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Employing standard results from spectral geometry, we provide strong evidence that in the classical

limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This

result is obtained by measuring the expectation value of the spectral dimension on the ensemble of

geometries defined by these models, and comparing its large-scale behavior to that of a sphere (Euclidean

de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical

dimensional reduction observed in this and other approaches to quantum gravity—the first time this has

been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale

limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these

results for the comparison to asymptotic safety and Hořava-Lifshitz gravity, among other approaches to

quantum gravity.
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I. INTRODUCTION

The path integral approach to the nonperturbative quan-
tization of gravity has made unprecedented progress in
recent years. While a Euclidean path integral approach
was suggested and studied many years ago [1], most of
the nonperturbative results have remained at a formal level,
because of the ill-defined nature of the functional integral.
Discretization offers a way to better define such a path
integral, as a continuum limit of a ‘‘lattice’’ theory, in
analogy to standard lattice quantum field theory. The
causal dynamical triangulation (CDT) approach to discre-
tization [2,3] has proven to be very useful in this regard. In
particular, it has allowed the calculation of expectation
values of physically relevant observables as continuum
limits of discrete observables. These results provide some
evidence that the CDT theory is approximating GR at large
scales, the first step to confirming that a theory of quantum
gravity has been discovered.

In particular, several results are consistent with the con-
jecture that the CDT theory is able to produce average
geometrical configurations that approximate to the
de Sitter solution of general relativity at large scales.
This is consistent with the claim that CDT theory has a
semiclassical regime with the expected behavior. Not long
ago, results on four-dimensional CDT [4] showed that the
effective large-scale dimension of the universe was ap-
proximately four, a nontrivial result in view of the possi-
bility of pathological geometries dominating the path
integral (as in the previous Euclidean DT approach [5]).
Measuring the expectation value of the volume of spatial
slices as a function of cosmological time shows a good
match to de Sitter geometry [6]. Fluctuations about de
Sitter space in the CDT model can also be matched by a
reduced ‘‘minisuperspace’’ quantum cosmology model de-
rived from GR. Such results give the first evidence that, not
only is the theory producing a solution to GR, but also the

dynamics is consistent with what we know of quantized
GR.
Still, it is difficult to measure a large and general class of

geometrical observables with the computational methods
that are being applied. The results confirming de Sitter
space are so far limited to information on the size of spatial
slices, and dimension. The difficulty is in finding genuine
geometric observables (in keeping with the symmetries of
GR) which are relevant at large scales (in keeping with the
coarse-graining that we understand to be necessary to
obtain physical results in quantum field theories). One
approach to this problem was the proposal in [7] of a
coarse-graining scheme for CDT, but the application of
the method to simulations has not yet been achieved. It
would be desirable to identify a set of observables that
could be more easily measured in Monte Carlo simulations
of the CDT model, and rich enough to fully characterize
the geometry. This would be necessary in order to have a
complete test that the model can produce an approximation
to de Sitter at large scales (and, very similarly, that the
geometry in the classical limit LPlanck ! 0 is exactly
de Sitter).
One of the dimension estimators, the ‘‘spectral dimen-

sion,’’ gives a hint of how this might be done. In [8] it is
explained how a scaling effective dimension estimator can
be derived from the spectrum of the Laplace-Beltrami
operator on a geometry. The spectral dimension is a func-
tion of a ‘‘diffusion time’’ parameter corresponding to the
relevant scale, and the function is in 1-to-1 correspondence
with the spectrum of the Laplacian. Its values can be found
by examining diffusion processes on the geometry, which
can easily be discretized on a CDT. Interestingly, the
results that can be gained in this way go beyond the
dimension; some geometries (such as the Euclideanized
version of de Sitter, the sphere) are entirely characterized
by this spectral information. Thus, by a closer examination
of this information, readily available from Monte Carlo
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simulations, it may be possible to find strong evidence for
the emergence of de Sitter space. Indeed, this could be as
close to a necessary and sufficient test as it is possible to
get, within the practical limitations of computer
simulations.

As well as the large-scale considerations, it is interesting
to consider results from spectral geometry at short scales.
In 4D, current results [8] suggest a kind of ‘‘dynamical
dimensional reduction,’’ in which the spectral dimension
approaches 2 at short scales. This gives an example of the
highly nontrivial nature of the UV regime of quantum
gravity, gives some hints of how gravity might be a con-
sistent theory in the UV limit, and also provides an ob-
servable to compare to results from other approaches to
quantum gravity.

These ideas are explained in more detail below.
Applying them to the 3D CDT model, we find that large-
scale spectral dimension function derived from simulations
matches the expected classical function very well at large
scales. We also find that the discrepancy is reduced as we
approach a continuum (classical) limit. As well as this, a
new dimension estimator, based on the scaling of the
spectral dimension function with the number of simplices
N in the CDT, gives a result consistent with three, with
good accuracy.

These ideas are applied to the 3D model of CDTs here,
for two reasons. The first is that the simpler model allows
simulations of larger linear size than the 4D model, and
provides a testing ground for the ideas, which seem to be
equally applicable to the 4D case. Second, measurements
of the spectral dimension have not previously been made in
the 3D case. This is of interest in itself, as measurements of
the small-scale spectral dimension for models of different
dimensionality may allow a better comparison between the
CDT models and various other candidate theories for
quantum gravity, some of which have predictions for the
small-scale spectral dimension. Here, we find the small-
scale dimension of 3D CDTs to be approximately two, as
for the 4D model.

After briefly reviewing the essential concepts of spectral
geometry in Sec. II, and the basics of CDT in Sec. III, we
describe in Sec. IV how the two are combined. Finally, in
Sec. V we present our results and discuss their consequen-
ces. After the conclusions, two appendices are added with
some supporting material. Our results lead to a strong
confirmation of the de Sitter character of the large-scale
geometry and some interesting comparisons of quantum
gravity theories in three dimensions.

II. THE HEAT TRACE AND GEOMETRY

First, we review some relevant results from spectral
geometry. Consider a d-dimensional closed Riemannian
manifold M with a smooth, fixed metric g��. The heat

kernel Kð�0; �; �Þ is a function on M�M� Rþ, which

solves the heat equation,

@

@�
Kgð�0; �; �Þ þ�gKgð�0; �; �Þ ¼ 0; (2.1)

with initial condition

Kgð�0; �; � ¼ 0Þ ¼ �dð�� �0Þffiffiffiffiffiffiffiffiffiffiffiffijgð�Þjp : (2.2)

Here, � is the ‘‘diffusion time’’ (not to be confused with
any physical time when considering the manifold as a
spacetime), and �g ¼ �g��r�r� is the scalar

Laplacian on M (acting on �), where r� is the covariant

derivative compatible with g��. In mathematical terms, the

heat kernel Kgð�0; �; �Þ is the Green function of the heat

equation, while its physical interpretation is as the proba-
bility density of diffusion from �0 to � in diffusion time �.
The solution of (2.1) is formally given by K ¼
h�je���j�0i, or in terms of eigenvalues �j and eigenfunc-

tions �jð�Þ of �g

Kgð�0; �; �Þ ¼
X
j

e��j��jð�Þ��
j ð�0Þ; (2.3)

where it has to be understood that in the case that the
spectrum is continuous the sum would be replaced by an
integral.
From this, we define a function that is a generally

covariant observable, the heat trace,

Pgð�Þ ¼ 1

Vg

Z
M
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
jgð�Þj

q
Kgð�; �; �Þ; (2.4)

where Vg ¼
R
M d�

ffiffiffiffiffiffiffiffiffiffiffiffijgð�Þjp
is the volume of the manifold, a

normalization factor that is introduced for convenience.
The heat trace is the probability density for returning to
the starting point of diffusion at time �, integrated overM.
It is determined by (and determines) the spectrum via

Pgð�Þ ¼ 1

Vg

X
j

e��j�; (2.5)

where the eigenvalues of�g are repeated according to their

degeneracy. From this we see that the value of the heat
trace at diffusion time � is not significantly affected by
eigenvalues much larger than 1=�. This is the relationship
between diffusion time and the scale being ‘‘probed.’’ The
heat trace is also related to invariants of the geometry
through the well-known heat-trace expansion [9],

Pgð�Þ ¼ 1

ð4��Þd=2Vg

X1
n¼0

an�
n; (2.6)

where an is a series of curvature invariants, the first three of
which are

a0 ¼
Z
M
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
jgð�Þj

q
; (2.7)
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a1 ¼ 1

6

Z
M
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
jgð�Þj

q
Rð�Þ; (2.8)

a2 ¼ 1

360

Z
M
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
jgð�Þj

q
f5R2 � 2R��R

��

þ 2R��	
R
��	
g; (2.9)

where R, R��, and R��	
 are the scalar curvature, the Ricci

and the Riemann tensors, respectively. Thus, for these
smooth geometries, the heat trace determines dimension,
volume, average scalar curvature and other curvature in-
variants. In fact, in the case of the 3D and 4D spheres, the
heat trace completely determines the geometry: it is known
that if M is a closed, connected Riemannian manifold of
dimension 2 � n � 6 with smooth metric g��, and if

ðM;gÞ has the same spectrum as the n-sphere Sn with the
standard metric, then ðM;gÞ is in fact isometric to Sn [10].
This is not true for all geometries, however. If two geome-
tries have the same heat-trace function, they are called
isospectral.

The function

dsð�Þ ¼ �2
d lnðPgð�ÞÞ

d ln�
(2.10)

can be used to find the dimension of the manifold.
Considering, for example, a flat space, the heat trace
reduces to

Pgð�Þ ¼ ð4��Þ�d=2; (2.11)

and so we see that dsð�Þ ¼ d in this case. In the general
case,

dsð�Þ ¼ d� 2

P1
n¼1 nan�

nP1
n¼0 an�

n ; (2.12)

and we see that the spectral dimension reduces to the
topological dimension only in the limit � ! 0, with a
slope determined by the total curvature. At very large
diffusion time, one can see from (2.5) that the spectral
dimension has an exponential falloff determined by the
lowest eigenvalues.

Up to here we have recalled well-known facts about
spectral properties of classical manifolds. In the context
of quantum gravity we expect that at very short scales
spacetime will not look classical. It will instead be replaced
by some structure which, although unknown, has for some
time generally been known as ‘‘spacetime foam.’’ In order
to make some sense of this general expectation, one has to
study in detail some specific model of quantum gravity and
try to find at least an effective description of what happens
to spacetime when we probe it at shorter and shorter scales.
In this vein, we need to find geometrical ‘‘probes’’ from
which to obtain some indications of what is going on at the
Planck scale. One possibility is to take, as such a probe, the
heat kernel trace (adapted to the quantum gravity model in
consideration) and study its deviations from classicality.

This way we can gain some interesting insight on the short-
scale effects and also test whether the model has good
classical properties at large scales. In particular we can use
(2.10) to define an effective notion of dimension for the
quantum geometry. In this case, we expect that the spectral
dimension function of a good quantum gravity theory will
approximate well to that of a classical geometry at large
diffusion times, while at small diffusion times there will be
significant deviations. Below, we match the average spec-
tral dimension function we derive from CDT simulations to
that of a candidate classical geometry at large diffusion
times, and then examine the small diffusion time behavior
to find properties of the spacetime foam.
Some of these ideas have been applied to d ¼ 4 CDT

models by Ambjørn et al. in [3,8], using methods that we
compare to our own in section VC. The results they found
showed for the first time a scale-dependent effective di-
mension which agrees with the classical (topological) one
at large scales but reduces to 2 at short scales. This dimen-
sional reduction is suggestive of a picture of quantum
gravity in which the theory self-regularizes its behavior,
making itself safe from the UV catastrophe which is usu-
ally associated with quantum gravity. Indeed d ¼ 2 is the
critical dimension of gravity, and the theory presents no
problems in that case. Such a picture seems compatible
with that of the ‘‘asymptotic safety scenario’’ [11–13], for
which the existence of a nontrivial fixed-point of the
renormalization group equations implies that the theory
near the fixed-point behaves like a two-dimensional theory
(as deduced by the anomalous dimension). The spectral
dimension has also been derived in the asymptotic safety
scenario [14] and the results agree with CDT for the d ¼ 4
case.
Finally the spectral dimension has been studied also in

the context of spaces with quantum group symmetry [15],
in loop quantum gravity and spin foams [16–18], in
Hořava-Lifschitz gravity [19], and in the strong-coupling
limit of the Wheeler-DeWitt equation [20]. We will com-
ment more on the relation among these results, and their
relation to our new findings, in Sec. VD.

III. A BRIEF SURVEY OF CDT

The CDTmodels are a concrete proposal to define a path
integral for gravity. A motivation for seeking such a defi-
nition is of course the hope that gravity might make sense if
defined nonperturbatively. The traditional way to pursue a
nonperturbative evaluation of a path integral in quantum
field theory is to replace the continuum spacetime with a
fixed lattice, a procedure which allows one to do actual
computations (typically numerical ones, via simulations)
with an object, the path integral, which otherwise has no
meaning. Then one tries to recover the continuum theory,
heavily borrowing concepts and procedures from the the-
ory of critical phenomena.
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The CDT approach exactly parallels the usual lattice
field theory with one fundamental difference: the fixed
lattice is replaced by an ensemble of random triangula-
tions. This is required by the fact that gravity is a theory of
dynamical geometry, with no background spacetime fixed
a priori.

More concretely, one defines an ensemble of ‘‘triangu-
lations’’ to work with, a triangulation being defined by a
simplicial manifold, i.e. a collection of d-dimensional flat
simplices (the generalization of triangles and tetrahedra)
glued along their (d� 1)-dimensional faces and such that
the neighborhood of any vertex is homeomorphic to a
d-dimensional ball. A dynamical triangulation is one in
which all the simplices are taken to be equilateral. In the
simulations we usually work with dynamical triangulations
having a fixed number of d-simplices N, which we will
denote TN . The ensemble of such triangulations fTNg is
obtained by gluing the N simplices in all possible ways
allowed by the simplicial manifold condition. Further-
more, to avoid the sick behavior that was found in the
old models of dynamical triangulations, CDT models have
one further restriction on the ensemble: only triangulations
with a global time foliation, with respect to which no
topology change occurs, are allowed. For more details on
the geometrical meaning of this restriction and on its
implementation see [21].

Once the ensemble is specified one can construct the
partition function (Euclidean version of the path integral)
as

Z ¼ X
N

X
TN

1

CðTNÞ e
�SðTNÞ; (3.1)

where SðTNÞ is the bare action, and CðTNÞ is the order of
the automorphism group of TN , a symmetry factor natu-
rally appearing when summing over unlabeled triangula-
tions. Since we wish to recover general relativity in the
classical limit, it is customary to use as a bare action the
Einstein-Hilbert action adapted to a simplicial manifold,
which is known as the Regge action. On a dynamical
triangulation, the Regge action takes the very simple form

SðTNÞ ¼ �dN � �d�2Nd�2; (3.2)

where �d and �d�2 are two coupling constants depending
on the cosmological and Newton’s constant appearing in
the Regge action, and Nd�2 is the number of (d� 2)-
dimensional subsimplices (also called bones or hinges).

In principle one could use a different action, with more
parameters, but at this stage this would only complicate the
analysis of the results, and in a minimalist attitude such a
generalization of the CDT models is usually postponed till
the moment (if ever) at which the model itself will ask for
such an extension. For example in 3þ 1 dimensions a new
parameter has been introduced in the action, without which
no physically interesting region would exist in the phase
diagram [3]. Furthermore, we need to remember that, as a

consequence of topological relations, only d=2 (for d even)
or ðdþ 1Þ=2 (for d odd) among the values
fN0; N1; . . .Nd�1; Ng are independent. Hence, for d ¼ 3
and d ¼ 4 only two of such variables are independent,
and as a consequence, if we want to keep the action linear
in Nj, we only have two coupling constants. The counting

changes if some anisotropy is introduced in the model, by
assuming that the ratio � ¼ l2t =l

2
s between the lengths of

timelike and spacelike edges1 is different from one. In such
case, one finds that additional variables are needed in order
to keep track of the orientation of the subsimplices, and
new topological relations are found too. The counting for
the anisotropic models was carried out in [21], and one has
that for d ¼ 4 there are 10 variables and 7 constraints,
leaving 3 independent variables, a fact that was used in [3]
to introduce the new parameter. In d ¼ 3 the situation is
instead unchanged with respect to the isotropic case, as
there are 5 constraints for 7 variables, and hence again only
2 independent variables. For this reason it does not make
sense to introduce in 3D the analogue of the new parameter
used in 4D.
In this paper we concentrate on the case d ¼ 3, for

which very few analytical results are known [22,23] be-
cause of the difficulty in solving statistical models in
dimensions higher than two. Hence we will resort to the
method of Monte Carlo simulations. In the simulations we
will use the topological constraints to trade the variable N1

for N0, which is easier to keep track of, and replace (3.2)
for d ¼ 3 by

SðTNÞ ¼ �3N � �0N0: (3.3)

Furthermore, as we mentioned, in the computer simula-
tions we work at fixed volume, and hence we replace (3.1)
by

ZN ¼ X
TN

1

CðTNÞ e
�0N0 ; (3.4)

where we have made use of the simple form of the action
(3.3). Note that the partition function Z is the discrete
Laplace transform of ZN with respect to N. The expecta-
tion value of an observable A is calculated as

hAiN ¼ 1

ZN

X
TN

1

CðTNÞ e
�0N0AðTNÞ; (3.5)

which is related to the expectation value as a function of �3

via

1We are using here a Lorentzian language even though our
signature is Euclidean; this is possible as in CDT it is always
clear which edges in the triangulations are to be thought as
timelike edges, and a Wick rotation is possible, at least before
the continuum limit is taken.

DARIO BENEDETTI AND JOE HENSON PHYSICAL REVIEW D 80, 124036 (2009)

124036-4



hAi ¼ 1

Z

X
N

e��3NZNhAiN: (3.6)

Note that all the quantities appearing in (3.2) are dimen-
sionless. Dimensions can be reintroduced in terms of the
edge length a of the simplices, the equivalent of the
standard lattice unit, which is necessary when talking about
the continuum limit. An essential part of the continuum
limit procedure is to haveN ! 1 and a ! 0 in such a way
that the physical volume

V � adN (3.7)

remains finite. This implies that when we want to give
dimension to a dimensionless quantity by multiplying it by

an, in practice we multiply it by N�n=d. In the continuum
limit we expect that large-scale observables will become
independent of the cutoff a, hence we expect to see finite
size scaling when working with simulations at sufficiently
large N, i.e. we expect that an observable fðg1; . . . ; gm;NÞ,
depending on a set of m couplings or variables fgig, will
satisfy

fðg1N�ðn1=dÞ; . . . ; gmN�ðnm=dÞ;NÞ
¼ fðg1N0�ðn1=dÞ; . . . ; gmN0�ðnm=dÞ;N0Þ: (3.8)

The natural expectation would be that (3.7) and (3.8) hold
with fnig given by the expected length-dimension of the
fgig, but this is not guaranteed a priori and it is instead used
as a check of the good classical properties of the model, as
we do in the following.

IV. APPLICATION OF SPECTRAL GEOMETRY TO
CDTS

The expectation value of the spectral dimension function
for CDTs was found from Monte Carlo simulations. Finite
size scaling analysis is applied to the results, as in [24].
Some previously existing code for the Monte Carlo simu-
lations (used in [24]) was adapted for this purpose. These
simulations fixed the spacetime topology to S2 � S1, i.e.
spherical spatial sections and cyclical time. The cyclical
time is merely a convenience; it has been seen that the
simulations produce an extended ‘‘universe’’ part consis-
tent with a 3-sphere, and a ‘‘stem’’ part in which spatial
slices remain near the minimum set by the lattice scale.
The stem part is thought to be a discreteness artifact caused
by the topology used in the simulation. Values of N up to a
maximum of 200 k (meaning 2� 105) were studied,
although some errors for the larger values of N are greater
since less configurations could be generated to be averaged
over, within practical time constraints.

All simulations were carried out with coupling constant
�0 ¼ 5, in the ‘‘extended phase’’ of the CDT phase dia-
gram, where previous evidence points to the emergence of
well-behaved geometry. The total number of time-steps
was set to T ¼ 96. We approach the continuum limit

with �0 fixed, N ! 1 and keeping the dimensionful vol-
ume V fixed. In this case the Planck length is fixed in terms
of lattice units, and as a result the dimensionful Planck
length must go to 0 in this limit, and so this represents a
classical limit. In order to keep the Planck length finite a
different limit would have to be taken with �0 a function of
N [2].
The heat trace of a CDT configuration can be found by

appropriately discretizing the diffusion process. This pro-
cess uses a probability distribution defined over the set of
simplices of the CDT. The analog of the continuum diffu-
sion equation (2.1) is

KTðx; x0; �þ 1Þ ¼ ð1� 
ÞKTðx; x0; �Þ
þ 


4

X
x02GðxÞ

KTðx0; x0; �Þ; (4.1)

where x and x0 labels of simplices, GðxÞ is the set of
simplices glued to x (of which there are 4 in the 3D
case), and 
 plays the role of a diffusion constant, which
can be between 1 and 0. The distribution is initially peaked
atKTðx; x0; 0Þ ¼ �x;x0 . Similarly to the continuum case, for

a particular triangulation T the average probability of
return is

PTð�Þ ¼ 1

NðTÞ
X
x2T

KTðx; x; �Þ (4.2)

and the analog of the spectral dimension of Eq. (2.10),
dsð�; TÞ, is defined by replacing the differential with a
finite difference in the obvious way. The Monte Carlo
simulations estimate the ensemble average of this quantity,

Dsð�;NÞ � hdsð�ÞiN ¼ 1

ZN

X
TN

1

CðTNÞ e
�0N0dsð�; TNÞ:

(4.3)

The time normalization makes no difference to our results
at this stage. Similarly the value of 
 is set purely from
practical considerations, to minimize discreteness artifacts
while allowing diffusion to proceed fast enough to probe
large scales within the possible number of diffusion steps.
As explained in [3], at very early times the value of PT has
an oscillatory behavior due to discreteness effects. This is
somewhat mitigated by reducing the value of 
, which was
chosen to be 0.8 for the simulations. It is also possible to
introduce a different rate of diffusion through spacelike
and timelike triangles on which the simplices are glued,
which amounts to a scaling of timelike and spacelike
distances, but this was not done here for reasons explained
below.
In principle Ds would be calculated from (4.3) by carry-

ing out the diffusion process for all tetrahedra in each
Monte Carlo configuration. However, a good estimate of
this result can be found by randomly sampling the tetrahe-
dra x at which to calculate the probability of return
KTðx; x; �Þ. One tetrahedron was used as starting point
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for each configuration, selected uniformly at random from
all tetrahedra not in the stem, and this was found to give
reasonably small errors.

Before the process was simulated on the CDT, the CDT
structure was converted from the data structure optimized
for Monte Carlo moves to one optimized for the diffusion,
resulting in a considerable speedup. This allowed the dif-
fusion process to be followed for of the order of 20 000
steps for all configurations, in the order of hours of com-
puter time, more than enough for our purposes. The diffu-
sion process was carried out with the stem excluded. The
stem here is defined as including all simplices in ‘‘small’’
slices (< 20 simplices), and slices in ranges that lie be-
tween two small slices, but do not include the maximal
slice (which would indicate that this range is the universe
part). The value of N used in scaling calculations should,
strictly speaking, be altered to take this into account, but
this was not found to alter results in most cases.2

One of our aims here is to compare these results from
CDT simulations to the de Sitter geometry that we expect,
from previous studies [24], to find at large scales. The first
step, then, is to determine the spectral dimension function
for de Sitter, or the Euclideanized version, the sphere.
However, in practice, there is a complication here: the
lattice structure of CDTs breaks the symmetry between
space and time. Therefore, we should not expect the ratio
between the lattice lengths in the space and time direction
that is used to define the bare action (set to 1 in this case) to
be the correct one to use when comparing to a continuum
geometry like de Sitter. We are at liberty to perform some
global rescaling of the time t ¼ ai, where i is the discrete
time step, as was done in [2] for the case of time depen-
dence of the volume of the spatial slices in 4D. In that case,
the time twas taken as a coordinate time so that the scaling
to the ‘‘true’’ cosmological proper time could be expressed
as 
 ¼ ffiffiffiffiffiffi

gtt
p

t. This becomes important when considering

how to compare to de Sitter.
In the case that the observable under investigation is the

spectral dimension, for which we do not know the explicit
dependence on the proper time, there are two ways to
proceed. The first, roughly, is to scale the CDT before
comparing to the sphere. This means carrying out the
diffusion process given above with different diffusion rates
for spacelike and timelike faces of the simplices. The hope
would be to extract the spectral dimension plot for a sphere
by appropriately setting the ratio of these diffusion con-
stants. However, there is a limit on how fast diffusion in the
time direction can be made using this technique. The
reason is that no simplicial path across more than two
time slices in a CDT traverses only spacelike triangles,

as each tetrahedron has at most only one spacelike face.
Because of this, no matter how fast diffusion across space-
like triangles is, diffusion across many time slices will not
become arbitrarily fast. It was found in simulations that the
scaling made possible in this way was not sufficient to
reach the sphere, and so only results with equal diffusion
rates on timelike and spacelike edges are given below.3

The second way to proceed is to scale the sphere we are
comparing to, rather than the CDT itself. That is, we carry
out the diffusion process using equal diffusion constants on
spacelike and timelike triangles, but scale the cosmological
proper time in the sphere that we wish to compare to before
computing its spectral dimension function. This means that
we must compare to the spectral dimension function for the
following metric, which we call the ‘‘stretched sphere’’:

ds2
S3s

¼ r2ðs2dc 2 þ sin2c ðd�2 þ sin2�d�2ÞÞ; (4.4)

where c , � 2 ½0; �� and � 2 ½0; 2��, and s is the defor-
mation parameter (for s ¼ 1 we have the standard metric
on a sphere of radius r). The spectrum for this geometry is
derived in Appendix A, and the spectral dimension can be
computed from it, summing numerically the series (A14).
Our second goal will be to investigate the short-scale

behavior of the spectral dimension function, in order to
confirm in 3D the phenomenon of dynamical dimensional
reduction observed in 4D [3,8]. Going beyond the qualita-
tive result, it is interesting to obtain a quantitative estimate
of the asymptotic value (for � ! 0) of the spectral dimen-
sion in order to compare it with results from other ap-
proaches to quantum gravity.

V. ANALYSIS OF THE RESULTS

A. Dimension from scaling

Before comparing to the sphere, the first task is to verify
that the expectation value of the spectral dimension func-
tion is scaling with N as might be expected for an extended
3D geometry. Examining the scaling of the diffusion time
of the spectral dimension functions with N gives a way to
estimate the large-scale dimension, similarly to the scaling
dimension derived from volume-volume correlations dis-
cussed in [24]. Here, on large scales (i.e. large diffusion
times) we expect the functions to scale according to

Dsð�N�2=d; NÞ ¼ Dsð�N0�2=d; N0Þ; (5.1)

because the diffusion time should scale with the square of
the linear scale, from dimensional considerations [see
Eq. (2.1)]. We do not expect such simple scaling at small
diffusion time, as this is the regime in which quantum

2The exception is the value of the scaling dimension given in
Eq. (5.2). There, the value given was calculated using the total
number of simplices less the average number of simplices in the
stem, which was found to alter the result slightly. Elsewhere the
values of N used are the total numbers of simplices.

3However, it is interesting to note that this would not be a
problem if the diffusion was carried out on the vertices of the
CDT lattice itself rather than on the tetrahedra; in that case there
are paths traversing many time-slices consisting only of timelike
edges.
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effects become important, and these are probably governed
by an additional parameter, most likely the Planck length.
Since we keep �0 fixed we know that the Planck length will
remain fixed in units of the cutoff, and so we cannot apply
the finite-size scaling reasoning of the end of Sec. III at
these short scales.

Figure 1 shows that a good match between data sets with
different value of N is possible with d ¼ 3, and illustrates
that the simulations are showing the expected convergence
to a continuum limit at large diffusion times. The best
estimate of d was found by comparing the N ¼ 50 k and
N ¼ 100 k data sets using best overlap methods.4 The
range of times to be compared was fixed for the N ¼
100 k data to 2<�N�2=3 < 7:4 to exclude short-scale
quantum effects. The data was scaled appropriately for
various values of d and compared using linear interpola-
tion. The best overlap was found at

d ¼ 2:99� 0:12; (5.2)

where the errors are the Monte Carlo random errors (finite
difference errors and so on being negligible compared to
these). This method gives an estimate of the dimension that
improves on the accuracy of previous methods, and gives
yet more evidence for the 3 dimensional nature of the
geometry at large scales. In view of this result, we define

~� ¼ �N�2=3 as an appropriately scaled diffusion time, so
that we can compare simulations at all values of N to a
stretched sphere of fixed volume.

B. Comparison of CDT results to the stretched sphere

Our main goal here is to determine whether the spectral
dimension function for a stretched sphere can match that of
eqn. (4.3) at large diffusion times. Figure 2 shows that a
scaled sphere with r ¼ 1:20, s ¼ 1:96 matches the N ¼
200 k Monte Carlo data for ~� * 1:5. The good quality of
the 2-parameter fit is evident from the plot. Note that the
quality of the fit is not generic in any sense: a simple
exponential gives a bad fit over this range, and altering
the value of s by more than 0.01 also makes a noticeable
difference to the quality of the fit. Evidence was also found
that the spectral dimension function for CDTs converges to
that for the scaled sphere as N ! 1, as shown in Fig. 3.
This remarkable fit not only shows consistency with the

emergence of a 3-dimensional extended geometry on large
scales, but also for the consistency between all the spectral
properties of the scaled sphere and those of the results of
the CDT simulations at large scales. In other words, these
results provide strong evidence that the average CDT
geometry for the largest simulations is isospectral to
some geometry that approximates to the stretched sphere
at large scales. It also indicates that, in the classical limit,
the geometry is isospectral to the scaled sphere. We inter-
pret this as the strongest evidence so far that the 3D CDT
simulations are approximating 3D de Sitter space at large
scales.
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FIG. 1 (color online). The spectral dimension data against
scaled diffusion time ~� ¼ �N�2=3. Data for N ¼ 50 k, 100 k,
and 200 k is shown (the larger the value of N is, the larger the
maximum of the function is). Error bars are suppressed on most
data points for clarity (this is done throughout the paper). The
curves should converge to a limiting curve as N ! 1. At these
values of N it there is good evidence of convergence to a
continuum limit: the curves for N ¼ 100 k and N ¼ 200 k agree
within error for ~�> 0:5, as do the N ¼ 50 k and N ¼ 100 k
curves.
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FIG. 2 (color online). The spectral dimension data from CDT
simulations with N ¼ 200 k against scaled diffusion time ~� ¼
�N�2=3, plotted in black, fitted to the spectral dimension plot for
the scaled sphere with r ¼ 1:20, s ¼ 1:96, superimposed in a
lighter color. The two-parameter fit agrees with the data for ~� *
1:5. At very low times the ‘‘quantum correction’’ to the posited
classical geometry is negative, but it becomes positive in an
intermediate range.

4Comparisons to N ¼ 200 k data were also consistent with
d ¼ 3 but the errors were larger due to larger Monte Carlo
errors.
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It is interesting to note the form of the quantum correc-
tion to the classical geometry, as given in Fig. 2. At very
low times the spectral dimension for the CDT data is lower
than the classical value, as found in the 4D case (this is
investigated more fully in the next section). However, there
is an intermediate regime in which the quantum correction
is positive, and persists for a longer diffusion time than
might be expected from looking at the behavior at very low
diffusion times.

C. Results at shorter scales

These results have implications for previous methods
used to measure the large-scale dimension of CDTs. In [8],
in the 4D case, Ambjørn, Jurkiewicz, and Loll (AJL here-
after) take a short range of early diffusion times, and fit the
CDT spectral dimension data to the function

Dsð�Þ ¼ a� b

�þ c
: (5.3)

This fit provides estimates of the dimension as � ! 0 and
as � ! 1. In particular, the estimation of the large-scale
dimension rests on two assumptions. The first is that the
finite-size effects have a negligible effect on the fit over the
range fitted. The second is that the fit is good into the range
at which the quantum corrections to the spectral dimension
become negligible. In other words, the classical spectral
dimension function being limited to as � ! 1 is approxi-
mated as a constant function, and it is assumed that the
quantum corrections affect only the nonconstant term. As

N is increased, and the range of the fit is kept as a constant
range in�, the (negative) finite-size errors become smaller.
However the errors from the quantum deviations from the
classical geometry will not go to zero unless these quantum
deviations are well-fitted by b=ð�þ cÞ.
The results of the previous section show this latter

assumption to be only approximately correct, in the 3D
case at least. To illustrate this further, we repeat an analysis
similar to the AJL analysis. At N ¼ 70 k, we find that in
the 3D case the data is similarly fitted with 3 parameters,
with the large-scale limit being a constant. In this case, the
following fit is better than the rational fit given above:

Dsð�Þ ¼ aþ be�cx: (5.4)

The fit is taken between� ¼ 20 and� ¼ 300 to avoid both
short-scale discreteness effects and finite-size effects, as in
[8]. As can also be seen from Fig. 4, the fit is good
(although it matches less well at large and small times),
and the estimates derived (with errors calculated combin-
ing Monte Carlo random errors with fitting errors and finite
difference errors) are the following:

Dsð1; N ¼ 70 kÞ ¼ 2:98� 0:02; (5.5)

Dsð0; N ¼ 70 kÞ ¼ 2:12� 0:04: (5.6)

The large-scale dimension is consistent with 3 here, even
with the assumptions given above, and one expects the
finite-size error to be small and negative. This is similar
to the situation found by AJL in the 4D case, where the
large-scale dimension is consistent with 4. However, as one
goes to yet higher N, the technique begins to slightly
overestimate the dimension in the 3D case.
AtN ¼ 200 kwe have a similarly good fit with the same

function (see Fig. 5). The estimates in this case are

Dsð1; N ¼ 200 kÞ ¼ 3:05� 0:04; (5.7)
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FIG. 4 (color online). The Spectral dimension data with num-
ber of simplices N ¼ 70 k, at small diffusion times, is plotted
with error bars in black. The exponential fit is superimposed in a
lighter color.
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FIG. 3 (color online). The overlap between the CDT data for
Dsð~�;NÞ and that for the scaled sphere with r ¼ 1:20, a ¼ 1:96,
as a function of 1=N, with errors. Data for N ¼ 70 k, 100 k,
140 k, and 200 k is used here. The difference between the two
functions is measured as the integrated absolute difference
between them in the range 0< ~�< 7:4. As 1=N ! 0 the dif-
ference comes closer to 0. The results are consistent with the
convergence of the CDT data with the scaled sphere spectral
dimension function as N ! 1. (At smaller values of N than
70 k, there is competition between the positive and negative
quantum corrections that obscures the convergence.)
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Dsð0; N ¼ 200 kÞ ¼ 2:04� 0:10: (5.8)

Here, the value 3 for the large-scale dimension begins to
looks doubtful. This is explained by looking at the spectral
dimension plot at larger scales, as in Fig. 2. There we see
that the quantum correction to the spectral dimension
function for the conjectured classical geometry actually
becomes positive, and stays significant for some time after
the maximum value ofDs is reached. But the above fits are
taken over a short range before the maximum is reached.
This means that the assumption that the fit will have a
large-scale limit free of quantum effects is not exact, giving
a positive bias in Dsð1Þ. However, the correction to the
estimates given above because of this effect cannot be
larger than the maximum quantum correction to the clas-
sical spectral dimension, which is 0.28. Thus, we see that
the extra error that we should include is not so large that it
totally destroys usefulness of the technique; even with the
approximate assumption this method does show that the
large-scale dimension converging to a value consistent
with 3, with approximately 10% error. The dimension
estimations of the previous section also give accurate
new confirmations that the dimension converges to 3,
with less assumptions. The situation in 4D may well be
similar.

It is interesting to note the possibility of measuring an
effective average scalar curvature in a similar way. From
Eq. (2.12) we see that, classically, the gradient of the
spectral dimension function as � ! 0 is related to this
observable. We could define an effective scaling version
of this observable, proportional to the gradient
dDsð�Þ=d�, and proceed in roughly the same way as in
the AJL method of measuring the large-scale dimension.
For this to give a meaningful value, the range of values of�
at which only the first two terms of the heat trace (2.6) are
contributing to the spectral dimension must be appreciably

longer than the range over which quantum effects are
important. From Fig. 2 we can see than our simulations
do not allow this at present. This would apply also to other
ways of measuring curvature [7,25]. This provides an
interesting example of a situation in which concepts from
general relativity and quantum field theory come together:
although the average scalar curvature is defined as an
integral of a function defined at each point, we know that
this ‘‘maximally fine-grained’’ notion will no longer be the
physically appropriate one in the quantum theory, and that
we should only expect the concept of average scalar cur-
vature to be useful in some coarse-grained sense, at some
intermediate scales. In any case, the fit of the spectral
dimension function to the scaled sphere shown in Fig. 2
gives good evidence for consistency with de Sitter beyond
just the dimension or average scalar curvature.
The two assumptions necessary to estimate the large-

scale dimension are not necessary to estimate the small-
scale dimension. The N ¼ 200 k simulations are the larg-
est available, and give a value consistent with 2 here, but
inconsistent with 1.5. We will comment extensively on this
in the following subsection.

D. Discussion of the � ! 0 limit

It is interesting to compare the short-scale behavior
found here for the spectral dimension, to that derived
from other approaches to quantum gravity. In most of the
cases we are unable to give the analytic dependence on the
diffusion time, and hence we can only discuss the qualita-
tive behavior, and speculate about the limiting value
Dsð� ! 0Þ. While it would certainly be a bold extrapola-
tion to claim that two approaches are describing the same
physics just because they give the same number as � ! 0,
it is intriguing to observe a certain universality of the
results like it seems to happen in d ¼ 4 [20]. In this respect
it is useful to carry out this type of study in general
dimensions, as for example d ¼ 4 might be a special
case in which several approaches agree on Dsð� ! 0Þ
despite having some fundamental difference. In this sense
we think that a discrepancy in the results might have a
stronger meaning, as a disagreement would probably signal
some fundamental difference, and hence the dimension-
dependence of the results might teach us something im-
portant. Our interest in three-dimensional CDT originates
mainly from these concerns.
We notice first of all that our result agrees with that

found for d ¼ 4 in [8], i.e. we find Dsð� ! 0Þ � 2 both in
three and four dimensions. We should have a word of
caution here, in light of the recent observation [2] that, at
least in the 4D case, the Planck length is of order the lattice
spacing a at the currently possible parameter settings in
Monte Carlo simulations, and remains fixed when the
‘‘bare Newton coupling’’ is fixed. This is something that
we have not tested in our 3D simulations, but which could
well hold true in this case. This observation implies that we

0 50 100 150 200 250 300

2

2.2

2.4

2.6

2.8

3

σ

D
s

CDT data N=200 000

fit

FIG. 5 (color online). The Spectral dimension data with num-
ber of simplices N ¼ 200 k, at small diffusion times, is plotted
with error bars in black. The exponential fit is superimposed in a
lighter color.
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are at the moment unable to probe physics well beyond the
Planck scale in a reliable way (i.e. without discretization
artifacts), hence the ‘‘� ! 0’’ limit should be seen as a
simple extrapolation of the results at �> L2

P. In order to
test whether such extrapolation is correct we would need to
make the lattice length much smaller in comparison with
the Planck scale, as described in [2] for 4D. This will not be
attempted here, however. For the sake of discussion wewill
assume that we are seeing enough of the genuine UV
behavior at the values chosen for the parameters, and
proceed to compare our CDT result to that coming from
other approaches to 3D gravity. Further study will confirm
whether this assumption is justified.

In [14] the general� ! 0 limit of the spectral dimension
for asymptotically safe gravity in d dimensions was de-
rived, resulting in Dsð� ! 0Þ ¼ d=2. Interestingly, for
d ¼ 2 this coincides with the AJL results, but for d ¼ 3
it disagrees with the results found here. It should be
stressed that in CDT, in both cases, the dimension is
evaluated numerically, hence we cannot be sure it will be
exactly an integer. On the other hand, the small errors give
us confidence that a value of Dsð� ! 0Þ ¼ 3=2 in d ¼ 3
can be excluded.

In (nþ 1)-dimensional Hořava-Lifshitz gravity with
characteristic exponent z one finds [19] that Dsð� ! 0Þ ¼
1þ n=z. Hence Dsð� ! 0Þ ¼ 2 in the (2þ 1)-
dimensional case5 with z ¼ 2, which is the (2þ 1)-
dimensional analogue of the (3þ 1)-dimensional case
with z ¼ 3 proposed in [26], n ¼ z being the critical
dimension of models characterized by z. This coincidence,
together with the observation made in Appendix B, sug-
gests that the link between CDT and Hořava-Lifshitz grav-
ity deserves to be explored further.

In the context of spin foam models of three-dimensional
quantum gravity, the results of [18] give Dsð� ! 0Þ ¼ 2,
but only after a transition at Ds 	 1:5 for small positive �.
This behavior could either be an artifact of the method used
to determine the spectral dimension or something charac-
teristic of spin foams. In any case, keeping in mind the
existence of a minimal length in spin foam models, the
limit � ! 0 should probably be interpreted with some
care.

Finally, it is easy to adapt to d ¼ 3 the calculation of
[15] for �-Minkowski and see that also in such case
Dsð� ! 0Þ ¼ 2. As the dual of �-Poincarè algebra, this
specific type of noncommutative geometry has been sug-
gested to play a role in quantum gravity [27]. We note that,
as far as short-scale spectral dimension is concerned,
�-Minkowski agrees with CDT in d ¼ 3 but disagrees in
d ¼ 4, a situation which seems to be opposite to that found
about asymptotically safe gravity.

In conclusion we see that studying the spectral proper-
ties at different spacetime dimensions can lead to some

surprises and provide clues on potential relations between
different approaches.

VI. CONCLUSIONS

In this paper we have presented new results about the
spectral dimension in CDT. On one hand we have applied
to the three-dimensional case a short-scale analysis analo-
gous to that of AJL, and on the other we have extended the
analysis to larger scales. Both parts of this work represent
an important extension to the understanding of the physics
of CDT models.
The short-scale results provide a hint and a first step

towards an understanding of the d-dependence of the UV
behavior of CDT models. As explained in Sec. VD more
and more results are being produced about the spectral
dimension in quantum gravity, and a comparison among
them (as functions of the dimension d) can be very useful.
The large-scale results represent striking evidence for

classical behavior at large scales, which goes beyond the
time-dependence of the spatial volume [6], as the spectrum
of the Laplacian contains far more detailed information
than that. The least that can be said is that evidence
presented here indicates that in the N ! 1 limit (at fixed
�0) the spectral dimension function tends to that of a
stretched sphere. By the freedom we have to rescale the
‘‘cosmological’’ proper time, we conclude that results are
consistent with the production of a de Sitter ground state in
the model. We note again that this spectral dimension
function contains a great deal of geometrical information,
which can completely characterize some simple geome-
tries. Ideally, we would like to say that, once the CDTs are
appropriately scaled, the spectral dimension function tends
to that of a sphere with standard metric. This would pro-
vide evidence for a necessary and sufficient condition for
the ground state of three-dimensional CDTs to be exactly a
sphere in the classical limit. We can establish this using the
1-to-1 relation between the spectral dimension function
and spectrum of the Laplacian, and the well-known theo-
rems [10] mentioned in Sec. II (at least up to some remain-
ing technical concerns involving smoothness assump-
tions). The comparison to the stretched sphere prevents
such a clean statement, but still gives strong evidence in
favor the same conclusion. Further, in the real world there
are quantum corrections at short scales that we do not wish
to remove by such a limiting procedure. It is tempting to
conjecture that, if the spectral dimension function of a
geometry approximates to that of a sphere at large scales,
the geometry is ‘‘approximately isometric to the sphere at
large scales’’ in some appropriate sense; this would again
allow a cleaner statement. But even without such an ambi-
tious conjecture, the match of the spectral dimension func-
tions exhibited in Fig. 2 presents powerful new evidence
for the approximation of 3D CDT simulation results to
de Sitter space at large scales.

5Note that n ¼ 2 here corresponds to what we have called d ¼
3 in the rest of the paper.
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Extensions of the work could involve more extensive
comparisons with the spectral dimension functions arising
from other approaches to quantum gravity. This kind of
comparison could suggest ways to derive an estimation of
the Planck length (or some proportional scale) from the
small-scale form of the spectral dimension function for
CDTs, for example, by relating the Planck length to the
location of the maximum ofDsð�Þ. This would be useful if
and when studies are undertaken to investigate the sub-
Planckian regime of the models. Such studies would be
necessary in order to assess the existence of a nontrivial
continuum limit, i.e. one with local degrees of freedom and
a finite Planck length. In addition, it would be interesting to
see if such a limit could be taken in a way compatible with
the rescaling needed to have an isotropic universe: this
would shed light on the connections between CDTs and
Hořava-Lifshitz gravity.

In view of the successful application of our method to
3D CDT, the same techniques can now be applied to the
more physically interesting 4D CDT models. There are no
new conceptual problems to overcome to do so; the ex-
tension merely involves an application of the same proce-
dures to the previously studied 4D simulations. This will
provide interesting new ways to explore the large-scale
geometry, as well as to investigate small-scale behavior
as we push simulations further into the sub-Planckian
regime.
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APPENDIX A: STRETCHED SPHERE

1. Definition and geometric properties

We define a three-dimensional stretched sphere S3s by
uniformly stretching the proper distance in the longitudinal
direction. Its metric is

ds2
S3s

¼ r2ðs2dc 2 þ sin2c ðd�2 þ sin2�d�2ÞÞ; (A1)

where c , � 2 ½0; �� and � 2 ½0; 2��, and s is the defor-
mation parameter (for s ¼ 1 we have the standard metric
on a sphere of radius r). It is easy to see that a manifold
with such metric has conical singularities at the poles; for
example, we can approximate sinc � c near the North
pole, and by making the substitution f	 ¼ rsc ; ’ ¼ �=sg
(also restricting to the subspace � ¼ �=2 for simplicity),
we find the metric of a cone

ds20 ¼ d	2 þ 	2d’2; (A2)

where ’ 2 ½0; 2�=s�.
The scalar Ricci curvature is

R ¼ 6sin2c þ 2ðs2 � 1Þ
r2s2sin2c

; (A3)

and is divergent as expected in c ¼ 0, � (incidentally its
integral is finite, but that is not true for higher order
invariants). On a manifold with conical singularities no
closed analytical expression is known for the coefficients
of the heat kernel expansion, but we will be able to com-
pute directly the spectrum for this particular case.
An embedding inR4 can be obtained with the coordinate

parametrization

x0 ¼ r
Z �=2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � cos2c 0

q
dc 0;

x1 ¼ r cos� sin� sinc ;

x2 ¼ r sin� sin� sinc ;

x3 ¼ r cos� sinc :

(A4)

A section of such embedding is shown in Fig. 6.

2. The Laplacian and its spectrum

The scalar Laplacian associated to the metric (A1) is

�S3�
f ¼ 1

r2s2sin2c
@c ðsin2c @c fÞ

þ 1

r2sin2c sin�
@�ðsin�@�fÞ þ 1

r2sin2c sin2�
@2�f

¼ 1

r2s2sin2c
@c ðsin2c @c fÞ þ 1

r2sin2c
�S2f;

(A5)

X0
X1

X2

FIG. 6 (color online). An embedding in R3 of the � ¼ �=2
section of the three-dimensional stretched sphere, with r ¼ 1:2
and s ¼ 1:96.
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where �S2 is the Laplacian on a unit 2-sphere. In order to
look for its spectrum we start with a separation of varia-
bles, i.e. we make the ansatz

fðc ; �; �Þ ¼ 	ðc ÞYm
l ð�;�Þ; (A6)

where Ym
l ð�;�Þ are spherical harmonics (l ¼ 0; 1; 2 . . . and

m ¼ �l;�lþ 1; . . . l), so that

�S2Y
m
l ð�;�Þ �

�
@2� þ

cos�

sin�
@� þ 1

sin2�
@2�

�
Ym
l ð�;�Þ

¼ �lðlþ 1ÞYm
l ð�;�Þ: (A7)

As a consequence, the eigenvalue equation reduces to an
ordinary differential equation for 	ðc Þ:
1

r2

�
1

s2
@2c þ 2

s2
cosc

sinc
@c � lðlþ 1Þ

sin2c

�
	ðc Þ ¼ �E	ðc Þ:

(A8)

The generic solution for this equation is found to be of the
form

	ðc Þ ¼ AP�
� ðcosc Þ þ BQ�

� ðcosc Þffiffiffiffiffiffiffiffiffiffiffi
sinc

p ; (A9)

where P
�
� andQ

�
� are the associated Legendre functions of

the first and second kind, with � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2r2E

p
�1

2 and � ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2lðlþ 1Þp

, and coefficients A and B to be fixed by

boundary conditions. Imposing regularity at c ¼ 0we find
that

A

B
¼ ��

2

cos��

sin��
; (A10)

while B can be fixed by normalization.
Finally, imposing regularity also at c ¼ �, the eigen-

values E are restricted to

Ejl ¼ 1

2s2r2
ð2jðjþ 1� 2lþ 2�Þ

þ 2lðl� 1þ s2ðlþ 1Þ � 2�Þ þ 2�� 1Þ; (A11)

with j 
 l a non-negative integer. The degeneracy of the
eigenvalues is that inherited from the spectrum over S2, i.e.

Djl ¼ 2lþ 1: (A12)

For s ¼ 1 the eigenvalues become independent of l and
the spectrum of the round 3-sphere is recovered:

Eð�¼1Þ
ij ¼ jðjþ 2Þ; Dð�¼1Þ

ij ¼ ðjþ 1Þ2: (A13)

Once we have the full spectrum the heat kernel trace can
be directly evaluated by the formula

PS3s
ð�Þ ¼ 1

VS3s

Xþ1

j¼0

Xj
l¼0

Djle
��Ejl ; (A14)

with the volume given by VS3s
¼ 2�2r3s.

APPENDIX B: SOLUTION TO
(2þ 1)-DIMENSIONAL z ¼ 2 HORı́AVA-LIFSHITZ

GRAVITY

A recent proposal by Petr Hořava [26] of a power-
counting renormalizable theory of gravity in 3þ 1 dimen-
sions has attracted lot of attention by the physics commun-
ity. A possible link between this model and CDT was
pointed out in [19], and we wish to explore it further
here in light of our results. In general, in nþ 1 dimensions,
the idea is to construct an anisotropic theory of gravity,
characterized by a critical exponent z ¼ n, such that
power-counting renormalizability is guaranteed without
introducing higher-derivatives in time (which would typi-
cally spoil unitarity). The case of our interest is hence a
z ¼ 2 theory in 2þ 1 dimensions, which has already been
considered in [28].
We will consider here a version without the detailed

balance condition and in Euclidean signature, for which
the action is

S ¼
Z

dtd2xN
ffiffiffi
g

p �
2

�2
½�K2 � KijK

ij � 2�þ ð2ÞR�

� �ð2ÞR2

�
; (B1)

where g is the determinant of the spatial metric,6 ð2ÞR its
Ricci scalar, N the lapse function, Kij the extrinsic curva-

ture of the leaves of the foliation, and K its trace. The
coupling �2 is proportional to Newton’s constant, and � is
the cosmological constant, while � and � characterize the
deviations from full diffeomorphism invariance (l ¼ 1 and
� ¼ 0 corresponding to general relativity in 2þ 1 dimen-
sions). In the following, since we are interested in the
infrared limit of the theory, we will restrict to � ¼ 0, hence
leaving only to � � 1 the characterization of the
anisotropy.
The general equations of motion can be easily found and

are similar to those in [29], but we will not report them
here. We are interested in spatially spherically-symmetric
solutions, and therefore we make the ansatz

ds2 ¼ N2ðc Þdc 2 þ fðc Þðd�2 þ sin2�d�2Þ: (B2)

As a consequence the equations of motion reduce to

2�� 1

2N2

�
f0

f

�
2 þ 2�� 2

f
¼ 0; (B3)

2�� 1

2N

�
1

2

�
f0

f

�
2 þ N0

N

f0

f
� f00

f

�
��N ¼ 0: (B4)

It is easily verified that a solution is given by

6Despite being in Euclidean signature we keep using a space-
time terminology, for lack of a better one.
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fðc Þ ¼ 1

�
sin2c ; (B5)

N2ðc Þ ¼ 2�� 1

�
: (B6)

This corresponds exactly to the metric (A1) for r2 ¼ 1=�
and s2 ¼ 2�� 1.

We hence see that the large-scale spectrum found in our
CDT simulations in general matches the above solution to
Hořava-Lifshitz gravity. As explained in the main text, we

are at this stage free to translate our results to the contin-
uum language in such a way that the round sphere is
matched, but we should keep in mind the general result
when taking into account the scaling of �0 in future stud-
ies: for example, when taking the continuum limit it might
turn out to be impossible to keep the Planck length finite
and at the same time have a round sphere at large scales. In
the renormalization group language this would mean that
the coupling � does not flow to � ¼ 1 in the infrared. We
hope to come back to this issue in the near future.
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