
Black holes and phase-space noncommutativity

Catarina Bastos* and Orfeu Bertolami†
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We use the solutions of the noncommutative Wheeler-DeWitt equation arising from a Kantowski-Sachs

cosmological model to compute thermodynamic properties of the Schwarzschild black hole. We show that

the noncommutativity in the momentum sector introduces a quadratic term in the potential function of the

black hole minisuperspace model. This potential has a local minimum and thus the partition function can

be computed by resorting to a saddle point evaluation in the neighborhood of the minimum. The

thermodynamics of the black hole is derived and the corrections to the usual Hawking temperature and

entropy exhibit a dependence on the momentum noncommutative parameter, �. Moreover, we study the

t ¼ r ¼ 0 singularity in the noncommutative regime and show that in this case the wave function of the

system vanishes in the neighborhood of t ¼ r ¼ 0.
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I. INTRODUCTION

Black holes (BHs) are one of the most puzzling legacies
of general relativity. Their existence implies that space-
time is geodesically incomplete and has at least one sin-
gular point where physical quantities are divergent.
Furthermore, semiclassical considerations reveal, rather
surprisingly, that BHs radiate and have an associated ther-
modynamics. It is therefore natural to expect that a quan-
tum gravity theory might allow for an underlying statistical
mechanical explanation of the thermodynamical properties
of BHs and shed some light on the prevalence and possible
evolution of space-time singularities.

In this respect, given that a quantum gravity theory is not
within grasp, a quantum cosmology approach based on the
minisuperspace approximation might bring some insight
about the prevalence of singularities under quantum con-
ditions. Furthermore, the evidence that noncommutative
features are present in string theory, one of the most dis-
cussed quantum gravity proposals, suggests that some non-
commutativity structure should be equally included into
the quantum cosmology approach. This means that one
should seek for a noncommutative version of the Wheeler-

DeWitt equation. This generalization has been carried out
in the context of the Kantowski-Sachs (KS) cosmological
model for the most general (canonical) noncommutative
algebra, namely, the one that includes noncommutativity of
the momentum variables as well [1]. An additional bonus
of this approach is that the KS model can be used to study
the interior region of a Schwarzschild BH.
Thus, the aim of the present work is to use the phase-

space noncommutative generalization of the KS cosmo-
logical model developed in Ref. [1] to examine the interior
of a Schwarzschild BH. As we shall see this will allow for a
proper treatment of the BH thermodynamics, contrary to
what happens when momentum noncommutativity is ab-
sent, and for an analysis of the impact of the quantum and
noncommutative effects on the issue of singularities.
Let us start our discussion with the description of a

Schwarzschild BH. General relativity allows for solutions
where the causal structure of space-time changes at differ-
ent regions of space-time. A well-known example is the
Schwarzschild BH, described by the following metric,

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2

þ r2ðd�2 þ sin2�d’2Þ; (1)

where r is the radial coordinate. The fact that the first
component of the metric vanishes at r ¼ 2M defines the
horizon of events for the Schwarzschild BH. For r < 2M
the time and radial coordinates are interchanged (r $ t) so
that space-time is described by the metric

ds2 ¼ �
�
2M

t
� 1

��1
dt2 þ

�
2M

t
� 1

�
dr2

þ t2ðd�2 þ sin2�d’2Þ: (2)
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This means that an isotropic metric turns into an aniso-
tropic one, implying that the interior of a Schwarzschild
BH can be described by an anisotropic cosmological
space-time. Indeed, the metric (2) can be mapped to the
metric of the KS cosmological model [2,3], which, in the
Misner parametrization, can be written as

ds2 ¼ �N2dt2 þ e2
ffiffi
3

p
�dr2

þ e�2
ffiffi
3

p
�e�2

ffiffi
3

p
�ðd�2 þ sin2�d’2Þ; (3)

where � and � are scale factors, and N is the lapse
function. The following identification for t < 2M,

N2¼
�
2M

t
�1

��1
; e2

ffiffi
3

p
�¼

�
2M

t
�1

�
;

e�2
ffiffi
3

p
�e�2

ffiffi
3

p
�¼ t2;

(4)

allows for turning the metric Eq. (3) into the metric Eq. (2)
away from the horizon t ¼ r ¼ 2M, the coordinate
singularity.

In what follows we shall assume that, at the quantum
level, the interior of the BH is described by the phase-space
noncommutative extension of the quantum KS cosmologi-
cal model. In this setting, the noncommutative Wheeler-
DeWitt (NCWDW) equation has been recently obtained
and its solutions calculated explicitly [1]. As we shall see,
the introduction of momentum noncommutativity changes
the Wheeler-DeWitt (WDW) equation and has a significant
impact on the functional form of its solutions. The new
WDW equation allows for consistently calculating the
partition function for the Schwarzschild BH through the
Feynman-Hibbs procedure [4] and then on all the relevant
thermodynamic quantities. This, as we will see, is in con-
trast with what happens in the commutative and configu-
ration space noncommutative cases. Moreover, the
solutions of the NCWDW equation provide a new insight
into the problem of the BH singularity. We will show that
these solutions vanish in the neighborhood of t ¼ r ¼ 0,
but that this does not necessarily imply a vanishing proba-
bility of finding the system at the singularity. We conclude
that the canonical phase-space noncommutativity dis-
cussed in this work is insufficient to ensure the avoidance
of singularities, but quite interestingly, our results strongly
suggest that the singularity may be removed through other,
slightly different, forms of momentum noncommutativity.

This paper is organized as follows: We start by recalling
the main features of phase-space noncommutative quan-
tum mechanics (NCQM) and quantum cosmology in
Sec. II. In Sec. III, we use the solutions of the phase-space
NCWDWequation to obtain the relevant thermodynamical
properties of the Schwarzschild BH through the Feynman-
Hibbs procedure. In Sec. IV we discuss the implications of
our results for the BH singularity issue. Section V contains
our conclusions.

II. NONCOMMUTATIVE PHASE-SPACE
QUANTUM COSMOLOGY

It is believed that the theory of quantum gravity will
determine the ultimate structure of space-time at the
Planck scale. It has been pointed out that at this scale
space-time might have a noncommutative structure, as
suggested, for instance by string theory [5,6]. In this
work we use units such that @ ¼ c ¼ k ¼ G ¼ 1, which
imply for the Planck length and mass lP ¼ MP ¼ 1.
At the quantum mechanical level, noncommutativity has

been extensively discussed [7–12]. In this instance, one
considers canonical extensions of the Heisenberg-Weyl
algebra, where time is assumed to be a commutative pa-
rameter and the theory is set in a 2d-dimensional phase-
space of operators with noncommuting position and mo-
mentum variables. The noncommutative algebra reads,

½q̂i; q̂j� ¼ i�ij; ½q̂i; p̂j� ¼ i�ij;

½p̂i; p̂j� ¼ i�ij; i; j ¼ 1; . . . ; d;
(5)

where �ij and �ij are antisymmetric real constant (d� d)

matrices and �ij is the identity matrix. The extended

algebra is related to the standard Heisenberg-Weyl algebra:

½R̂i; R̂j� ¼ 0; ½R̂i; �̂j� ¼ i@�ij;

½�̂i; �̂j� ¼ 0; i; j ¼ 1; . . . ; d;
(6)

by a class of linear (noncanonical) transformations:

q̂ i ¼ q̂iðR̂j; �̂jÞ; p̂i ¼ p̂iðR̂j; �̂jÞ: (7)

In the mathematics literature this mapping is usually re-
ferred to as Darboux (D) map [11].
A phase-space noncommutative extension of a quantum

cosmology was studied in Ref. [1]. The presence of at least
two scale factors is necessary to consider such an extension
and the KS cosmological model, based on the metric
Eq. (3), is a most natural candidate. In this case, we impose
the following (noncommutative) classical Poisson algebra
on the scale factors �,� and their conjugate momenta P�,

P�:

f�; P�g ¼ 1; f�;P�g ¼ 1;

f�; �g ¼ �; fP�; P�g ¼ �:
(8)

The remaining brackets vanish.
Following the ADM procedure and taking �, � as

configuration variables, one can derive the Hamiltonian
constraint for this system,

H ¼ NH ¼ Ne
ffiffi
3

p
�þ2

ffiffi
3

p
�

�
�P2

�

24
þ P2

�

24
� 2e�2

ffiffi
3

p
�

�
:

(9)

The lapse function for the Hamiltonian problem associated

to metric Eq. (3), N, is chosen as N ¼ 24e�
ffiffi
3

p
��2

ffiffi
3

p
� [1].
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With this choice, the classical equations of motion simplify
drastically. For the algebra (8), these read

_� ¼ �2P�; (10a)

_P� ¼ 2�P� � 96
ffiffiffi
3

p
e�2

ffiffi
3

p
�; (10b)

_� ¼ 2P� � 96
ffiffiffi
3

p
�e�2

ffiffi
3

p
�; (10c)

_P� ¼ 2�P�: (10d)

An analytical solution of this system is beyond reach, given
the entanglement among the four variables. However, a
numerical solution can be obtained and used to provide
predictions for several relevant physical quantities [1].
Despite the difficulty to obtain analytic solutions one no-
tices that Eqs. (10a) and (10d) yield a constant of motion:

_P� ¼ ��ð�2P�Þ ¼ �� _� ) P� þ �� ¼ C; (11)

which will play an important role in solving the phase-
space NCWDW equation.

The canonical quantization of the classical Hamiltonian
constraint, H � 0, based on the ordinary Heisenberg-
Weyl algebra, yields the commutative WDW equation for
the wave function of the Universe. For the simplest factor
ordering of operators this equation reads

½�P̂2
� þ P̂2

� � 48e�2
ffiffi
3

p
�̂�c ð�; �Þ ¼ 0; (12)

where P̂� ¼ �i @
@� , P̂� ¼ �i @

@� are the fundamental mo-

mentum operators conjugate to �̂ ¼ � and �̂ ¼ �, re-
spectively. Here, on the other hand, we shall perform the
quantization of the classical algebra (8). We thus obtain the
following noncommutative Heisenberg-Weyl algebra:

½�̂; P̂�� ¼ i; ½�̂; P̂�� ¼ i;

½�̂; �̂� ¼ i�; ½P̂�; P̂�� ¼ i�:
(13)

The remaining commutators vanish.
The simplest way to implement algebra (13) in this

context is through a suitable D map (i.e. a nonunitary linear
transformation mapping the noncommutative algebra into
the standard Heisenberg-Weyl algebra) [1]:

�̂ ¼ ��̂c � �

2�
P̂�c

; �̂ ¼ ��̂c þ �

2�
P̂�c

;

P̂� ¼ �P̂�c
þ �

2�
�̂c; P̂� ¼ �P̂�c

� �

2�
�̂c;

(14)

where from now on the index c denotes commutative

variables, i.e. variables for which ½�̂c; �̂c� ¼ ½P̂�c
; P̂�c

� ¼
0 and ½�̂c; P̂�c

� ¼ ½�̂c; P̂�c
� ¼ i. The transformation

Eqs. (14) can be inverted, provided

� � �� < 1: (15)

The dimensionless constants � and � are related by [1]

ð��Þ2 � ��þ �

4
¼ 0 , �� ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p
2

: (16)

The transformation Eqs. (14) provide a representation of
the operators (13) as self-adjoint operators acting on the
Hilbert space L2ðR2Þ. In this representation the WDW
equation (12) is deformed into a modified second order
partial differential equation, which exhibits an explicit
dependence on the noncommutative parameters:�
�
�
�i�

@

@�c

þ �

2�
�c

�
2 þ

�
�i�

@

@�c

� �

2�
�c

�
2

� 48 exp

�
�2

ffiffiffi
3

p �
��c þ i

�

2�

@

@�c

���
c ð�c; �cÞ ¼ 0:

(17)

From Eq. (11) we define a new constant operator Â ¼
Ĉffiffiffiffiffiffiffi
1��

p , from which follows that

�P̂�c
þ �

2�
�̂c ¼ Â: (18)

This new operator commutes with the noncommutative
Hamiltonian of Eq. (17). Hence we may look for solutions

of Eq. (17) that are simultaneous eigenstates of Â. A

generic eigenstate of Â with eigenvalue a 2 R, satisfies�
�i�

@

@�c

þ �

2�
�c

�
c að�c; �cÞ ¼ ac að�c; �cÞ; (19)

which yields [1]

c að�c; �cÞ ¼ <að�cÞ exp
�
i

�

�
a� �

2�
�c

�
�c

�
: (20)

Substituting this solution into Eq. (17) implies that
�aðzÞ � <að�cðzÞÞ satisfies

�00
aðzÞ þ ð�z� aÞ2�aðzÞ

� 48 exp

�
�2

ffiffiffi
3

p
zþ

ffiffiffi
3

p
�

��
a

�
�aðzÞ ¼ 0; (21)

where we have introduced the new variable

z ¼ �c

�
! d

dz
¼ �

d

d�c

: (22)

This is a second order ordinary differential equation that
can be solved numerically. The equation itself depends on
the eigenvalue a and on the noncommutative parameters �
and �.
As shall be seen, Eq. (21), can be used to obtain the

temperature and the entropy of the Schwarzschild BH.

III. THERMODYNAMICS OF PHASE-SPACE
NONCOMMUTATIVE BLACK HOLE

We employ now the NCWDW equation to study the
quantum behavior of the interior of the Scharwzschild
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BH. Our aim is to obtain its temperature and entropy for
the phase-space noncommutative extension. In order to get
these quantities we compute the partition function through
the Feynman-Hibbs procedure [13]. This method is based
on the minisuperspace potential function, which can be
determined from Eq. (21):

VðzÞ ¼ 48 exp

�
�2

ffiffiffi
3

p
zþ

ffiffiffi
3

p
�

��
a

�
� ð�z� aÞ2: (23)

For convenience, let us introduce a new variable,

x ¼ z� �

2��
a: (24)

Thus, the potential function becomes

VðxÞ ¼ 48 expð�2
ffiffiffi
3

p
xÞ � ð�x� cÞ2; (25)

where c ¼ P�ð0Þ þ ��ð0Þ is a constant from the classical

constraint. This potential function, which is depicted in
Fig. 1(b), exhibits a local minimum, x0, and a local
maximum.

In Fig. 1 we present the potential function for the non-
commutative case, � � 0 and � ¼ 0, and the noncommu-
tative case, where � ¼ 1:5. The case with
noncommutativity only in the configuration variables (i.e.
� ¼ 0, � � 0) [14] is thus qualitatively similar to the
commutative one, i.e. it has no local minimum. As can
be seen in Eq. (23), the noncommutative parameter �
appears in the argument of the exponential. Thus, unless
noncommutativity in the momentum sector is present one
does not have a local minimum of the potential for finite x.
The values of � used to plot the potential are fairly typical
and the qualitative behavior of the potential function is
identical for other values. The constant c is obtained using
P�ð0Þ ¼ 0:01. The wave function, solution of the reduced

NCWDW Eq. (21), is well defined for the chosen values
[1].

Notice that the minimum of this potential is semiclassi-
cally stable. Following Ref. [15], the probability of decay
is given by e�SE where SE is the Euclideanized action for
the bounce, i.e. for the motion of a particle travelling from
x0 ¼ xð	0Þ (the position where the potential attains its local
minimum) to x1 ¼ xð	1Þ (the position where it attains
Vðx1Þ ¼ 0 after its local maximum) and arriving there
with zero velocity. After lifting the potential so that
Vðx0Þ ¼ 0 (which does not affect the probability of decay)

one finds that SE ¼ R
x1
x0

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðxÞp

dx [15]. Since during the

relevant part of the motion the potential is essentially given
by the second term in Eq. (25), one can use values of Fig. 1,
which are fairly typical, to obtain SE ’ 9:5.
In order to compute the partition function using the

Feynman-Hibbs procedure one resorts to the eigenvalue
problem of the harmonic oscillator. Thus we expand the
exponential term in the potential Eq. (25) to second order
in powers of the x� x0 variable. The minimum x0 is
obtained by solving the following equation:

dV

dx

��������x0

¼ �96
ffiffiffi
3

p
expð�2

ffiffiffi
3

p
x0Þ � 2�ð�x0 � cÞ ¼ 0:

(26)

The minimum is thus defined by the relation

expð�2
ffiffiffi
3

p
x0Þ ¼ 
D� 
2ffiffiffi

3
p x0; (27)

where 
 ¼ �=4
ffiffiffi
3

p
and D ¼ c=12. Moreover, one should

impose that the second derivative of the potential function
is positive in order to obtain the following condition to the
minimum,

6 expð�2
ffiffiffi
3

p
x0Þ � 
2 > 0 , x0 <� 1ffiffiffi

3
p ln

�

ffiffiffi
6

p
�
: (28)

We then get for the potential function VðxÞ to second order

0 2 4 6 8

5

10

15

20

2 4 6 8

20

10

10

20

FIG. 1. Potential function for some typical values of � and c: (a) the potential function for the noncommutative case, � � 0 and
� ¼ 0; and (b) the potential function with � � 0.
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in x� x0:

VðxÞ ¼ 48ð6e�2
ffiffi
3

p
x0 � 
2Þðx� x0Þ2

þ 48e�2
ffiffi
3

p
x0 � ð�x0 � cÞ2: (29)

So, one can rewrite the ordinary differential equation re-
sulting from the NCWDW equation as

� 1

2

d2�

dx2
þ 24ð6e�2

ffiffi
3

p
x0 � 
2Þðx� x0Þ2�

þ
�
24e�2

ffiffi
3

p
x0 � 1

2
ð�x0 � cÞ2

�
� ¼ 0: (30)

Comparing Eq. (30) with the Schrödinger equation of
the harmonic oscillator we can clearly identify the poten-
tial and the energy of the system. Thus, the noncommuta-
tive potential required to compute the partition function is

VNCðyÞ ¼ 24ð6e�2
ffiffi
3

p
x0 � 
2Þy2; (31)

where we have defined a new variable y ¼ x� x0. The
Feynman-Hibbs procedure allows for introducing quantum
corrections to the partition function through the potential,
i.e. one can admit a quantum correction for the potential
given by [4],

�BH

24
V00
NCðyÞ ¼ 2�BHð6e�2

ffiffi
3

p
x0 � 
2Þ; (32)

where �BH is the inverse of the BH temperature. The
noncommutative potential with the corresponding quan-
tum corrections then reads

UNCðyÞ ¼ 24ð6e�2
ffiffi
3

p
x0 � 
2Þ

�
y2 þ �BH

12

�
: (33)

Finally, the noncommutative partition function is given
by

ZNC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

48ð6e�2
ffiffi
3

p
x0 � 
2Þ

s
1

�BH

� exp½�2�2
BHð6e�2

ffiffi
3

p
x0 � 
2Þ�: (34)

We are now in condition to compute the thermodynamic
quantities of the Schwarzschild BH. Starting from the
noncommutative internal energy of the BH, �ENC ¼
� @

@�BH
lnZNC,

�E NC ¼ 1

�BH

þ 4ð6e�2
ffiffi
3

p
x0 � 
2Þ�BH; (35)

the equality �ENC ¼ M, allows for obtaining an expression
for the BH temperature:

�BH ¼ M

8ð6e�2
ffiffi
3

p
x0 � 
2Þ

�
�
1�

�
1� 16

M2
ð6e�2

ffiffi
3

p
x0 � 
2Þ

�
1=2

�
: (36)

Inverting this quantity, one obtains the BH temperature.

Dropping the term proportional to M�2, as presumably
M � 1, and considering the positive root, we obtain

TBH ¼ 4

M
ð6e�2

ffiffi
3

p
x0 � 
2Þ: (37)

Notice that this quantity is positive [cf. Eq. (28)]. To
compare this result with the Hawking temperature TBH ¼
1

8�M , we should be cautious as the limit � ! 0 is ill

defined. Indeed, our whole construction rests on the prem-
ise that we have a stable local minimum of the potential.
However, this is only true provided �> 0. We remark that
our expression displays the same mass dependence as the
Hawking temperature, and we write it as

TBH ¼ bð
Þ
M

; (38)

where b is a 
 dependent constant:

bð
Þ ¼ 4ð6e�2
ffiffi
3

p
x0 � 
2Þ: (39)

Moreover, a simple numerical calculation reveals that we
may recover the Hawking temperature even in the presence
of the momentum noncommutativity for a specific value of
�. Indeed, equating Eq. (37) with the Hawking temperature
and using the stationarity condition Eq. (27), we obtain for
c ¼ 12D ¼ 5:68:

x0 ¼ 1:8478; � ¼ 0:025: (40)

And thus, since � cannot be exactly equal to zero, we can
regard �0 ¼ 0:025 as a reference value which yields the
Hawking temperature, and as � increases we get a gradual
noncommutative deformation of the Hawking temperature.
The entropy is calculated using the definition, SNC ¼

lnZNC þ �BH
�ENC. Thus, the entropy for the phase-space

noncommutative BH is given by

SBH ¼ ln
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12bð
Þp þ M2

2bð
Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4bð
Þ

M2

s �

� M2

8bð
Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4bð
Þ

M2

s �
2

� ln
M

2bð
Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4bð
Þ

M2

s �
: (41)

Neglecting as before terms proportional to M�2, as M �
1, we finally obtain

SBH ’ M2

2bð
Þ þ ln

ffiffiffiffiffiffiffiffiffi
bð
Þp

M
ffiffiffi
3

p : (42)

For the reference value � ¼ �0, we have bð
0Þ ¼ 1
8� . We

then recover the Hawking entropy, but also some ‘‘stringy’’
corrections

SBH ¼ 4�M2 þ ln

ffiffiffiffiffiffiffi
2�

3

s
� lnð8�MÞ: (43)
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In summary, as in the case of the temperature, we obtain
that the noncommutative entropy of the BH is the Hawking
entropy plus additional contributions and some noncom-
mutative corrections.

As can be clearly seen, the relevant thermodynamic
quantities are corrections of the Schwarzschild BH ones
that depend explicitly on the momentum noncommutative
parameter � through bð
Þ. If � ¼ �0, the Hawking tem-
perature and entropy for the black hole are recovered. On
the contrary, by inspection, if � ¼ 0, the potential Eq. (23)
reduces to a monotonous exponential term with no local
minima. It is only if � � 0 that the potential function
acquires a quadratic term. This in turn ensures that the
potential function has a local minimum and a local maxi-
mum. It is around the minimum of the potential that the
calculations of quantum corrections can be carried out.
Thus, the Feynman-Hibbs procedure is meaningful only
in the presence of the momentum noncommutativity.

IV. SINGULARITY

In this section, we use Eq. (17) to extract some infor-
mation about the essential r ¼ t ¼ 0 singularity. It should
be noticed that in order to employ the KSmetric to describe
the interior of the Schwarzschild black hole the identifica-
tion (4) has to be imposed. Thus, we can see that for t ¼ 0,
� ! þ1 and � ! þ1. We are thus interested in study-
ing the limit,

lim
�c;�c!þ1

c ð�c; �cÞ; (44)

where c ð�c; �cÞ is a generic solution of Eq. (17). We seek
for a representation of solutions of Eq. (17) in terms of the

eigenstates of Â Eq. (18):

c ð�c; �cÞ ¼
Z

daCðaÞc að�c; �cÞ; (45)

where CðaÞ 2 C and c að�c; �cÞ is of the form

c að�c; �cÞ ¼ �a

�
�c

�

�
exp

�
i

�

�
a� �

2�
�c

�
�c

�
(46)

and �aðzÞ, z ¼ �c=� satisfies Eq. (21). In the limit � !
1, if we keep only the dominant terms, Eq. (21) reads

�00
aðzÞ þ ð�z� aÞ2�aðzÞ ¼ 0: (47)

This equation can be rewritten for � � 0 as�
� @2

@~z2
� �2~z2

�
~�að~zÞ ¼ 0; (48)

where the change of variables has been performed ~z ¼
z� a

� and ~�aðxÞ ¼ �aðxþ a
�Þ. Equation (48) is analogous

to the eigenvalue equation for an inverted harmonic oscil-
lator. This Hamiltonian is self-adjoint in L2ðR2Þ, its spec-
trum is continuous and its zero eigenfunction [the solution
of Eq. (48)] displays the asymptotic form [16] (for � � 0),

~�að~zÞ � 1

~z1=2
exp

�
�i

�

2
~z2
�

(49)

and so, for all a,

lim
z!þ1�aðzÞ ¼ lim

z!þ1
~�a

�
z� a

�

�
¼ 0

) lim
�c;�c!þ1

c að�c; �cÞ ¼ 0: (50)

Therefore, it seems reasonable to expect that, for a suitable,
although fairly general choice of the coefficients CðaÞ

lim
�c;�c!þ1

c ð�c; �cÞ ¼ 0; (51)

which is a necessary condition to provide a quantum
regularization of the classical singularity of the
Schwarzschild BH. However, one should be cautious be-
fore running into the conclusion that the probability of
finding the BH at the singularity is zero. First of all the
calculation of probabilities for general covariant systems is
a subtle issue. In our case, given that the wave function is
oscillatory in �c, it seems natural to fix a �c hypersurface,
corresponding to the introduction of the measure �ð��
�cÞd�d�c in the probability distributions. The probability
Pðr ¼ 0; t ¼ 0Þ of finding the BH at the singularity would
then be given by the expression

Pðr ¼ 0; t ¼ 0Þ ¼ lim
�c;�c!þ1

Z þ1

�c

jc ð�0
c; �cÞj2d�0

c

’ lim
�c!þ1

Z þ1

�c

���������a

�
�0

c

�

���������2

d�0
c (52)

which, unfortunately, is divergent. This follows from the
conclusion (which can be derived from the asymptotic
expression) that the inverted harmonic oscillator displays
non-normalizable eigenstates [16]. Hence, the noncommu-
tativity of the form (13) cannot be regarded as the final
answer for the singularity problem of the Schwarzschild
BH.
However, it is quite interesting to realize that a

Hamiltonian H with the asymptotic form

H ¼ � @2

@x2
þ VðxÞ; VðxÞ � ��2x2þ2� (53)

for some � > 0, displays zero energy eigenstates of the
kind [17]

c ðxÞ � 1

xð1þ�Þ=2 exp

�
�i

�

2þ �
~x2þ�

�
(54)

which are normalizable. One may then speculate that a
suitable perturbation of the noncommutative structure (13)
may lead to a NCWDW equation associated to a potential

of the form VðxÞ � ��2x2ð1þ�Þ for some arbitrarily small
� > 0. The solutions of this new NCWDWequation would
then display zero probability [in the sense of Eq. (52)] at
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the singularity, thus solving this problem for the
Schwarzschild BH [18].

V. CONCLUSIONS

In this work, the NCWDW equation for a KS cosmo-
logical model was used to study the thermodynamic prop-
erties of the Schwarzschild BH and to obtain information
about the structure of the singularity at t ¼ r ¼ 0. Working
out the NCWDW equation we implemented the Feynman-
Hibbs procedure identifying the quadratic part of the min-
isuperspace potential. This allows for obtaining the parti-
tion function and hence the BH thermodynamic quantities.
As we have shown, this is possible for a noncommutative
BH only if noncommutativity in the momentum space is
introduced.

The essential singularity r ¼ t ¼ 0 is studied with the
help of the NCWDWequation. In the limit of t ¼ 0, or �,
� ! þ1, one arrives at the Schrödinger problem of the

inverted harmonic oscillator, whose wave function van-
ishes at the limit�, � ! þ1, but is not square integrable.
Therefore, it is not possible conclude that the singularity
problem is solved by the considered momentum noncom-
mutativity. Nevertheless, we can foresee that a noncanon-
ical form of phase-space noncommutativity may allow for
a square integrable wave function. This possibility will be
analyzed elsewhere [18].
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Zappalà, Phys. Rev. D 72, 025010 (2005).

[8] O. Bertolami, J. G. Rosa, C. Aragão, P. Castorina, and D.
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