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By asymptotically matching a post-Newtonian (PN) metric to two perturbed Schwarzschild metrics, we

generate approximate initial data (in the form of an approximate 4-metric) for a nonspinning black hole

binary in a circular orbit. We carry out this matching through Oðv4Þ in the binary’s orbital velocity v, and
thus the resulting data, like the Oðv4Þ PN metric, are conformally curved. The matching procedure also

fixes the quadrupole and octupole tidal deformations of the holes, including the 1PN corrections to the

quadrupole fields. Far from the holes, we use the appropriate PN metric that accounts for retardation,

which we construct using the highest-order PN expressions available to compute the binary’s past history.

The data set’s uncontrolled remainders are thus Oðv5Þ throughout the time slice; we also generate an

extension to the data set that has uncontrolled remainders of Oðv6Þ in the purely PN portion of the time

slice (i.e., not too close to the holes). This extension also includes various other readily available higher-

order terms. The addition of these terms decreases the constraint violations in certain regions, even though

it does not increase the data’s formal accuracy. The resulting data are smooth, since we join all the metrics

together by smoothly interpolating between them. We perform this interpolation using transition functions

constructed to avoid introducing excessive additional constraint violations. Because of their inclusion of

tidal deformations and outgoing radiation, these data should substantially reduce both the high- and low-

frequency components of the initial spurious (‘‘junk’’) radiation observed in current simulations that use

conformally flat initial data. Such reductions in the nonphysical components of the initial data will be

necessary for simulations to achieve the accuracy required to supply Advanced LIGO and LISAwith the

templates necessary for parameter estimation.
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I. INTRODUCTION

A. Motivation and overview of results

At present, several years after the initial breakthroughs
in the evolution of binary black hole spacetimes [1–3],
numerical relativity has matured to the point where suc-
cessful binary black hole simulations are now common-
place (see, e.g., [4] for a review). Recent progress in the
nonspinning case includes simulations of systems with
mass ratios of up to 10:1 [5–7] and longer, more accurate
simulations of equal-mass systems [8,9].

It is now time to consider what improvements need to be
made to these simulations so they are accurate enough to
provide gravitational wave detectors such as LIGO [10]
with the model waveforms they need to detect and study
binary black holes. The accuracy required of such wave-
forms has been studied by Lindblom, Owen, and Brown
(LOB) [11]. Their results imply that current simulations
are sufficiently accurate to supply the waveforms necessary
for detection with either LIGO or LISA [12]. This con-
clusion is supported by the Samurai [13] and NINJA [14]
projects, which indicate that currently used data analysis
pipelines (including some not based on matched filtering)

can detect a wide variety of numerical relativity waveforms
at comparable levels in stationary Gaussian noise. The
Samurai project also performs a more detailed comparison
of a subset of waveforms for parameter estimation, and
finds that—modulo possible systematic errors in sky posi-
tion and arrival time—they are all indistinguishable if used
for estimation of intrinsic parameters (i.e., not sky position
or arrival time) at a signal-to-noise ratio (SNR) of less than
14 (25 if one eliminates the code that disagrees the most
with the others).
However, Advanced LIGO may detect binary black hole

signals with SNRs of order 100 [11]. According to LOB
[11], if a waveform’s phase error (suitably averaged in the
frequency domain) is less than 0.007 radians, then it is
suitable for use in parameter estimation with Advanced
LIGO with such an SNR. But even the Caltech/Cornell
group’s simulations (which are arguably the most accurate
yet) have maximum phase errors (in the time domain) of
order 0.01 radians or more (see [8,15] for some discussion
of their error budget). Converting such error measures to
the criteria of LOB is more subtle than it looks, and we do
not attempt it here. (See [16] for a discussion of some
possible pitfalls, along with suggestions for successful
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applications of the standards from LOB.) Nevertheless, it
seems likely that even the Caltech/Cornell group’s simu-
lations may not satisfy the LOB conditions for parameter
estimation, at least for binaries whose masses place the
worst phase error in the detector’s most sensitive frequency
band.

All current binary black hole simulations incur some
error from the initial data used. These data sets’ lack of
astrophysical realism is clearly announced by the burst of
spurious (or junk) radiation present at the beginning of
these simulations. This junk radiation is also responsible
for various deleterious effects on simulations. First, one
wastes the computer time required for the spurious radia-
tion to propagate off the computational grid. Second, the
system that remains after that time has been perturbed by
the spurious radiation. This radiation’s most prominent
effect is to increase the binary’s eccentricity,1 though it
also slightly increases the masses of the holes; see [20].
Additionally, in the unequal-mass or spinning cases, the
initial junk radiation is emitted anisotropically, giving the
system a small ‘‘kick’’ (see, e.g., [21,22]). The high-
frequency component of the spurious radiation is a par-
ticular problem for spectral codes. For instance, the
Caltech/Cornell group finds that the high-frequency com-
ponent of the initial pulse of spurious radiation generates
secondary spurious waves that propagate throughout the
computational domain for two light-crossing times after
the initial junk radiation has exited [8,15]. (These effects
can be reduced, though by no means eliminated, by appro-
priate choices for the constraint damping parameters [23].)

Currently employed initial data’s omission of significant
features of the spacetime can also be seen analytically.
Except for occasional tests of initial data (discussed in
Sec. I B), all current simulations use initial data sets that
assume conformal flatness (i.e., that the spatial metric is a
scalar multiple of the flat 3-metric). The assumption of
conformal flatness is convenient, since it allows one to get
simple, mostly analytic expressions for initial data that
exactly solve the constraint equations and include orbiting
black holes (see, e.g., [24,25] for reviews).

In general, these sets are geared either towards the
puncture or excision approaches. The majority of the com-
munity uses punctures, with initial data stemming from
[26]. These data are very flexible, as they contain parame-
ters with which one can directly set the momentum and
spin of each hole. For instance, for evolutions with spin-
ning holes, one can simply set these parameters using post-
Newtonian (PN) results as in [27–30]. For nonspinning
configurations in a circular orbit, parameter choices based
on the assumption of a helical Killing vector [31,32] are
possible as well. The Caltech/Cornell and Princeton groups
use excision [33,34], with initial data constructed using the

conformal thin-sandwich method (see, e.g., [35]). These
data are slightly harder to construct than puncture data are,
since one has to solve a larger number of elliptic equations.
However, excision data have the advantage of a direct
connection to the isolated horizon formalism [36], which
allows one to construct holes with well-defined masses and
spins. Additionally, the excision approach is applicable to a
wider array of initial data construction methods: It is used
in all of the extant evolutions of superposed black hole data
sets except for one specifically tailored to the puncture
approach. (See Sec. I B for a discussion of these evolu-
tions.) The data we present here also require evolutions
using excision or the turducken approach [37].
Conformally flat initial data cannot accurately represent

some features of a binary black hole spacetime, since the
PN metric for a binary system stops being spatially con-
formally flat at Oðv4Þ, where v is the binary’s orbital
velocity in units of c, the speed of light (see Sec. IVA
for discussion). The order at which this fundamental dis-
agreement with PN predictions first occurs gives a rough
indication of the error committed in using conformally flat
initial data. At present, the simulation for which this error
is the smallest is the longest of the Caltech/Cornell runs (in
[8]), for which vinitial ’ 0:24, where vinitial is the binary’s
initial orbital velocity. We expect the initial data’s confor-
mal flatness to only affect the waveform at Oðv4

initialÞ,
which for this run is comparable to the phase error allowed
for a waveform to be used for parameter estimation with
Advanced LIGO. It is thus possible (though perhaps not
likely) that conformally flat initial data would be suitable
for use in the simulations that will generate such
waveforms.
It is unlikely that conformally flat initial data can be used

to generate the waveforms required for parameter estima-
tion with LISA. Here, the required (appropriately averaged
frequency domain) phase accuracy is 2� 10�4 radians
[11], �21 times smaller than v4

initial for the longest of

Caltech/Cornell’s simulations. One can reduce the error
in the initial data by starting the simulation with a larger
separation. However, v4

initial ’ 2� 10�4 implies an initial

(PN coordinate) separation of�71 times the binary’s mass,
and thus a merger time that is over 400 times as long as the
Caltech/Cornell group’s longest simulations to date, which
start from a (PN coordinate) separation of�15:3 times the
binary’s mass. It is thus necessary to improve the accuracy
of the initial data. Evolutions of more accurate initial data
will also give a direct measure of the errors introduced in
using current, conformally flat initial data.
This paper provides initial data that include more of the

physics present in the binary’s spacetime than any previous
constructions. (For technical simplicity, we specialize to a
nonspinning binary in a circular orbit. However, the con-
struction generalizes straightforwardly to include either
eccentricity or spin, though the algebraic complexity in-
creases substantially, and not all the pieces are available in

1In practice, the eccentricity can be reduced by various means
[17–19].
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the spinning case to carry out the construction to the same
order we have done here; see the discussion in Sec. IXB.)
In particular, our data’s accurate description of certain
properties of the spacetime should substantially reduce
both components of the aforementioned spurious radiation.
These two components are thought to come from different
physical effects. The long-wavelength component is
thought to correspond to the initial data’s lack of outgoing
gravitational radiation, whose wavelength would be some-
what longer than the orbital separation. Of course, one
expects the junk to be generated predominantly in the
strong-field region near the holes, where the binary’s gravi-
tational radiation cannot be disentangled from the rest of its
gravitational field. However, one also expects the pieces
that one wants in the strong-field region to appear atOðv4Þ,
just as the true gravitational waves do in the radiation (or
far) zone (defined in Sec. II); see Sec. IVB for some
discussion. Our data include all the Oðv4Þ terms in the
strong- and weak-field regions. The short-wavelength com-
ponent is thought to come from the holes’ quasinormal
modes ringing down, emitting gravitational radiation with
wavelengths on the order of their masses, as they relax
from their initial, close to spherical state to their desired
tidally deformed state (see, e.g., [15]). Our data include the
Newtonian quadrupole and octupole tidal deformations
each hole induces on the other, as well as the 1PN correc-
tions to the quadrupole deformations.

The tidal deformations are contained in perturbed
Schwarzschild metrics, given (in the horizon-penetrating
coordinate system we use) in Eqs. (3.2) and (3.3). The tidal
fields are fixed by asymptotically matching these
Schwarzschild metrics to an Oðv4Þ PN metric, given in
Eq. (4.1); expressions for the tidal fields around hole 1 are
given in Eq. (B1). One also needs to introduce a coordinate
transformation in order to put the black hole metrics in the
same coordinate system as the PN metric. This transfor-
mation is also determined (perturbatively) by the match-
ing; instructions for putting it together around hole 1 are
given in Sec. VG. Instructions for converting all of these
results to the region around hole 2 are given at the begin-
ning of Sec. VA.

The PN metric mentioned above treats retardation per-
turbatively and thus becomes inaccurate far from the bi-
nary. In that region, we thus use a version of the PN metric
that includes retardation explicitly (but also uses a multi-
polar decomposition, so it does not provide the desired
accuracy closer to the holes). This metric is given in
Eq. (6.4). Because of retardation, one needs to know the
binary’s past history accurately in order to obtain the far
zone metric accurately far from the binary. This past
history is computed in Sec. VIA to the highest PN order
possible with current results. The contributions of these
terms are of equal or higher order than some of our
uncontrolled remainders, but their inclusion is necessary
if one wishes to obtain, e.g., accurate phasing for the out-
going radiation.

We have also added other formally higher-order terms to
the metrics, including all the readily available PN results,
along with a resummation of the black hole backgrounds in
the PN metric. We found that some of these terms im-
proved the constraint violations in various regions; others
of these additional terms are expected to improve evolu-
tions of the data. The resummation is given in Sec. VIII A;
all the remaining higher-order terms are discussed in
Sec. VII.
The transition functions that we use to stitch the metrics

together smoothly are given in Sec. VIII B. These functions
satisfy the hypotheses of the two so-called Frankenstein
theorems [38]; this guarantees that the resulting initial data
will have constraint violations whose formal order is no
larger than that of the constraint violations of the initial
data obtained from the constituent metrics. In particular,
the first theorem guarantees that the merged metric satisfies
the Einstein equations to the same formal order as its
constituent metrics, provided that the derivatives of the
transition functions satisfy certain sufficient conditions
(given in Sec. VIII B). The second theorem shows that
the same conditions are sufficient to guarantee that the
differences between an initial data set obtained from the
merged 4-metric and one constructed by merging the initial
data sets obtained from the constituent 4-metrics are con-
tained in the uncontrolled remainders. (We followed the
latter approach in obtaining the initial data used to generate
the plots, but it is also possible to use the former approach
and obtain initial data from our merged 4-metric directly.
We also carried out the requisite differentiation numeri-
cally: The expressions for the relevant metrics are too
complicated to make analytic expressions for the initial
data practicable.) See Appendix D for the technical details
of how we compute the metrics.
We have generated MAPLE scripts and C code (available

at [39]) that produce initial data for a nonspinning binary in
a quasicircular orbit. This binary can, in principle, have any
mass ratio and initial separation, though the data will
decrease in accuracy as the initial separation decreases,
and will also likely lose accuracy as the mass ratio in-
creases. (We expect the latter to occur, since there is
evidence that the PN approximation converges more
slowly for extreme mass ratios than for equal mass ratios;
see, e.g., [40,41]. Additionally, the transition functions we
give do not behave quite as well as might be desired for
unequal mass systems.) We suggest using initial separa-
tions of less than about 10m (m is the binary’s mass) with
caution and strongly recommend using larger initial sepa-
rations if at all possible: The data’s constraint violations
decrease dramatically with increasing initial separation, as
discussed in Sec. VIII C; we expect a concomitant increase
in the data’s physical accuracy.
The constraint violations give a measure of how much

more accurate this paper’s data are compared with those
constructed in previous papers (viz., [42,43], which we
refer to as Papers I and II). We plot the constraint violations
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of the three sets of data in Fig. 1. [See, e.g., Eqs. (14)–(15)
in [24] for expressions for the constraint equations.] Nota
bene (N.B.): While the Hamiltonian constraint violations
of this paper’s data are larger close to the hole than those of
either of the previous papers’ data, this is due to our
inclusion of the full time dependence of the tidal fields,
as discussed in Appendix D 1; the motivation for doing
this, even at the cost of larger constraint violations, is given
in Sec. VII. If one does not include these higher-order
terms, then the new data’s constraint violations are smaller
close to the hole than those of either of the previous papers’
data. See Sec. VIII C for a comparison of the constraint
violations of the inner zone metric with and without full
time dependence in the tidal fields.

For a simple, quantitative comparison of the overall
constraint violations, we can consider their L2 and sup
norms. These are presented for all three sets of data in
Table I and show, as expected, that the new data have
smaller overall constraint violations than either of the
previous papers’ data. Of course, the L2 norm of the new
data’s Hamiltonian constraint violations is only very
slightly less than that of the data from Paper II, but this
is probably to be expected; see Sec. VIII C for some dis-
cussion of this, as well as further details about the com-
parison plot and table.

B. Conformally curved initial data

The problems with conformally flat data have inspired a
variety of constructions of conformally curved binary

black hole data, for which there are two general ap-
proaches. One approach—the one we have taken—is pri-
marily motivated by a desire for astrophysical realism,
seeing the spurious radiation as an indicator of the failure
of conformally flat initial data to model the desired space-
time accurately enough. These constructions so far have
restricted their attention to nonspinning binaries and used
the PN approximation to include the binary’s physics. (Of
course, true astrophysical binaries are expected to have
significant spins, so the consideration of nonspinning bi-
naries is merely a technical convenience appropriate for
initial attempts at constructing astrophysically realistic
data.) The other approach is primarily concerned with
reducing the junk radiation in practice with relatively
simple choices for initial data (viz., a superposition of
boosted black holes). This approach is often geared pri-
marily towards spinning black holes, since the amount of
spurious radiation increases with the spin of the holes.
(This is due to the nonexistence of a conformally flat
slicing even of an isolated Kerr black hole with nonzero
spin; see [44,45].)
Besides our present work, other constructions in the first

category are this work’s antecedents ([42,43,46], discussed
in the next subsection), along with the approaches of
Nissanke [47] and Kelly et al. [48]. (The latter two only
use the PN approximation in their construction, so the
resulting data cannot accurately describe the spacetime
near the holes.) Nissanke, building on the work of
Blanchet [49] (who constructed initial data for a head-on
collision of initially stationary holes), obtains explicit ana-
lytic expressions for the 3-metric and extrinsic curvature
from the 2PN metric. (N.B.: These constructions only use
the version of the PN metric that treats retardation pertur-
batively, so the resulting data rapidly lose accuracy away
from the binary.) Kelly et al. [48] extend the work of Tichy
et al. [50] to give initial data from the 2.5PN Arnowitt-
Deser-Misner transverse-traceless (ADMTT) metric that
are valid through Oðv4Þ wherever the PN approximation
is and thus contain the binary’s outgoing radiation in the far
zone. (See Sec. IVB for a discussion of why gravitational
radiation is present at that order.) In order to obtain these
data, they have to evaluate an integral numerically, so their
data are not completely analytic.
The most recent progress in the second category for

nonspinning black holes is Lovelace’s [51] construction
and evolution of superposed Schwarzschild data for an
orbiting binary. (There is a companion construction and
evolution of superposed spinning black hole data for an
orbiting binary in Lovelace et al. [52]. Additionally, two
versions of the spinning data are evolved in head-on colli-
sions in [22].) Lovelace uses the superposed black hole
data as free data for a constraint solver and finds that the
resulting data produce less spurious radiation than confor-
mally flat data. There are also older constructions in a
similar vein [53–55], though their data have only been
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FIG. 1 (color online). The Hamiltonian constraint and norm of
the momentum constraint along the x axis around hole 1 for this
paper’s data along with the data from Papers I and II. (In the
norm of the momentum constraint, the index is raised using the
metric in question.) All of these were computed for an equal-
mass binary with a coordinate separation of 10 times its total
mass, m. In the inset, we zoom in to show how the Hamiltonian
constraint violations behave close to the horizon. Note that the
data from Paper II are in a different coordinate system through-
out, and that the black hole background in Paper I’s data is in a
different (and not horizon-penetrating) coordinate system.
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evolved in head-on collisions without first solving the
constraints [56] and did not reduce the spurious radiation.
Hannam et al.’s Kerr puncture data [57] have been evolved,
and found to reduce the spurious radiation, but they are
only applicable to head-on collisions. Neither of the other
conformally curved spinning data constructions [58,59]
have been evolved, to our knowledge.

While several of the superposed data sets have been
evolved, the only evolution of PN initial data of which
we are aware is that of Kelly et al. [60]. They evolved the
data they obtained in [48] (as well as the original version
without waves from [50]) and found that the junk radiation
was indeed reduced, compared to standard puncture data.
However, as expected, the spurious radiation appears to be
unchanged when the waves are added: We expect the junk
to be generated primarily near the holes, and both data sets
have the same accuracy in the strong-field region. In addi-
tion, Kelly et al. only find a reduction in the low-frequency
component of the spurious radiation. This is again as
expected, since their data do not include the tidal deforma-
tions on the holes.

As mentioned in the previous subsection, the data set we
construct here should help reduce both components of the
junk radiation, since it includes an accurate description of
the spacetime near the holes (including the quadrupole and
octupole tidal deformations), matched to the PN metric
throughOðv4Þ. We also offer an extension to these data that
are accurate through Oðv5Þ in the PN portions of the time
slice (i.e., not too close to the holes), allowing our data to
be compared more directly with Kelly et al.’s.

C. Specifics of our approach and its relation to other
work

With currently available technology, if one wishes to
generate initial data that include the holes’ tidal deforma-
tions or the binary’s outgoing radiation, it is necessary to
allow the initial data (as first constructed) to be merely an
approximate solution of the constraint equations. (One can
always use these approximate data as free data for a con-
straint solver and thus obtain an exact solution of the
constraints, to numerical precision.) Since the post-

Newtonian approximation has been developed to a very

high order, it is an obvious choice for the description of the
binary’s spacetime. Indeed, an explicit expression for the
metric to 2.5PN order (with a perturbative treatment of
retardation) is given by Blanchet, Faye, and Ponsot (BFP)
[61].
However, one cannot obtain accurate initial data

throughout a time slice of the binary’s spacetime using
just the PN metric, since the PN approximation breaks
down near the holes; the PN approximation is a weak-field
approximation (due to the post-Minkowskian iteration in
powers of G, Newton’s gravitational constant), in addition
to being a slow-motion approximation (the post-
Newtonian expansion proper, which formally proceeds as
an expansion in 1=c, where c is the speed of light). More-
over, the standard PN approximation (as presented, e.g., in
BFP) treats retardation perturbatively. It thus becomes
inaccurate quite rapidly as one enters the radiation zone
(i.e., when one is further than about a reduced gravitational
wavelength away from the binary’s center of mass).
The resolution of both of these problems is to realize that

there is an appropriate approximate description of the
spacetime in each of the regions where the standard PN
metric breaks down: Near each of the holes, in the regions
known as the inner zones, spacetime is well described by a
perturbed black hole metric. (These zones, as well as the

others we mention here, are defined more precisely in
Sec. II.) In the radiation zone (or far zone), there is another
version of the PN metric that incorporates retardation non-
perturbatively. These are all readily available in the litera-
ture to the order we need them; see Sec. I C 1 for the
details.
One then has to stitch all of these spacetimes—the far

zone, inner zones, and the near zonewhere the standard PN
metric is valid—together into one global approximate
metric. (Of course, this metric will be global in space,
but not in time—i.e., it will only be accurate in a temporal
neighborhood of a time slice of the binary’s spacetime.)
This stitching together proceeds in two steps: First, one
uses the technique of matched asymptotic expansions to
match the metrics at a formal level. This puts all the
metrics in the same coordinate system (up to uncontrolled

TABLE I. The L2 and sup norms (denoted by k � k2 and k � k1, respectively) of the
Hamiltonian and momentum constraints (H and ~M) for an equal-mass binary with a coordinate
separation of 10 times its total mass, m. (The norms of the momentum constraint include the L2

3-vector norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MkMk

p
, where the index is raised using the metric under consideration.) These

are computed along the x axis outside the unperturbed horizons of the holes but inside the
interval ½�16:4m; 16:4m�.

m3=2kHk2 (10�2) m2kHk1 (10�2) m3=2k ~Mk2 (10�3) m2k ~Mk1 (10�3)

This paper 1.565 0.631 2.973 1.879

Paper II 1.566 0.758 4.627 2.065

Paper I 9.149 4.466 5.837 2.531
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remainders) and fixes any previously undetermined pa-
rameters (e.g., the holes’ tidal perturbations) so that
the metrics are asymptotic to each other in their regions
of mutual validity (the buffer zones). The final, numerical
merging of the metrics is then effected by transition
functions that smoothly interpolate between the metrics
in their mutual buffer zones. The resulting merged metric
is guaranteed to satisfy the Einstein equations to the
same order as its constituent metrics if the transition func-
tions are constructed to satisfy the hypotheses of the
so-called Frankenstein theorems [38]. (We check that
our transition functions satisfy these hypotheses in
Sec. VIII C.)

Once one has obtained such approximate initial data, it
is, of course, possible to use them as the input to a numeri-
cal constraint solver, and thus obtain an exact solution, to
numerical precision. In fact, it is probably desirable to do
so. The idea when doing this is that if the input to the
constraint solver satisfies the constraints and describes the
desired physics to some reasonably good tolerance, then
the ‘‘exact’’ solution one obtains after solving the con-
straints will not differ too much from the input in its
physical content. This is probably true regardless of how
one chooses to produce the exact solution to the con-
straints, as long as the procedure modifies the initial guess
in a reasonable way. One commonly used procedure is the
York-Lichnerowicz decomposition [24]. Both Pfeiffer
et al. [62] and Tichy et al. [50] have implemented this
numerically without the assumption of conformal flatness.
However, it is unclear exactly how the output from the
York-Lichnerowicz procedure (or similar decompositions)
relates to its input in physical content. It may thus be
preferable to project the approximate initial data onto the
closest ‘‘point’’ on the constraint hypersurface (as mea-
sured by some appropriate norm), possibly using the re-
sults of [63].

If one chooses to evolve without solving the constraints
(as did Kelly et al. [60]), then one will not have a true
vacuum evolution: The constraint violations will act
as matter (which may not satisfy any of the standard
energy conditions). For instance, Bode et al. [64] in-
vestigated the evolution of initial data that only approxi-
mately satisfied the Hamiltonian constraint (though the
momentum constraint was satisfied exactly). They found
that the holes accreted the negative Hamiltonian con-
straint violations that surrounded them, decreasing their
masses.

1. Comparisons with similar constructions

All three of the previous constructions of matched initial
data restricted their attention to the simplest case of non-
spinning holes in a (quasi)circular orbit, as we do here:
Alvi [46] made the first attempt, though his data were
found to be unsuitable for numerical evolutions [65].

Yunes et al. [42] (Paper I) then revisited the problem,
correcting various deficiencies in Alvi’s method. Yunes
and Tichy [43] (Paper II) then obtained a better numerical
match (in the sense of smaller constraint violations) by
using ADMTT PN coordinates (as opposed to the har-
monic coordinates of all the other constructions) and
some resummation. They also constructed horizon-
penetrating coordinates to provide the first usable initial

data constructed using this method. However, in all of
these cases the initial data are only valid through Oðv2Þ,
and the tidal fields are still just the lowest-order quadrupole
ones Alvi had obtained.
The present calculation builds on all of these previous

constructions, computing fully matched initial data

through Oðv4Þ, in order to include the pieces of the PN
metric that break conformal flatness (and contain gravita-
tional radiation), and reading off the tidal fields from the
matching. In addition, we include the radiation zone por-
tion of the metric. This was done explicitly by Alvi and

implicitly in Paper II, due to its use of the ADMTT PN
metric, though neither of them included the effects of
radiation reaction on the binary’s past evolution in their
far zone metric, as we do. We also employ background
resummation (discussed in Sec. VIII A) in the near zone
metric, inspired by similar resummations in Paper II.

Additionally, we stay in inertial coordinates, while all of

the previous versions use a corotating coordinate system.
While we only obtain fully matched initial data through

Oðv4Þ, we actually have to carry out the matching of the 4-
metric through Oðv5Þ in order to do so: We need to match

the Oðv5Þ pieces of the spatiotemporal components of the
4-metrics in order to obtain the extrinsic curvature consis-
tently [see the discussion after Eq. (2) in Paper I], and one
needs to carry out the matching of all the components in
order to obtain the Oðv5Þ piece of the coordinate
transformation.
Additionally, while our goal was simply to keep terms of

quadrupole order overall in the multipole expansion, as

was done previously, we found that it was necessary to
match the lowest-order octupole pieces in order to match
the 1PN corrections to the quadrupole pieces consistently.

This is discussed in Sec. VA. In fact, we have carried out
the matching of quadrupole pieces to the highest possible
order to which it can be done consistently without the

inclusion of the hexadecapole tidal fields. (These hexade-
capole pieces can be included with input from nonlinear

black hole perturbation theory, since carried out by Poisson
and Vlasov [66].) We also obtained the 1PN correction to
the electric octupole and the associated piece of the coor-
dinate transformation as a further application of our match-
ing procedure. However, we could not obtain the other
Oðv4Þ octupole pieces in the initial data (since they include
the hexadecapole tidal fields), so our knowledge of these
corrections does not allow us to increase the formal order
to which our data are valid.
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Building on the work done in Paper II, we have used
horizon-penetrating coordinates for the black holes from
the outset. This requirement of horizon penetration is
necessary for numerical purposes. The coordinates need
to be regular and the lapse positive in a neighborhood of the
horizon: Even though the spacetime near the singularity
will be excised or filled with matter, one needs to be able to
evolve at least a small portion of the spacetime inside the
horizon.

At the same time, we want the coordinates for the black
hole and PN metric to agree as closely as possible before
the matching has been performed; close agreement makes
for simple matching algebraically and improves the nu-
merical agreement of the resulting matched metrics, as was
seen in Paper II. Ideally, the coordinates would agree
exactly for an unperturbed black hole, though this is not
compatible with the requirement of horizon penetration
unless one transforms the PN metric’s coordinates:
Standard PN coordinates (harmonic or ADMTT) are not
horizon penetrating. We decided to avoid the complica-
tions such a transformation would entail and thus at-
tempted instead to obtain agreement between the two
coordinate systems to as high a PN order as possible.

These desiderata are satisfied if we use the fully har-
monic version of Cook-Scheel coordinates [67] for the
black hole and standard (PN) harmonic coordinates for
the PNmetric2: Cook-Scheel coordinates are horizon pene-
trating, and in their fully harmonic version only differ from
PN harmonic coordinates for an unperturbed
Schwarzschild black hole at Oðv4Þ. See Appendix A for
an explicit comparison. This agreement was the best of any
of the horizon-penetrating coordinate systems present in
the literature we consulted (even if we also consider
ADMTT coordinates for the PN metric). Of course, we
then adjust this coordinate system perturbatively so it
agrees with the near zone coordinate system to the order
we have matched. However, we have checked that this
adjustment does not affect the coordinates’ horizon
penetration.

The other choices for our ingredients were made for
computational ease. We selected Detweiler’s perturbed
black hole metric [68] instead of Poisson’s [69], because
Detweiler expresses the tidal fields in the Thorne-Hartle-
Zhang (THZ) harmonic specialization of locally inertial
coordinates [70,71]. This gauge choice agrees better
with the PN metric in harmonic coordinates than does

Poisson’s light-cone gauge. For the far zone, the results
from the direct integration of the relaxed Einstein
equations (DIRE) approach were the obvious choice: Pati
and Will [72,73] give an explicit recipe for computing
the far zone metric to the order we need it (which, in
the extension, is higher than the order to which Alvi
[46] gives it), along with all of the necessary ingredients
(except for a few that can be obtained from Will and
Wiseman [74]). Even more conveniently, their expression
is in the same (harmonic) coordinate system as BFP’s PN
metric, so we do not have to determine a coordinate trans-
formation for the matching between the near and far zones.
[We have checked explicitly that the near and far zone
metrics match through Oðv5Þ in all components.] One also
needs to know the binary’s past history in order to obtain
the far zone metric accurately, due to retardation: We
calculate this in the PN approximation using Blanchet’s
results [41].

2. Comparison with Taylor and Poisson’s determination
of the tidal fields

Our method for determining the tidal fields can be
compared and contrasted with that employed in the recent
calculation by Taylor and Poisson [75]. Most importantly,
Taylor and Poisson’s aims are more general: Their calcu-
lation matches a single nonrotating black hole to an arbi-
trary 1PN metric (expressed in terms of potentials). Our
results extend to higher orders (particularly in the spatial
components of the coordinate transformation) but are re-
stricted to the case of a (post-Newtonian) binary in a
(quasi)circular orbit. However, the pieces that we both
computed agree exactly. See Appendix B 1 for a compari-
son, including explicit expressions for the tidal fields we
obtained.
The details of the calculations share some similarities

(e.g., both use THZ coordinates for the perturbation),
though the primary methods of determining the tidal fields
differ substantially. Most importantly, Taylor and Poisson
specialize the coordinate transformation and perform a
decomposition of the potentials before matching. Our ap-
proach is more ‘‘brute force,’’ requiring no such special-
ization or decomposition, but relying heavily on the
computer algebra system MAPLE and the associated tensor
manipulation package GRTENSORII [76]. See Sec. VA for a
detailed presentation of our algorithm.

D. Structure of the paper

We begin by giving an overview of asymptotic matching
in Sec. II and then present the inner and near zone metrics
to be matched in Secs. III and IV, respectively. In Sec. IV,
we also consider two relevant aspects of the PN metric,
viz., conformal flatness breaking and gravitational radia-
tion effects. Next, we discuss the specifics of our matching

2We use the term harmonic coordinates to refer to any
coordinates x� that satisfy r�r�x� ¼ 0, not just PN harmonic
coordinates. (Here,r� is the covariant derivative associated with
the metric under consideration, and indices are raised using that
metric.) For an unperturbed Schwarzschild black hole of mass
M, PN harmonic coordinates are obtained by transforming the
Schwarzschild radial coordinate P to RPN ¼ P �M and thus
retain the coordinate singularity at the horizon present in
Schwarzschild coordinates.
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procedure and read off the matching parameters and coor-
dinate transformation order-by-order in Sec. V. We com-
pute the far zone metric in Sec. VI, where we also discuss
the PN results we use to obtain the effects of radiation
reaction on the binary’s evolution. In Sec. VII, we give an
overview of the construction of an extension of this data set
that is valid through Oðv5Þ in the near and far zones, in
addition to including various other higher-order terms.
Then, we stitch the metrics together numerically in
Sec. VIII, first resumming the near zone metric to improve
its strong-field behavior (and thus the numerical agreement
of the metrics), then constructing transition functions to
stitch all of the metrics together smoothly, and finally
considering the constraint violations of the resulting
merged metric. Lastly, we conclude and summarize in
Sec. IX.

We present various ancillary results and technical details
in the appendices: Appendix A compares Cook-Scheel
and PN harmonic coordinates. We provide explicit expres-
sions for the tidal fields and some related discussion
in Appendix B, along with the calculation of the fourth-
order pieces of the octupole tidal fields and the polynomial
part of the associated coordinate transformation. In
Appendix C, we give the details of our calculation of the
far zone metric used in the higher-order extension to the
data, and in Appendix D the precise details of how the
metrics are implemented numerically.

E. Notation and conventions

Units: We use geometrized units withG ¼ c ¼ 1 almost
exclusively. (G is Newton’s constant, and c is the speed of
light.) The only exception to this comes when we are
describing certain post-Newtonian expansions. Here, in
keeping with the standard formal approach to the post-
Newtonian approximation (see, e.g., [41]), we shall use G
and 1=c as convenient bookkeeping parameters. For in-
stance, we may refer to some term as being Oðc�nÞ, or
describe an expansion as proceeding in powers of G,
though we shall not display these constants in any other
context.

Binary parameters: The binary’s orbital velocity is v, its
orbital angular velocity is !, and its coordinate separation
is b. The masses of the holes are m1 and m2; their total
mass is m :¼ m1 þm2.

Indices: We use the standard convention that Greek
letters denote spacetime indices, while lowercase Roman
letters denote spatial indices. The uppercase indices A and
B label the holes, as well as (by extension) the zones into
which we divide the data’s time slice. We useQ to denote a
multi-index [see, e.g., the discussion following Eq. (2.14)
in Pati and Will [72] for a definition].

Index operations: Except where otherwise noted (e.g., in
Secs. IVA, VI, and VIII), spacetime indices are raised and
lowered using the Minkowski metric ���, so spatial in-

dices are raised and lowered using the Kronecker delta �kl.

We may even freely raise and lower spatial indices within
expressions for notational convenience, particularly in
Sec. IV. The summation convention is always in force,

and may even be applied to spatial indices that are at the
same level, particularly in Sec. VI. Parentheses, square
brackets, and angle brackets on indices denote symmetri-
zation, antisymmetrization, and the symmetric trace-free
projection, respectively. We use vertical bars to exclude

indices from these operations. The notation ‘‘þð1 $ 2Þ’’
denotes that the preceding expression is to be added to

itself with the labels 1 and 2 switched.
Arrays: In addition to the ordinary three-dimensional

Kronecker delta, we also define a ‘‘lowered four-
dimensional Kronecker delta,’’ ��� :¼ diagð1; 1; 1; 1Þ.
Our conventions for the three- and four-dimensional
Levi-Civita symbols �klp and ����� are that �123 ¼
�0123 ¼ 1.
Metrics: As is usual,��� denotes theMinkowski metric;

our signature is (�;þ;þ;þ). In Secs. IV and V (and
Appendix B) g�� denotes the near zone (PN) metric, and

h�� denotes the inner zone (perturbed black hole) metric.

In Sec. VIII A and Appendix A, g�� (sometimes with

decorations) is also used for the unperturbed
Schwarzschild metric. In Sec. VI (and the associated
Appendix C), g�� denotes the far zone metric, and h��
its associated metric perturbation.
Coordinates: Cook-Scheel coordinates (used in the inner

zone) are X� ¼ ðT; XkÞ ¼ ðT; X; Y; ZÞ, with R :¼ ffiffiffiffiffiffiffiffiffiffiffi
XkX

k
p

.
PN harmonic coordinates (used in the near and far zones)

are x� ¼ ðt; xkÞ ¼ ðt; x; y; zÞ, with r :¼ ffiffiffiffiffiffiffiffiffi
xkx

k
p

; r� denotes

just the spatial coordinates [i.e., r� ¼ ð0; xkÞ]. Unit vectors
are denoted by ‘‘hats.’’ For instance, t̂�, x̂�, ŷ�, and ẑ� are
the Cartesian PN coordinate basis vectors corresponding to
indices 0, 1, 2, and 3, respectively. We also define ‘‘tilded’’
coordinates ~x� :¼ x� � ðm2=mÞbx̂�, ~x :¼ x� ðm2=mÞb,
~r :¼ ffiffiffiffiffiffiffiffiffi

~xk~x
k

p
, and ~r� :¼ r� � ðm2=mÞbx̂�. Spatial vectors

(or the spatial parts of spacetime vectors) will be denoted

either with an arrow or a spatial index.
Norms: The Euclidean norm for spatial vectors is de-

noted by k � k (so, e.g., we could write the definition of R

above as R :¼ k ~Xk).
Derivatives: All partial derivatives are taken with re-

spect to harmonic PN coordinates, so @� :¼ @=@x�.
Overdots on the tidal fields denote differentiation with
respect to Cook-Scheel time T, but all other overdots
denote differentiation with respect to PN harmonic time
t. We use the shorthand @�� :¼ @�@�.

Order notation: We use ð�Þj to denote the coefficient of

ðm2=bÞj=2 in the (asymptotic) power series expansion of its
argument. As discussed in Sec. VA, this includes multi-
poles through octupole order for j 2 f2; 3g but only
through quadrupole order for j 2 f4; 5g. (In principle, we
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include all of the multipoles for j 2 f0; 1g, since there are
only monopole contributions.) Similarly, ð�Þj;n and ð�Þj;�n

denote the 2nth multipole-order and multipoles-up-
to-2n-order pieces of ð�Þj, respectively.

Polynomial and nonpolynomial parts: The superscripts
P and NP denote the polynomial (in ~x�) and nonpolyno-
mial parts of the object to which they are attached. See
Sec. VA for a more precise definition of the nonpolynomial
part.

References: [42,43] will be referred to as Papers I and II,
respectively.

II. ASYMPTOTIC MATCHING

The technique of asymptotic matching is a standard one
in the analysis of multiscale and singular perturbation
problems, allowing one to relate and combine approximate
solutions that are valid on different scales [77]. It has been
used in general relativity to obtain, e.g., PN equations of
motion—[75] contains the most recent of these calcula-
tions—and the radiation zone metric of a binary system
[78]. (See Paper I and [75] for further discussion and
references.) Here, we specialize our discussion to the
case of a black hole binary.

A time slice of a binary black hole spacetime divides
naturally into four primary zones and three secondary

buffer zones; see Fig. 2 for an illustration. In practical
work, the boundaries of all of these zones are necessarily

only given approximately, since we do not currently pos-
sess sharp estimates for the error bars of the approxima-
tions used to describe this spacetime. There are two inner
zones around the black holes, given by rA � b, where rA is
the distance from (the point particle associated with) hole
A, and b is the initial (PN coordinate) separation of the
binary: In each of these, the spacetime is well described by
a perturbed black hole. Surrounding (and partially over-
lapping) the inner zones is the near zone, where the stan-
dard (harmonic coordinate) PN metric is valid—i.e., not
too close to the holes, yet not so far away that retardation
cannot be treated perturbatively. This is given by rA � mA

and r & �, wheremA is the mass of hole A, r is the distance
from the system’s center of mass, and � ¼ b=2v is the
reduced characteristic wavelength of the binary’s gravita-
tional radiation. Finally, the remainder of the time slice
(including a small amount of the outer portion of the
near zone) comprises the far zone, given by r * �, where
retardation can no longer be treated perturbatively, and
spacetime is described by a separate PN metric that ac-
counts for this. (N.B.: Different relations were given for
the outer edge of the near zone and inner edge of the far
zone in Papers I and II, but the ones used here are more
accurate.) The boundaries of the zones for an equal-mass
binary are discussed quantitatively in Sec. VIII B.
The three buffer zones are the portions of the time slice

where the preceding four regions overlap. (Because of
the ‘‘fuzziness’’ inherent in & and * , the near and far
zone can have a substantial overlap, despite formal appear-
ances.) We restrict our attention to cases in which the
specified zones overlap in the manner we shall describe,
but in no other fashion (e.g., we do not want the two
inner zones to overlap). There are two buffer zones where
the two inner zones overlap the near zone, and they are
given by mA � rA � b. The third buffer zone is given
by the intersection of the near and far zones. It is thus
very roughly a shell whose radius and thickness are both
of order �. (The order of the thickness of the shell is
our choice; see Sec. VIII B: All that is required formally
is that it increase as v decreases, corresponding to a
larger realm of validity of the near zone metric’s perturba-
tive treatment of retardation. Additionally, as is indicated
in the figure, this buffer zone would not be spherical in a
more nuanced description.) These buffer zones are where
we perform the formal matching that determines the
coordinate transformation and relations between parame-
ters as well as where we stitch the metrics together
numerically.
This matching and stitching relies on the observation

that if the metrics that are valid in the various zones are all
to be different approximations to the same (unknown)
global exact metric, then, considered as abstract tensors,
they should agree with each other in their realms of mutual
validity. More specifically, assume that there exists a buffer

zone in which two approximate metrics gð1Þ and gð2Þ are

FIG. 2 (color online). A diagram of the zones into which we
divide the binary black hole time slice. The two black holes (BH
1 and BH 2, denoted by filled-in circles) lie on the x axis,
surrounded by their respective inner zones (C1 and C2) and
inner-to-near buffer zones (O13 and O23). (In actuality, the black
holes should be tidally distorted, along with their associated
inner and buffer zones. We neglect this distortion in the above
diagram for simplicity.) The near zone, C3, covers the orbit of
the binary and is surrounded by the far zone, C4, and the near-to-
far buffer zone, O34.
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both valid. (We write these metrics without indices to
emphasize that they are currently being considered as
abstract tensors.) Take their associated small parameters
to be �1 and �2, respectively. (The buffer zone is then
defined to be the region in which these parameters are
indeed small.) Then make a bivariate expansion of the

metrics in both small parameters. That is, take gð1Þ, which
is already an expansion in �1, and expand it in �2 as well;

similarly, expand gð2Þ in �1. The coefficients of both bi-
variate expansions, considered as abstract tensors, should
then be equal if the metrics describe the same spacetime.
The resulting equations relate the parameters of the two
metrics.

While the statement of this result in terms of abstract
metrics is simple, in practice one works with the metrics’
coordinate components. In general, the coordinate systems
in which the metrics’ components are known will not
agree, so one first chooses the coordinate system in which
one of the metrics is expressed to be the primary coordinate
system. (For us, this will be the near zone’s PN harmonic
coordinate system.) One then applies an arbitrary coordi-
nate transformation to the other metric in order to put it in
the same coordinate system as the first (to the order one
matches). Equating coefficients of the bivariate expansions
of the components of the metrics (including the coordinate
transformation) is then equivalent to equating the coeffi-
cients of the expansions of the abstract tensors. In this case,
the resulting equations will determine not only the rela-
tions between the metrics’ parameters, but also the arbi-
trary coordinate transformation (though there may be some
freedom at each order).

III. INNER ZONE METRIC

In Detweiler’s perturbed black hole metric [68], the
tidal perturbations are encoded by symmetric trace-free
electric and magnetic tidal fields Ekl (electric quadrupole),
Eklp (electric octupole), Bkl (magnetic quadrupole), and

Bklp (magnetic octupole). These come from the THZ

harmonic specialization of locally inertial coordinates
(from [70,71]), which Detweiler uses to express the per-
turbation of Minkowski space that his metric approaches
in the buffer zone. [N.B.: Detweiler made a tacit gauge
transformation away from the pure THZ gauge to obtain
the compact expressions for the metric perturbation he
gives [79]. This only affects the portion of the pertur-
bation involving the time derivatives of the tidal fields,
as can be seen by comparing his Eq. (53) to his
Eqs. (56)–(57).]

Detweiler derives his metric under the slow-motion
and weak-curvature assumptions of Thorne and Hartle
[70]. With these assumptions, the time derivative of
a quadrupole field is of octupole order. Since one is
only able to include quadrupole and octupole pertur-

bations in linear black hole perturbation theory, the
time dependence of the tidal fields in the metric is
restricted to the quadrupole fields, and even there it is
only linear.
Detweiler [68] presents the metric perturbation in

Schwarzschild coordinates, which we denote by X� ¼
ðT ;XkÞ, with a radial coordinate of P :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XkXk
p

. He
gives the portion involving the quadrupole fields, including
their time derivatives (which are actually of octupole or-
der), in his Eqs. (G.6)–(G.11), and the portion with the
octupole fields in his Eq. (58). The quadrupole tidal fields
depend (linearly) on the null ingoing Eddington-
Finkelstein coordinate V :¼T þP þ2M logðP=2M�1Þ.
(The octupole fields are treated as constants, since their
time derivatives are of hexadecapole order.) We have con-
verted his metric to the quasi-Cartesian form of Cook-
Scheel harmonic coordinates (from [67]), which we denote

by X� ¼ ðT; XkÞ, with R :¼ ffiffiffiffiffiffiffiffiffiffiffi
XkX

k
p

. The transformation is
given by

T ¼ T � 2M log

��������R�M

RþM

��������; Xk ¼
�
1þM

R

�
Xk;

(3.1)

so P ¼ RþM. Here, M is the mass of the hole. This
comes from Cook and Scheel’s Eqs. (20), (41), and (43)
upon noting that Boyer-Lindquist coordinates reduce to
Schwarzschild coordinates for a Schwarzschild hole.
(This transformation is for an unperturbed black hole, so
the resulting metric will not be in harmonic coordinates, in
general, even though the perturbation is in asymptotically
harmonic coordinates.) The resulting line element (includ-
ing the unperturbed Schwarzschild metric) is

h��dX
�dX� ¼�HT2dT2 þHRTdRdT

þ 16

3

M2

R

�
1þM

R
� 2

3

M2

R2
� 2

3

M3

R2ðRþMÞ
�

� _CklpXlXpdXkdT

þH½1�
k dXk

��
1�M2

R2

�
dT� 4

M2

R2
dR

�

þH½2�
k dXkdRþHR2dR2 þHtrcdXsdX

s

þOðR4=R4Þ; (3.2)

where
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HT2 :¼ R�M

RþM
þ

�
1�M

R

�
2
�
ðEkl þ T _EklÞXkXl þ 1

3
EklpX

kXlXp

�
þ 4M2

ðRþMÞ2
�
R� 5

3

M2

R

�
_EklX

kXl; (3.3a)

HRT :¼ 8M2

ðRþMÞ2 þ 8
M2

R2

R�M

RþM

�
ðEkl þ T _EklÞXkXl þ 1

3
EklpX

kXlXp

�

�
�
4

3
Rþ 14

3
Mþ 8

3

M2

R
� 2

M3

R2
� 104

3

M4

R2ðRþMÞ þ
80

3

M5

R2ðRþMÞ2 þ
32

3

M6

R2ðRþMÞ3
�
_EklX

kXl; (3.3b)

H½1�
k

:¼ 2

3

�
1þM

R

��
2ðCklp þ T _CklpÞXlXp þ

�
1� 1

3

M

R

�
CklpsXlXpXs

�
; (3.3c)

H½2�
k

:¼
�
R

3
þ 2Mþ 16

3

M2

R
þ 26

3

M3

R2
� 11

M4

R3
� 32

3

M5

R3ðRþMÞ �
64

9

M6

R3ðRþMÞ2
�
_CklpXlXp; (3.3d)

HR2 :¼ X3
n¼1

�
2M

RþM

�
n � 2M

R
�M2

R2
þ

�
2
M

R
þ 3

M2

R2
�M4

R4
� 16M4

R2ðRþMÞ2
�
ðEkl þ T _EklÞXkXl

þ
�
1

3

M

R
þ 1

3

M2

R2
� 2

5

M3

R3
� 7

15

M4

R4
� 1

15

M5

R5
� 16

3

M4

R2ðRþMÞ2
�
EklpX

kXlXp

þ
�
16

3

M2

R
þ 80

3

M3

R2
þ 28

M4

R3
þ 40

3

M5

R4
� 176

3

M6

R4ðRþMÞ þ
72M7

R4ðRþMÞ2 �
32

3

M8

R4ðRþMÞ3 �
32

3

M9

R4ðRþMÞ4
�

� _EklX
kXl; (3.3e)

Htrc :¼
�
1þM

R

�
2
�
1�

�
1þ 2

M

R
�M2

R2

�
ðEkl þ T _EklÞXkXl � 1

3

�
1þM

R
�M2

R2
� 1

5

M3

R3

�
EklpX

kXlXp

� 4
M2

R2

�
Rþ 2M� 2

3

M2

RþM

�
_EklX

kXl

�
; (3.3f)

and R is a length scale characterizing the strength of the
perturbation (see Thorne and Hartle [70] for further dis-
cussion). We have defined Cklp :¼�klsBs

p and Cklps :¼
�kluBu

ps, for convenience, as the magnetic tidal fields
only appear in the perturbation in these dual forms. Here,
�klp is the three-dimensional Levi-Civita symbol, with
�123¼1.

We include the _Bkl contributions here, even though they
do not increase the formal accuracy of our initial data: We
fix the lowest-order piece of _Bkl when we read off the 1PN
correction to the electric octupole (in Appendix B 2) as an
application of our matching procedure. Additionally, we
have used the fact that Ekl and Cklp only depend linearly on
V (to the multipolar order we are considering) to express
their T dependence explicitly (where the logarithm in the

definition of V cancels one appearing in the Schwarzschild
coordinate expression for the metric): An overdot denotes a
derivative with respect to T, and all of the symbols for the

tidal fields denote constants, so, e.g., Ekl and _Ekl are treated
formally as independent tidal fields, despite the notation.

That is, Ekl just denotes the constant part of EklðTÞ¼Eklþ
T _Ekl. Finally, despite appearances, this expression for the
metric is in fact in a quasi-Cartesian form: dR should just
be considered a shorthand for XkdX

k=R.

IV. NEAR ZONE METRIC

We take the harmonic coordinate metric from Eqs. (7.2)
in BFP [61] and specialize it to a circular orbit, obtaining

g00 þ 1 ¼ 2m1

r1
þm1

r1
½4v2

1 � ðn̂1 � ~v1Þ2� � 2
m2

1

r21
�m1m2

�
2

r1r2
þ r1

2b3
� r21

2r2b
3
þ 5

2r2b

�
þ ð1 $ 2Þ þOðv6Þ; (4.1a)

g0k ¼ � 4m1

r1
vk
1 �

�
m2

1

r21
ðn̂1 � ~v1Þ þm1m2

S2
½16ðn̂2 � ~v1Þ � 12ðn̂2 � ~v2Þ�

�
nk1 �m1m2

�
4
n̂1 � ~v1

b2
� 12

n̂1 � ~v1

S2

�
nk12

þ
�
m1

r1
½2ðn̂1 � ~v1Þ2 � 4v2

1� þ
m2

1

r21
þm1m2

b3
½3r1 � 2r2� �m1m2

�
r22
r1b

3
þ 3

r1b
� 8

r2b
þ 4

bS

��
vk
1

þ ð1 $ 2Þ þOðv6Þ; (4.1b)

gkl � �kl ¼
�
2
m1

r1
�m1

r1
ðn̂1 � ~v1Þ2 þm2

1

r21
þm1m2

�
2

r1r2
� r1

2b3
þ r21

2r2b
3
� 5

2r1b
þ 4

bS

��
�kl þ 4

m1

r1
vk
1v

l
1 þ

m2
1

r21
nk1n

l
1

�m1m2

�
4

S2
þ 4

bS

�
nk12n

l
12 þ 4

m1m2

S2
½nðk1 nlÞ2 þ 2nðk1 n

lÞ
12� þ 8

m1m2

b2
nðk12v

lÞ
12 þ ð1 $ 2Þ þOðv6Þ: (4.1c)
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(N.B.: We use more of the metric than we give here in the
O5 and ALL data sets, discussed in Sec. VII. In fact, the ALL

data set includes the full metric that BFP present. We have
chosen only to present the portion of the metric that we use
in the matching, doing so for reference and to fix notation.)
Here, ~xAðtÞ, A 2 f1; 2g denotes the position of (the point
particle associated with) hole A.3 Thus ~rA :¼ ~x� ~xAðtÞ
gives the displacement from hole A, with rA :¼ k~rAk giv-
ing the distance from hole A and n̂A :¼ ~rA=rA the associ-
ated unit vector. Similarly, ~vA :¼ _~xA denotes the velocity
of hole A. The displacement vector from hole B to hole A is
given by ~rAB :¼ ~rA � ~rB, with an associated unit vector of
n̂AB :¼ ~rAB=k~rABk. Thus, specializing to a (quasi)circular
orbit, k~r12k ¼ b, where b is the separation of the holes and
is therefore constant up to orbital shrinkage (which we can
neglect when performing the matching, given the order to
which we are calculating, though we include it when
implementing the metrics numerically; see Sec. VIA).
Additionally, we shall usually use the shorthand ~b :¼ ~r12.
(We do not use it in the above expression for the metric,
since ~r12 changes sign under 1 $ 2, while ~b does not.)
Similarly, ~vAB :¼ ~vA � ~vB; we also have S :¼ r1 þ r2 þ
b. Finally, the notation ‘‘þð1 $ 2Þ’’ denotes that the pre-
ceding expression is to be added to itself with the labels 1
and 2 switched.

For a circular orbit, we have
€~b ¼ �!2 ~b, by definition,

where

! ¼
ffiffiffiffiffi
m

b3

r �
1þ m

2b
ð�� 3Þ þO

�
m2

b2

��
(4.2)

is the (harmonic coordinate) angular velocity [obtained
from Eq. (8.6) in [61] ], and � :¼ m1m2=m

2 is the sym-
metric mass ratio. Since we assume a (quasi)circular orbit,
the separation vector of the point particles is orthogonal to
their velocities up to Oðv5Þ radiation reaction effects. We
have thus taken n̂12 � v̂1 ¼ n̂12 � v̂2 ¼ n̂12 � v̂12 ¼ Oðv5Þ in
obtaining the expression for the metric given in Eqs. (4.1).

We take the explicit expression for the orbit to be ~b ¼
bðx̂ cos!tþ ŷ sin!tÞ. From the definition of the center-of-
mass coordinates used in the PN metric, the positions of
(the point particles associated with) the holes are given, to
the order we need them, by

~x 1 ¼ m2

m
~b; ~x2 ¼ �m1

m
~b: (4.3)

[For a circular orbit, the first PN corrections to these are
Oðv4Þ and are thus not needed here.] The expressions for
the holes’ velocities are obtained by taking a time
derivative.

A. The PN metric and conformal flatness

AtOðv4Þ, the spatial PN metric is no longer conformally
flat; that is, there does not exist a coordinate system in
which the 3-metric can be written as gkl ¼ ��kl. This can
be guessed from a cursory inspection of the PN metric, as
nondiagonal spatial components first appear at Oðv4Þ, but
was established more firmly in [80], and then further
studied in [81]. In both cases, this result was an offshoot
of a comparison of the predictions of a post-Newtonian
analysis of the Isenberg-Mathews-Wilson approximation
[82,83] with those of the full PN approximation: They were
found to differ starting at Oðv4Þ. Such a comparison gives
the desired result, because the Isenberg-Mathews-Wilson
approximation assumes spatial conformal flatness (along
with maximal slicing—i.e., a vanishing trace of the extrin-
sic curvature) in an attempt to remove the dynamical
degrees of freedom from the gravitational field.
It is also possible to demonstrate this lack of spatial

conformal flatness directly, and we shall do so here. In
four or more dimensions, the Weyl tensor settles questions
of conformal flatness: It vanishes if and only if a space is
conformally flat [84]. However, in three dimensions, the
Weyl tensor vanishes identically, and its analogue for
settling questions of conformal flatness is the Bach or
Cotton-York tensor Ckl. This is defined (with indices raised
by the 3-metric) by

Ckl :¼ 2�k
psrsRlp � 1

2
�kl

prpR: (4.4)

Here, rk, Rkl, and R are, respectively, the (three-
dimensional) covariant derivative, Ricci tensor, and Ricci
scalar associated with gkl. In fact, the nonvanishing of the
Cotton-York tensor is a necessary and sufficient condition
to render its associated 3-metric nonconformally flat
[44,84] (for a proof, see Chap. VI, Sec. 5 in [85]).
We have computed the Oðv4Þ pieces of this tensor

symbolically (using MAPLE and GRTENSORII) for the PN
spatial metric in harmonic coordinates and verified that
certain components are nonvanishing at various points of
the time slice. As an illustration, we have plotted the
lowest-order piece of the norm of the Cotton-York tensorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kp�lsCklCps

q
along the axis passing through the holes in

Fig. 3 for the standard equal-mass test system of m1 ¼
m2 ¼ m=2, b ¼ 10m. As expected, the values are largest in
the region around the holes, showing that this is the region
in which the largest perturbation would be required to
make the 2PN metric conformally flat.
There is, however, a more intuitive way of understanding

the breaking of spatial conformal flatness of the PN metric
(here returning to the ADMTT slicing). This approach
relates explicitly to the failure of the PN metric to be
manifestly conformally flat at Oðv4Þ and comes from the

3We shall henceforth refrain from belaboring the distinction
between the PN point particles and true black holes, except
where we feel that it is important to emphasize this point.
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work of Nissanke [47].4 From the study of PN theory in the
canonical ADM formalism [87], one knows that the PN
metric can be rewritten as

gkl ¼ ��kl þ hkl; (4.5)

where � is some conformal factor, while hkl is not pro-
portional to the flat metric. In fact, hkl must be symmetric
and trace-free and contains a piece that is proportional to

@2

@x<k
1 @xl>2

logS; (4.6)

where S was defined in the above discussion of the metric,
and the angle brackets stand for the symmetric trace-free
projection. [See, e.g., Eq. (3.1) in [47]; we have left off
pieces of the form v<k

1 vl>
1 .] This is clearly not a manifestly

conformally flat contribution to the metric, so we can use it
to connect with the heuristic that ‘‘the 2PN metric is not
spatially conformally flat, because it contains various
pieces that are not manifestly conformally flat.’’

To do so, we shall demonstrate how the presence in hkl
of the term given in Eq. (4.6) prevents the obvious sort of
coordinate transformation from rendering gkl conformally
flat. For the purposes of illustration, we take our coordinate
transformation to be of the form xk ! x0k ¼ xk þ �k,
where �k ¼ Oðv4Þ, and ask that it remove the hkl piece
from the 3-metric. (Of course, in general the coordinate
transformation would just need to turn hkl into a scalar
multiple of �kl and would not have to be of the form above,
but our assumptions suffice for a heuristic argument.)
Thus, �k should satisfy

@ðk�lÞ ¼ �1
2hkl; (4.7)

but this equation has no solution when the right-hand side

is given by Eq. (4.6). To show that this is the case, it is
sufficient [by the gauge invariance of the linearized
Riemann tensor—see the discussion surrounding
Eq. (5.5)] to show that the (three-dimensional) flat-space
linearized Riemann tensor associated with hkl does not
vanish. We have computed this tensor [with hkl given by
Eq. (4.6)] and verified that several components are indeed
generically nonzero.

B. Gravitational radiation in the PN metric

The order at which the effects of gravitational radiation
appear in the PN metric is different for different effects,
which can easily lead to confusion. We thus offer a brief
discussion of these orders here. To avoid even further
confusion, since we shall discuss some pieces that are not
dimensionless, we shall describe all orders in terms of the
formal slow-motion expansion in 1=c, as do BFP [61].
[Since the metric is dimensionless, an Oðc�nÞ contribution
to it can be unambiguously identified as OðvnÞ.] It is well
known that the effects of gravitational radiation reaction
first enter the equations of motion at Oðc�5Þ for a circular
orbit. [See, e.g., Eq. (189) in Blanchet [41].] This is also the
leading order of the binary’s gravitational wave luminosity.
[See, e.g., Eq. (171) in Blanchet [41].] However, the
lowest-order ‘‘quadrupole formula’’ piece of the gravita-
tional waveform appears in the PN far zone metric at one
order lower, viz., Oðc�4Þ. This can be seen in Blanchet’s
Eq. (238) [41]; his x variable (not to be confused with our x
coordinate) is Oðc�2Þ. The explanation for the factor-of-c
discrepancy is given by Blanchet in [88].
Our initial data will thus contain at least the lowest-order

piece of the binary’s outgoing gravitational radiation
(whether one uses the extension that adds on various
higher-order terms or not), since we have included all the
Oðv4Þ pieces in the spatial metric, along with the matching
Oðv5Þ pieces in the extrinsic curvature. In fact, one can see
the lowest-order piece of the waveform explicitly in our
expression for the far zone spatial metric in Eq. (6.4c): The
relevant terms are the final two in the curly brackets.
[These terms are presented in Eqs. (6.10) and (6.11a) of
[74] in a form that allows for a more direct comparison
with our expression, though without the explicit factors of
c�1 that Blanchet provides.]

V. THE MATCHING CALCULATION

A. The setup

By symmetry, we can concentrate on performing the
matching around hole 1: The transformed metric around
hole 2 can be obtained from that around hole 1 by taking
m1 $ m2 and making the coordinate transformation
ðt; x; y; zÞ ! ðt;�x;�y; zÞ (i.e., rotating by	 radians about
the z axis).
Since our matching calculation will determine the coor-

dinate transformation, the relations between the metrics’
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FIG. 3. The norm of the Cotton-York tensor for the test system
m1 ¼ m2 ¼ m=2, b ¼ 10m along the x axis (i.e., the axis pass-
ing through both holes). (We only show it around hole 1, because
it is symmetric about x ¼ 0.)

4This argument was suggested to one of us by Luc Blanchet
[86].
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mass parameters, and the inner zone metric’s tidal fields,
we need to posit expansions for all of these. For the
coordinate transformation, we make nearly the same ansatz
as in Papers I and II, viz.,

X�ðx�Þ ¼ X5
j¼0

�
m2

b

�
j=2ðX�Þjðx�Þ þOðv6Þ: (5.1)

(This is slightly more general than the ansatz used in the
previous papers, because we do not fix the zeroth-order
coordinate transformation from the outset.) We chooseffiffiffiffiffiffiffiffiffiffiffiffi
m2=b

p
as our expansion parameter, because it makes for

slightly simpler notation than either v ¼ ffiffiffiffiffiffiffiffiffiffi
m=b

p
or

ffiffiffiffiffiffiffiffiffiffiffiffi
m1=b

p
when expanding in the buffer zone around hole 1, as we are
doing here. We can make this choice without loss of
generality: The resulting coordinate transformation will
be the same regardless of which of these three possibilities
we choose to use as our expansion parameter, though the
coefficients of the expansion parameter will differ by ratios
of the masses. As in the previous papers, we implicitly
assume that ðX�Þj is a power series in ~r=b, including

negative powers—i.e., a Laurent series—so we can write,
e.g., m2=~r ¼ ðm2=bÞðb=~rÞ. However, ðX�Þj should not de-

pend on m2=b, by definition.
We also need to worry about the multipole expansion of

each ðX�Þj. This would seem to be straightforward, since

we only want to keep terms through quadrupole order
overall. However, the structure of the inner zone metric
creates some complications: In order to obtain data that
include all the quadrupole [Oð½~r=b�2Þ] pieces at fourth and
fifth orders,5 one needs to obtain the octupole [Oð½~r=b�3Þ]
pieces of the coordinate transformation when matching at
second and third orders. This is due to the appearance of
b=~r terms in ðh��Þj for j 	 2. These enter the fourth and

fifth order coordinate transformation equations, where they
multiply the second and third order pieces of the coordinate
transformation and thus produce quadrupole contributions
from octupole pieces of the coordinate transformation. The
octupole fields themselves also enter, as they are multiplied
by b=~r in the fourth and fifth order pieces of the inner zone
metric.

This increase in the number of multipoles that have to be
kept as one proceeds to higher and higher orders in v is a
general feature of the matching of these two metrics. It is
thus a source of significant technical difficulty: One would
need to include the hexadecapole pieces in the matching
calculation if one wanted to include all of the quadrupole
pieces at sixth and higher orders. This follows, since at
sixth order, the hexadecapole pieces start to be multiplied
by b2=~r2, making them of quadrupole order. (It would still
be possible to, e.g., obtain all the dipole-and-lower pieces
at sixth order if one had an expression for the near zone

metric through sixth order, but one would not be able to
include any new higher-order corrections to the tidal fields
this way.)

We posit the same expansion in
ffiffiffiffiffiffiffiffiffiffiffiffi
m2=b

p
for the mass

parameter of the inner zone metric, M1, as we did for the
coordinate transformation, so

M1 ¼
X3
j¼0

�
m2

b

�
j=2ðM1Þj þOðv4Þ: (5.2)

However, it will turn out that we did not need to allow this
freedom, as we shall find that the mass parameters of the
two metrics agree to the highest order to which our match-
ing fixes them—i.e., M1 ¼ m1 þOðv4Þ. Similarly, we

asymptotically expand the tidal fields in
ffiffiffiffiffiffiffiffiffiffiffiffi
m2=b

p
, so

E kl ¼ m2

b3
X3
j¼0

�
m2

b

�
j=2ð �EklÞj þOðv6Þ;

_Ekl ¼ m2

b3
X2
j¼1

�
m2

b

�
j=2ð _�EklÞj þOðv5Þ;

Eklp ¼ m2

b4
X2
j¼0

�
m2

b

�
j=2ð �EklpÞj þOðv5Þ;

Bkl ¼
�
m2

b

�
3=2 1

b2
X2
j¼0

�
m2

b

�
j=2ð �BklÞj þOðv6Þ;

_Bkl ¼
�
m2

b

�
2 1

b2
ð _�BklÞ1 þOðv5Þ;

Bklp ¼
�
m2

b

�
3=2 1

b3
X1
j¼0

�
m2

b

�
j=2ð �BklpÞj þOðv5Þ:

(5.3)

[The expansions of the duals of the magnetic fields—e.g.,
Cklp—are defined analogously. Additionally, the tidal fields

and their time derivatives—e.g., Ekl and _Ekl—are treated as
formally independent.] The overbars on the tidal fields
appearing in the right-hand sides of these expressions
indicate that we have taken out the fields’ overall scaling,
as given in, e.g., Eqs. (2.1) and (2.2) in [75] (though we take
the time derivatives of the tidal fields to scale the same way
as the fields themselves when doing this, for clarity). We do
not include the Oðv5Þ pieces of the octupole tidal fields
here, because we did not fix them in the matching: We only
had to match the octupole fields through Oðv3Þ to obtain
initial data with formal uncontrolled remainders of Oðv5Þ
and Oð½~r=b�3Þ (i.e., octupole order). We also chose to read
off the Oðv4Þ pieces of the octupole fields separately (in
Appendix B 2), but did not do so for the Oðv5Þ parts.
In order to read off the matching parameters (and any

undetermined pieces of the lower-order coordinate trans-
formations) as efficiently as possible, we note that all of
our equations for the coordinate transformation at orders
beyond the zeroth will be of the form

5We count orders using our primary expansion in v (or,
equivalently,

ffiffiffiffiffiffiffiffiffiffiffiffi
m2=b

p
).
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@ð�X�Þ ¼ S�� 
 Sð��Þ: (5.4)

Here, @� :¼ @=@x� (i.e., all partial derivatives are taken
with respect to PN harmonic coordinates), X� is a function
of x�, and S��, the equation’s source, is some (symmetric)

matrix function of x� (either explicitly, or implicitly
though X�) which is C2 in the buffer zone. The integra-
bility condition for this equation is that the flat-space
linearized Riemann tensor associated with S�� vanish,

i.e., that we have

I ���� :¼ @��S�� þ @��S�� � @��S�� � @��S�� ¼ 0:

(5.5)

[N.B.: For convenience, we have defined I���� with a

slightly different index ordering than the linearized
Riemann tensor—given for flat space in, e.g., Eq. (5.44)
of [89]—and without the factor of 1=2.] This follows from
the gauge invariance of the linearized Riemann tensor.
(See, e.g., Sec. 4.1 in Straumann [90] for a proof and
discussion of that result. In [91], Blanchet and Damour
use this gauge invariance for the same purpose we do.)

For future use, we note that the homogeneous equation,
@ð�X�Þ ¼ 0, is the flat-space Killing equation, and its most

general solution is given by

X� ¼ F��x
� þ C�; (5.6)

where F�� 
 F½��� andC� are arbitrary constant matrices.

See, e.g., Sec. 13.1 in Weinberg [92] for a proof. (Our X�,
F��, and C� correspond to Weinberg’s ��, b�� ¼ �b��,

and a�, respectively.) We shall primarily employ this result
tacitly at each order beyond the zeroth to ensure that we
have the most general expression for that order’s contribu-
tion to the coordinate transformation.

Our general approach to the nontrivial matching that
occurs at second order and beyond will be as follows:
We first use the above integrability condition to read off
the matching parameters, exploiting the linear indepen-
dence of various terms to simplify the process and justify
our claims of uniqueness. We start with the nonpolynomial
terms, which determine many of the previously undeter-
mined parts of the coordinate transformation from two
orders lower, as well as the inner zone mass parameter;
the polynomial part then determines the tidal fields.6 [The
nonpolynomial part consists of all the terms that are not
polynomials in ~x� :¼ x� � ðm2=mÞbx̂�. For this calcula-
tion, these are all of the form of a polynomial in ~x� multi-
plied by ~rn, where n 2 Znf0; 2; 4; 6; � � �g.] After we have
fixed all the parameters that can be fixed at a given order,

we then solve for that order’s contribution to the coordinate
transformation (and the polynomial part can be solved for
separately from the nonpolynomial part that first appears at
fourth order). In all of this, MAPLE and GRTENSORII proved
very helpful: They work extremely well for all aspects of
the polynomial part, while requiring more care when ap-
plied to the nonpolynomial part.

B. Zeroth order [Oð½m2=b�0Þ]
At lowest (zeroth) order in ðm2=bÞ1=2, we find that the

coordinate transformation is a (general) Poincaré trans-
formation—i.e., not necessarily one continuously con-
nected to the identity—since the lowest-order piece of
either metric is the Minkowski metric. For simplicity, we
shall take this lowest-order piece to be the expected trans-
lation due to the position of m1 at t ¼ 0, viz.,

ðX�Þ0 ¼ ~x� :¼ x� � ðm2=mÞbx̂�: (5.7)

In fact, one can show that matching through third order
requires that the spatial part of the translation be as given
above (though the temporal part can still be freely speci-
fied). Similarly, that matching requires the Lorentz trans-
formation portion of the Poincaré transformation to differ
from the identity only by a possible rotation about the y
axis, along with possible spatial and temporal reflections.
These are combined with a rotation that takes þy to �y if
we have an odd number of reflections. We thus conjecture
that matching at higher orders will further constrain this
lowest-order coordinate transformation to be as given
above. At the very least, the matching at fourth and fifth
orders is independent of the remaining freedom.

C. First Order [Oð ffiffiffiffiffiffiffiffiffiffiffiffi
m2=b

p Þ]
Since ðg��Þ1 ¼ ðh��Þ1 ¼ 0, our equation is just the

homogeneous one whose solution is given in Eq. (5.6).
We thus have

ðX�Þ1 ¼ ðF��Þ1~x� þ ðC�Þ1; (5.8)

where we have written this in terms of ~x� :¼ x� �
ðm2=mÞbx̂�, because ~r=b :¼ ffiffiffiffiffiffiffiffiffi

~xk~x
k

p
=b is one of our small

parameters. We can do this without loss of generality, as it
simply entails a different value for C�.
This result differs from that given in Eq. (21) of Paper I;

the latter suffers from some sign errors introduced during
transcription. However, this does not affect that paper’s
final coordinate transformation, as the relevant constants
were all taken to be zero. This is appropriate for Papers I
and II, since they were using a corotating coordinate
system: The boost encoded in our ðF��Þ1 [seen in

Eq. (5.20)] would thus not be expected to appear in the
coordinate transformation.

6It is intuitively reasonable that the polynomial and nonpoly-
nomial parts should determine the parameters that they do: If one
neglects all gauge subtleties and the like, then the nonpolynomial
terms can be thought of as being those associated with hole 1,
and the polynomial terms with (the tidal fields of) hole 2. We
discuss this more fully in Sec. VG.
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D. Second order [Oðm2=bÞ]
Proceeding to the next order, we have, recalling that

ð _�EklÞ0 ¼ 0,

ðh��Þ2 ¼
�
2ðM1Þ0
m2

b

ðRÞ0 �
ð �EklÞ0
b2

ðXkÞ0ðXlÞ0

� ð �EklpÞ0
3b3

ðXkÞ0ðXlÞ0ðXpÞ0
�
���: (5.9)

Similarly, noting that ð _bkÞ0 ¼ 0,

ðg��Þ2¼
�
2m1

m2

b

ðr1Þ0þ2�2

b
fð~r1Þ0 �ðb̂Þ0gþ 1

b2
f3½ð~r1Þ0 �ðb̂Þ0�2

�½ðr1Þ0�2gþ 1

b3
f3½ðr1Þ0�2½ð~r1Þ0 �ðb̂Þ0�

�5½ð~r1Þ0 �ðb̂Þ0�3g
�
���: (5.10)

Here, ��� :¼ diagð1; 1; 1; 1Þ is the lowered four-

dimensional Kronecker delta. Also, we have ðb̂kÞ0 ¼ x̂k
and ðrk1Þ0 ¼ ~rk. Thus, at this order, the source of the dif-
ferential equation [cf. Equation (5.4)] is given by

2ðS��Þ2 ¼ 2ðAð��ÞÞ2 ¼ ðg��Þ2 � ðh��Þ2 � ðF�
�Þ1ðF��Þ1;

(5.11)

where A�� :¼ @�X�.

We now apply the integrability condition from Eq. (5.5)
and focus on the nonpolynomial piece of ðS��Þ2; here, this
is the one that diverges [as ðRÞ0 ¼ ðr1Þ0 ¼ ~r ! 0]. It must
satisfy the integrability condition independently of the
other pieces, by linear independence, and [considering,
e.g., ðIkl00Þ2] gives ðM1Þ0 ¼ m1, as expected. The poly-
nomial piece of the integrability conditions tells us that

ð �EklÞ0 ¼ �kl � 3x̂kx̂l; ð �EklpÞ0 ¼ 15x̂kx̂lx̂p � 9�ðklx̂pÞ;
(5.12)

using linear independence to read off the quadrupole and
octupole tidal fields separately. Solving for the coordinate
transformation, we obtain

ðX�Þ2 ¼
�
1� ~x

b

�
���~x

� þ���~x
�~x�

2b
x̂�

� 1

2
ðF�

�Þ1ðF��Þ1~x� þ ðF��Þ2~x� þ ðC�Þ2: (5.13)

E. Third order [Oð½m2=b�3=2Þ]
At this order, the inner zone metric is

ðh00Þ3¼2ðM1Þ0
m2

b

�
1

R

�
1
þ2ðM1Þ1

m2

b

ðRÞ0�2
ð �EklÞ0
b2

ðXkÞ0ðXlÞ1

�ð �EklÞ1
b2

ðXkÞ0ðXlÞ0�ð _�EklÞ1
b2

ðTÞ0ðXkÞ0ðXlÞ0

�ð �EklpÞ0
b3

ðXkÞ0ðXlÞ0ðXpÞ1�
ð �EklpÞ1
3b3

ðXkÞ0ðXlÞ0ðXpÞ0;
(5.14a)

ðh0kÞ3¼2

3

ð �CklpÞ0
b2

ðXlÞ0ðXpÞ0þ1

3

ð �CklpsÞ0
b3

ðXlÞ0ðXpÞ0ðXsÞ0

�2

3

ð _�ElpÞ1
b2

ðXlÞ0ðXpÞ0ðXkÞ0; (5.14b)

ðhklÞ3¼ðh00Þ3�kl; (5.14c)

and the near zone metric is

ðg00Þ3 ¼ 2m1

m2

b

�
1

r1

�
1
� 2

b
½ð~r1Þ0 � ðb̂Þ1� þ 2

b2
f3½ð~r1Þ0 � ðb̂Þ1�

� ½ð~r1Þ0 � ðb̂Þ0� � ð ~r1Þ1 � ð~r1Þ0g þ 6

b3
½ð~r1Þ0 � ð~r1Þ1�

� ½ð~r1Þ0 � ðb̂Þ0�; (5.15a)

ðg0kÞ3 ¼ 4
m1

m

�
1� b

ðr1Þ0 �
1

b
½ð~r1Þ0 � ðb̂Þ0�

þ 1

2b2
½3fð~r1Þ0 � ðb̂Þ0g2 � fðr1Þ0g2�

þ 1

2b3
½3fðr1Þ0g2fð~r1Þ0 � ðb̂Þ0g � 5fð~r1Þ0 � ðb̂Þ0g3�

�

� ð _bkÞ1; (5.15b)

ðgklÞ3 ¼ ðg00Þ3�kl: (5.15c)

Here, we have ð ~bÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p
tŷ, so ð~r1Þ1 ¼ �ðm2=mÞ�

ð ~bÞ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m

p
tŷ, and thus ð~r1Þ1 � ðb̂Þ0 ¼ 0.

Additionally, ðb̂Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p ðt=bÞŷ and ð _bkÞ1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p
ŷk. We also have

�
1

R

�
1
¼ � 1

ðRÞ0
ðXkÞ0ðXkÞ1
½ðRÞ0�2

¼ � ~rk½ðF�kÞ1~x� þ ðCkÞ1�
~r3

;

(5.16)

and

�
1

r1

�
1
¼ � 1

ðr1Þ0
ð ~r1Þ0 � ð~r1Þ1
½ðr1Þ0�2

¼
ffiffiffiffiffiffi
m2

m

r
yt

~r3
; (5.17)

where ~r� :¼ r� � ðm2=mÞbx̂�.
At this order, the equations for the coordinate trans-

formation are
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2ðS��Þ3 ¼ 2ðAð��ÞÞ3
¼ ðg��Þ3 � ðh��Þ3 � 2ðhð�j�Þ2ðFj�Þ

�Þ1
� 2ðFð�j

�Þ1ðAj�Þ�Þ2; (5.18)

recalling that ðh��Þ1 ¼ 0 and utilizing our lower-order

results. To obtain ðF��Þ1, we look at the ~r�7 piece of

ðIkl00Þ3. Such a piece can only come from two spatial
derivatives both acting on ~r�3 in the ~r�3 pieces of ðS00Þ3;
those pieces, in turn, only come from ð1=RÞ1 and ð1=r1Þ1.
Therefore, using Eqs. (5.16) and (5.17), the integrability
conditions require that we have

~r k½ðF�kÞ1~x� þ ðCkÞ1� ¼ �
ffiffiffiffiffiffi
m2

m

r
yt; (5.19)

from which we immediately see that

ðCkÞ1 ¼ 0; ðF��Þ1 ¼ 2

ffiffiffiffiffiffi
m2

m

r
t̂½�ŷ��; (5.20)

using the antisymmetry of F��. (Recall that t̂0 ¼ �1.) By

similar logic, the ~r�5 piece of ðIkl00Þ3 only comes from the
ðM1Þ1 piece of ðh00Þ3 and gives us ðM1Þ1 ¼ 0. The remain-
ing nonpolynomial pieces cancel, so we have extracted all
the information we can from the nonpolynomial part of the
integrability condition.

From the polynomial part of the integrability conditions,
we first read off the octupole parts of the tidal fields, which
are

ð _�EklÞ1 ¼ � 6

b

ffiffiffiffiffiffi
m

m2

s
x̂ðkŷlÞ; ð �EklpÞ1 ¼ 0;

ð �BklpÞ0 ¼ 9

2

ffiffiffiffiffiffi
m

m2

s
½5x̂ðkx̂lẑpÞ � �ðklẑpÞ�;

(5.21)

and then the quadrupole parts, which are

ð �EklÞ1 ¼ 0; ð �BklÞ0 ¼ �6

ffiffiffiffiffiffi
m

m2

s
x̂ðkẑlÞ: (5.22)

The third order coordinate transformation is thus

ðX�Þ3 ¼
ffiffiffiffiffiffi
m

m2

s �
� yt

b2
���~x

� þ
�
~x
~x


 � 4~x2

2b2
þ

�
2�m2

m

�

� ~x

b
þ

�
2þ 1

2

m2

m

�
m2

m

�
yt̂� þ 2

�
1�m2

m

�
yt

b
x̂�

þ
�
3~r2 þ t2

6b2
þ

�
m2

m
� 2

�
~x

b
þ 1

2

�
m2

m

�
2 þ 4

�
tŷ�

�

þ
� ffiffiffiffiffiffi

m2

m

r
½ŷð�ðF�Þ0Þ2 � t̂ð�ðF�Þ2Þ2� þ ðF��Þ3

�
~x�

þ ðC�Þ3 þ 1

2b3

ffiffiffiffiffiffi
m

m2

s
~xyð4~x2 � y2 � z2Þt̂�; (5.23)

where the octupole part is the final term.

F. Fourth and fifth orders [Oð½m2=b�2Þ and
Oð½m2=b�5=2Þ]

The matching at fourth and fifth orders proceeds in the
same way as it did at lower orders, though the algebraic
complexity increases substantially. We shall thus give far
fewer details of the calculations than we did before, and
mostly concern ourselves with pointing out the new fea-
tures of the calculation that arise at these orders. The most
prominent new feature, and the one responsible for much
of the algebraic complexity, is the presence of a nonpoly-
nomial part in the coordinate transformation. We know to
expect this at fourth order, because the transformation
between Cook-Scheel and PN harmonic coordinates is
nonpolynomial, and its lowest-order piece is Oðv4Þ; see
Sec. VG. However, there are various other nonpolynomial
pieces present in the coordinate transformation at fourth
and fifth orders. We have to solve for these nonpolynomial
parts of the coordinate transformation by inspection
(though we can still use MAPLE to obtain the polynomial
part). It is reasonably easy to do so if one first breaks the
source into pieces by multipolar order.
The other subtleties involve the multipole expansion and

are best illustrated by giving two examples: ðh00Þ4 contains
the terms�2ð �EklÞ0ðXkÞ0ðXlÞ2;0=b2 and ð2=3Þ½ðM1Þ0=m2��
ð �EklpÞ0ðXkÞ0ðXlÞ0ðXpÞ0=b2ðRÞ0. The first of these reflects

the necessity of avoiding ‘‘hidden octupole’’ pieces (i.e.,
pieces of octupole order that arise when multiplying to-
gether pieces of lower multipolar order) when looking at
corrections to lower-order terms: The dipole piece of ðXkÞ2
would give an octupole contribution to ð �EklÞ0ðXkÞ0 �
ðXlÞ2=b2, so we only include the monopole piece, denoted
by ðXkÞ2;0. Contrariwise, as illustrated by the second term,

we do not want to leave out any terms of quadrupole order,
even if they arise from, e.g., octupole tidal fields.
These subtleties arise in a slightly different form in the

equation for the fifth order piece of the coordinate trans-
formation. Here, we have to avoid hidden octupole terms in
many of the contractions: For instance, we only want the
quadrupole-and-lower pieces of ðAð�j�Þ2ðAj�Þ

�Þ3, which are
given by ðAð�j�Þ2ðAj�Þ

�Þ3;�1 þ ðAð�j�Þ2;0ðAj�Þ
�Þ3;2. How-

ever, it is also necessary to split up the inner zone metric’s
contributions into polynomial and nonpolynomial parts to
keep from excluding quadrupole pieces as well [since the
nonpolynomial parts of the second and third order pieces of
the inner zone metric are allOðb=RÞ]. In fact, this behavior
means that we need to include the octupole part of the third
order piece of coordinate transformation [in ðhNPð�j�Þ2 �
ðAj�Þ

�Þ3;�3]. (One would also need to include the octupole

part of the second order piece of the coordinate trans-
formation, but it vanishes.)
The rest of the calculation proceeds as before, with the

same general results: We obtain the next two orders’ con-
tributions to the matching parameters, with the nonpoly-
nomial pieces giving ðF��Þ2 ¼ 0 and
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ðF��Þ3 ¼
��

m2

m

�
3=2 þ 3

ffiffiffiffiffiffi
m2

m

r
þ 5

ffiffiffiffiffiffi
m

m2

s �
t̂½�ŷ��; (5.24)

along with ðCkÞj ¼ 0 and ðM1Þj ¼ 0 for j 2 f2; 3g.
Similarly, the polynomial pieces give

ð �EklÞ2 ¼ 1

2

�
3x̂kx̂l � �kl þ m

m2

ð4x̂kx̂l � 5ŷkŷl þ ẑkẑlÞ
�
;

ð �BklÞ2 ¼
�
5

�
m

m2

�
3=2 þ 7

ffiffiffiffiffiffi
m

m2

s
� 3

ffiffiffiffiffiffi
m2

m

r �
x̂ðkẑlÞ; (5.25)

along with ð �BklÞ1 ¼ ð �EklÞ3 ¼ 0. The fourth-order piece of

the coordinate transformation is

ðX�Þ4 ¼ �ðAtÞ4t̂� þ 1

2

m1

m2

~x

b

�
5
~x2

b~r
� 6

~x

~r
� ~r

b

�
~r�

þ ðAxÞ4x̂� þ ðAyÞ4ŷ� þ ðAzÞ4ẑ�
þ

� ffiffiffiffiffiffi
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m

r
½ŷð�ðF�Þ0Þ3 � t̂ð�ðF�Þ2Þ3� þ ðF��Þ4

�
~x�

þ ðC�Þ4; (5.26)

where

ðAtÞ4 :¼ 4
m2

1

m2
2

b2

~r
þ t

�
t2

6b2
þ 5ðy2 � ~x2Þ þ z2
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1
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þ 5

8
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�
;
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b2
� 5

~x2

b2
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~xþ

�
m
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m
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;

ðAyÞ4 :¼ y
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�
1

2

m2

m
þ 2

m
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�
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2

m
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;

ðAzÞ4 :¼ z

�
t2 þ z2 þ 3y2 � 5~x2

2b2
þ m

m2

~x2 � y2

b2
þ m

2m2

� 1

2

�
: (5.27)

The fifth order piece is

ðX�Þ5 ¼ ðAtÞ5 t̂� �
�
M0

�
6;
1

2

�
~xyt

b2~r
þK

�
3� 5

2

~x

b

�
~x2yt

b~r3

�
~r� þ 5

2
K

~x2t

b2~r
�0�k3~r

k þ ðAxÞ5x̂� þ ðAyÞ5ŷ�
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2b2
Mð3; 3;�5Þẑ� þ
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½ŷð�ðF�Þ0Þ4 � t̂ð�ðF�Þ2Þ4� þ ðF��Þ5

�
~x� þ ðC�Þ5; (5.28)

where ����� is the four-dimensional Levi-Civita symbol, with �0123 ¼ 1. We have also defined
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; (5.29)

and

M ðA; B;C;DÞ :¼ A

�
m

m2

�
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ffiffiffiffiffiffi
m

m2
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ffiffiffiffiffiffi
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m
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ffiffiffiffiffiffi
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s
þ B

ffiffiffiffiffiffi
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r
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�
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(5.30)
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where M0ðA; BÞ and K vanish in the limit m1 ! 0 ( )
m ! m2).

G. Summary of matching results

The final output of the matching is a set of expressions
for the tidal fields, which are given explicitly in Eq. (B1), a
relation between the mass parametersM andm1, which we
found to be equal [up to uncontrolled remainders of
Oðv4Þ], and the coordinate transformation necessary to
place the inner zone metric in the same coordinate system
as the near zone metric to the order we matched, which we
shall discuss further here. To obtain the full coordinate
transformation, we start from Eq. (5.1) and insert the
various pieces we have read off or chosen. We shall take
anything we were unable to fix by matching to be zero;
here, this will be C0 (to all orders), along with ðF��Þj and
ðCkÞj for j 2 f4; 5g. With the results of our matching, this

means that we have C� ¼ 0 (to all orders). We took the
zeroth-order piece of the coordinate transformation to
simply be the expected translation of the origin from the
binary’s center of mass to hole 1, so

ðX�Þ0 ¼ ~x� :¼ x� � ðm2=mÞbx̂�: (5.31)

With ðC�Þ1 ¼ 0, we also have

ðX�Þ1 ¼ ðF��Þ1~x�; (5.32)

where

ðF��Þ1 ¼ 2

ffiffiffiffiffiffi
m2

m

r
t̂½�ŷ��: (5.33)

Continuing onward, ðX�Þ2 is given by Eq. (5.13), where
ðF��Þ2 ¼ 0 and ðC�Þ2 ¼ 0; ðX�Þ3 comes from Eq. (5.23),

where

ðF��Þ3 ¼ Mð0; 5; 3; 1Þt̂½�ŷ��; (5.34)

and ðC�Þ3 ¼ 0. [MðA; B; C;DÞ is defined in Eq. (5.30).]
Similarly, ðX�Þ4 can be obtained from Eq. (5.26), and we
take ðF��Þ4 ¼ 0 and ðC�Þ4 ¼ 0. Finally, ðX�Þ5 is given in

Eq. (5.28); again, we set ðF��Þ5 ¼ 0 and ðC�Þ5 ¼ 0.

Looking back over this coordinate transformation, it is
possible to gain some physical intuition about what it is
accomplishing: The expected Lorentz boost due to the
holes’ orbital motion is present (through third order, which
is the highest order at which we have fixed all the coor-
dinate transformation, up to a possible temporal shift). We
also have the lowest-order piece of the transformation
between Cook-Scheel and harmonic PN coordinates for
an unperturbed Schwarzschild black hole. [This is given by
the first term in ðAtÞ4 in Eq. (5.27).] The remainder of the
coordinate transformation is probably mostly concerned
with effecting the transformation from locally inertial co-
ordinates centered on the black hole to PN barycentric
coordinates. In addition, as we noted previously, the poly-
nomial and nonpolynomial parts of the full coordinate

transformation are related to the individual holes in the
expected manner: The nonpolynomial parts are associated
with hole 1 and vanish in the limit m1 ! 0. The polyno-
mial pieces are associated with hole 2; indeed, everything
except for the piece of the background Cook-Scheel-to-
PN-harmonic transformation vanishes in the limit m2 ! 0.

VI. FAR ZONE METRIC

The DIRE approach can be used to compute the full 4-
metric g�� (in harmonic coordinates) in the far zone. The

resulting far zone metric is expressed in terms of deriva-
tives of source multipole moments obtained by integrating
the ‘‘effective’’ stress-energy pseudotensor over the near
zone. One also obtains nonlinear contributions from inte-
grating over the far zone (known as the outer integral in the
DIRE approach), though only two of the resulting terms
appear in the metric perturbation h�� [defined in Eq. (2.2)
of [72] ] to the order we are considering.
In this formalism, the metric perturbation in the far zone

is given in terms of the source multipoles IQ and J Q (Q is
a multi-index)7 via [Eqs. (5.12) in [72] ]8

h00 ¼ 4
I
r
þ 2@kl

�
IklðuÞ

r

�
� 2

3
@klm

�
IklmðuÞ

r

�

þ 7
I2

r2
þOðv6Þ; (6.1a)

h0k ¼ �2@l

� _IklðuÞ
r

�
þ 2�lkp

nlJ p

r2
þ 2

3
@lp

� _IklpðuÞ
r

�

þ 4

3
�lkp@ls

�
J psðuÞ

r

�
þOðv6Þ; (6.1b)

hkl ¼ 2
€IklðuÞ
r

� 2

3
@p

� €IklpðuÞ
r

�
� 8

3
�psðkj@s

� _J pjlÞðuÞ
r

�

þ I2

r2
n̂kn̂l þOðv6Þ: (6.1c)

Here, r :¼ k ~xk is the distance from the binary’s center of
mass to the field point, and n̂k :¼ xk=r is its associated unit
vector. The ðI=rÞ2 terms are the two contributions from the
outer integrals mentioned previously. We have included all
the terms Pati and Will give, even though some of the ones
in the purely temporal and spatial components only con-
tribute terms that are of a higher order than we need here.
We do this for completeness and also because we shall
need these higher-order terms when we construct the
higher-order extension to the data set (the computation of
the higher-order far zone metric is sketched in
Appendix C).

7See, e.g., the discussion following Eq. (2.14) in Pati and Will
[72] for the definition of a multi-index.

8We have corrected a sign error in Pati and Will’s expression
for hkl: They give coefficients of þ2=3 and þ8=3 for the second
and third terms. The correct signs can be obtained from Pati and
Will’s Eqs. (2.13) and (4.7b) in [72].
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The source multipoles IQ and J Q are defined in
Eqs. (4.5) of [72]. With these definitions, the mass mono-
pole I is simply (a PN corrected version of) the total mass
of the system, the dipole moment Ik is the center-of-mass
vector (so it vanishes in our coordinate system), and the
current dipole J k is the total angular momentum. One can
show that these three quantities are conserved up to radia-
tive losses.

The source multipoles can be expanded in the PN ap-
proximation to find

I ¼ m1

�
1þ 1

2
v2
1 �

m2

2b

�
þ ð1 $ 2Þ þOðbv4Þ; (6.2a)

J k ¼ �klpm1x
l
1v

p
1 þ ð1 $ 2Þ þOðb2v3Þ; (6.2b)

Ikl ¼ m1x
kl
1

�
1þ 1

2
v2
1 �

m2

2b

�
þ 7

4
m1m2b�

kl

þ ð1 $ 2Þ þOðb3v4Þ; (6.2c)

J kl ¼ �kpsm1v
s
1x

pl
1 þ ð1 $ 2Þ þOðb3v3Þ; (6.2d)

Iklp ¼ m1x
klp
1 þ ð1 $ 2Þ þOðb4v2Þ: (6.2e)

The first two come from Will and Wiseman’s Eqs. (4.16)
[74] and the remainder from Pati and Will’s Eq. (D1) [73].
(Even though we only need the lowest-order piece of Ikl

here, we include the 1PN corrections that Pati and Will
give since we need them in our construction of the higher-
order extension in Appendix C.) Here, the notation is
mostly the same as for the near zone metric and was
defined in Sec. IV. The only new definition is xkl1 :¼ xk1x

l
1

(with similar definitions holding for different vectors, as
well as larger collections of indices).

When calculating the metric, we follow the far zone
order counting given in Sec. IV C of Pati and Will [72],
where each additional power of r�1 in an expression is
treated as OðvÞ. (This is equivalent to the order counting
used by Alvi [46].) In obtaining the far zone metric for the
Oðv4Þ data, we modify this prescription slightly to treat
factors of r�1 that come with factors of G in the far zone’s

post-Minkowskian expansion as not being ‘‘additional,’’
so, e.g., ðI=rÞ2 ¼ Oðv4Þ, not Oðv5Þ. The only effect this
has is to imply that we keep the outer integral terms in the
Oðv4Þ version of the data instead of dropping them. (We
revert back to the pure Pati-Will order counting in the
higher-order extensions to the data, as discussed in
Appendix C.)
With this order counting, we have h00 ¼ Oðv2Þ, h0k ¼

Oðv4Þ, and hkl ¼ Oðv4Þ, so the full 4-metric in the far zone
is given by [Eqs. (4.2) in [72] ]

g00 ¼ �
�
1� 1

2h
00 þ 3

8ðh00Þ2
�
þ 1

2h
kk; (6.3a)

g0k ¼ �
�
1� 1

2h
00

�
h0k; (6.3b)

gkl ¼
�
1þ 1

2h
00 � 1

8ðh00Þ2 � 1
2h

pp

�
�kl þ hkl; (6.3c)

with remainders of Oðv6Þ. Here, we have kept the
�ð1=2Þh00 term in the expression for g0k for formal con-
sistency (and because we shall need it when we construct
the higher-order extension in Appendix C). This term gives
a contribution of Oðv6Þ with our order counting (which we
neglect here), but would give terms ofOðv5Þ if we had used
the standard near zone order counting, where h0k ¼ Oðv3Þ.
This is the onlyOðv6Þ term in the expression for g0k, so the
uncontrolled remainder in that expression is thus actually
Oðv7Þ.
We can now easily compute the full metric by taking all

the derivatives in the expression for the metric perturba-
tion, Eqs. (6.1). In doing this, it is important to realize that
the multipoles depend on retarded time, which must be
carefully accounted for when differentiating. Equations
(6.3) then give the full metric. In performing this calcula-
tion, we assume a (quasi)circular orbit, so we can make the
same sorts of simplifications as we did in obtaining the
expression for the near zone metric in Sec. IV. After much
algebra, we finally obtain the full metric in the far zone:

g00 þ 1 ¼ 2m1

r
þm1

r

�
v2
1 �

m2

b
þ 2ð ~v1 � n̂Þ2 � 2m

r
þ 6

ð ~x1 � n̂Þ
r

ð ~v1 � n̂Þ � x21
r2

þ ð ~x1 � n̂Þ2
r2

ð3� 2r2!2Þ
�

þ ð1 $ 2Þ þOðv5Þ; (6.4a)

g0k ¼ �m1

r

�
4ð ~v1 � n̂Þ þ 4ð ~v1 � n̂Þ2 � 6ð ~x1 � n̂Þ2!2 þ 4

ð ~x1 � n̂Þ
r

þ 12
ð ~x1 � n̂Þ

r
ð ~v1 � n̂Þ � 2

x21
r2

þ 6
ð ~x1 � n̂Þ2

r2

�
vk
1

þm1

r

�
4ð ~x1 � n̂Þ þ 8ð ~x1 � n̂Þð ~v1 � n̂Þ � 2

x21
r
þ 6

ð ~x1 � n̂Þ2
r

�
!2xk1 þ ð1 $ 2Þ þOðv6Þ; (6.4b)

gkl � �kl ¼ 2m1

r
�kl þm1

r

��
v2
1 �

m2

b
þ 2ð ~v1 � n̂Þ2 þm

r
þ 6

ð ~x1 � n̂Þ
r

ð ~v1 � n̂Þ � x21
r2

þ ð ~x1 � n̂Þ2
r2

ð3� 2!2r2Þ
�
�kl

þm

r
n̂kl þ 4vkl

1 � 4!2xkl1

�
þ ð1 $ 2Þ þOðv5Þ; (6.4c)

where everything is evaluated at the retarded time u :¼ t� r. [This expression agrees with Alvi’s result, given in his
Eq. (2.17) [46], though he also includes the Oðv5Þ terms in the purely temporal and spatial components. We include these
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pieces—as well as even higher-order ones—when we con-
struct the extension to the data in Sec. VII and have
checked that we agree with Alvi about all theOðv5Þ terms.]

A. Evolution of the binary’s phase and separation

Even though the effects of radiation reaction on the
binary’s orbital separation and phase are formally small,
only beginning at Oðv5Þ, they produce large corrections to
the far zone metric in practice when one is far away from
the binary, since the retarded time at which one is evaluat-
ing the binary’s parameters becomes large. For instance,
even as close as r ¼ 50m, which is inside the outermost
extraction radius (usually well inside) for all the simula-
tions used in the Samurai project [13], the phase difference
between a circular orbit [using the 3PN expression for !
given in Eq. (190) of [41] ] and 3.5PN inspiral (the com-
putation of which is detailed below) is �0:015 radians for
an equal-mass binary with an instantaneous separation of
10m. (This phase difference should be compared with the
averaged frequency domain phase accuracy required for
parameter estimation with Advanced LIGO, viz., 0.007 ra-
dians, from [11]. While such a comparison is not really
warranted—see [16] for some discussion—it gives a rough
idea of the required accuracy.) See Sec. IVA in Kelly et al.
[48] for further discussion of the necessity of using for-
mally higher-order PN results in obtaining the far zone
metric.

We thus use the most accurate (3.5PN) expression for the
inspiral, as given by Blanchet [41], who obtains it from an
energy balance argument. The phase itself is given by
Blanchet’s Eq. (234) [41], where it is expressed in terms
of the dimensionless time variable �, defined in his
Eq. (232) [41]. Since we are evaluating everything at the
retarded time u, we have � ¼ ð�=5mÞðtc � uÞ. Here, the
‘‘coalescence time’’ tc is defined as the time at which the
binary’s frequency goes to infinity (or, equivalently, its
separation goes to zero). One can calculate this in the PN
approximation by using the energy balance relation
dE=dt ¼ �L, where E and L are the binary’s energy
and gravitational wave luminosity, respectively. These
are given in terms of � :¼ m=b through 3.5PN in
Blanchet’s Eqs. (191) and (230) [41], respectively. We
can then compute tc by integrating dt=db ¼
�ðdE=dbÞ=L from b ¼ 0 to b ¼ b0 (where b0 is the
binary’s separation at t ¼ 0). Here, we expand the quotient
as a power series (to 3.5PN) rather than using a Padé
approximant (or performing any resummation of the en-
ergy or luminosity), as is sometimes done in the literature
(see, e.g., [93]).

With the 3.5PN expression for tc in hand, we can simply
substitute it (via�) into Blanchet’s Eq. (234) [41] to obtain
the phase as a function of u, making sure to expand to
3.5PN order after substituting. We add a constant to the
phase, so it is zero when t ¼ 0, to be consistent with our
choice of initial phase in the matching (i.e., so the holes

initially lie on the x axis, with our expression for the orbit).
We also take the freely specifiable gauge constant r00 and

constant of integration�0 to be m and 1, respectively. The
dependence of ! on u is then obtained by differentiating
the phase with respect to time.
To obtain the retarded time dependence of b, we use b ¼

m=�, along with the expressions for � in terms of

Blanchet’s frequency-related parameter x :¼ ðm!Þ2=3
[Blanchet’s Eq. (193) [41] ] and x in terms of �
[Blanchet’s Eq. (233) [41] ], expanding the quotient con-
sistently to 3.5PN. (Here, Blanchet’s x should not be con-
fused with our x coordinate. Also, we take the appearance
of b in a logarithm in the expression for � to consist only of

b’s lowest-order dependence on �, viz., 4m�1=4.)
We do not display the resulting expressions, as they are

quite lengthy, and best handled entirely within a computer
algebra system. (We have carried out the calculations in
MAPLE and our scripts are available at [39].) Our results can

be seen graphically in Fig. 4, where we plot the past history
of an equal-mass binary’s separation (starting from b0 ¼
10m) along with the fractional deviations of its phase from
!0u. N.B.: The final expansions of the expressions for �
and b are important. If they are not performed, then one
does not recover the expected values for b and ! at u ¼ 0
[viz., b0 and !0, respectively; here, !0 is the binary’s 3PN
angular velocity for b ¼ b0 obtained from Blanchet’s
Eq. (190) [41] ].
Using these high-order phasing relations means that we

are effectively using high-order equations of motion. We
would have thus liked to include higher-order terms in the
relative-to-center-of-mass (relative-to-COM) variable rela-
tion as well, for consistency, rather than merely the lowest-
order Newtonian relation [given in Eq. (4.3)], which is all
that is needed formally in the far zone, even in our ex-
tended data. However, the resulting expressions for the far
zone metric components are algebraically too complex for
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FIG. 4 (color online). The 3.5PN results for the past history of
an equal-mass binary’s separation, starting from 10m at u ¼ 0,
along with the fractional deviations of its phase from !0u.
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MAPLE to handle, so we had to forego including any addi-

tional terms. Fortunately, unlike the secular radiation reac-
tion effects in the binary’s phase and separation considered
above, the neglected PN corrections to the relative-to-
COM relation are numerically small in addition to being
formally small: They first enter the metric at Oðv8Þ (in the
purely temporal component) and produce corrections of
�5� 10�7 to terms whose uncorrected value is �10�4.

We were able to include these additional terms in the
relative-to-center-of-mass relation in the near zone metric:
For consistency, we include the same higher-order terms in
the phasing and separation in the near zone metric as in the
far zone metric, so it makes sense to attempt to include the
higher-order relative-to-COM relation there, even though
we were unable to do so in the far zone metric. In fact,
these corrections contribute to the near zone metric at one
order lower than to the far zone metric [viz., Oðv7Þ in the
spatiotemporal components] and are numerically quite a
bit larger: They give corrections of �2� 10�3 to terms
whose uncorrected value is �0:2.

Blanchet and Iyer give these corrections through 3PN in
Eqs. (3.11)–(3.14) of [94]. We have specialized their result
to a circular orbit by using the 2PN expression for ! to
express v in terms of m, b, and �. Blanchet gives this
relation specialized to a circular orbit through 2.5PN in
Eq. (187) of [41], so we shall just quote the 3PN contribu-
tion to ~xA (which has no A dependence):

~x 3PN
A ¼ ��

ðm1 �m2Þm2

b3

�
7211

1260
þ �� 22

3
log

�
b

r000

��
~b:

(6.5)

In this expression, r000 is another freely specifiable gauge

constant which, though a priori different from r00, we shall
take to have the same value, viz., m. [This is equivalent to
taking the related gauge constants r01 and r02 to both be m;
see Eqs. (3.15) and (3.19) in [94].] The expression for the
binary’s separation vector that we substitute into the result-
ing relative-to-center-of-mass relation to obtain the trajec-

tories of the point particles is ~b ¼ bðx̂ cos�þ ŷ sin�Þ,
where b and � are functions of t (in the near zone) or u
(in the far zone).

VII. INCLUDING HIGHER-ORDER TERMS

Here, we construct an extension to our data using vari-
ous readily available higher-order terms. This extension
includes all the Oðv5Þ terms in the near and far zones, but
also includes even higher-order terms that do not improve
the data’s formal accuracy. The general philosophy is that
adding higher-order terms can often improve the quality of
the data in practice, even if it does not improve their formal
accuracy. As we have seen in the previous section, this is
particularly true in the far zone, where the binary’s phase
evolution depends sensitively on the inclusion of quite
high-order radiation reaction terms.

There are also more specific reasons for including cer-
tain of these terms: We would like for a putative evolution
of our data to be able to be compared directly with Kelly
et al.’s evolution of their data [60]. (Such a comparison will
give an indication of how much of the junk radiation is due
to the failure of the initial data to include the correct tidal
deformations.) Kelly et al. include the Oðv5Þ pieces of the
spatial metric in the near zone [though not the matching
Oðv6Þ pieces of the extrinsic curvature]. The extension we
have constructed includes these terms, as well. It also
includes (as noted above) the Oðv5Þ terms in the far
zone, along with the Oðv6Þ terms in the extrinsic curvature
in the near and far zones, so the extended data are valid
throughOðv5Þ in those zones. However, we have coded our
data in such a way that one can easily produce a data set
that only includes the pieces that Kelly et al. have, or some
other subset of the pieces in the extension.
We would have liked to include the Oðv5Þ terms in the

inner zone as well, for completeness, but it is not possible
to obtain initial data in that zone that are formally Oðv5Þ
while still including the quadrupole pieces with the inner
zone metric we have: We would need the Oðv6Þ pieces of
(the spatiotemporal components of) the inner zone metric.
The quadrupole parts of these include hexadecapole tidal
fields, and knowledge of how those fields enter the inner
zone metric requires nonlinear black hole perturbation
theory (this has since been carried out by Poisson and
Vlasov [66]). However, we are able to calculate the poly-
nomial parts of the fourth and fifth order octupole pieces,
and we actually carried out the calculation for the fourth-
order pieces. We present the results in Appendix B 2 and
include these additional contributions in the extension.
(These pieces include the 1PN correction to the electric
octupole tidal field.)
Moreover, we are also able to include the full time

dependence of the tidal fields (up to radiation reaction
effects); see Appendix B 1. It seems desirable to include
these terms, since some of them are necessary for obtaining
the pieces of the extrinsic curvature that describe how the
tidal fields evolve. We already have the necessary, linear-
in-t pieces for the lowest-order quadrupole fields, but not
for their 1PN corrections, the explicit appearance of their
time derivatives, or any of the octupole fields. We discuss
the specifics of how we include this time dependence and
what exactly we are neglecting in its inclusion in
Appendix D. We have not attempted to obtain the full
time dependence of the coordinate transformation, since
this is a rather more involved task than obtaining that of the
tidal fields. Moreover, our rationale for including the tidal
fields’ full time dependence was to improve the evolution
of the tidal perturbations: Including the full time depen-
dence of the coordinate transformation would only im-
prove the agreement of the inner and near zone metrics
in the buffer zone, while the largest effect of the tidal
perturbations (e.g., in reducing the high-frequency junk
radiation) presumably comes from closer to the horizons.
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The other higher-order pieces we have added are all in
the purely temporal components of the near and far zone
metrics. We have included these since Blanchet, Faye, and
Ponsot [61] give an explicit expression for the purely
temporal component of the near zone metric through
Oðv7Þ, and it is easy enough to calculate the matching
terms in the far zone. The specifics of where we obtained
all the extra terms are given in Appendix C, along with the
accompanying caveats and new order counting in the far
zone. We refer to these ‘‘state-of-the-art’’ versions of the
near and far zone metrics as the full extended versions.

We have considered the effects of these additional terms
on how well the metrics stitch together by putting together
four versions of the data, shown in Table II. While the
versions in the table are given the labels we use for the
corresponding MAPLE scripts and C code (available at
[39]), we shall usually refer to them by the order of their
near and far zone metrics [i.e., as Oðv4Þ, Oðv5Þ, and full
extended]. This will not cause confusion, since we will
almost always consider just the right-most three. While the
O4_NOOCT version is important, since it contains only the

pieces that can be included consistently in the matching
(except for the higher-order terms necessary to obtain the
phasing in the far zone accurately and the analogous terms
in the near zone), we only consider it in one portion of the
next section. Thus, when we refer to the Oðv4Þ version
without any qualifiers, we mean O4, the version including
the fourth-order octupole pieces. See Appendix D for the
specific details of how all of these metrics are calculated.
(N.B.: The near zone metrics in all of these versions
contain the background resummation detailed in
Sec. VIII A.)

As we shall see in the next section, including the addi-
tional terms reduces the resulting data’s constraint viola-
tions, or at least does not affect them adversely. The only
exception to this is the addition of the full time dependence
in the inner zone, which increases the constraint violations
in the inner zone. However, it does not increase them by
much, and they were originally quite small. Our philoso-
phy is thus to include these terms, which we think will
improve the data’s evolution, even at the cost of slightly
higher constraint violations. (Kelly et al. [60] have also
seen that including more physics—from the transverse-
traceless piece of the metric—increases the constraint
violations.)

VIII. NUMERICAL CONSIDERATIONS

To gain some feel for how well the matching is working
numerically, along with the differences between the vari-
ous versions of the initial data, we plot the volume ele-
ments of the various 4-metrics in the vicinity of their buffer
zones. The volume element is, of course, coordinate de-
pendent, but is nevertheless a very convenient quantity to
use, particularly when comparing the matching of different
versions of the data. We display the differences between
the volume elements of various versions of the constituent
metrics in the inner-to-near transition in Fig. 5, and the
volume elements themselves in the near-to-far transition in
Fig. 6, along with the volume element of the merged
metric. Of course, we first transform the inner zone metric
using the coordinate transformation obtained from the
algebraic matching above.
To obtain a simple, easily interpreted plot, we choose the

test system b ¼ 10m, m1 ¼ m2 (the mass is in arbitrary
units) and restrict our attention to the t ¼ 0 time slice and
the x axis (i.e., we consider the spatial slice along the
separation between the holes), concentrating on the portion
near hole 1. We expect this slice to provide the most
stringent test of the matching, since it contains the portions
of the buffer zones where the field is strongest and changes
most rapidly. Additionally, an initial separation of 10m is
large enough that it is reasonable to expect that the ingre-
dients making up the construction are valid. But it is also
small enough to test the ingredients near the edge of their
region of validity, and to be comparable to the initial
separations used in most current numerical relativity simu-
lations. We shall thus use this setup (or slight modifications
thereof) for all of our later examples. In all of these plots,
we use the full extended version of the data discussed in the
previous section, unless otherwise noted.
The inner zone metric we display here contains the

fourth-order octupole pieces discussed in Appendix B 2.
To avoid clutter, we did not plot the ‘‘plain’’ version
without these additional pieces: It agrees very closely
with the version we have plotted near and inside the
horizon, but bends away from the near zone metric further
away from the hole. The differences between the versions
of the inner zone with full and perturbative time depen-
dence would not appear in this plot, since we are looking at
the t ¼ 0 time slice. We display the differences between
the Oðv4Þ, Oðv5Þ, and full extended far zone metrics in

TABLE II. An overview of the contents of the various data sets we considered.

Zone Attribute Versions

O4_NOOCT O4 O5 ALL

Inner

�
Time dependence Perturbative Perturbative Full Full

Fourth-order octupoles No Yes Yes Yes

Near
�

Metric order Oðv4Þ Oðv4Þ Oðv5Þ Full extended
Far
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Fig. 7, considering a binary with mass ratio 3:1 so these
differences are more pronounced. (In this plot, we have
concentrated on the portion of the x axis to the right of the
more massive hole, for clarity: The relations between the
various metrics are qualitatively the same to the left of the
less massive hole, except for differences in relative
amplitude.)

In the near zone metric, the extension adds certain terms
that become large when evaluated close to the holes (e.g.,

4m2
1m2=r

3
1 in g00, which equals 1=2 at r1 ¼ m for our test

system) and others that grow rapidly as one moves away
from the holes (e.g., �m2

1m2r
3
1=4b

6, also in g00, which is

about �0:03 at r1 ¼ 100m for our test system). The terms
that become large near the holes cause the t ¼ 0 time slice
of the near zone metric to no longer be spacelike in a region
that extends outside the horizon. However, for this separa-
tion, the time slice is still spacelike in the buffer zone, so its
bad behavior closer to the holes does not cause any prob-
lems in the merged metric.
N.B.: The unperturbed horizon is m1½1�m2=bþ

Oðm2
2=b

2Þ� away from the point particle associated with

hole 1 in the new coordinates. For the test system, the
correction is small, so hole 1’s unperturbed horizon inter-
sects the x axis at �4:5m and �5:5m in the new coordi-
nates. There are also corrections due to the tidal distortion,
but for the test system these are even smaller than those due
to the new coordinates; see Sec. VIII in Taylor and Poisson
[75] for a study of the effects of the lowest-order quadru-
pole tidal distortion on the horizon.
The Newman-Penrose scalar c 4 gives a coordinate-

independent (though still tetrad-dependent) measure of
the success of the matching. (It also gives a measure of
the data’s gravitational wave content in the far zone.)
Compared to the volume element, c 4 is also more sensitive
to the specifics of the transition functions, since it contains
first and second derivatives of the metric. We plot c 4 for
the merged and constituent full extended metrics in the
inner-to-near and near-to-far transitions in Figs. 8 and 9,
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ratio of 3:1 along the x axis to the right of hole 1 (the more
massive hole). We display this for the extended data (the darkest
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respectively. (We computed c 4 using BAM [95,96]; its
built-in tetrad is discussed in Sec. III A of [95].
Additionally, we only plot the real part of c 4, because
the imaginary part is several orders of magnitude smaller.)

In the inner-to-near transition, the volume elements and
c 4 generally behave in the expected manner: They differ
when considered either too near or too far from the hole
and approach each other in the buffer zone. Things look a
bit more unusual in the near-to-far transition, since the two
volume elements agree better in the region between 20m to
30m than they do further away from the holes, and c 4

actually agrees (somewhat) better even further in.
However, this should not be surprising: The reduced wave-

length of the gravitational radiation is�16m for the equal-
mass test system, and the difference between the near zone
metric’s perturbative treatment of retardation and the far
zone metric’s full treatment should become quite apparent
beyond that radial distance. In fact, the oscillations we see
in the far zone metric’s volume element and c 4 (in Figs. 7
and 9, respectively) are due to the far zone metric’s depen-
dence on retarded time. (Even though the metric contains
gravitational radiation, this is not the only source of the
oscillations of the volume element. However, it does con-
tribute to them, as expected. The oscillations in c 4 can
likely be identified with gravitational radiation, though we
are probably not quite far enough from the binary to do so
completely unambiguously.) The former plot also illus-
trates the phase differences between the various versions
of data.

A. Background resummation

In the inner-to-near transition (as shown in Fig. 5), the
volume elements of the original (unresummed) metrics do
not agree as closely as we might like. In fact, the agreement
is worse near the hole with the higher-order extended
version of the near zone metric than it is with the original
Oðv4Þ version (though the agreement further away from
the hole and outside the orbit is slightly better). However,
even the agreement with the original version is not much
better than that found in Paper II (see its Fig. 2), even
though we have matched to higher order.9 Part of the
resolution of this apparent problem is that we have not
yet used one of the ‘‘tricks’’ from Paper II, namely, back-
ground resummation.
The idea of background resummation is to add higher-

order terms to the near zone metric in order to improve its
strong-field behavior. If one considers the limit m2 ! 0
( ) v1 ! 0) of the near zone metric, then one finds that it
reduces to the far field asymptotic expansion of the un-
boosted Schwarzschild metric (with mass parameterm1) in
PN harmonic coordinates. This expansion, however, lacks
the causal structure of the Schwarzschild metric—it has no
horizon.
One method to restore this causal structure is to resum

the PN metric. This resummation consists of adding an
infinite number of higher-order terms, such that the metric
reduces identically to the full unboosted Schwarzschild
metric in PN harmonic coordinates in the limit m2 ! 0.
A priori, there is no reason to suspect that adding such
higher-order terms would increase the accuracy of the PN
metric. A posteriori, however, it is usually the case that
such resummed metrics are indeed closer to the exact
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FIG. 8 (color online). The real part of the Newman-Penrose
scalar c 4 of the inner, near, and merged metrics computed for
our equal-mass test system and displayed in the vicinity of the
inner-to-near transition.
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FIG. 9 (color online). The real part of the Newman-Penrose
scalar c 4 of the near, far, and merged metrics computed for our
equal-mass test system and displayed in the vicinity of the near-
to-far transition, as well as the far zone proper, and even some of
the inner-to-near transition (included to show how the near and
far zone metrics compare close to the binary).

9The figures are not directly comparable, since the one in
Paper II plots the xx components of the metrics, not their volume
elements. However, the plot of just the xx components of this
paper’s inner and near zone metrics displays the same behavior
as that of the volume elements, including roughly the same
numerical values for the difference between the metrics.
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solution, as was seen in Paper II. Moreover, we should
stress that these higher-order terms are not arbitrary, but
guided by the physical requirement of restoring the appar-
ent horizons. Such physically informed resummations have
met with great success in general relativity, notably in the
effective one-body formalism (see, e.g., [97]).

It would also be possible to resum the far zone metric:
One can calculate its Newtonian part without making a
multipole decomposition by proceeding in the same man-
ner as in the calculation of the Liénard-Wiechert 4-
potential in electrodynamics (as given in, e.g., Sec. 14.1
in Jackson [98]). However, we have not pursued this line of
investigation further. Simone et al. [40] performed a re-
lated resummation of the Newtonian pieces of the lumi-
nosity of an extreme mass-ratio binary, though they did this
by first calculating the multipole expansion and then re-
summing directly, while the resummation of the metric we
are suggesting here would involve computing the integral
directly, with no multipole expansion of the Newtonian
part.

With these points in mind, let us now describe the near
zone resummation in detail, exemplifying it using the
purely temporal component of the metric. In PN harmonic
coordinates, this component of the Schwarzschild metric
takes the form �ðR�MÞ=ðRþMÞ. Here, R is the har-
monic radial coordinate, andM is the hole’s mass. (As our
use of ‘‘R’’ indicates, this is the same radial coordinate as
in Cook-Scheel harmonic coordinates; see Appendix A for
a comparison of the two coordinate systems.) We expect to
have m1 ! M and r1 ! R as m2 ! 0, which suggests that
the purely temporal component of the PN metric should
approach �ðr1 �m1Þ=ðr1 þm1Þ as m2 ! 0. The far field
asymptotic expansion of this metric component (i.e., for
r1 � m1) is given by

� 1þ 2m1

r1
� 2m2

1

r21
þO

��
m1

r1

�
3
�
: (8.1)

This identically reproduces all of the terms in the PN near
zone metric in the limit m2 ! 0. We then resum the PN
near zone g00 by taking

g00 � gold00 ¼� r1 �m1

r1 þm1

�
�
�1þ 2m1

r1
� 2m2

1

r21

�
þ ð1$ 2Þ;

(8.2)

where gold00 is the version of this component without resum-

mation, given in Eq. (4.1a).
A similar procedure can be applied to the spatial sector

of the metric. Carrying this out, we obtain

gkl � goldkl ¼ r1 þm1

r1 �m1

nð1Þkl þ
�
1þm1

r1

�
2½�kl � nð1Þkl �

�
��

1þ 2m1

r1
þm2

1

r21

�
�kl þm2

1

r21
nð1Þkl

�

þ ð1 $ 2Þ; (8.3)

where nð1Þkl
:¼ xk1x

l
1=r

2
1 and goldkl is given by Eq. (4.1c). One

can check that gkl reduces to goldkl identically as m2 ! 0.
We have used the Schwarzschild metric in PN harmonic

coordinates to resum the PN metric here, since it is this
background that the PN metric approaches in the m2 ! 0
limit. We thus cannot resum the spatiotemporal compo-
nents of the metric, since they already match the back-
ground in this limit. If we had first transformed the PN
metric to Cook-Scheel coordinates, then we would have
been able to resum the background so it exactly matched
that of the inner zone metric. This would have guaranteed a
better agreement and would have probably also given a
merged metric with smaller constraint violations, since
there would be no coordinate singularity at the horizons
in the resummed near zone metric.
However, if we had chosen this route, we would have

had to pick some region surrounding the buffer zone for
each hole in which to perform this transformation. This
would have introduced further complications that we
thought it best to avoid in this implementation, even at
the possible cost of somewhat poorer matching. Moreover,
the background resummation procedure that we have im-
plemented has indeed improved the matching, as can be
seen in Fig. 5: The improvement is particularly striking for
the extended version of the near zone metric, where the
region in which the t ¼ 0 slice is no longer spacelike
moves closer to the horizon and the graph of its volume
element now crosses that of the near zone in the buffer zone
outside of the orbit. But resummation also improves the
matching of the original data: The resummed version of the
Oðv4Þ near zone metric agrees more closely with the inner
zone metric than does the unresummed version.

B. Transition functions

We now turn to the process of stitching the inner and
near zone metrics together numerically. It is necessary to
interpolate between the various metrics in transition re-
gions (located inside the buffer zones) in order to stitch the
metrics together with no discontinuities. A simple way to
do this is to use a weighted average of the metrics, where
the precise way this average is carried out is determined by
a C1 transition function FAB: R

3 ! ½0; 1�. This function
should have the property that FABð ~xÞ ¼ 0 if ~x 2 CA \Oc

AB

and FABð ~xÞ ¼ 1 if ~x 2 CB \Oc
AB. Here, O

c
AB is the com-

plement of the buffer zone between zones CA and CB.
(These conditions guarantee that the transition takes place
completely inside the buffer region.) If we just consider

two metrics, gðAÞ�� and gðBÞ��, for simplicity, then the resulting

merged metric is given by ½1� FAB�gðAÞ�� þ FABg
ðBÞ
��. (We

have suppressed the position dependence of the transition
functions and metrics, for notational convenience.)
In principle, these conditions are all one would impose

on possible transition functions. (One might also want to
stipulate that FAB be ‘‘increasing as one moves from CA to
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CB,’’ where this would have to be interpreted in some
appropriate sense.) One could then contemplate minimiz-
ing some appropriate norm of the constraint violations of
the resulting merged metric (outside, say, the apparent
horizons) over all possible transition functions satisfying
these requirements [99]. Our approach will be significantly
less ambitious, leaving a systematic study of transition
functions to later work, probably the work that accompa-
nies an evolution of the data.

However, as Yunes [38] realized, one can exclude from
consideration a priori any transition functions that would
induce larger (formal) constraint violations in the data than
those due to the uncontrolled remainders of the individual
metrics. The so-called Frankenstein theorems enunciated
in [38] provide conditions on the transition functions that
are sufficient to exclude all such functions that lead to this
undesirable behavior. These conditions are that the first and
second derivatives of FAB be Oð�A; �BÞ and Oð�0A; �0BÞ,
respectively. (Here, �A represents the small parameters
associated with zone A.) As discussed in Sec. I A, the
theorems imply that initial data obtained using transition
functions satisfying these conditions will satisfy the con-

straint equations to the same formal order as the constituent
pieces of the initial data do. We shall explicitly verify that
our transition functions respect these conditions.
We have made simple choices for the geometry of the

transition regions, using spherical symmetry whenever
possible, even though neither the binary nor the holes are
spherically symmetric. We have implicitly acknowledged
the latter in the inner-to-near transitions by introducing
another transition function (called fnear and discussed be-
low) that only depends on x, the Cartesian coordinate along
the axis passing through the holes at t ¼ 0. While we do
not have to worry about our transition functions’ lack of
time dependence (which one would expect to be present,
because the transition regions change position as the binary
evolves), since we perform all our stitching-together on the
initial hypersurface, this time dependence would affect the
results if one chose to obtain initial data from the merged 4-
metric.
Moreover, we shall only consider one particular form for

the transition functions, viz., the same form used in Papers
I and II:

fðr; r0; w; q; sÞ :¼
8><
>:
0; r � r0;
1
2 ð1þ tanhfðs=	Þ½�ðr; r0; wÞ � q2=�ðr; r0; wÞ�gÞ; r0 < r < r0 þ w;
1; r 	 r0 þ w;

(8.4)

where �ðr; r0; wÞ :¼ tan½	ðr� r0Þ=2w�. The effects the
parameters have on f is discussed after Eq. (16) in Vega
et al. [100] (Vega et al.’s x0 corresponds to our r0).
Additionally, despite its piecewise definition, f is in fact
C1 if s > 0: One can check directly that f itself is con-
tinuous; all of its derivatives are continuous, since all the
derivatives of tanh vanish at infinity. The full merged
metric is thus

g��¼½1�ffarðrÞ�ðfnearðxÞffinner;1ðr1Þgð3Þ��

þ½1�finner;1ðr1Þ�gð1Þ��gþ½1�fnearðxÞ�ffinner;2ðr2Þgð3Þ��

þ½1�finner;2ðr2Þ�gð2Þ��gÞþffarðrÞgð4Þ��; (8.5)

where gðAÞ�� denotes the metric that lives in zone A (see
Fig. 2 for the numbering system, and recall that we obtain

gð2Þ�� from gð1Þ�� using the transformation given at the begin-
ning of Sec. VA), and

ffarðrÞ :¼ fðr; �=5; �; 1; 2:5Þ;
fnearðxÞ :¼ fðx; 2:2m2 �m1b=m; b� 2:2m; 1; 2:5Þ;

finner;AðrAÞ :¼ fðrA; 0:256rTA; 3:17ðm2b5Þ1=7; 0:2; b=mÞ:
(8.6)

Here, x denotes the near zone (PN harmonic) x coordinate,
� ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffi
b3=m

p
is the Newtonian wavelength of the binary’s

gravitational radiation, and rTA ¼ ðm3
Ab

5=mÞ1=7 is the
‘‘transition radius,’’ obtained by requiring that the leading
orders of the uncontrolled remainders be comparable in the
inner and near zones ½ðm=bÞðrTA=bÞ4 ¼ ðmA=r

T
AÞ3�. For

convenience, we shall refer to the value of a parameter
appearing in a particular transition function by transferring
that transition function’s subscript to the parameter’s name,
e.g., winner;A :¼ 3:17ðm2b5Þ1=7.
With these choices for the parameters, the transition

functions satisfy the hypotheses of the first Frankenstein
theorem, given above. For instance, the nth spatial deriva-
tives of fnear and ffar scale as w�n

near / b�n / v2n and
w�n

far ¼ 1=�n / vn, respectively. Matters are a bit more

complicated for finner;A: It satisfies the hypotheses, since

its spatial derivatives decrease rapidly when v ! 0. This
occurs, because these derivatives involve sech with an
argument that goes to infinity as v ! 0 [since sinner;A /
v�2] and sech is rapidly decreasing at infinity.
We determined the parameters we use for the transition

functions by experimenting with different choices. We
found that the values given in Eq. (8.6) produced the small-
est overall constraint violations along the x axis for our
equal-mass test system (with b ¼ 10m) of all the choices
we tried. Except for the near-to-far zone transition, which
is completely new, these choices are very similar to those in
Paper II. (In fact, despite the way it is written, our fnear
agrees exactly with its analogue from Paper II, the function
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G.) The most important difference is the scaling of the
transition width, winner;A. Both Papers I and II took winner;A

to scale with rTA, so it depends on the system’s mass ratio; in

particular, it goes to zero as mA ! 0. (Note that our finner;A
corresponds to FA in Papers I and II.) We have found that
this choice for winner;A results in large transition-induced

constraint violations near the smaller black hole for un-
equal mass ratios. These constraint violations appear to
increase without bound as the mass of the smaller hole goes
to zero. This is as one would expect, since the gradient of
the transition function blows up as the transition width
goes to zero, leading to an unbounded increase in con-
straint violations; see [38] and the above discussion of the
Frankenstein theorems.

We can obtain a better-behaved transition function by
freezing the dependence of winner;A on the mass ratio, as we

have done here. (We also have a slightly different coeffi-
cient of rTA than in Paper II, even for an equal-mass system.)

The other differences between our finner;A and Paper II’s FA

are a slightly different coefficient of the transition radius in
r0;inner;A, in addition to a new transition radius that reflects

the higher-order matching that we have performed here.
(The transition radius, rTA, was slightly misleadingly called

the matching radius and referred to as rMA in Paper II.)
The choices for the transition functions’ parameters

determine effective boundaries for the various zones.
These are given in Table III for our equal-mass test binary.
This table displays both the formal boundaries (i.e., the
numerical values of the boundaries given in Sec. II) as well
as the effective boundaries (i.e., the boundaries determined
by our choices of parameters for the transition functions).
What we call the complete effective boundaries are deter-
mined by the entire region in which we use a given metric,
even if the coefficient of the metric (due to the transition
functions) is very small in a portion of the region. What we
refer to as the practical effective boundaries are cut off
when the coefficient of the metric becomes smaller in
magnitude than 10�4 [i.e., much smaller than the magni-
tude of the uncontrolled remainders, which are

�ðb=mÞ�5=2 ’ 3� 10�3].
The effective inner zone boundaries given in Table III

are not quite correct: Since even the practical effective
boundaries of the inner zones are greater than half the
distance between the holes for b ¼ 10m (as they are for

an equal-mass binary, with our choice of transition func-
tions, for b & 165m), one needs to introduce a third tran-
sition function, here called fnear, to effect the transition
between the holes. (See Sec. VI B of Paper I for further
discussion; this function is referred to as G in Papers I and
II.) With our choice of parameters, fnear cuts off the com-
plete effective inner zone when the x coordinate is closer
than 1:1m to (the x coordinate of the point particle asso-
ciated with) the other hole. The practical effective inner
zone is cut off when the x coordinate is 1:93m away from
the other hole.
In ffar, one might be concerned that even the practical

effective transition region extends well outside of the
standard outer boundary of the near zone, viz., r ’ �.
Indeed, it is quite possible that blending in the near zone
metric in a region where its perturbative treatment of
retardation is not warranted will introduce significant
phase errors in the binary’s outgoing wave train.
However, our choice of transition region is justified (at
least for this preliminary construction of transition func-
tions) by the (relatively) large constraint violations of the
far zone metric at the inner edge of our transition region, as
is shown in Fig. 10.
The matching is illustrated in our plots of c 4 for the

merged and constituent metrics, given in Figs. 8 and 9.
(Recall that we use the full extended version of the data in
all plots unless otherwise noted.) It is clear that the tran-
sition functions have introduced undesirable features into
the initial data. Some of this is probably unavoidable at a
separation of b ¼ 10m, which is relatively close for this
construction. However, it seems likely that one could
choose transition functions that would stitch the metrics
together with (at least somewhat) smaller additional fea-
tures, though we have not investigated this here.

TABLE III. The zone boundaries for our equal-mass test bi-
nary (b ¼ 10m).

Zone Formal boundaries Effective boundaries

Complete Practical

Inner rA � 10m rA � 17:4m rA � 11:2m

Near
n rA � 0:5m, rA 	 0:985m, rA 	 1:27m,

r & 15:8m r � 119m r � 109m
Far r * 15:8m r 	 19:9m r 	 30:4m
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FIG. 10 (color online). The constraint violations of the
merged, near zone, and far zone metrics. These are plotted along
the x axis in a region including the portion of the near-to-far
transition region to the right of hole 1. As usual, this is done for
our standard equal-mass test binary.
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C. Constraint violations

The constraint violations provide a more sensitive check
on how well the transition functions are working than the
previous subsection’s plots, in addition to giving a measure
of the accuracy of the entire initial data construction. We
compare the constraint violations (computed using BAM

[95,96]) of the individual metrics to those of the merged
metric for our equal-mass test system along the x axis in
Figs. 10 and 11. (We have checked that the constraint
violations behave roughly similarly—and are not signifi-
cantly worse—in the y and z directions.) For the norm of

the momentum constraint, Mk, we have chosen
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MkMk

p
,

where the index is raised using the (merged) metric. [See,
e.g., Eqs. (14)–(15) in [24] for expressions for the con-
straint equations; we denote the Hamiltonian constraint by
H.] N.B.: While the plots we display do not cover the entire
inner-to-near transition, the constraint violations’ behavior
in the portion we do not show is analogous to the portion
we do show.

All of the constraint violations decrease at least as

rapidly as b�5=2, the expected scaling of the largest uncon-
trolled remainders. (The expected scaling of the uncon-
trolled remainders in the near and far zones is b�3, due to
the additional terms added in Sec. VII, and the constraint
violations decrease more rapidly than this in those re-
gions.) This is illustrated in Figs. 12 and 13 in the inner
and near zones, and in Fig. 14 in the far zone. In fact, one
can see that the decrease of the maximum constraint vio-

lations in a given region is much more rapid than b�5=2 (or
b�3, in the near and far zones), proceeding at b�n, with
n * 5, for everything except the Hamiltonian constraint in
the inner-to-near transition. For the latter, it is only slightly
more rapid (n slightly larger than 5=2). This is, in fact, the
region (outside of the horizons) where the merged metric
has the largest constraint violations. These are likely due in

part to the near zone metric’s large constraint violations
near the horizons, which themselves are primarily attrib-
utable to the coordinate singularity at the horizons. (Recall
that the horizons are approximately :5m away from the
positions of the point particles in our test system—the
effects of the new coordinates and tidal distortion are
small.) However, it is not clear why the momentum con-
straint violations in the inner-to-near transition decrease so
much faster with b than do the Hamiltonian constraint
violations.
The much faster decrease of the constraint violations

with increasing b than naı̈ve scaling arguments would
predict is not unexpected, at least for the far zone metric,
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FIG. 12 (color online). The Hamiltonian constraint around
hole 1 for an equal-mass binary with separations of 10m, 15m,
and 20m. For ease of comparison, we have scaled the x axis by b
so that (the point particle associated with) hole 1 is always at the
same position. In the inset, we zoom in to show how the inner
zone constraint violations vary with b.

-0.01

-0.005

0

0.005

0.01

m
2  H

Merged
Inner zone
Near zone

0 2 4 6 8 10 12 14 16

x/m

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

m
2 (M

k M
k)1/

2

FIG. 11 (color online). The constraint violations of the
merged, inner zone, and near zone metrics. These are plotted
along the x axis around hole 1 for our standard equal-mass test
system.
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FIG. 13 (color online). The norm of the momentum constraint
around hole 1 for an equal-mass binary with separations of 10m,
15m, and 20m. For ease of comparison, we have scaled the x axis
by b so that (the point particle associated with) hole 1 is always
at the same position.
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though the reasonably simple arguments we have tried
cannot quite reproduce the scaling we observe, just pre-
dicting a decrease that is faster than the naı̈ve prediction. In
the far zone metric, all the uncontrolled remainders come
with a factor of m=r, and since the inner boundary of the

far zone scales as b3=2 [see the discussion in Sec. II and
around Eq. (8.6)], this leads to a leading-order scaling of

b�9=2 in the constraint violations, coming from two spatial
derivatives acting (via retarded time dependence) on the v4

part of uncontrolled remainders of the form ðm=rÞv4. The
observed scaling is b�n, with n * 6:5. It is possible that at
least some of this faster decrease than the naı̈ve prediction
is due to the addition of all of the higher-order terms
(discussed in Sec. VII).

For a separation of 10m, the relatively large constraint
violations of the merged initial data compared to those of
the individual metrics’ initial data are an indication that
this separation is close to the minimum for which the
hypotheses underlying the data’s construction are valid.
For instance, as seen above, for this separation (and an
equal-mass binary), the two inner-to-near transition re-
gions overlap between the holes, meaning that much of
the inner-to-near transition is effected by fnear; see
Table III and the surrounding discussion. Moreover, as
we have seen previously, the t ¼ 0 slice of the near zone
metric is not even spacelike at some points outside the

holes’ horizons for b ¼ 10m. However, this does not ad-
versely affect the merged metric with our choices of tran-
sition regions. If one tries closer separations, things are
significantly worse. For instance, for a separation of 6m,
the maximum constraint violations are larger than those for
10m by a factor of 10 or more. Furthermore, the points at
which the near zone metric’s t ¼ 0 time slice is no longer
spacelike can cause problems for such small separations
with our transition functions if one obtains the initial data
by merging the individual metrics’ initial data sets, as we
have done. (However, if one obtains data directly from the
merged 4-metric, then the t ¼ 0 slice remains spacelike
with our transition functions for initial separations at least
as small as 5m [101].)
We compared the constraint violations of the new data

with the old data (for our standard test system) in Fig. 1 and
Table I in Sec. I A, though we deferred a more detailed
discussion until now. First, it is important to realize that the
comparison could be somewhat misleading, since each
paper’s data are in a different coordinate system. (The
data from Paper I are in the same harmonic coordinate
system as this paper’s data in the near zone. However, this
is only true perturbatively in the inner zone, where the
black hole background is in a coordinate system that is not
horizon penetrating.)
Second, while our data’s Hamiltonian constraint viola-

tions are not appreciably better than those of the data from
Paper II, even though we have matched to higher order, this
is not unexpected: Even though we used horizon-
penetrating coordinates for the black hole metrics, we
used standard PN harmonic coordinates for the PN metric;
these coordinates are singular at the horizon. While the
merged metric has no coordinate singularities, the PN
metric’s coordinate singularity increases the constraint
violations in the transition regions, making them compa-
rable to those from Paper II: Paper II’s data use a PNmetric
with no coordinate singularity as well as even further
resummation of the black hole backgrounds than we have
employed here, leading to particularly small constraint
violations.
Finally, if one compares Fig. 1 with, e.g., Figs. 14 and 17

in Paper II, then one notices differences in the behavior of
the data from Papers I and II close to the hole (and inside
the horizon). This is because we have generated the plot
using higher-order finite differencing (fourth order vs sec-
ond order) and a higher resolution (0:002m vs 0:008m) in
computing the constraint violations here than we did in first
computing them in Paper II. It was necessary to do this to
accurately resolve the constraint violations in the inner
zone, since the metric components diverge rapidly there.
Additionally, we have used the version of Paper II’s metric
that is in horizon-penetrating coordinates, while Figs. 14
and 17 in Paper II were generated using the version of the
data without that additional coordinate transformation: The
transformation to horizon-penetrating coordinates introdu-
ces further structure in the data’s constraint violations.
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FIG. 14 (color online). The constraint violations along the x
axis in the portion of the near-to-far transition and far zone
proper that lies to the right of hole 1. These are computed for an
equal-mass binary with separations of 10m, 15m, and 20m. For

ease of comparison, we have scaled the x axis by � ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffi
b3=m

p
,

the Newtonian wavelength of the binary’s gravitational radiation.
In the two insets, we zoom in to better illustrate the behavior of
the Hamiltonian constraint in two situations: In the lower inset,
we consider the b ¼ 20m data in the transition region. In the
upper inset, we consider the b ¼ 10m data in the far zone proper.
(The other data sets also display similar oscillations in their
Hamiltonian constraint in the far zone, though the amplitude of
these oscillations is too small to be visible on the scale we use to
display the oscillations of the b ¼ 10m data’s Hamiltonian
constraint.)
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We can also compare the constraint violations of the full
extended data with those of the Oðv4Þ and Oðv5Þ versions.
We do this in the inner-to-near transition in Fig. 15 for a
binary with a mass ratio of 3:1, and in the near-to-far
transition (along with the far zone proper) for that binary,
as well as an equal-mass binary, in Fig. 16. [We consider a
unequal-mass binary to make the differences between the
Oðv4Þ and Oðv5Þ versions more pronounced: Most of the
Oðv5Þ terms in the far zone metric vanish for an equal-mass
binary.]

In the latter plot (Fig. 16), we do not show the differ-
ences between the Oðv4Þ and full extended versions’
Hamiltonian constraint in the far zone proper, as they agree
up to the level of numerical truncation error. We also do not
show the differences between the Oðv5Þ and full extended
versions of the data. These two sets only differ substan-
tially in the far left-hand portion of the transition region,
and even there the differences are several orders of magni-
tude less than those between the Oðv4Þ and full extended
versions. Additionally, we do not show the behavior of the
constraint violations to the left of the smaller hole (hole 2):
It is qualitatively similar to their behavior to the right of the
larger hole shown here, except that for an equal-mass
binary, the Oðv4Þ version of the data has smaller
Hamiltonian constraint violations than the full extended
version in that region, and for a mass ratio of 3:1, there is
no oscillation in the transition region in the Oðv4Þ data’s
momentum constraint violations.

We compare the constraint violations of the different
inner zone versions in Fig. 17 for binaries with mass ratios
of 1:1 and 3:1. In this plot, we do not include the version of
the inner zone with no fourth-order octupole pieces, as the
inclusion of those terms does not affect the constraint
violations in the inner zone proper at a level above numeri-
cal truncation error. However, these terms do have a noti-

cable effect on the constraint violations in the inner-to-near
transition, as can be seen in Fig. 18, which compares the
Oðv4Þ data with and without the fourth-order octupole
terms in the inner zone. (The fact that including the
fourth-order octupole terms in the inner zone metric makes
a much larger difference in the merged metric than in the
inner zone metric itself in the transition regions suggests
that the additional terms that have the most significant
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FIG. 16 (color online). The constraint violations of the Oðv4Þ
and full extended sets of data. These are computed along the x
axis in the near-to-far transition region (and far zone proper) to
the right of hole 1 for binaries with b ¼ 10m and mass ratios of
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differences in the oscillation of the Hamiltonian constraint in the
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versions of the data in the near-to-far transition for an equal-
mass binary.
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effect are the ones in the coordinate transformation, not
those in the tidal fields.)

It is also interesting to consider how accurate the data
are for different mass ratios. One finds that the constraint
violations do not behave quite as well as might be desired
in the inner-to-near transition regions as one increases the
mass ratio. This is shown in Figs. 19 and 20, which plot the
Hamiltonian constraint and norm of the momentum con-
straint for mass ratios of 1:1, 3:1, 5:1, and 10:1. The worst
behavior is that of the momentum constraint in the tran-
sition region near the more massive hole (hole 1), which
increases as the mass of that hole increases. The
Hamiltonian constraint also increases with mass ratio in
the inner zones around both holes. (This is due to the
inclusion of the full time dependence of the tidal fields—
the inner zone constraint violations decrease with mass
ratio if one only uses the version of the inner zone metric
with perturbative time dependence.) The behavior of the
other constraint violations is nonmonotonic. When one
looks at the near-to-far transition and far zone proper,
one finds much better behavior: The constraint violations
decrease with increasing mass ratio in all of those regions,
except for a slight increase in the momentum constraint
violations in the far zone proper for unequal mass ratios.
This is visible for a mass ratio of 3:1 in Fig. 16; we do not
display the results for higher mass ratios, since they are not
particularly interesting.

This behavior in the transition regions is primarily at-
tributable to the choices we have made for the transition
functions. For instance, it is possible to choose parameters,
so the momentum constraint violations decrease around
the more massive hole as its mass increases. This can be
accomplished by taking winner;A / rTA, as in Papers I and II.
However, with this choice, the decrease in momentum
constraint violations around hole 1 occurs at the cost of

the aforementioned extreme increase in constraint viola-
tions around hole 2 as its mass goes to zero. It should be
possible to combine the two choices for winner;A to obtain

better behavior for unequal mass ratios, but we have
chosen to leave such fine-tuning of transition functions to
future work, contenting ourselves with providing examples
of workable transition functions here.
It is instructive to compare our data’s constraint viola-

tions with the constraint violations that occur in an evolu-
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FIG. 19 (color online). The Hamiltonian constraint along the x
axis for a binary with a separation of 10m and mass ratios of 1:1,
3:1, 5:1, and 10:1 (q :¼ m1=m2). (The more massive hole—hole
1—is on the right, and the less massive hole—hole 2—is on the
left.) For ease of comparison, we have shifted all of the data so
the point midway between the two particles is at x ¼ 0. [In the
figure, xc :¼ ½1=ðqþ 1Þ � 1=2�b.] In the two insets, we zoom in
to show how the inner zone metric’s constraint violations vary
with q, looking at the region around each hole in the inset closest
to it.
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tion of the data. Of course, one expects that the highly
accurate simulations that will provide templates for pa-
rameter estimation with Advanced LIGO and LISA will
have much smaller evolution-induced constraint violations
than current simulations. (And, of course, the constraint
violations do not themselves give an indication of the
data’s astrophysical realism.) However, current simula-
tions’ constraint violations give a convenient scale against
which to compare the constraint violations of our data.

The evolution with which we will compare is the equal-
mass nonspinning run from the set of 10 runs used in [30]
to fix the spin coefficients. It starts at a coordinate separa-
tion of�6:79M, whereM is the binary’s mass. (We useM
since this mass is in general different from our data’s PN
mass, m.) The initial constraint violations in this evolution
have a maximum magnitude (scaled by M2) outside the
apparent horizons of at least �10�5 for the Hamiltonian
constraint and �5� 10�6 for the norm of the momentum
constraint. After a quarter of an orbit, the constraint viola-
tions have already increased to �3� 10�4 for both the
Hamiltonian constraint and the norm of the momentum
constraint. The maximum Hamiltonian constraint viola-
tions (outside the apparent horizons) remain at about this
level for the remainder of the evolution. The momentum
constraint violations relax to smaller values as the evolu-
tion proceeds, with maxima (outside the apparent hori-
zons) rapidly approaching �10�5.

N.B.: Since the apparent horizons were not located
numerically in this evolution, we have simply excluded a
ball of radius M about each hole. It appears that the
apparent horizons of the individual black holes are roughly
balls of coordinate radius M=2 in an equal-mass evolution
with the same computational setup (see Fig. 12 in [95]), but
we exclude more of the spacetime to err on the side of
caution. We are thus only able to quote lower bounds on the
maximum constraint violation outside the apparent
horizons.

For an initial separation of 10m (which is, admittedly,
larger than the comparison run’s initial separation), the
constraint violations of our data are smaller than the
evolution-induced constraint violations in that run every-
where except in the inner-to-near transition, where they are
much larger. See, e.g., the sup norms given in Table I, along
with Figs. 12–14. Our data’s constraint violations decrease
rapidly with increasing separation in the inner-to-near
transition, as is shown in the first two figures, and the
momentum constraint violations become smaller than the
maximal evolution-induced violations discussed above—
indeed, close to the ‘‘equilibrium’’ value of�10�5—for an
initial separation of 20m. However, even for such a (rela-
tively) large initial separation, our data’s maximum
Hamiltonian constraint violations are still �10�3, close
to an order of magnitude larger than the maximum
evolution-induced constraint violations seen in the run
discussed above.

This is not unexpected, since we are only guaranteed that

the constraint violations will decrease as b�5=2, due to the
uncontrolled remainders in our approximations. As we saw
above, the constraint violations actually decrease much
more rapidly than this everywhere except for the
Hamiltonian constraint in the inner-to-near transition,
where the maximum constraint violations (for the three
initial separations we considered) are given roughly by

2b�5=2 (in units ofm�2). Thus, for the maximum constraint
violations to be �3� 10�4, we would need an initial
separation of �34m. (This is not a completely unreason-
able initial separation: It leads to a merger time that is�24
times the longest binary black hole simulation to date, that
of [8]. Moreover, it is still small enough that it is unlikely
that simulations starting from that initial separation and
using conformally flat initial data would be accurate
enough to provide templates for parameter estimation
with Advanced LIGO and LISA, since v4

initial ’ 2� 10�3.)

IX. CONCLUSIONS

A. Summary

We have constructed approximate initial data for a non-
spinning black hole binary in a quasicircular orbit. This
data set has uncontrolled remainders of Oðv5Þ throughout
the time slice (including the far zone), along with remain-
ders of Oðv3½R=b�4; v5½R=b�3Þ in the inner zone. We have
verified the scaling of the uncontrolled remainders with v
by checking that the constraint violations decrease at least
as rapidly as they should when the binary’s orbital separa-
tion is increased. We constructed this data set by asymp-
totically matching perturbed black hole metrics onto a PN
metric and creating transition functions to smoothly inter-
polate between the various metrics. The resulting data do
not assume conformal flatness and contain the binary’s
outgoing radiation in addition to the tidal deformations
on the holes. (We have included the quadrupole deforma-
tions through 1PN along with the lowest-order octupole
deformations.)
The results of the matching are given in Sec. VG and

Eqs. (B1): Sec. VG gives directions for how to put together
the coordinate transformation necessary to place the inner
zone metric in the same coordinate system as the near zone
metric (to the order we have matched). Equations in (B1)
give explicit expressions for the tidal fields we obtained.
[We also found that the inner and near zone mass parame-
ters—i.e.,M andm1—agree through at leastOðv3Þ.] These
tidal fields are then inserted into Detweiler’s perturbed
black hole metric, given in Cook-Scheel coordinates in
Eqs. (3.2) and (3.3), to give the inner zone metric. The
near and far zone metrics are given in Eqs. (4.1) and (6.4),
respectively. We describe our method of computing the
binary’s past phase evolution, needed for the far zone
metric, in Sec. VIA, and the specifics of how we put
together the various zones’ metrics in Appendix D.
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Workable (though surely not optimal) transition functions
that smoothly interpolate between the various zones’ met-
rics are given in Sec. VIII B.

We have also constructed an extension of these data that
is accurate through Oðv5Þ in the near and far zones.
Additionally, this extension includes the additional terms
in the purely temporal component of the near zone metric
that Blanchet, Faye, and Ponsot [61] give, as well as the
matching terms in that component of the far zone metric.
(We sketch the computation of these additional terms in
Appendix C.) We also calculated the fourth-order octupole
pieces of the tidal fields (and the associated piece of the
coordinate transformation)—see Appendix B 2—and in-
cluded them, as well. (The 1PN correction to the electric
octupole tidal field is among the terms we calculated and
add here.) Additionally, we calculated the full time depen-
dence of the tidal fields (for times much less than the
radiation reaction time scale) and included it in the inner
zone metric. This is discussed in Appendices B 1 and D.
See Table II (in Sec. VII) for an overview of the different
versions of the metrics we considered in the paper. N.B.:
While we did not include this in the table, for the sake of
clarity, we considered all the versions of the near zone
metrics with and without background resummation, dis-
playing the resulting differences in the volume elements
[for the Oðv4Þ and full extended versions] in Fig. 5. We
found the full extended (ALL) data set (including back-
ground resummation in the near zone) to be the best,
overall, considering constraint violations as well as the
inclusion of terms that we expect to improve evolutions.

In the process of obtaining these data, we have devel-
oped a method of fixing the matching parameters when
matching a black hole onto a PN background that differs
from that presented by Taylor and Poisson [75] and is more
automatable. We have also obtained the 1PN corrections to
the magnetic quadrupole and electric octupole for a circu-
lar orbit using this method, neither of which Taylor and
Poisson computed.

The accurate description of the tidal deformations on the
holes contained in these data should substantially reduce
the high-frequency component of the initial spurious ra-
diation; the use of a high-order PN metric should do the
same for the low-frequency component. (The combination
of the high-order PN metric, including accurate expres-
sions for the trajectories, and the reduced junk radiation
should also give a much better quasicircular orbit; see, e.g.,
[18,20].) If these data do indeed reduce the initial spurious
radiation, then they can be used to directly quantify the
effects of using the conformally flat initial data currently
employed, as opposed to data that include many more of
the system’s expected physical properties. In addition, the
waveforms generated using these data would be ideal for
the construction of hybrid numerical relativity/post-
Newtonian waveforms (as in [102]): Since the initial data
are directly connected to the PN approximation, the PN

parameters and phasing that are input into the initial data
should accurately describe the subsequent evolution.
Of course, one needs to evolve the data to see whether

these putative improvements are indeed realized. We have
already coded this data set into MAPLE scripts, which were
then converted to C code. Both the scripts and codes are
freely available online at [39] to anyone who is interested
in evolving or otherwise studying the data. Any evolutions
of these data will need to use either excision [33,34] or the
turducken approach [37]: The black hole perturbations are
not valid all the way to the holes’ asymptotically flat ends,
preventing the use of standard puncture methods.
Additionally, since the data only satisfy the constraint
equations approximately, one may want to project them
onto the constraint hypersurface before evolution. To do
this, one would need to use a code such as [50,62,103,104]:
The standard solver for puncture data [105] requires con-
formal flatness. However, evolutions of data that only
approximately solve the constraints are possible; see,
e.g., [60,64].

B. Possibilities for future initial data constructions with
this method

With this work, the asymptotic matching method for
generating initial data for nonspinning black hole binaries
in a quasicircular orbit first essayed by Alvi [46], and
further developed in Papers I and II, has been taken to
the highest order possible without further development in
its constituent parts: Including higher multipole orders in
the inner zone would require the input of nonlinear black
hole perturbation theory (the requisite calculation has now
been carried out by Poisson and Vlasov [66]). Iterating to
higher orders in v would not only require the higher multi-
poles, but also an explicit expression for the Oðv6Þ pieces
of the purely spatial components of the near zone metric.
Determining the higher-order-in-v pieces of the far zone
metric would either require calculation of further contri-
butions from the outer integrals in the DIRE approach [72],
or obtaining the far zone metric via matching, following
the post-Minkowskian approach of [78].
Nevertheless, it might still be possible to improve the

initial data at the (formal) order presented here, as was
done in Paper II for the data in Paper I. For instance, one
could contemplate converting the near zone metric to
Cook-Scheel coordinates (or some other horizon-
penetrating coordinate system) in a neighborhood of each
black hole. This would regain the complete agreement
between background coordinates, with no coordinate sin-
gularity at the horizon in the near zone metric, that was
found to improve the numerical agreement of the metrics in
Paper II. One could also further tweak the transition func-
tions, though this is not likely to produce any dramatic
improvements in constraint violations. However, it is pos-
sible that different choices for the transition functions
could improve the data’s properties in evolutions. For
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instance, in the current near-to-far transition, the near zone
metric is used (blended with the far zone metric) for r �
�, where its perturbative treatment of retardation leads to
large phasing errors. It might thus be preferable to tran-
sition closer to the binary, even at the cost of greater
constraint violations. (Resumming the far zone metric is
a possibility for reducing these constraint violations, as
was discussed briefly in Sec. VIII A.)

The prospects for generalizing this construction to in-
clude eccentricity or spin are good: The ingredients are
nearly all readily available in the literature. Such a general-
ization—particularly the inclusion of spin—would be an
obvious next step if this initial data set indeed significantly
reduces the spurious radiation. Including eccentricity
would be straightforward, though algebraically involved,
and can be carried out with the ingredients we have used
here, perhaps supplemented with the results from [75].
(The evolution of the binary’s phase and separation needed
in the far zone metric can be obtained through 3PN order
using the results of [106].)

However, it would only be possible to obtain the gen-
eralization of these data for a spinning binary to Oðv2Þ,
formally, while still including all the formal quadrupole
pieces in the inner zone. This is true even though the
generalization of Blanchet, Faye, and Ponsot’s metric to
include spin (and spin-orbit coupling) is available [107],10

as are the expressions for the source multipoles necessary
to obtain the matching far zone metric [109]. (The binary’s
evolution under radiation reaction is also known through
2.5PN [110].) The bottleneck is the available tidally per-
turbed Kerr metric [111], which only includes the quadru-
pole perturbations. We have seen that knowledge of the
octupole perturbations is necessary to carry out the match-
ing of all the formal quadrupole pieces atOðv4Þ [which one
would need to do to obtain data that are formally valid
through Oðv3Þ]. However, one could use the same philoso-
phy we did when computing our extension and add the
higher-order terms in the near and far zones without com-
puting the matching inner zone terms.
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APPENDIX A: COMPARING COOK-SCHEEL AND
PN HARMONIC COORDINATES

In the quasi-Cartesian form of Cook-Scheel coordinates
[67], the Schwarzschild metric is

gCS00 ¼ �R�M

RþM
; gCS0k ¼ 4M2

ðRþMÞ2
Xk

R
;

gCSkl ¼
�
1þM

R

�
2
�kl þM2

R2

R�M

RþM

�
1þ 4MR

ðRþMÞ2
�
XkXl

R2
:

(A1)

[The transformation from Schwarzschild to Cook-Scheel
coordinates is given in Eq. (3.1).] For comparison, the
Schwarzschild metric in PN harmonic coordinates is

ghar00 ¼ �R�M

RþM
;

gharkl ¼
�
1þM

R

�
2
�
�kl � XkXl

R2

�
þ RþM

R�M

XkXl

R2
;

(A2)

where ghar0k ¼ 0. (One obtains PN harmonic coordinates

from Schwarzschild coordinates by R ¼ P �M, where
P is the Schwarzschild radial coordinate. This is just the
spatial part of the Schwarzschild-to-Cook-Scheel transfor-
mation.) Obviously, these coordinates have preserved the
coordinate singularity of the Schwarzschild metric in
Schwarzschild coordinates.
Note that the purely temporal component of the Cook-

Scheel version has the same form as in PN harmonic
coordinates, but all of the other components are different.
In particular, the Cook-Scheel version has nonzero spatio-
temporal components as well as a slightly more involved
nondiagonal piece of the spatial components. Explicitly,
the differences between the PN harmonic and Cook-Scheel
versions of the Schwarzschild metric components are

gCS00 � ghar00 ¼ 0; gCS0k � ghar0k ¼ 4M2

ðRþMÞ2
Xk

R
;

gCSkl � gharkl ¼ � 16M4

ðR�MÞðRþMÞ3
XkXl

R2
:

(A3)

(Of course, this must be interpreted purely algebraically,
since we are subtracting components in different coordi-
nate systems.) The difference of the purely spatial compo-
nents scales as Oð½M=R�4Þ as M=R ! 0, which is clearly
higher order in the near zone. However, the difference of
the spatiotemporal components is Oð½M=R�2Þ, which is of
the same order as the terms we do keep in the spatial
metric. And, indeed, the first term in this expansion appears
in our coordinate transformation—see Sec. VG.

10Errata for the potentials and equations of motion in [107] are
given in footnotes 6 and 7 of [108], respectively.
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APPENDIX B: TIDAL FIELDS

1. Comparison with Taylor and Poisson’s results

To facilitate the comparison of our expressions for the
tidal fields with those obtained by Taylor and Poisson [75],

we collect the results of our matching here. These include
the results of the fourth-order octupole matching from the
next subsection and are all put together using Eqs. (5.3) to
give explicit expressions for the tidal fields about hole 1:

EklðtÞ ¼ m2

b3

��
1� 1

2

m2

b

�
½�kl � 3x̂kx̂l� þ 1
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BklpðtÞ ¼ 9
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Here, for the purposes of comparison with Taylor and
Poisson’s results, we have included the time dependent
pieces we know in the quadrupole fields (the time depen-
dence falls into the uncontrolled remainders in the octupole
fields). These are ordinarily contained in _Ekl and

_Bkl, since
we usually treat them as independent tidal fields.

Taylor and Poisson give explicit expressions for the
quadrupole tidal fields for a binary in a circular orbit in
their Eqs. (1.10)–(1.14) [and with alternate notation in
Eqs. (7.25)–(7.29)]. The parts of the quadrupole fields
that Taylor and Poisson and we have both computed agree:
These consist of the electric quadrupole (including its 1PN
corrections), the time derivative of the electric quadrupole
with no corrections, and the magnetic quadrupole with no
corrections, all evaluated at t ¼ 0. In fact, we can recover
all of Taylor and Poisson’s expressions for the tidal fields,
including the full time dependence, if we evaluate our
expressions for the tidal fields at t ¼ 0 and then make the
substitutions x̂k ! x̂k cos!tþ ŷk sin!t and ŷk !
�x̂k sin!tþ ŷk cos!t. (This is, of course, only accurate
for times much less than the radiation reaction time scale.)
Thus, even though we are not given the full time depen-
dence directly from the matching, we can obtain it from
our results, since they are true for any point in the orbit.

While we have computed certain higher-order contribu-
tions to the tidal fields that Taylor and Poisson did not, we
cannot improve upon the formal accuracy of their 1PN
result for the tidal heating: The 2PN correction to the
expression for the tidal heating involves the unknown
2PN correction to the electric quadrupole.

We can also check that the lowest-order pieces of all the
tidal fields we found are the expected Newtonian ones: The
Newtonian pieces of the tidal fields can be computed
independently using Eqs. (5.45), (5.50), and (5.56) in
[89], along with the obvious generalization of that refer-
ence’s Eqs. (5.45) and (5.50) for the magnetic octupole,
viz., BNewt

klp ¼ �ð3=8Þ�suðk@lpÞs�u, where �k is given by

Eq. (5.56b) of [89]. (To reproduce our results exactly, one
needs to evaluate all of these expressions for the

Newtonian parts of the tidal fields at r1 ¼ 0. Also, since
these expressions for the Newtonian parts of the tidal fields
are valid in the rest frame of hole 1, we need to use the
relative velocity of the holes in calculating �k.) Our ex-
pression for the 1PN correction to the magnetic quadrupole
can be checked in the extreme mass-ratio limit against that
computed by Poisson in [112]: This result is given in an
appropriate form for comparison in an unnumbered equa-
tion in Sec. VII E of Taylor and Poisson [75] and agrees
with our computation.

2. 1PN corrections to the fourth-order octupole fields

Even though we cannot obtain all the inner zone octu-
pole pieces at fourth and fifth orders without including the
hexadecapole fields (since these will give octupole contri-
butions to the nonpolynomial part at these orders), it is
possible to match only the polynomial parts, and, in doing
so, to read off the 1PN corrections to the octupole tidal
fields. As an illustration, we shall read off the 1PN correc-
tion to the electric octupole (along with the lowest-order
piece of the time derivative of the magnetic quadrupole) by
matching the octupole parts of the polynomial pieces at
fourth order.
Except for the added algebraic complication of keeping

higher-order multipole terms, this calculation proceeds
precisely analogously to the fourth-order calculation in-
volving the quadrupole-and-lower multipoles of the poly-
nomial part in Sec. V F. The only subtlety that we should
mention is one that was already present in our original
fourth-order calculation. However, it was not a potential
source of confusion there, because we were computing
both the polynomial and nonpolynomial parts at once.
Now that we want to compute the polynomial part by itself,
we need to bear in mind that two nonpolynomial pieces can
produce a polynomial piece when multiplied together (e.g.,
~r is a nonpolynomial piece, but ~r2 is a polynomial piece).
Therefore, contributions to the near zone metric involving

terms such as nðk1 n
lÞ
12=S

2 will contain polynomial pieces,
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since nk1 contains a factor of 1=~r, and 1=S2 contributes a factor of ~r. The final results are

ð _�EklÞ2 ¼ 0; ð �EklpÞ2 ¼ 9½3�ðklx̂pÞ � 5x̂kx̂lx̂p� � 3
m

m2

½x̂kx̂lx̂p � 4ŷðkŷlx̂pÞ þ ẑðkẑlx̂pÞ�; (B2a)

ð _�BklÞ1 ¼ �6
m

m2

1

b
ŷðkẑlÞ; ð �BklpÞ1 ¼ 0; (B2b)

with an accompanying polynomial piece of the coordinate transformation of
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Continuing on to fifth order to obtain the 1PN correc-
tions to the magnetic octupole and time derivative of the
electric quadrupole would be algebraically more compli-
cated, but would otherwise proceed as above. At sixth
order, we are not so fortunate. If we tried to carry out
even the quadrupole part of the sixth order polynomial
matching, so as, e.g., to read off the 2PN correction to
the electric quadrupole, we would be stymied by our lack
of knowledge of ðXNP

� Þ4;3: The ~r-times-a-polynomial-in-~x�

pieces of ðXNP
� Þ4;3 (which we expect to be present, as there

have been such terms at all lower multipole orders) will
contribute to ðhP��Þ6 via the bð1=RÞ4 term.

APPENDIX C: EXTENDED FAR ZONE METRIC

As discussed in Sec. VII, we were not able to use all of
the PN near zone metric provided by Blanchet, Faye, and
Ponsot [61] in our matching, but chose to include the
higher-order terms [viz., the Oðv6Þ and Oðv7Þ terms in
g00 and the Oðv6Þ terms in g0k] in an extension to our
data. Here, we describe how we obtain the matching addi-
tional terms in the far zone, following Pati and Will
[72,73], as in Sec. VI.

The requisite ingredients are nearly all readily available,
and the ones that are not are almost all quite easily calcu-
lable: We need to know how to obtain the metric from the
metric perturbation, and the expression Pati and Will give
for this [in, e.g., Eqs. (4.2) of [72] ] is of sufficiently high
order for our purposes. We also need to know how to obtain
the metric perturbation by differentiating multipoles: Here,
we need to add on to Pati and Will’s result [reproduced in
our Eq. (6.1)] by computing the Oðv6Þ and Oðv7Þ pieces of
h00, which are

1

6
@klps

�
IklpsðuÞ

r

�
� 1

30
@klpsv

�
IklpsvðuÞ

r

�
; (C1)

and the Oðv6Þ pieces of h0k, which are

� 1

6
@lps

� _IklpsðuÞ
r

�
þ 1

2
�lkp@psv

�
J lsvðuÞ

r

�
: (C2)

These were obtained by substituting the expressions for
MQ (in terms of IQ and J Q) from Pati and Will’s
Eqs. (4.7) into their Eq. (2.13) (both from [72]). (Recall
that Q is a multi-index.)
In these expressions, we have omitted the nonlinear

terms arising from the outer integral. While it would be,
in principle, reasonably straightforward to compute them,
following the procedure given by Pati and Will [72], the
calculation would be involved enough that we do not
attempt it here. In fact, if we change our order counting
to the strict Pati-Will order counting [i.e., disregarding
post-Minkowskian powers of G, so all powers of 1=r after
the first are counted as OðvÞ], then we can ignore the
unknown outer integral term that would contribute to g0k
atOðv6Þ if we used the order counting we used in theOðv4Þ
version of the data (detailed in Sec VI): This term comes
from the first term of Eq. (4.4b) in [72],11 and looks,
schematically, like IJ k=r3, which is Oðv7Þ with the strict
Pati-Will order counting. This new order counting does not
cause us to drop any of the outer integral terms that we
were previously keeping, and with it, we have consistent
Oðv5Þ initial data in both the near and far zones.
However, even with the new order counting, there are

still some unknown Oðv7Þ outer integral terms in h00, e.g.,

ones that look like I €Ikln̂hkli=r2 [see Eq. (6.5a) in [72] ]. We
shall simply neglect these terms here: Since we are adding
the Oðv7Þ terms to the initial data without regard to formal
accuracy, it does not make sense to go to the trouble of

11It is not present in the more specific expression Pati and Will
give in Eq. (6.5b) of [72], because they have specialized that
expression—using their ‘‘quick and dirty’’ rule—to look at
contributions to the near zone, where this term does not contrib-
ute until a much higher order than they are considering.
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calculating the Oðv7Þ outer integral terms. This is particu-
larly true since we are not even sure that we have all the
terms we need in the 1PN correction to the mass octupole,
as we shall discuss below.

Finally, we need expressions for all of the source multi-
poles, to the appropriate PN order: We need I to 2PN,
which we can obtain from the expression Blanchet gives
for the system’s binding energy in Eq. (170) of [41] (to
which we add the mass of the point particles to get I). We
also needJ k, Ikl, and Iklp to 1PN. The first of these can be
obtained from the expression Kidder, Will, and Wiseman
give for the system’s angular momentum in Eq. (2.13b) of
[113]. The second is given in Eq. (6.2c). However, the third
has to be obtained from the three-index Epstein-Wagoner

(EW) moment IklpEW, given in, e.g., Eq. (6.6b) in Will and

Wiseman [74]: The result is Iklp ¼ m1x
klp
1 ð1þ v2

1=2�
m2=2bÞ þ ð1 $ 2Þ þOðv4Þ, up to possible terms of the

form m2
1b�

ðklxpÞ1 þ ð1 $ 2Þ. The caveat is due to Will and

Wiseman’s omission of the terms in IklpEW that are pure

traces in the first two indices (since they were just inter-
ested in computing the waveform, which is trace-free).
Fortunately, we do not need to know the 1PN correction
to Iklp to obtain consistent Oðv5Þ data, though it is neces-
sary to obtain the even higher-order terms we include in the
purely temporal component of the far zone metric.

The given expression for Iklp comes from the relation
_Iklp ¼ 3IðklpÞEW , which itself comes from taking a time de-
rivative of the definition of Iklp [given in, e.g., Eq. (4.5b)
in [72] ], using the conservation law @�


�� ¼ 0 to

write @0

�0 ¼ �@k


�k, and integrating the result by parts.

The result is an expression that equals 3IðklpÞEW up to surface

terms [see the definition of IklpEW in Eq. (2.19b) of [74] ]. To
obtain the given result for Iklp, we merely antidifferentiate

3IðklpÞEW with respect to t. We have to worry about missing
terms that are constant in time (up to radiative effects)
when doing this, but it turns out that any such terms are
zero for a circular orbit. This follows from considering
all possible constant-in-time 1PN contributions to Iklp

and finding that they vanish for a circular orbit, because
~A, the Laplace-Runge-Lenz vector, does. (The only other
vectorial Newtonian constant of the motion is the binary’s
angular momentum, and that cannot contribute to Iklp

at 1PN since it is odd under time reversal, while Iklp is
even.)

Finally, we need J klp, Iklps, and Iklpsv to Newtonian
order: These can be obtained from Eq. (D1) in [73].
With all of these ingredients, we can put together the far
zone metric in the same way as we did in Sec. VI. We thus
obtain its various components to the same order as we are
keeping the near zone metric (with the above caveats about
missing terms), viz., with uncontrolled remainders of
Oðv8Þ in the purely temporal component, Oðv7Þ in the
spatiotemporal components, and Oðv6Þ in the purely spa-
tial components.

APPENDIX D: COMPUTATION OF THE METRICS

Here, we detail exactly how the metrics are computed in
the MAPLE scripts that were used (along with BAM) to
compute the constraint violations and create the plots.
The scripts themselves and the resulting C code (based
on MAPLE’s C output) are available online at [39].

1. Inner zone

To compute the inner zone metric around hole 1, we
substitute in the tidal fields given in Eq. (B1) into the
expression for Detweiler’s perturbed Schwarzschild metric
in Cook-Scheel coordinates that we give in Eqs. (3.2) and
(3.3), taking M ¼ m1. We then transform using the coor-
dinate transformation given in Sec. VG. The resulting
metric thus includes terms through Oðv5Þ all components,
though, as discussed in Sec. I C 1, initial data derived from
this metric will only have a formal accuracy of Oðv4Þ. We
also do not perform any expansions after substituting the
tidal fields and performing the coordinate transformation,
so the final, transformed metric also contains various other
higher-order-in-v terms. The inner zone metric around
hole 2 is obtained by the same procedure, along with the
transformations detailed at the beginning of Sec. VA.
We have considered three versions of the inner zone

metric: The first version (contained in O4_NOOCT) comes
directly from the matching performed in Sec. V and only
contains the pieces that we were able to match onto the
near zone metric while including all of the multipolar
contributions at a given order [i.e., up to octupole order
through Oðv3Þ and then only up to quadrupole order
through Oðv5Þ]. The second version (contained in O4)
also incorporates the results of the fourth-order octupole
matching carried out in Appendix B 2—this includes the
1PN correction to the electric octupole, but only the poly-
nomial part of the accompanying coordinate transforma-
tion. The third version (contained in O5 and ALL) adds on
the time dependence of all of the tidal fields (for a circular
orbit), obtained in the manner described in Appendix B 1,
though it still uses the same coordinate transformation as
before. (We use the 1PN expression for ! when substitut-
ing for the unit vectors in obtaining the full time depen-
dence. We leave off the known higher-order corrections to
! here, since the expressions for the tidal fields we ob-
tained by matching came from using the 1PN version of
!.)

We calculate the third version by substituting T _Ekl !
ðT � tÞ _Eklð0Þ and similarly for _Cklp in Eqs. (3.2) and (3.3)

before substituting in the tidal fields (with full time depen-

dence). These substitutions are necessary, because the T _Ekl

and T _Cklp terms in Eqs. (3.2) and (3.3) come from the

expansions of Ekl and Cklp (with full dependence on V,

the ingoing Eddington-Finkelstein coordinate) about V ¼
0. We, however, are only including the full time depen-
dence on t, the near zone time coordinate, in the tidal fields,
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due to our method of obtaining this dependence. These

expressions will thus only contain the t _Ekl and t _Cklp pieces

(when expanded about t ¼ 0), so we make the above
substitutions to retain the linear T dependence given by
the matching while not including the linear t dependence
twice. (We experimented with including the full time
dependence of the tidal fields using T instead of t and
found that the constraint violations increased.)

This method of computing the metric deliberately does
not include the effects of the full time dependence on the
spatial variation of the tidal fields’ contributions to the
metric [due to their dependence on V; see the discussion
following Eq. (3.3)], since these would enter at the same
order as the unknown time derivatives of the tidal fields
(second derivatives of the quadrupole fields, and first de-
rivatives of the octupole fields). Of course, the terms we are
keeping are higher order as well, but since they would enter
with explicit factors of t in the multipole expansion, they
would not be entangled with the explicit appearances of
unknown time derivatives. (This follows because the
Schwarzschild metric is time independent in the coordi-
nates we use.) What we have done is equivalent to repeat-
ing the matching we have performed at each value of (near
zone time) t, up to orbital shrinkage effects, which are
higher order than the terms we are considering here. (We
also have not attempted to include the full time dependence
of the coordinate transformation for the reasons discussed
in Sec. VII.)

2. Near zone

We compute the near zone metric by substituting the
trajectories for the point particles [obtained in the manner
discussed in Sec. VIA] into Blanchet, Faye, and Ponsot’s
metric [given in Eqs. (7.2) of [61] ], including the back-
ground resummation given in Sec. VIII A. Here, there are,
again, three versions of the metric, one giving Oðv4Þ data,
one Oðv5Þ data, and one containing the complete 2.5PN
metric.12 N.B.: In order to perform background resumma-
tion on the purely temporal component of the complete
2.5PN metric, one needs to also subtract the Oð½m1=r1�3Þ
portion of the expansion of the background, viz., 2m3

1=r
3
1,

in Eq. (8.2). All of these versions are constructed by

truncating the metric components to the desired order
before substituting in the trajectories. No expansions are
performed after that substitution, since we do not want to
drop the higher-order terms that we are keeping in the
trajectories (discussed in Sec. VIA) for conformity with
the far zone metric. Because of an oversight, we did not
include the 3PN corrections to the relative-to-COM rela-
tion in the Oðv4Þ version of the near zone metric used to
obtain the plots given in this paper, but have included them
in the version available online at [39].

3. Far zone

The calculation of the far zone metric follows the DIRE
approach, detailed in Sec. VI, differentiating multipole
moments to obtain the metric. We have the same three
versions of the far zone metric as for the near zone metric
and obtain them in the same manner: We expand to the
desired order after performing all of the substitutions ex-
cept for�,!, and b (i.e., the contributions that vary due to
secular radiation reaction effects and are discussed in
Sec. VIA). We also do not include any of the terms due
to derivatives acting on b: These would give nonzero
contributions, due to the separation’s retarded time depen-
dence from orbital shrinkage, but these terms are quite
small, both formally and practically—unlike those due to
the radiation reaction effects in the phase or undifferenti-
ated separation—so we neglect them. [For instance, the
lowest-order contribution due to the nonzero time deriva-
tive of b in the @kl½IklðuÞ=r� contribution to g00 is formally
Oðv9Þ. It is also numerically small: The largest contribu-
tion has a magnitude of �10�7 when evaluated at the
intersection of the x axis and the inner boundary of the
near-to-far transition for our equal-mass test binary, viz.,
x ’ 20m; see Sec. VIII B. For comparison, the contribution
of the uncorrected ðm1=rÞv2

1 þ ð1 $ 2Þ term in that situ-
ation is �10�4.]
The Oðv4Þ version uses a slightly different order count-

ing than theOðv5Þ and full extended versions. As discussed
in Sec. VI, we choose to keep the outer integral terms—
here, these are the terms that look like ðm=rÞ2—in the
Oðv4Þ data due to post-Minkowskian considerations,
even though those terms are Oðv5Þ if one interprets the
Pati-Will order counting strictly. However, as mentioned in
Appendix C, we do not know any of the higher-order outer
integral terms, so we simply drop them [using the strict
Pati-Will order counting to justify doing so in the Oðv5Þ
data].
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[50] W. Tichy, B. Brügmann, M. Campanelli, and P. Diener,

Phys. Rev. D 67, 064008 (2003).
[51] G. Lovelace, Classical Quantum Gravity 26, 114002

(2009).
[52] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Phys.

Rev. D 78, 084017 (2008).
[53] R. A. Matzner, M. F. Huq, and D. Shoemaker, Phys. Rev.

D 59, 024015 (1998).
[54] P. Marronetti and R.A. Matzner, Phys. Rev. Lett. 85, 5500

(2000).
[55] P. Marronetti, M. Huq, P. Laguna, L. Lehner, R. A.

Matzner, and D. Shoemaker, Phys. Rev. D 62, 024017
(2000).

[56] U. Sperhake, Phys. Rev. D 76, 104015 (2007).
[57] M. Hannam, S. Husa, B. Brügmann, J. A. González, and
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