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Exact solutions of the Poisson equation are found for multidimensional spaces with topology M3þd ¼
R3 � Td. These solutions describe smooth transitions from Newtonian behavior 1=r3 for distances bigger

than the periods of the tori (the sizes of the extra dimensions) to multidimensional behavior 1=r1þd
3þd in the

small-distance limit. In the case of one extra dimension d ¼ 1, a compact and elegant formula for the

gravitational potential is found. It is shown that corrections to the gravitational constant in Cavendish-type

experiments can be within the measurement accuracy of Newton’s gravitational constant GN . Models with

test masses smeared over some (or all) extra dimensions are proposed. It is shown that in a 10-dimensional

spacetime with three smeared extra dimensions the size of the remaining three extra dimensions can be

enlarged up to submillimeter scales in case of a fundamental Planck scale MPlð10Þ � 1 TeV. In models

with all extra dimensions smeared, the gravitational potential coincides exactly with the Newtonian one.

Nevertheless, the hierarchy problem can be solved in these models.
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I. INTRODUCTION

There are two well-known problems which are related to
each other. These are the discrepancies in gravitational
constant experimental data and the hierarchy problem.
Discrepancies (see e.g. Fig. 2 in the ‘‘CODATA
Recommended Values of the Fundamental Constants:
2006’’) are usually explained by extreme weakness of
gravity. It is very difficult to measure Newton’s gravita-
tional constant GN . Certainly, for this reason the geometry
of an experimental setup can have an effect on the data.
However, it may well be that the discrepancies can also be
explained (at least partly) by the underlying fundamental
theory. Formulas for the effective gravitational constant
following from such a theory can be sensitive to the
geometry of experiments. For example, if the correction
to Newton’s gravitational potential has the form of a
Yukawa potential, then the force due to this potential at a
given minimal separation per unit test-body mass takes a
smallest value for two spheres and the greatest one for two
planes (see e.g. [1]). The hierarchy problem—the huge gap
between the electroweak scale MEW � 103 GeV and the
Planck scale MPlð4Þ ¼ 1:2� 1019 GeV—can be also refor-

mulated in the following manner: why is gravity so weak?
The smallness of GN is the result of the relation GN ¼
M�2

Plð4Þ. A natural explanation was proposed in [2,3]—ac-

tually gravity is strong: GD ¼ M�ð2þdÞ
PlðDÞ �M�ð2þdÞ

EW , but

this happens in a (D ¼ 4þ d)-dimensional spacetime. It
becomes weak when it is ‘‘smeared’’ over large extra
dimensions: GN �GD=Vd where Vd is the volume of the
internal space. To shed light on both of these problems

from a new standpoint we intend to investigate multidi-
mensional gravity in its nonrelativistic limit.

II. MULTIDIMENSIONAL GRAVITATIONAL
POTENTIALS

It is of interest to generalize the well-known Newton’s
gravitational potential ’ðr3Þ ¼ �GNm=r3 (r3¼jr3j is the
length of a radius vector in three-dimensional space) to
multidimensional spaces. Clearly, the result will depend on
the topology of the models under investigation. We con-
sider models where the (D ¼ 3þ d)-dimensional spatial
part has the factorizable geometry of a product manifold
MD¼R3�Td. R3 describes the three-dimensional flat
external (our) space and Td is a torus which corresponds

to a d-dimensional internal space with volume Vd. Let b�
V1=d
d be the characteristic size of the extra dimensions.

Then, Gauss’s flux theorem leads to the following asymp-
totic behavior of the gravitational potential (see e.g. [3]):
’�1=r3 for r3�b and ’� 1=r1þd

3þd for r3þd�b with

r3þd as length of the radius vector in (3þ d)-dimensional
space.
To get the exact expression for theD-dimensional gravi-

tational potential, we start from the Poisson equation:

4D ’D ¼ SDGD�DðrDÞ; (1)

where SD ¼ 2�D=2=�ðD=2Þ is the total solid angle (surface
area of the (D� 1)-dimensional sphere of unit radius),GD
is the gravitational constant in the (D ¼ Dþ 1)-
dimensional spacetime and �DðrDÞ¼m�ðx1Þ�ðx2Þ . . .
�ðxDÞ. In the case of an RD topology, Eq. (1) has the
following solution:

’DðrDÞ ¼ � GDm

ðD� 2ÞrD�2
D

; D � 3: (2)*maxim.eingorn@gmail.com
†ai_zhuk2@rambler.ru
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This is the unique solution to Eq. (1) which satisfies the
boundary condition limrD!þ1’DðrDÞ ¼ 0. The gravita-

tional constant GD in (1) is normalized in such a way
that the strength of gravitational field (acceleration of a
test mass) takes the form: �d’D=drD ¼ �GDm=rD�1

D .
For R3 � Td topologies of the space we impose periodic

boundary conditions in the directions of the extra dimen-
sions: ’Dðr3; �1; �2; . . . ; �i; . . . ; �dÞ ¼ ’Dðr3; �1; �2; . . . ;
�i þ ai; . . . ; �dÞ, i ¼ 1; . . . ; d, where ai denotes the period
in the direction of the extra dimension �i. Then the Poisson
equation has the following solution (cf. also [3,4]):

’Dðr3;�1; . . . ;�dÞ¼�GNm

r3

Xþ1

k1¼�1
. . .

Xþ1

kd¼�1

�exp

�
�2�

�Xd
i¼1

�
ki
ai

�
2
�
1=2

r3

�

�cos

�
2�k1
a1

�1

�
. . .cos

�
2�kd
ad

�d

�
: (3)

To get this result we, first, use the formula �ð�iÞ ¼ 1
ai
�Pþ1

k¼�1 cosð2�kai
�iÞ and, second, impose the following re-

lation between the gravitational constants in four- and
D-dimensional spacetimes:

SD
S3

� GDQ
d
i¼1 ai

¼ GN: (4)

The latter relation provides the correct limit when all ai !
0. In this limit the zero modes ki ¼ 0 give the main con-
tribution and we obtain ’Dðr3; �1; . . . ; �dÞ ! �GNm=r3.
Equation (4) was widely used in large-extra-dimension
approaches to solve the hierarchy problem [2,3]. It is
convenient to rewrite (4) via fundamental Planck scales:

SD
S3

�M2
Plð4Þ ¼ M2þd

PlðDÞ
Yd
i¼1

ai; (5)

where MPlð4Þ ¼ G�1=2
N ¼ 1:2� 1019 GeV and MPlðDÞ 	

G�1=ð2þdÞ
D are the fundamental Planck scales in four and

D spacetime dimensions, respectively.
In the opposite limit when all ai ! þ1 the sums in

Eq. (3) can be replaced by integrals. Using the standard
integrals (e.g. from [5]) and relation (4), we can easily
show that, for example, in the particular cases d ¼ 1, 2 we
get the desired result: ’Dðr3; �1; . . . ; �dÞ !
�GDm=½ðD� 2Þr1þd

3þd
.

III. ONE EXTRA DIMENSION

In the case of one extra dimension d ¼ 1 the series in
Eq. (3) can be summed explicitly—either with the help of
the Abel-Plana formula or we can simply use the tables of
series [5]. As a result, we arrive at the compact and nice
expression:

’4ðr3; �Þ ¼ �GNm

r3

sinhð2�r3a Þ
coshð2�r3a Þ � cosð2��a Þ ; (6)

where r3 2 ½0;þ1Þ and � 2 ½0; a
. It is not difficult to
verify that this formula has the correct asymptotic behavior
for r3 � a and r4 � a. Figure 1 demonstrates the shape of
this potential. The dimensionless variables �1 and �2 are
defined as �1 	 r3=a 2 ½0;þ1Þ and �2 	 �=a 2 ½0; 1
.
With respect to the variable �2, this potential has two
minima at �2 ¼ 0, 1 and one maximum at �2 ¼ 1=2. To
show the form of the minimum at�2 ¼ 0 in more detail we
continued the graph to negative values of �2 2 ½�1; 1
.
The potential (6) is finite for any value of r3 if � � 0, a and
tends to �1 as �1=r24 if simultaneously r3 ! 0 and � !
0, a (see Fig. 2). We would like to mention that in the
particular case � ¼ 0 formula (6) was also found in [6].
With formulas (3) and (6) at hand, we can turn to the

calculation of some elementary physical problems and
compare the obtained results with the known Newtonian
expressions. Some of these calculations can be found in our
preprint [7]. As a good approximation it is usually suffi-
cient to sum in (3) up to the first Kaluza-Klein modes
jkij ¼ 1ði ¼ 1; . . . ; dÞ. Then, the terms with the largest
periods ai give the main contributions. If all test bodies
are on the same brane (�i ¼ 0) we obtain:

’Dðr3; �1 ¼ 0; . . . ; �d ¼ 0Þ 	 ’Dðr3Þ

� �GNm

r3

�
1þ � exp

�
� r3

�

��
; (7)

where � ¼ 2sð1 � s � dÞ, � ¼ a=ð2�Þ and s is the num-
ber of extra dimensions with tori periods ai equal (or
approximately equal) to a ¼ maxai. If a1 ¼ a2 ¼ . . . ¼
ad ¼ a, then s ¼ d. Thus, the correction to Newton’s
potential has the form of a Yukawa potential. Test data of
the gravitational inverse-square law (ISL) can now be used
as observational bounds on possible gravity-related
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FIG. 1 (color online). Graph of function ~’ð�1; �2Þ 	
’4ðr3; �Þ=ðGNm=aÞ ¼ � sinhð2��1Þ=½�1ðcoshð2��1Þ �
cosð2��2ÞÞ
.
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Yukawa contributions. The overall diagram of the experi-
mental bounds can be found in [1] (Fig. 5 therein) and we
shall use these data for limitation a for given �.

In this approximation, the gravitational force between
two spheres with masses m1, m2, radii R1, R2 and distance
r3 between the centers of the spheres reads:

F ¼ �GNðeffÞm1m2

r23
; (8)

where

GNðeffÞðr3Þ � GN

�
1þ 9

2
s

�
a

2�R1

�
2
�

a

2�R2

�
2 2�r3

a

� exp

�
� 2�

a
ðr3 � R1 � R2Þ

�

	 GNð1þ �GÞ: (9)

Here, we assumed r3 � R1 þ R2 and R1, R2 � a=2�.

IV. SMEARED EXTRA DIMENSIONS

In what follows, we consider models with asymmetric
extra dimensions (cf. [8]) and topologies

MD ¼ R3 � Td�p � Tp; p � d; (10)

where we suppose that (d� p) tori have the same ‘‘large’’
period a and p tori have ‘‘small’’ equal periods b. In this
case, the fundamental Planck scale relation (5) reads

SD
S3

�M2
Plð4Þ ¼ M2þd

PlðDÞa
d�pbp: (11)

Additionally, we assume that test bodies are uniformly
smeared/spread over the small extra dimensions. This
means that test bodies will have a finite thickness in small
extra dimensions (thick brane approximation). For short,
we shall call such small extra dimensions smeared extra
dimensions. If p ¼ d then all extra dimensions are
smeared.

It is not difficult to show that the gravitational potential
does not feel smeared extra dimensions. We can prove this
statement by three different methods. First, we can directly
solve the D-dimensional Poisson Eq. (1) with periodic
boundary conditions for the extra dimensions
�pþ1; . . . ; �d and a mass density � ¼ ðm=

Qp
i¼1 aiÞ�

�ðr3Þ�ð�pþ1Þ . . .�ð�dÞ. Second, we can average solutions

(3) and (6) over dimensions �1; . . . ; �p and take into ac-

count that
R
a
0 cosð2�k�=aÞd� ¼ 0. In the particular case of

one extra dimension we can also show that

�GNm

ar3
sinh

�
2�r3
a

�Z a

0

�
cosh

�
2�r3
a

�
� cos

�
2��

a

���1
d�

¼ �GNm

r3
: (12)

Finally, it is clear that in the case of test masses smeared
over the extra dimensions, the gravitational field vector
ED ¼ �rD’D does not have components with respect to
these extra dimensions: ED ¼ EDnr3 . Thus, applying the

Gauss’s flux theorem to the Poisson equation, we obtain:
EDðr3Þ ¼ �GNm=r23 ! ’Dðr3Þ ¼ �GNm=r3. Therefore,

all these three approaches show that in the case of p
smeared extra dimensions the wave numbers k1; . . . ; kp
disappear from Eq. (3) and we should perform summation
only with respect to kpþ1; . . . ; kd.

V. EFFECTIVE GRAVITATIONAL CONSTANT

Coming back to the effective gravitational constant (9)
in the case of topology (10) with p smeared extra dimen-
sions, s in Eq. (9) is replaced by (d� p). Now, we want to
evaluate the corrections �G to the Newton’s gravitational
constant and to estimate their possible influence on experi-
mental data. As it follows from Fig. 2 in the CODATA
2006, the most precise values of GN were obtained in the
University Washington and the University Zürich experi-
ments [9,10]. They are GN=10

�11 m3 kg�1 s�2 ¼
6:674215� 0:000092, and 6:674252� 0:000124, respec-
tively. Let us consider two particular examples: the
(D ¼ 5)-dimensional model with d ¼ 1, p ¼ 0 ! � ¼
2 and the (D ¼ 10)-dimensional model with d ¼ 6, p ¼
3 ! � ¼ 6. For these values of �, Fig. 5 in [1] gives the
upper limits for � ¼ a=ð2�Þ correspondingly � �
2� 10�2 cm and � � 1:3� 10�2 cm. To calculate �G,
we take parameters of the Moscow experiment [11]: R1 �
0:087 cm for a platinum ball with mass m1 ¼ 59:25�
10�3 g, R2 � 0:206 cm for a tungsten ball with mass
m2 ¼ 706� 10�3 g and r3 ¼ 0:3773 cm. For both of
these models we obtain �G � 0:0006247 and �G �
0:0000532, respectively. Both of these values are very
close to the measurement accuracy of GN in [9,10]. So, if
the same accuracy can be achieved in the Moscow-type
experiments, then, changing values of R1;2 and r3, we can
reveal extra dimensions or obtain experimental limitations
on the considered models.
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FIG. 2. Section � ¼ 0 of potential (6). Solid line is ~’ð�1; 0Þ ¼
� sinhð2��1Þ=½�1ðcoshð2��1Þ � 1Þ
 which goes to �1=�1

(dotted line) for �1 ! þ1 and to �1=ð��2
1Þ (dashed line) for

�1 ! 0.
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In the Moscow experiment [11], measurements were
carried out for two separations between the balls: r3ð1Þ ¼
0:3773 cm and r3ð2Þ ¼ 0:6473 cm, and it was found that

the experimental ratio of the gravitational forces between
balls for these distances is

½Fðr3ð1ÞÞ=Fðr3ð2ÞÞ
Mosc: exp : ¼ 2:94� 0:045: (13)

The similar ratio for pure Newton’s forces gives
½Fðr3ð1ÞÞ=Fðr3ð2ÞÞ
Newton ¼ r23ð2Þ=r

2
3ð1Þ � 2:943321 (this is

an idealized value because we did not take into account
uncertainties in measurements of the separation distances
of the balls). In the case of our force (8) the ratio reads
½Fðr3ð1ÞÞ=Fðr3ð2ÞÞ
our ¼ ½ð1þ �Gðr3ð1ÞÞÞ=ð1þ �Gðr3ð2ÞÞÞ
�
½r23ð2Þ=r23ð1Þ
. If we apply this formula to our models with

d ¼ 1, p ¼ 0 and d ¼ 6, p ¼ 3 we obtain for the ratio the
values 2.945159 and 2.943477, respectively. Both of these
values are within the accuracy of the measurements in (13).
This accuracy is too rough to reveal the extra dimensions.
To detect the extra dimensions, it is necessary to increase
the accuracy.

VI. MODEL: D ¼ 10 WITH d ¼ 6, p ¼ 3

Let us consider in more detail the (D ¼ 10)-
dimensional model with three smeared dimensions. Here,
the structure of the spacial dimensions is very symmetric:
three (our) external dimensions, three large extra dimen-
sions with periods a and three small smeared extra dimen-
sions with periods b. For b we put the limitation:
b�bmax¼10�17 cm which is usually taken for thick brane
approximation. As we mentioned above, in the case of � ¼
6, for a we should take a limitation a�amax¼
8:2�10�2 cm. To solve the hierarchy problem, the multi-
dimensional Planck scale is usually considered from 1 TeV
up to approximately 130 TeV (see e.g. [8,12]). To make
some estimates, we take Mmin¼1TeV&MPlð10Þ&
Mmax¼50TeV. Thus, as it follows from Eq. (11), the
allowed values of a and b should satisfy inequalities:

S9
S3

M2
Plð4Þ

M8
max

� a3b3 � S9
S3

M2
Plð4Þ

M8
min

: (14)

Counting all limitations, we find the region allowed for a
and b (shadow area in Fig. 3). In this trapezium, the upper
horizontal and right vertical lines are the decimal loga-
rithms of amax and bmax, respectively. The right and left
inclined lines correspond to MPlð10Þ ¼1TeV and MPlð10Þ ¼
50 TeV, respectively. To illustrate this picture, we consider
two points, A and B, on the lineMPlð10Þ ¼ 1 TeV. Here, we
have a¼0:82�10�1 cm, b¼10�21:5 cm for A and a ¼
10�4 cm, b¼10�18:6 cm for B. These values of large extra
dimensions a are much larger than in the standard ap-

proach a�10ð32=6Þ�17 cm�10�11:7 cm [2,3].

VII. MODEL: D-ARBITRARY AND d ¼ p

In this model, the test masses are smeared over all extra
dimensions. Therefore, in the nonrelativistic limit, there is
no deviation from Newton’s law at all. It is worth noting
that this result does not depend on the size of the smeared
extra dimensions. The ISL experiments will not show any
deviation from Newton’s law with regard to the size b (see
also Eq. (9) where s¼d�p¼0). A similar reasoning is
also applicable to Coulomb’s law. It is necessary to suggest
other experiments which can reveal the multidimensional-
ity of our spacetime. Nevertheless, we can solve the hier-
archy problem in this model because Eq. (11) (where
d ¼ p) still works. For example, in the case of bosonic
string dimensionD¼26 we findMPlð26Þ �31TeV for b ¼
10�17 cm. In the case D ¼ 10 we get MPlð10Þ � 30 TeV
for b ¼ 5:59� 10�14 cm.

VIII. CONCLUSIONS

We have considered various generalizations of Newton’s
potential to the case of extra dimensions with multidimen-
sional space topology MD ¼ R3 � Td. We have obtained
exact solutions which describe a smooth transition from the
Newtonian behavior 1=r3 for distances bigger than periods
of tori (the extra dimension sizes) to multidimensional
behavior 1=rD�2

D in the opposite limit. In the case of one
extra dimension, the gravitational potential is expressed via
the compact and elegant formula (6).
In a Yukawa-potential approximation it was shown that

the corrections to the gravitational constant in the
Cavendish-type experiment can be within the measurement
accuracy of GN . It may provide signatures of the extra
dimensions or experimental limitations on the parameters
of multidimensional models.
Furthermore, we proposed models with test masses

smeared over some or all of the extra dimensions. In this
case, the gravitational potential does not feel the smeared
dimensions. The number of smeared dimensions can be
equal or less than the total number of the extra dimensions.
Such an approach opens new remarkable possibilities.
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FIG. 3. Allowed region (shadow area) for periods of large (a)
and smeared (b) dimensions in the model D ¼ 10 with d ¼ 6,
p ¼ 3.
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For example in the case D ¼ 10 with three large and
three smeared extra dimensions and MPlð10Þ ¼ 1 TeV, the
large extra dimensions can be as big as the upper bound
established by the ISL experiments for � ¼ 6, i.e. a �
0:82� 10�1 cm. This value of a is many orders of magni-
tude larger than the rough estimate a�10�11:7 cm obtained
from the fundamental Planck scale relation of the form of
Eq. (5).

The limiting case where all extra dimensions are
smeared is another interesting example. Here, there is no
deviation from Newton’s law at all. Nevertheless, the

hierarchy problem can be solved in this model
successfully.
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