra coupling leads to the non-

conservation of the matter stress-energy tensor TðmÞ
ab , ac-

cording to

rbTðmÞ
ab ¼ �f02ðRÞ

1þ �f2ðRÞ ½gabL
ðmÞ � TðmÞ

ab �rbR; (2)

where a prime denotes differentiation with respect to R. In
[7] BBHL found that an extra force, not appearing in the
minimally coupled versions of fðRÞ gravity, acts upon
particles and could effectively replace dark matter. This
intriguing possibility has motivated further work [11–13].

In [7] a dust fluid model is assumed to describe ordinary
(luminous) matter in galaxies and the extra force

fa ¼
�
� �f02
1þ �f2

rbRþ rbP

Pþ �

�
hab (3)

was derived (here uc is the fluid four-velocity and hab �
gab þ uaub). In [14] it was noted that, adopting the stan-

dard Lagrangian density L1 ¼ P for a perfect fluid, this
extra force vanishes for dust, which has equation of state
P ¼ 0 adequately reproducing the nonrelativistic motions
of stars, making again dark matter a necessary ingredient to
explain the galactic rotation curves. Subsequently
Bertolami and collaborators pointed out that an equivalent
Lagrangian density for a perfect fluid is L2 ¼ ��, which
is obtained by adding surface terms to the action S1 ¼R
d4x

ffiffiffiffiffiffiffi�g
p

L1 [12] (see [15] for detailed studies of the

Lagrangian formalism for perfect fluids [16]). From [12]
it would appear that the extra force that has the potential to
replace dark matter is present or absent according to the
choice that is made between the two supposedly equivalent
Lagrangians. This shows that, clearly, the two Lagrangian
densitiesL1 ¼ P andL2 ¼ �� cannot be equivalent, and
the recent literature has discussed this issue in terms of the
problem of ‘‘which Lagrangian density correctly describes
a perfect fluid.’’ Here we show that, posed in these terms,
this problem is meaningless. In fact, for a perfect fluid that
does not couple explicitly to the curvature (i.e., for � ¼ 0),
the two Lagrangian densities L1 ¼ P and L2 ¼ �� are
perfectly equivalent, as discussed extensively in Refs. [15]
and remarked in [12]. However, there is little doubt that for
a coupled perfect fluid (� � 0) the two Lagrangians are
inequivalent. This fact is a manifestation of a more general
situation: if a Lagrangian system consists of two subsys-
tems and there are two Lagrangians for one of these sub-
systems, which provide equivalent descriptions for that
subsystems when it is isolated, the two Lagrangians cease
to be equivalent when the subsystem couples to the rest of
the system. An elementary example is provided in the next
section. We follow the notations of Ref. [18].

II. TWO COUPLED OSCILLATORS

Point particle mechanics provides a very simple ex-
ample of this situation. Consider two coupled one-
dimensional oscillators which, in isolation, are described
by the Lagrangians

L1ðq1; _q1Þ ¼ 1

2
ð _q1Þ2 � K1

2
q21; (4)*vfaraoni@ubishops.ca

1This action was introduced in [8].
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L2ðq2; _q2Þ ¼ 1

2
ð _q2Þ2 � K2

2
q22; (5)

where q1;2 are the respective Lagrangian coordinates. Now
couple the two oscillators via the term L12 ¼ ��q1L2 in
the total Lagrangian

Lðq1; _q1; q2; _q2Þ ¼ L1 þ L2 þ L12

¼ 1

2
½ð _q1Þ2 þ ð _q2Þ2� � K1

2
q21 �

K2

2
q22

� �q1

�
1

2
ð _q2Þ2 � K2

2
q22

�
: (6)

The Euler-Lagrange equations

d

dt

�
@L

@ _qi

�
� @L

@qi
¼ 0 ði ¼ 1; 2Þ (7)

yield the equations of motion

€q 1 þ K1q1 þ �

2
½ð _q2Þ2 � K2q

2
2� ¼ 0; (8)

€q 2ð1� �q1Þ � � _q1 _q2 þ K2ð1� �q1Þq2 ¼ 0: (9)

Now consider the new Lagrangian L2 þ C (where C is a
nonzero constant) for the subsystem 2: when this subsys-
tem is isolated, this new Lagrangian is trivially equivalent
to L2. However, see what happens when L2 is replaced by
L2 þ C in the description of the coupled subsystem; the
equations of motion become then

€q 1 þ K1q1 þ �

2
½ð _q2Þ2 � K2q

2
2� þ �C ¼ 0; (10)

€q 2ð1� �q1Þ � � _q1 _q2 þ K2ð1� �q1Þq2 ¼ 0: (11)

Equation (10) does not coincide with (8).
To give another, less trivial, example assume that L2 is

replaced by the equivalent Lagrangian (when the subsys-
tem 2 is isolated) L2 þ dF=dt, where Fðq2; tÞ is a function
of the coordinate q2 and the time t. Then, the total
Lagrangian of the two coupled subsytems becomes

L� ¼ L1 þ L2 þ dF

dt
� �q1L2 � �q1

dF

dt
; (12)

the change, which leaves the equation of motion for the
oscillator 2 unaffected when the latter is isolated, now
affects the way this oscillator interacts with the first one.
The new equations of motion are

€q 1 þ K1q1 þ �

2
½ð _q2Þ2 � K2q

2
2� þ �

@F

@q2
_q2 þ �

@F

@t
¼ 0;

(13)

€q 2ð1� �q1Þ � � _q1

�
_q2 þ @F

@q2

�
þ K2ð1� �q1Þq2 ¼ 0:

(14)

III. DISCUSSION AND CONCLUSIONS

Another argument advocated in [12] as evidence for the
extra force in galaxies needs to be addressed: in Ref. [19],
Puetzfeld and Obukhov derive the equations of motion of a
test body described by a Lagrangian density L and an

energy-momentum tensor TðmÞ
ab in the modified gravity

theories introduced in [7], using a multipole method.
They show that, in general, extra forces occur even on
single-pole particles, as described by Eq. (32) of [19],

D

D�
½muið1þ �f2Þ� ¼ Nib�rbf2: (15)

Here � is the proper time along the worldline of a particle
with four-tangent ua and mass m, while

Nab � u0�ab ¼ u0
Z
�ðtÞ

d3 ~x ~�ab; (16)

where a tilde denotes the density of the corresponding
quantity and �ab � Lgab [19]. In spite of being a signifi-
cant piece of work describing the motion of extended
objects, the analysis of [19] does not solve the issue of
which Lagrangian (L1 or L2) is appropriate to describe a
perfect fluid: it merely says what are the equations of
motion once a Lagrangian is assumed. If we assume the
Lagrangian L1 ¼ P, then �ab ¼ Pgab and, consequently,
Nab, vanish for a dust with P ¼ 0. If instead the
Lagrangian L2 ¼ �� is assumed, Nab does not vanish
and there are extra forces even on the particles of a dust
fluid. Hence, the work of [19] does not resolve the issue of
whether L1 or L2 is appropriate to describe a perfect fluid
nonminimally coupled to gravity.
We note that the case of the cosmological constant,

regarded as an effective form of matter, is very special: if
one considers a cosmological constant as a perfect fluid
with Lagrangian L¼��, there is no difference between
the two Lagrangians L1 ¼ P and L2¼�� because of the
peculiar equation of state P¼�� of the effective fluid, and
there is noextra force on the cosmological constant‘‘fluid.’’
This coincidence is, of course, consistent with the fact that
one can also regard the cosmological constant term as a
purely geometrical term which is part of the first function
f1ðRÞ in the action (1) (for example, f1ðRÞ¼R��).
To summarize our conclusions, there is little doubt that

the two Lagrangian densities L1 ¼ P and L2 ¼ �� are
equivalent for the description of a perfect fluid which is not
coupled directly to gravity, as shown in Refs. [15]. How-
ever, as soon as this fluid is coupled explicitly to gravity as
in Eq. (1), the two Lagrangian densities cease to be equiva-
lent. It is not clear that one should be physically preferred
with respect to the other: simply, they give rise to two
inequivalent theories of gravity and matter, which are both
correct. Which one should be chosen must be decided by
independent arguments. It is a fact that by choosingL ¼ P
there is no extra force on a dust fluid, and it is equally
undeniable that by choosingL2 ¼ �� there will be such a
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force, which may ultimately provide an alternative to dark
matter. We are not able to provide independent arguments
in favor of one choice or the other: the contribution of the
present paper merely consists in showing that, in spite of
the appearance, there is no contradiction between the
results of [14] and those of [12].
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