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In the quantization of simple cosmological models (minisuperspace models) described by the Wheeler-

DeWitt equation, an important step is the construction, from the wave function, of a probability

distribution answering various questions of physical interest, such as the probability of the system

entering a given region of configuration space at any stage in its entire history. A standard but heuristic

procedure is to use the flux of (components of) the wave function in a WKB approximation. This gives

sensible semiclassical results but lacks an underlying operator formalism. In this paper, we address the

issue of constructing probability distributions linked to the Wheeler-DeWitt equation using the decoherent

histories approach to quantum theory. The key step is the construction of class operators characterizing

questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival

time problem in nonrelativistic quantum mechanics, we show that the appropriate class operators in

quantum cosmology are readily constructed using a complex potential. The class operator for not entering

a region of configuration space is given by the S matrix for scattering off a complex potential localized in

that region. We thus derive the class operators for entering one or more regions in configuration space. The

class operators commute with the Hamiltonian, have a sensible classical limit, and are closely related to an

intersection number operator. The definitions of class operators given here handle the key case in which

the underlying classical system has multiple crossings of the boundaries of the regions of interest. We

show that oscillatory WKB solutions to the Wheeler-DeWitt equation give approximate decoherence of

histories, as do superpositions of WKB solutions, as long as the regions of configuration space are

sufficiently large. The corresponding probabilities coincide, in a semiclassical approximation, with

standard heuristic procedures. In brief, we exhibit the well-defined operator formalism underlying the

usual heuristic interpretational methods in quantum cosmology.
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I. INTRODUCTION

A. Opening remarks

A question in quantum gravity that continues to attract
considerable interest is the problem of quantizing and
interpreting the Wheeler-DeWitt equation of minisuper-
space quantum cosmology [1–5],

H� ¼ 0: (1.1)

Although the setting of this problem is simple cosmologi-
cal models with just a handful of homogeneous parameters,
the techniques employed in answering this question may
be relevant to general approaches to quantum gravity, such
as the loop variables approach or causal set approach. This
is because the central difficulty in consistently quantizing
and interpreting the Wheeler-DeWitt equation is the ab-
sence of a variable to play the role of time, and all ap-
proaches to quantum gravity must confront this issue at
some stage [6].

A frequently studied example consists of a closed
Friedmann-Robertson-Walker cosmology with scale factor
a ¼ e� and a homogeneous scalar field � with (inflation-
ary) potential Vð�Þ [7]. The Wheeler-DeWitt equation for
this model is

�
@2

@�2
� @2

@�2
þ e6�Vð�Þ � e4�

�
�ð�;�Þ ¼ 0: (1.2)

Given suitable boundary conditions, one can solve this
equation for the wave function �ð�;�Þ and attempt to
use it to answer a number of interesting cosmological
questions. There are many such questions: Is there a regime
in which the Universe behaves approximately classically?
What is the probability that the Universe expands beyond a
given size a0? What is the probability that the Universe has
a certain energy density at a given value of the scale factor?
What is the probability that the Universe’s history passes
through a given region � of configuration space, charac-
terized by certain ranges of a and �?
Such questions, of necessity, do not involve the specifi-

cation of an external time. Classically, the system’s trajec-
tories in minisuperspace may be written as paths
(�ðtÞ; �ðtÞ), but here t is a convenient but unphysical
parameter that labels the points along the paths—it does
not correspond to the physical time measured by an exter-
nal clock. The absence of a physical time is reflected in the
quantum theory by the fact that the quantum state obeys the
Wheeler-DeWitt equation in Eq. (1.1), not a Schrödinger
equation, and it is this difference that presents such a
challenge to conventional quantization methods.
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Although very plausible heuristic semiclassical methods
exist for formulating and answering the above questions (in
particular, the WKB interpretation [1]), it is of interest to
see whether or not there exists a precise and well-defined
quantum-mechanical scheme underlying these heuristic
methods. We are not looking for high standards of mathe-
matical rigor—just a standard quantum-mechanical frame-
work of operators, inner product structures, etc., obeying
some reasonable requirements. The purpose of this paper is
to show, building on earlier attempts [8–15], that such a
framework exists in the context of the decoherent histories
approach to quantum theory.

B. Inner products and operators for the
Wheeler-DeWitt equation

In the Wheeler-DeWitt Eq. (1.1), H is the Hamiltonian
operator of a minisuperspace model with n coordinates qa,
and is typically of the form

H ¼ �r2 þUðqÞ; (1.3)

wherer is the Laplacian in the minisuperspace metric fab,
which has signature (�þþþ� � � ). It is naturally linked
to the current,

Ja ¼ ið��@!a����@
 
a�Þ; (1.4)

which is conserved

r � J ¼ 0: (1.5)

Closely associated is the Klein-Gordon inner product de-
fined on a surface �:

ð�;�ÞKG ¼ i
Z
�
d�að��@!a����@

 
a�Þ; (1.6)

where d�a is a surface element normal to �. In flat space
with a constant potential, the Wheeler-DeWitt equation is
just the Klein-Gordon equation. Its solutions may be sorted
out into positive and negative frequency in the usual way.
With a little attention to sign, it is then possible to use
components of the current to define probabilities.

However, in general, it is not possible to sort the solu-
tions to the Wheeler-DeWitt equation into positive and
negative frequency. This is one manifestation of the prob-
lem of time, and more elaborate methods are required to
associate probabilities with the Wheeler-DeWitt equation.
There are two main issues: finding an inner product, and
then finding suitable operators.

The issue of finding a suitable positive inner product is
reasonably straightforward and goes by the name of Rieffel
induction, or the induced (or physical) inner product
[9,16]. We consider first the usual Schrödinger inner prod-
uct,

h�1j�2i ¼
Z

dnq��1ðqÞ�2ðqÞ: (1.7)

We then consider eigenvalues of the Wheeler-DeWitt op-

erator

Hj��ki ¼ �j��ki; (1.8)

where k labels the degeneracy. These eigenstates will
satisfy

h��0k0 j��ki ¼ �ð�� �0Þ�ðk� k0Þ; (1.9)

from which it is clear that this inner product diverges when
� ¼ �0. The induced inner product on a set of eigenstates
of fixed � is defined, loosely speaking, by discarding the �
function �ð�� �0Þ. That is, the induced (or physical) inner
product is then defined by

h��k0 j��kiphys ¼ �ðk� k0Þ: (1.10)

This procedure can be defined quite rigorously, and has
been discussed at some length in Refs. [9,16]. It is readily
shown that the induced inner product coincides with the
Klein-Gordon inner product when a division into positive
and negative frequencies is possible, with the signs ad-
justed to make it positive. (This is described in the
Appendix.)
Turning now to the construction of interesting operators,

the interesting dynamical variables associated with the
Wheeler-DeWitt equation are those that commute with
H. This is because the constraint equation is related to
reparametrization invariance—which is reflected in the
absence of a physical time variable—and we seek opera-
tors which are invariant. A wide class of operators com-
muting with H are of the form

A ¼
Z 1
�1

dtBðtÞ; (1.11)

which clearly commutes with H, since

eiHsAe�iHs ¼
Z 1
�1

dtBðtþ sÞ ¼ A: (1.12)

Many examples are given in Refs. [5,11,16]. However,
another way of constructing such operators involves taking
products,

A ¼ Y1
t¼�1

BðtÞ; (1.13)

which may be shown to commute with H using essentially
the same argument [12], but clearly further mathematical
detail is required to give meaning to the infinite product.
(Here, t is the unphysical parameter time.)
Given these prescriptions for inner products and opera-

tors, one may then attempt to construct operators and
probabilities implementing some of the questions men-
tioned above. We will focus on the following general
question: Given a solution� to the Wheeler-DeWitt equa-
tion, what is the probability of finding the system in a
region � of configuration space, or of crossing a surface
�, at any stage in the system’s history? The question is
depicted in Fig. 1.
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Questions involving surface crossings are not unlike
more familiar questions in nonrelativistic quantum me-
chanics, where there is a physical time parameter, but the
key difference in quantum cosmology is that even classi-
cally, a given trajectory will typically cross a fixed surface
more than once. It is precisely these types of issues that
need to be carefully phrased in the quantum theory. While
the operator formalism briefly outlined above has been
used to address such questions [5], the problems of char-
acterizing properties of trajectories and surface crossings
in quantum theory is naturally accommodated in the deco-
herent histories approach to quantum theory.

C. The decoherent histories approach

A more general approach to quantizing and interpreting
the Wheeler-DeWitt equation is provided by the decoher-
ent histories approach to quantum theory, and this ap-
proach will be the focus of this paper [17–25]. In this
approach, probabilities are assigned to histories using the
formula

pð�Þ ¼ TrðC��C
y
�Þ: (1.14)

Here, � is the initial state (in our case a pure state), and C�

is a class operator characterizing the histories � of interest.
In nonrelativistic quantum mechanics, these class opera-
tors are given by time-ordered strings of projection opera-
tors,

C� ¼ P�n
ðtnÞ � � �P�2

ðt2ÞP�1
ðt1Þ (1.15)

(or by sums of such strings). The class operators always
satisfy the condition X

�

C� ¼ 1: (1.16)

For the reparametrization invariant systems considered
here, the definition of the class operators is more subtle,
and we return to this below.

Because of interference between pairs of histories, prob-
abilities cannot always be assigned. To check for interfer-
ence, we therefore consider the decoherence functional

Dð�;�0Þ ¼ TrðC��C
y
�0 Þ: (1.17)

When

Dð�;�0Þ ¼ 0 (1.18)

for all pairs of histories in the set with � � �0, we say that
there is decoherence of the set of histories, and probabil-
ities may be assigned to Eq. (1.14). When there is decoher-
ence, it is easily seen from Eq. (1.16) that the probabilities
in Eq. (1.14) are also given by

pð�Þ ¼ TrðC��Þ ¼ TrðCy��Þ: (1.19)

Decoherence guarantees that this expression is real and
positive, even though the class operators are not positive or
Hermitian operators in general.
The structure of the decoherent histories approach is

very general and may be applied to a wide variety of
situations, given an initial state, class operators, and a
suitable inner product structure. For the application to the
Wheeler-DeWitt system considered here, the initial state is
taken to be a solution to the Wheeler-DeWitt equation, and
the inner product is the induced inner product described
above.
The most crucial element is the specification of the class

operators C�. In nonrelativistic quatum theory, the class
operator is generally a string of projection operators like
Eq. (1.15), or a sum of strings of such operators, but this
basic structure can be generalized in various ways. The
product in the string can be taken to be continuous time
[25]. Also, it is often valuable, sometimes essential, to
allow the projectors to be replaced by more general opera-
tors, such as positive operator valued measures. The class
operators must also properly characterize the histories that
one is interested in. It is not always obvious how to do this,
but useful clues often come from looking at the classical
analogue of the class operator (where all the projectors
commute).
Here, we are interested in histories which enter a region

� of configuration space, or which cross a surface �, but
without regard to time. This absence of a physical time
variable seems particularly challenging, given that time
seems to be central to the definition of nonrelativistic
analogue, Eq. (1.15). Closely related to this is the role of
the constraint equation, Eq. (1.1). As noted already, these
two features are directly related to the underlying symme-
try of the theory—reparametrization invariance—and this
symmetry is respected if the class operators commute with
the constraint,

½H;C�� ¼ 0: (1.20)

Equation (1.20) is in keeping with standard procedures of

FIG. 1. Given a solution � to the Wheeler-DeWitt equation,
what is the probability that the system enters a series of regions
�1;�2 � � � in configuration space, or crosses a surface �, at any
stage in the system’s entire history?
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Dirac quantization [5] and also ensures that the class
operators have a sensible classical limit [12].

Some partially successful attempts to construct such
class operators have been given previously [9–12], but
ran into various problems that have to do with the Zeno
effect and with compatibility with the constraint equation.
The main aim of this paper is to give fully satisfactory
definitions of class operators for quantum cosmological
models and to explore their decoherence properties and
probabilities.

D. Some properties of the Wheeler-DeWitt equation
and the WKB interpretation

To prepare the way for the full decoherent histories
analysis of quantum cosmology, it is important to discuss
some properties of the Wheeler-DeWitt equation and re-
view the commonly used heuristic semiclassical interpre-
tation of the wave function, since a proper quantization
must recover this structure in some limit.

The Wheeler-DeWitt equation in Eq. (1.3) is a Klein-
Gordon equation in a curved configuration space with
indefinite metric fabðqÞ and potential UðqÞ, which can be
positive or negative. The curvature effects of the metric are
not significant in relation to the issues addressed in this
paper, so we will assume for simplicity that the metric is
flat.

The classical constraint equation corresponding to the
Wheeler-DeWitt equation in Eq. (1.3) is

1
4 fab _q

a _qb þU ¼ 0; (1.21)

from which one can see that the classical trajectories are
timelike in the region U > 0 and spacelike in U < 0. (The
timelike direction is that of increasing scale factor, and the
spacelike directions correspond to matter and anisotropic
modes.) The quantum case has analogous features. In
simple models such as Eq. (1.2), the character of the
solutions to the Wheeler-DeWitt equation depends on the
sign of U. For large scale factors, U > 0 and the wave
function is oscillatory, corresponding, very loosely, to a
quasiclassical regime, and for small scale factors, U < 0,
and the wave function is exponential, corresponding to a
classically forbidden regime. However, there are certain
types of models (such as those with an exponential poten-
tial for the scalar field), in which the identification of the
oscillatory and exponential regions depends also on
whether the constant U surfaces are spacelike or timelike
[26]. We will not address this here.

One can also associate a Feynman propagator GF with
the Wheeler-DeWitt operator,

GF ¼
Z 1
0

dte�iHt��t ¼ �i
H � i�

; (1.22)

where �! 0þ . (Numerous propagatorlike objects of this
type have been considered in quantum cosmology [27].)
Locally, on scales smaller than the scale on which the

potential U significantly varies, the propagator GFðq; q0Þ
will be essentially identical in its properties with the analo-
gous object for the relativistic particle for flat space.
Therefore, in the region U > 0, for points q and q0 which
are timelike separated, it will propagate positive frequency
solutions to the future and negative frequency solutions to
the past. It will be exponentially suppressed for initial and
final points q and q0 which are spacelike separated (this is
the familiar ‘‘propagation outside the lightcone’’ effect).
For U < 0, similar statements hold but with timelike and
spacelike reversed. Similar features hold on larger scales in
a semiclassical approximation. These properties are im-
portant to understand the class operator constructed below.
Very plausible but heuristic answers to questions con-

cerning crossing surfaces and entering regions are readily
found using the WKB approximate solutions to the
Wheeler-DeWitt equation and the Klein-Gordon current
[1]. In the oscillatory regime, the Wheeler-DeWitt equa-
tion may be solved using the WKB ansatz

� ¼ ReiS; (1.23)

where the rapidly varying phase S obeys the Hamilton-
Jacobi equation

ðrSÞ2 þU ¼ 0; (1.24)

and the slowly varying prefactor R obeys

r � ðjRj2rSÞ ¼ 0: (1.25)

The latter equation is just current conservation for the
WKB current,

J ¼ jRj2rS: (1.26)

Wave functions of the WKB form in Eq. (1.23) indicate a
correlation between position and momenta of the form

p ¼ rS; (1.27)

and this suggests that the wave function in Eq. (1.23)
corresponds to an ensemble of classical trajectories satis-
fying Eq. (1.27). The current J may then be used to define a
measure on this set of trajectories. For example, we con-
sider a surface � and choose the normal na to the surface
so that n � rS > 0. Then, the probability of the system
crossing the surface is taken to be

pð�Þ ¼
Z
�
dn�1qnaJa: (1.28)

Of particular interest here is the probability of entering a
region �. This is clearly related to the flux at the boundary
of the region. The current will typically intersect the
boundary of � twice. However, we can split the boundary
� of � into two sections: �in at which the current is
ingoing and �out at which the current is outgoing. The
probability of entering �may then be expressed in the two
forms
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pð�Þ ¼ �
Z
�in

dn�1qnaJa ¼
Z
�out

dn�1qnaJa; (1.29)

where we have defined the normal na to point outwards.
See Fig. 2. These two forms are equivalent, since the
current is locally conserved.

Typically, little is said of the regions in which the wave
function is exponential, except that they are similar to
tunneling regions in nonrelativistic quantum mechanics,
so they are classically forbidden in some sense. However,
the wave function is not necessarily small in these regions,
so there is surely more to it than this. In Ref. [28], it was
noted that, unlike the oscillatory regions, the exponential
regions do not indicate a correlation between position and
momenta of the form in Eq. (1.27), and it seems that this
should be significant in some way.

While the WKB interpretation is very plausible and
adequate for most situations of interest, it leaves many
questions unanswered. The main issue is to understand
the operator origin of these probabilities, in terms of the
language of operators commuting withH developed above.
Furthermore, what can one say about superpositions of
WKB states? Can interference between them be neglected?
Also, what can one say about the exponential, classically
forbidden regions? Is there a more precise way of saying
that they are nonclassical?

E. This paper

The purpose of this paper is to present a decoherent
histories quantization of the Wheeler-DeWitt equation,
and, in particular, to exhibit exactly defined class operators
which characterize histories entering regions of configura-
tion space or crossing surfaces, without reference to an
external time. The key idea is to use a complex potential to
define the class operator for not entering a region � in

configuration space. In particular, we take the class opera-
tor for not entering to be the S matrix describing scattering
off a complex potential localized in �. This turns out to
have all of the right properties and to give physically
sensible results for decoherence and probabilities.
In Sec. II, to explain and motivate the use of a complex

potential, we review the use of such potentials in the
decoherent histories analysis of the arrival time problem
in nonrelativistic quantum mechanics. In Sec. III, we de-
scribe the construction of class operators for the Wheeler-
DeWitt equation using a complex potential. The properties
of the class operator for entering a region � are described
in Sec. IV. The class operator has a sensible classical limit
which, crucially, registers just one intersection of a trajec-
tory with a surface, even when the trajectory intersects
twice or more. In the quantum case, the class operator is
an operator describing the ingoing flux across the boundary
of the region, an expected result on semiclassical grounds,
and is closely related to an intersection number operator.
In Sec. V, some simple one- and two-dimensional ex-

amples are considered in detail to confirm the properties of
the class operator outlined in Sec. IV. We also confirm that
the formalism gives sensible and expected results for sur-
face crossings of the relativistic particle in flat space. In
Sec. VI, we consider the WKB regime and show that the
decoherent histories analysis reproduces the expected heu-
ristic interpretation of the wave function. We summarize
and conclude in Sec. VII. Some properties of the inner
product structure of the Klein-Gordon equation are sum-
marized in the Appendix.

II. THE ARRIVAL TIME PROBLEM IN
NONRELATIVISTIC QUANTUM THEORY

In this section, we summarize some of the key features
of the arrival time problem in nonrelativistic quantum
mechanics [29]. These details are very relevant to the
quantum cosmology case and, in particular, motivate the
use of complex potentials in the definition of class
operators.
In the one-dimensional statement of the arrival time

problem, one considers an initial wave function jc i con-
centrated in the region x > 0 and consisting entirely of
negative momenta. The question is then to find the proba-
bility�ð�Þd� that the particle crosses x ¼ 0 between time
� and �þ d�. See Fig. 3. The canonical answer is the
current density

Jð�Þ ¼ ð�1Þ
2m
hc �jðp̂�ðx̂Þ þ �ðx̂Þp̂Þjc �i; (2.1)

where jc �i is the freely evolved state. This has the correct
semiclassical limit, but can be negative for certain types of
states consisting of superpositions of different momenta
(backflow states). It is of interest to explore whether this
simple semiclassical result emerges from more elaborate
measurement-based or axiomatic schemes. Many such

FIG. 2. A WKB wave function with phase S corresponds to a
set of classical trajectories with tangent vector rS. The proba-
bility for entering a region � is the amount flux of the wave
function intersecting �. It may be expressed either in terms of
the ingoing flux across �in or equally, in terms of the outgoing
flux across �out.
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schemes naturally lead to the use of a complex potential
�iVðxÞ in the Schrödinger equation [30], where

VðxÞ ¼ V0	ð�xÞ: (2.2)

With such a potential, the state at time � is

jc ð�Þi ¼ expð�iH�� V0	ð�xÞ�Þjc i; (2.3)

where H is the free Hamiltonian. The idea here is that the
part of the wave packet that reaches the origin during the
time interval [0; �] should be absorbed, so that hc ð�Þjc ð�Þi
is the probability of not crossing x ¼ 0 during the time
interval [0; �]. The probability of crossing between � and
�þ d� is then

�ð�Þ ¼ � d

d�
hc ð�Þjc ð�Þi: (2.4)

This may be approximately evaluated in the limit V0 � E
(where E is the typical energy scale), which is the limit of
negligible reflection off the complex potential. The result is

�ð�Þ ¼ 2V0

Z �

0
dte�2V0ð��tÞJðtÞ: (2.5)

The probability for crossing during a finite interval [�1; �2]
is then given by

pð�2; �1Þ ¼
Z �2

�1

d��ð�Þ; (2.6)

and if this time interval is sufficiently large compared to
1=V0, we have

pð�2; �1Þ �
Z �2

�1

dtJðtÞ; (2.7)

which means that the dependence on the potential drops

out entirely at sufficiently coarse grained scales, and there
is agreement with semiclassical expectations involving the
current JðtÞ.
In the decoherent histories analysis of the arrival time

problem [31,32], we first consider the construction of the
class operator Cnc for not crossing the origin during the
finite time interval [0; �]. We split the time interval into N
parts of size �, and the class operator is provisionally
defined by

Cnc ¼ Pe�iH�P � � � e�iH�P; (2.8)

where there are N þ 1 projections P ¼ 	ðx̂Þ onto the posi-
tive x axis and N unitary evolution operators in between.
One might be tempted to take the limit N ! 1 and �! 0,
but this yields physically unreasonable results. This limit
actually yields the restricted propagator in x > 0,

Cnc ¼ grð�; 0Þ ¼ Pe�iPHP�: (2.9)

This object is also given by the path integral expression

hx1jgrð�; 0Þjx0i ¼
Z
r
Dx expðiSÞ; (2.10)

where the integral is over all paths from xð0Þ ¼ x0 to
xð�Þ ¼ x1 that always remain in xðtÞ> 0. However, the
class operator defined by Eq. (2.9) has a problem with the
Zeno effect—it consists of continual projections onto the
region x > 0, and as a result the wave function never leaves
the region. This is reflected in the fact that the restricted
propagator gr is unitary in the Hilbert space of states with
support only in x > 0. This is a serious difficulty which has
plagued a number of earlier works in this area [33–35].
To avoid the Zeno effect, the key is to keep � finite, and,

in particular, standard wisdom suggests that � > 1=�H,
where H is the free particle Hamiltonian. The class opera-
tor in Eq. (2.8) is not easy to work with for finite �, but
fortunately, an extremely useful result of Echanobe et al.
comes to the rescue [36]. They argued that the string of
operators in Eq. (2.8) is in fact approximately equivalent to
evolution in the presence of the complex potential �iV
introduced above. That is,

Pe�iH�P � � � e�iH�P � expð�iH0�� V0	ð�x̂Þ�Þ:
(2.11)

They argued that this is valid for �H� V0 and V0�� 1,
but there is evidence that this connection is valid more
generally [37]. In any event, it strongly suggests that the
class operator Cnc, normally defined by a string of projec-
tion operators, is justifiably defined instead using a com-
plex potential. That is, we define

Cnc ¼ expð�iH0�� V0	ð�x̂Þ�Þ: (2.12)

The subsequent decoherent histories analysis was de-
scribed in detail in Ref. [31]. The corresponding class
operator for crossing during a time interval [�1; �2] was
shown to be

FIG. 3. The quantum arrival time problem in nonrelativistic
quantum mechanics. Given an initial state localized entirely in
x > 0 and consisting entirely of negative momenta, what is the
probability that the particle crosses the origin during the time
interval [t1; t2]?
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Ccð�2; �1Þ ¼
Z �2

�1

dte�iH0ð��tÞVe�iH0t�Vt; (2.13)

and again in the approximation V0 � E and for time
intervals greater than 1=V0, this may be shown to have
the simple and appealing form

Ccð�2; �1Þ �
Z �2

�1

dte�iH� ð�1Þ
2m
ðp̂�ðx̂tÞ þ �ðx̂tÞp̂Þ;

(2.14)

which is now independent of the V0. [These definitions of
class operators differ by a factor of expð�iH�Þ from those
defined in Sec. I C, but this does not make any difference in
the decoherence functional and probabilities.] With this
class operator, one can show that there is decoherence of
histories for a variety of interesting initial states, such as
wave packets (but not for superposition states with back-
flow), and for such states, the general result Eq. (1.19)
implies that the probability for crossing is simply

pð�2; �1Þ ¼ h�jCcð�2; �1Þj�i; (2.15)

which agrees precisely with the semiclassically expected
result, Eq. (2.7).

In summary, the decoherent histories analysis of the
arrival time problem in nonrelativistic quantum mechanics
indicates that it is reasonable to define class operators for
not entering a space time region using a complex potential,
as in Eq. (2.12), and that such a definition gives a sensible
semiclassical limit, independent of the potential, at suffi-
ciently coarse grained scales.

III. CONSTRUCTIONOF THE CLASS OPERATORS
USING A COMPLEX POTENTIAL

We now come to the central issue concerning this paper,
which is the construction of class operators for the deco-
herent histories analysis of the Wheeler-DeWitt equation.

A. Class operators for a single region

We seek class operators for the system in Eq. (1.3)
describing histories which enter or do not enter the region
�, without specification of the time at which they enter. It
is easiest to first focus on the class operator �C� for not
entering, and the class operator for entering is then given
by

C� ¼ 1� �C�: (3.1)

The earliest attempts to define class operators for the
Wheeler-DeWitt equation involved defining �C� as a sort of
propagator obtained by integrating restricted propagators
of the form in Eq. (2.10) over an infinite range t (now
regarded as the unphysical parameter time) [9–11].
However, in addition to having problems with the Zeno
effect (which was not in fact appreciated in these earlier
works), such constructions are difficult to reconcile with

the constraint equation, and some ad hoc modifications of
the basic construction were required to give sensible
answers.
A rather different approach to constructing �C� was

given in Ref. [12]. This was again problematic, but we
review the construction here, since it is readily modified to
yield a successful definition of the class operators. We
denote by P the projector onto � and �P the projector
onto the outside of �. Our provisional proposal for the
class operator for trajectories not entering � is the time-
ordered infinite product,

�C � ¼
Y1

t¼�1
�PðtÞ; (3.2)

where t is the unphysical parameter time. Subject to a more
precise definition, given shortly, this object has the re-
quired properties. It is a string of projectors. Classically,
it is equal to one for trajectories which remain outside � at
every moment of parameter time. Also, it commutes with
H, at least formally.
To define this more precisely, we first consider the

product of projectors at a discrete set of times, t1, t1 þ �,
t1 þ 2�; . . . ; t1 þ n� ¼ t2. We define the intermediate
quantity �C�ðt2; t1Þ as the continuum limit of the product
of projectors,

�C �ðt2; t1Þ ¼ lim
�!0

�Pðt2Þ �Pðt2 � �Þ . . . �Pðt1 þ �Þ �Pðt1Þ; (3.3)

where the limit is n! 1, �! 0 with t2 � t1 fixed. The
desired class operator is then

�C � ¼ lim
t2!1;t1!�1

�C�ðt2; t1Þ: (3.4)

The class operator is clearly closely related to the re-
stricted propagator gr [the generalization of Eq. (2.10)] in
the region outside �, since we have

�C �ðt2; t1Þ ¼ eiHt2grðt2; t1Þe�iHt1 ; (3.5)

and therefore

�C � ¼ lim
t2!1;t1!�1

eiHt2grðt2; t1Þe�iHt1 : (3.6)

The class operator commutes withH. This is because, from
Eq. (3.5)

eiHs �C�ðt2; t1Þe�iHs ¼ eiHðt2þsÞgrðt2; t1Þe�iHðt1þsÞ: (3.7)

This becomes independent of s as t2 ! 1, t1 ! �1,
hence

½H; �C�� ¼ 0: (3.8)

The problem with this definition, however, is that it
suffers from the Zeno effect, exactly like the analogous
expression in Eq. (2.8) (in the limit �! 0) in the non-
relativistic arrival time problem. But the key idea here is
that we may also get around the problem in the same way,
using a complex potential. That is, we ‘‘soften’’ the re-
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stricted propagator and make the replacement

grðt2; t1Þ ! expð�iHðt2 � t1Þ � Vðt2 � t1ÞÞ; (3.9)

where VðqÞ ¼ V0f�ðqÞ. Here, V0 > 0 is a constant, and
f�ðqÞ is the characteristic function of �; so is 1 in � and 0
outside it. Or we may equivalently write V ¼ V0P, where
recall, P is the projector onto �. This means that our new
definition for the class operator is

�C � ¼ lim
t2!1;t1!�1

eiHt2 expð�iðH � iVÞðt2 � t1ÞÞe�iHt1 :

(3.10)

The class operator thus defined has an appealing form: it is
the S matrix for the system with the Hamiltonian in
Eq. (1.3) scattering off the complex potential V. As re-
quired, it commutes with H. This is the most important
definition of the paper.

Now, we make an important observation. The class
operator derived above has been defined as a time-ordered
product of operators in which the direction of parameter
time increases from right to left. However, since parameter
time is unphysical, there is absolutely no reason why the
parametrization should not run in the opposite direction.
This produces an operator which is the Hermitian conju-
gate of Eq. (3.10). As one can see from Eq. (1.19), this
makes no difference in the final expressions for probabil-
ities. In fact, it is most natural to define the class operator in
such a way that it is invariant under reversing the direction
of parametrization. We thus define a modified class opera-
tor which is Hermitian:

�C 0� ¼ 1
2ð �C� þ �Cy�Þ: (3.11)

In what follows, for simplicity, wewill primarily work with
the non-Hermitian class operator in Eq. (3.10) and revert to
the Hermitian one in Eq. (3.11), where appropriate. The
difference between them will turn out to be significant only
for the class operator for two or more regions.

We now cast the above class operator in a more usable
form. The following identities are readily derived:

e�iðH�iVÞðt2�t1Þ ¼ e�iHðt2�t1Þ

�
Z t2

t1

dte�iHðt2�tÞVe�iðH�iVÞðt�t1Þ

(3.12)

¼ e�iHðt2�t1Þ �
Z t2

t1

dte�iðH�iVÞðt2�tÞVe�iHðt�t1Þ: (3.13)

Inserting the second expression into the first, we obtain

e�iðH�iVÞðt2�t1Þ ¼ e�iHðt2�t1Þ �
Z t2

t1

dte�iHðt2�tÞVe�iHðt�t1Þ

þ
Z t2

t1

dt
Z t

t1

dse�iHðt2�tÞVe�iðH�iVÞðt�sÞ

� Ve�iHðs�t1Þ: (3.14)

Inserting in the expression for the class operator (3.10) and
taking the limit, we obtain

�C � ¼ 1�
Z 1
�1

dtVðtÞ

þ
Z 1
�1

dt
Z t

�1
dseiHtVe�iðH�iVÞðt�sÞVe�iHs:

(3.15)

The class operator for entering the region is therefore given
by

C� ¼
Z 1
�1

dtVðtÞ

�
Z 1
�1

dt
Z t

�1
dseiHtVe�iðH�iVÞðt�sÞVe�iHs:

(3.16)

This is an exact and useful form for the class operator for
entering�, and it is easily confirmed that it is of the form in
Eq. (1.11), so it commutes with H.
Now, we use a simple but useful semiclassical approxi-

mation. Noting that V ¼ V0P, where P, as we recall,
projects into �, note that the expression

Ve�iðH�iVÞðt�sÞV (3.17)

describes propagation with the complex Hamiltonian H �
iV between two points that lie inside �. This can easily be
represented by a path integral in which it seems plausible
that the dominant paths between these two end points will
lie entirely inside �, as long as the boundary is reasonably
smooth and the semiclassical paths are not too irregular. If
this is true, we may replace V ¼ V0P by the constant
complex potential V ¼ V0, that is,

Ve�iðH�iVÞðt�sÞV � Ve�iðH�iV0Þðt�sÞV: (3.18)

Propagation with a complex potential in Eq. (3.17) will
also involve reflection off the boundary of the region, in
which case the semiclassical approximation in Eq. (3.18)
may fail. However, reflection is small for sufficiently small
V0 [30,31], and we will see this in more detail in Sec. V.
Hence we expect the semiclassical approximation in
Eq. (3.18) to hold for small V0.
With this useful approximation (which does not affect

the fact that the class operator commutes with H), we have

C� ¼
Z 1
�1

dtVðtÞ �
Z 1
�1

dt
Z t

�1
dsVðtÞVðsÞe�V0ðt�sÞ:

(3.19)

Again using V ¼ V0P, this is easily rewritten:

C� ¼
Z 1
�1

dtPðtÞ
Z t

�1
dsV0e

�V0ðt�sÞ _PðsÞ: (3.20)

This is the main result of the paper: a class operator
commuting with H, describing histories which enter the
region �. It is valid in the approximation in Eq. (3.18),
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which is sufficient to cover the key case of histories which,
classically, intersect the boundary of � twice.

For systems whose classical paths intersect the surfaces
of interest more than 2 times, the semiclassical approxi-
mation in Eq. (3.18) will not be valid, but the exact result in
Eq. (3.16) may still be used. It may also be of interest to
explore higher order semiclassical approximations ob-
tained by iterations of the basic result in Eq. (3.14). This
will not be explored here.

B. Class operators for two regions

We now extend the above results to the case of histories
which enter two regions, �1, �2, where we define P1 and
P2 to be the projection operators onto these regions. We
proceed as follows. The class operator in Eq. (3.15) is
defined for any complex potential V, so we may use a
potential

V ¼ V1 þ V2 ¼ V10P1 þ V20P2; (3.21)

which has support only in the regions �1, �2. Here, V10

and V20 are positive constants. This potential inserted in
Eq. (3.15) defines the class operator �C�1�2

for histories

which remain outside of both �1 and �2. The negation of
this class operator therefore describes histories which enter
�1 or �2, or both, and we may write

�C �1�2
¼ 1� C�1

� C�2
� C�1�2

: (3.22)

Here, C�1
and C�2

are the class operators for entering the

regions �1, �2 and are given by expressions of the form in
Eq. (3.16). We may thus deduce the form of the class
operator C�1�2

for entering both regions.

The class operator in Eq. (3.15) with the potential in
Eq. (3.21) is

�C�1�2
¼ 1�

Z 1
�1

dtðV1ðtÞ þ V2ðtÞÞ

þ
Z 1
�1

dt
Z t

�1
dseiHtðV1 þ V2Þ

� e�iðH�iðV1þV2ÞÞðt�sÞðV1 þ V2Þe�iHs: (3.23)

It seems reasonable to make the semiclassical approxima-
tions

V1e
�iðH�iðV1þV2ÞÞðt�sÞV1 � V1e

�iðH�iV1Þðt�sÞV1; (3.24)

V2e
�iðH�iðV1þV2ÞÞðt�sÞV2 � V2e

�iðH�iV2Þðt�sÞV2: (3.25)

These approximations are very similar to Eq. (3.18).
Equation (3.24) is essentially the notion that the propagator
between two points in �1 will involve negligible contribu-
tion from paths that enter�2. A similar statement is true for
Eq. (3.25). With these approximations, we can easily iden-
tify the terms C�1

and C�2
, and we deduce

C�1�2
¼�

Z 1
�1

dt
Z t

�1
dseiHtV2e

�iðH�iðV1þV2ÞÞðt�sÞV1e
�iHs

�
Z 1
�1

dt
Z t

�1
dseiHtV1e

�iðH�iðV1þV2ÞÞðt�sÞV2e
�iHs:

(3.26)

To estimate the propagator

V2e
�iðH�iðV1þV2ÞÞðt�sÞV1; (3.27)

we need a semiclassical approximation more elaborate
than Eq. (3.18), since it involves propagation from an
initial point in �1 with potential V1, to a final point in �2

with potential V2 but with zero complex potential outside
these regions. The path decomposition expansion [38–40]
is naturally adapted to this problem, since it is a tool for
breaking up a propagator into its properties in different
spatial regions. We will simply write down the result of
using this expansion, with some brief justification:

P2e
�iðH�iðV1þV2ÞÞðt�sÞP1 �

Z t

s
ds0

Z t

s0
dt0P2e

�iHðt�t0Þ

� _P2e
�iHðt0�s0Þ _P1e

�iHðs0�sÞP1

� expð�V20ðt� t0Þ
� V10ðs0 � sÞÞ: (3.28)

This expression is actually exact when the complex poten-
tial is absent, as is easily verified. Since _P1 and _P2 repre-
sent the fluxes at the boundary of�1 and�2, one can easily
identify the sections of the propagation which, semiclassi-
cally, are in �1, outside �1 and �2, and in �2. The
exponential suppression factors involving the complex
potential for propagation inside �1 and �2 are inserted
using a semiclassical approximation along the lines of
Eq. (3.18). Inserting in Eq. (3.26), we thus obtain

C�1�2
¼ �

Z 1
�1

dt
Z t

�1
ds

Z t

s
ds0

Z t

s0
dt0V2ðtÞ _P2ðt0Þ _P1ðs0ÞV1ðsÞ expð�V20ðt� t0Þ � V10ðs0 � sÞÞ

�
Z 1
�1

dt
Z t

�1
ds

Z t

s
ds0

Z t

s0
dt0V1ðtÞ _P1ðt0Þ _P2ðs0ÞV2ðsÞ expð�V10ðt� t0Þ � V20ðs0 � sÞÞ: (3.29)

IV. PROPERTIES OF THE CLASS OPERATORS

We now examine the properties of the class operators in Eqs. (3.20) and (3.29) and confirm that they give the desired
results.
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A. Single region

It is easy to show that the class operator for a single
region, Eq. (3.20), has a sensible classical limit.
Classically, PðtÞ is a function on classical trajectories
with PðtÞ ¼ 1 when the classical trajectory is in � and is
zero otherwise. Suppose a given trajectory qaðtÞ enters� at
some stage in its history, so it intersects the boundary twice
[recalling we have essentially assumed no more than two
intersections in the semiclassical approximation in
Eq. (3.18)]. For a given choice of parametrization of the
trajectory, it enters � at parameter time ta and leaves at
time tb > ta (see Fig. 4). (We may parametrize it in the
opposite direction, with the same ultimate result.) Then,
the derivative of PðsÞ is

_PðsÞ ¼ �ðs� taÞ � �ðs� tbÞ; (4.1)

and we have

C� ¼
Z tb

ta

dt
Z t

ta

dsV0e
�V0ðt�sÞ½�ðs� taÞ � �ðs� tbÞ�:

(4.2)

Since s 	 t 	 tb, the second � function in Eq. (4.2) makes
no contribution to the integral. This is exactly the desired
property—the expression for C� registers only the first
intersection of the trajectory with the boundary, but not
the second intersection. The integral is easily evaluated
with the result

C� ¼ 1� e�V0ðtb�taÞ: (4.3)

This is approximately 1, as required, as long as

V0ðtb � taÞ � 1: (4.4)

We now give the broad picture in the quantum case and
confirm some of the details in some simple models in the
next section. Suppose we operate with C� on an eigenstate
j��i of H. The time integrals in Eq. (3.20) are easily
carried out and the result is

C�j��i ¼ 2
V0�ðH � �ÞPGV
_Pj��i; (4.5)

where

GV ¼
Z 1
0

dte�iðH��Þt�V0t; (4.6)

¼ �i
H � �� iV0

; (4.7)

and we have used

�ðH � �Þ ¼ 1

2


Z 1
�1

dte�iðH��Þt: (4.8)

The _P term is a current operator on the boundary � of �
and may be written as

_P ¼ i½H;P� ¼ �p̂n��ðq̂Þ � ��ðq̂Þp̂n; (4.9)

where

��ðq̂Þ ¼
Z
�
dn�1qjqihqj (4.10)

is a �-function operator in the surface �, and p̂n ¼ nap̂a is
the component of the momentum operator normal to �
with na as the outward pointing normal. The normal na

will depend on q in general, so there may be an operator
ordering issue in making p̂n Hermitian. The difference
between different orderings will involve a term of the
form ran

a, essentially the extrinsic curvature of �, and
this will be small if � is sufficiently large and its boundary
reasonably smooth. Note that it is sometimes also conve-
nient to write _P as

_P ¼ i
Z
�
dn�1qjqi@$nhqj: (4.11)

It is very useful to separate the current operator at the
boundary into ingoing and outgoing parts according to the
sign of p̂n at the boundary

_P ¼ ð _PÞin � ð _PÞout; (4.12)

where ð _PÞin consists of the components of _P with incoming
momentum

ð _PÞin ¼ �p̂n	ð�p̂nÞ��ðq̂Þ � ��ðq̂Þp̂n	ð�p̂nÞ (4.13)

and similarly for ð _PÞout. Examples of these expressions, in
particular, models will be given in the following sections.
The restriction to positive or negative pn means that it is
generally difficult to express ð _PÞin and ð _PÞout in the form in
Eq. (4.11), involving the derivative p̂n ¼ �i@n, unless
operating on a state (such as aWKB state) with simplifying
properties. Note that these definitions require only that the
local flux operator on a given surface can be split into
ingoing and outgoing parts. To do so globally on a family
of surfaces is generally impossible, essentially due to the
problem of time, but fortunately this is not required here.
The quantity GV has the form of a Feynman propagator,

Eq. (1.22), with V0 playing the role of the ‘‘i� prescrip-
tion’’, as long as V0 is sufficiently small (in comparison to
an appropriate energy scale contained in H, such as p0 in

FIG. 4. A classical trajectory qaðtÞ intersecting � enters at
parameter time ta and leaves at parameter time tb.
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the case of the Klein-Gordon equation). We therefore ex-
pect it to have properties similar to GF, as described in
Sec. I D.

However, V0 is not set to zero exactly, and this in fact
means that GV has two properties not possessed by GF.
First, the nonzero V0 produces a suppression for widely
separated initial and final points. In a path integral repre-
sentation of GVðq; q0Þ, the sum will be dominated by
classical paths from q to q0, to which one may associate
the total parameter time � of the path. From the integral
representation in Eq. (4.6), it can be seen that GV will have
an overall exponential suppression factor of the form
expð�V0�Þ. Thus, propagation with GV will suppress con-
figurations q and q0 connected by classical trajectories of
parameter time duration of greater than 1=V0. Second,
recalling that the class operator is closely related to the S
matrix for scattering off a complex potential, there will be
some reflection involved and this appears in properites of
GV ; it will not exactly possess the Feynman properties of
propagating positive frequencies to the future negative
frequencies to the past, but may, for example, propagate
some positive frequencies to the past. However, this ‘‘non-
Feynman’’ propagation will be small for sufficiently small
V0, as we will see in the next section, so this possibility will
be ignored.

These properties of GV are crucial to understanding the
properties of C�. First, note that

hqjPGV
_Pj��i ¼ �i

Z
�
dn�1q0f�ðqÞGVðq; q0Þ@

$
n��ðq0Þ:

(4.14)

In this expression, the propagator GVðq; q0Þ propagates
from the boundary � to a point q on the interior. The
fact that GV is, approximately, a propagator of the
Feynman type means two things. First, there will be initial
and final points q, q0 for which the propagator is very small
(due to propagation outside the lightcone, discussed in
Sec. I D). Second, when it is not small, one would expect
it to involve only ingoing modes at the boundary (to the
extent that reflection is ignored). Hence, the PGV terms
effectively restrict the current operator _P at the boundary to
ingoing modes only—exactly the result we are looking for.
We therefore replace _P with the current operator ð _PÞin
involving ingoing modes only:

C�j��i ¼ 2
V0�ðH � �ÞPGVð _PÞinj��i: (4.15)

Now, note that since the PGV terms have done their job
of selecting the ingoing modes, they may be eliminated.
More precisely, we write P ¼ 1� �P, where �P is the pro-
jector onto the region outside �, and noting that

V0�ðH � �ÞGV ¼ �ðH � �Þ; (4.16)

we find

C�j��i ¼ 2
�ðH � �Þð _PÞinj��i
� 2
�ðH � �Þ �PGVð _PÞinj��i: (4.17)

Consider the second term on the right-hand side. It consists
of ingoing modes at the boundary of� propagated withGV

to a final point which is outside �. Semiclassically, this
corresponds to paths which have to traverse the entire
width of �, so if � is sufficiently large, this will take a
long parameter time � and, as discussed above, GV will
contain a suppression factor of expð�V0�Þ in comparison
to the first term in Eq. (4.17). This is exactly analogous to
the suppression of the second term in the classical case,
Eq. (4.3). We thus deduce that

C�j��i � 2
�ðH � �Þð _PÞinj��i: (4.18)

Note that the approximation leading to dropping the sec-
ond term in Eq. (4.17) also ensures that the result is
independent of V0, like the classical case in the appropriate
limit. Equation (4.18) is the main result of this section.
Equation (4.18) may also be expressed in terms of ð _PÞout

defined in Eq. (4.12). To see this, note that, since _P ¼
i½H;P�, we have

�ðH � �0Þ _Pj��i ¼ ið�0 � �Þ�ðH � �0ÞPj��i: (4.19)

This is zero for � ¼ �0, as long as h�jPj�i is well defined,
where j�i are eigenstates of H. (It may not be well-defined
if P projects onto an infinite region; see the Appendix.)
Equation (4.12) then implies

�ðH � �Þð _PÞinj��i ¼ �ðH� �Þð _PÞoutj��i; (4.20)

so Eq. (4.18) may be expressed in terms of either the
ingoing or outgoing flux or both.
It is also useful to note that the right-hand side of

Eq. (4.18) may be written as

2
�ðH� �Þð _PÞinj��i ¼ I�j��i; (4.21)

where

I� ¼
Z 1
�1

dteiHtð _PÞine�iHt: (4.22)

This is an intersection number operator for ingoing flux at
the boundary � of �. Hence, the class operator is essen-
tially the intersection number I�, and it clearly commutes
with H. It is classically equal to 1 for trajectories with
ingoing flux at � (with no more than two intersections of
the boundary, in the approximation we are using), and zero
for trajectories not intersecting�. Of course, one may have
guessed this approximate formula for the class operator,
but a class operator is fundamentally defined as a product
of projectors (or quasiprojectors) and the derivation given
here makes it clear how this obvious guess arises from the
fundamental definition. Note also that the class operator is
Hermitian in this case, so there is no need to consider the
modified propagator in Eq. (3.11).
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The form in Eq. (4.18) may be used to check for deco-
herence of histories in specific models, and we will see this
later. When there is decoherence of histories, the proba-
bilities are given by the average of a single class operator,
Eq. (1.19), which in this case reads

h��0 jC�j��i ¼ 2
h��jð _PÞinj��i�ð�� �0Þ: (4.23)

Following the induced inner product prescription, we drop
the � function on the right and then set � ¼ �0 ¼ 0, so the
probability in terms of a solution j�i of the Wheeler-
DeWitt equation is

h�jC�j�iphys ¼ 2
h�jð _PÞinj�i: (4.24)

This is essentially the ingoing Klein-Gordon flux on the
boundary of�, as expected. (The factor of 2
 relates to the
induced inner product as described in the Appendix.)

A more detailed calculation in a specific model is re-
quired to see that the above argument works. In particular,
it is necessary to show that the various requirements on V0

can be simultaneously met—it has to be small enough for
GV to function as a Feynman propagator and for reflection
to be neglected, but large enough to ensure independence
of V0 and the dropping of the second term in Eq. (4.17). We
will see in the models below that this is indeed possible.

B. Two regions

We first consider the class operator in Eq. (3.29) for two
regions in the classical case. Suppose a classical trajectory
enters �1 at ta, leaves at tb, enters �2 at tc and leaves at td
(with no more than two crossings of the boundaries of each
region). See Fig. 5. Then, we have

_P2ðt0Þ _P1ðs0Þ ¼ ½�ðt0 � tcÞ � �ðt0 � tdÞ�
� ½�ðs0 � taÞ � �ðs0 � tbÞ�: (4.25)

It is easy to see that only one of the two terms in Eq. (3.29)
contributes; the other term corresponds to the time-
reversed trajectory. One can also see that the � functions
at t0 ¼ td and s0 ¼ ta make no contribution to the integral.
Hence, the only contribution comes from the time of

departure tb from�1 and the time tc of entering�2, clearly
sufficient to characterize histories which spend time in
both regions without overcounting. Evaluating the integral,
we find

C�1�2
¼ ð1� e�V20ðtd�tcÞÞð1� e�V10ðtb�taÞÞ; (4.26)

which is approximately 1, as required, as long as the
trajectory spends sufficiently long in each region. For
trajectories entering only one region, the _P term associated
with the other region is zero, so the class operator is zero.
Classically, the class operator therefore has all the desired
properties.
In the quantum case, we follow steps similar to the case

for one region considered above. We consider the action of
the class operator C�1�2

, defined in Eq. (3.29) on an

eigenstate j��i of H. Changing variables from s, s0, t0 to

�s ¼ t� s; �s0 ¼ s0 � s; �t0 ¼ t� t0; (4.27)

the t integral may be done with the result

C�1�2
j��i ¼ �2


Z 1
0

d�s
Z �s

0
d�s0

Z �s� �s0

0
d�t0 expð�V20 �t

0 � V10 �s
0Þ�ðH� �ÞV2e

�iH�t0 _P2e
�iHð �s��t0��s0Þ _P1e

�iH �s0V1j��iei��s

þ ð1$ 2Þ: (4.28)

Now, note that

_P 1e
�iH �s0V1j��i � �V10ð _P1Þoute�iH �s0P1j��i � �V10e

�i��s0 ð _P1Þoutj��i: (4.29)

The first approximation arises, because the combination
_P1 expð�iH �s0ÞP1 is propagation from inside �1 to the
boundary with only positive �s0, which means that there
are only outgoing modes at the boundary. The second
approximation arises because, once the restriction is

made to outgoing modes, the projection P1 may be
dropped [similar to dropping the second term in
Eq. (4.17)]. Similar approximations may be made with
the terms �ðH � �ÞV2e

�iH�t0 _P2. We thus obtain

FIG. 5. A classical trajectory qaðtÞ intersecting �1 and �2

enters �1 at ta, leaves at tb, enters �2 at tc, and leaves at td.
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C�1�2
j��i ¼ 2
V10V20

Z 1
0

d�s
Z �s

0
d�s0

Z �s��s0

0
d�t0

� expð�V20 �t
0 � V10 �s

0Þ�ðH � �Þð _P2Þin
� e�iðH��Þð �s��t0� �s0Þð _P1Þoutj��i þ ð1$ 2Þ:

(4.30)

The integrals may be carried out with the result,

C�1�2
j��i ¼ 2
�ðH� �Þ

� ½ð _P2ÞinGFð�Þð _P1Þout þ ð1$ 2Þ�j��i;
(4.31)

where GFð�Þ is the Feynman propagator at eigenvalue �,

GFð�Þ ¼
Z 1
0

dte�iðH���i�Þ ¼ �i
H � �� i�

: (4.32)

We may again attempt to interchange ingoing and outgoing
flux operators, along the lines of Eq. (4.20). However, since

ðH � �ÞGFð�Þ ¼ �i; (4.33)

there are extra terms of the form ð _P2ÞinP1 and ð _P1ÞinP2, but
these are zero since they are products of operators localized
about spatially distinct regions. We thus find

C�1�2
j��i ¼ 2
�ðH� �Þ

� ½ð _P2ÞinGFð�Þð _P1Þin þ ð1$ 2Þ�j��i
(4.34)

(or equivalently in terms of outgoing flux).
At this stage it is of interest to examine the difference

between this propagator and the modified version,
Eq. (3.11), invariant under reversals of parameter time,
since the presence of GFð�Þ in Eq. (4.34) rather than
�ðH � �Þ means that it is not invariant. It is easy to see
that the modification in Eq. (3.11) effectively produces the
replacement

GFð�Þ ! 1
2ðGFð�Þ þGyFð�ÞÞ ¼ 1

2ð2
Þ�ðH � �Þ; (4.35)

and we obtain for the modified propagator

C0�1�2
j��i ¼ 1

2ð2
Þ2�ðH��Þð _P2Þin�ðH��Þð _P1Þinj��i
þ 1

2ð2
Þ2�ðH��Þð _P1Þin�ðH��Þð _P2Þinj��i:
(4.36)

This result may also be expressed in terms of intersection
number operators,

C0�1�2
¼ 1

2ðI�2
I�1
þ I�1

I�2
Þ: (4.37)

It is now easy to guess the form of the class operator for n
regions. It is

C0n ¼ 1

n!
ðI�1

I�2
� � � I�n

þ permutationsÞ; (4.38)

where ‘‘permutations’’ means add all possible permuta-
tions of the n regions, to give a total of n! terms. This final
result has a particularly natural form which also suggests
that it may have simple path integral representations. This
will be explored elsewhere. (See also Ref. [41] for similar
expressions, derived using a detector model for quantum
cosmology.)

V. SOME SIMPLE EXAMPLES

To verify the properties of the class operator C� outlined
above, we compute it explicitly in some simple examples.
We first consider a one-dimensional example.

A. A One-Dimensional example

We take the Hamiltonian to be the free particle
Hamiltonian H ¼ p2=2m and the region � to be the inter-
val [� L; L]. We take the initial state to be an energy
eigenstate

hxjpi ¼ 1

ð2
Þ1=2 e
ipx (5.1)

with p > 0 and energy E ¼ p2=2m. (In this case, unlike
the Wheeler-DeWitt and Klein-Gordon equations, the ei-
genvalue ofH is the physical energy, so we do not takeE ¼
0 at the end of the calculation. However, the inner products
are still regularized by taking different values of E on
either side of any inner product.)
Our aim is to confirm in this example the properties of

the class operator in Eq. (4.5), which in this case we write
as

C�jpi ¼ 2
V0�ðH � EÞPGV
_Pjpi: (5.2)

P is the projection operator onto the region [� L;L] and
may also be represented in terms of the region’s character-
istic function fLðxÞ, so P ¼ fLðx̂Þ. It follows that
_P ¼ 1

2m
½p̂�ðx̂þ LÞ þ �ðx̂þ LÞp̂� p̂�ðx̂� LÞ

� �ðx̂� LÞp̂�: (5.3)

For the p > 0 initial state considered here, we identify the
first two terms, at x ¼ �L, as ð _PÞin and the last two terms,
at x ¼ L, as �ð _PÞout,

_P ¼ ð _PÞin � ð _PÞout: (5.4)

We may now write

hxjPGV
_Pjpi ¼

Z
dyGVðx; yÞhyj _Pjpi

¼ �i
2m

ffiffiffiffiffiffiffi
2

p fLðxÞð½GVðx; yÞ@

$
ye

ipy�y¼�L

� ½GVðx; yÞ@
$
ye

ipy�y¼LÞ: (5.5)

The Green function may be calculated explicitly using the
form in Eq. (4.6), which may be written as
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GVðx; yÞ ¼
Z 1
0

dt

�
m

2
it

�
1=2

� exp

�
im
ðx� yÞ2

2t
þ iðEþ iV0Þt

�
: (5.6)

The integral may be carried out explicitly [42], with the
result

GVðx; yÞ ¼ m

Q
½	ðx� yÞeiðx�yÞQ þ 	ðy� xÞe�iðx�yÞQ�;

(5.7)

where we have introduced the complex momentum

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ iV0Þ

q
: (5.8)

The interesting case is that in which V0 � E (which is the
condition for negligible reflection in the scattering off the
complex potential), and we can then expand

Q ¼ ffiffiffiffiffiffiffiffiffiffi
2mE
p �

1þ i
V0

E

�
1=2 ¼ pþ i

V0m

p
þ � � � ; (5.9)

where p ¼ ffiffiffiffiffiffiffiffiffiffi
2mE
p

. This means that the Green function has
the form

GVðx; yÞ � m

p
½	ðx� yÞeiðx�yÞp þ 	ðy� xÞe�iðx�yÞp�

� exp

�
�V0m

p
jx� yj

�
: (5.10)

It therefore has the form of the Feynman-type Green
function, but there is also exponential suppression for large
separations of initial and final points, as anticipated.

To evaluate Eq. (5.5), we consider the action of the
Green function GV on a plane wave state jpi with p > 0.
We have

�i
2m

GVðx; yÞ@
$
ye

ipy

¼ 	ðx� yÞ ðQþ pÞ
2Q

expðipxþ iðx� yÞðQ� pÞÞ

� 	ðy� xÞ ðQ� pÞ
2Q

expð�ipxþ 2ipy

þ iðy� xÞðQ� pÞÞ: (5.11)

For E� V0, this has the approximate form

�i
2m

GVðx;yÞ@
$
ye

ipy

¼ 	ðx� yÞeipx exp
�
�V0m

p
jx� yj

�

� 4i
V0

E
	ðy� xÞe�ipxþ2ipy exp

�
�V0m

p
jx� yj

�
: (5.12)

The first term corresponds to the familiar property of
consisting of positive momentum for x > y (with the ex-
ponential suppression factor mentioned above). The sec-

ond term is not a familiar property of the Feynman Green
function, since it corresponds to negative momentum for
x < y (which we do not expect since the incoming state
consists only of positive momentum). This actually corre-
sponds to reflection, and this term will be small for V0 �
E, which we assume.
These results show that the second term in Eq. (5.5), the

term corresponding to ð _PÞout, may be dropped, as expected.
We have now confirmed that

C�jpi � 2
V0�ðH � EÞPGVð _PÞinjpi: (5.13)

Following the general discussion of Sec. IV, we write P ¼
1� �P and obtain

C�jpi � 2
�ðH � EÞð _PÞinjpi
� 2
V0�ðH � EÞ �PGVð _PÞinjpi: (5.14)

We need to show that the second term is small. We have

hxj �PGVð _PÞinjpi ¼ �i
2m

ffiffiffiffiffiffiffi
2

p �fLðxÞ½GVðx; yÞ@

$
ye

ipy�y¼�L;
(5.15)

where �fLðxÞ is the characteristic function for the region
outside �, so x 
 L and x 	 �L. The properties of GV

deduced above confirm that this expression is small. For
x 
 L, there is exponential suppression of the Green func-
tion, since jx� yj 
 2L. The exponential suppression is of
order expð�V0�Þ, where

� ¼ 2mL

p
; (5.16)

which is the time for a classical trajectory to traverse�. On
the other hand, values of x 	 �L can only be reached by
reflection, and this is small since V0 � E.
We have therefore confirmed the desired result that the

class operator has the form

C�jpi � 2
�ðH � EÞð _PÞinjpi; (5.17)

and this result is valid in the regime

1

�
� V0 � E: (5.18)

(This regime is a commonly encountered one in studies of
the arrival time in nonrelativistic quantum mechanics
[29,31].) The outer parts of the inequality imply that E��
1, or equivalently,

pL� 1; (5.19)

which is easily satisfied for sufficiently large L and p. It is
essentially the condition that the size of � is much greater
than the wavelength of the quantum state.
Since

2
�ðH � EÞ ¼ GF þGyF (5.20)

(where GF is the Feynman Green function, obtained from
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GV by letter V0 ! 0þ ), we have

hxj�ðH � EÞjyi ¼ 2
m

p
ðeipðx�yÞ þ e�ipðx�yÞÞ; (5.21)

and it follows that Eq. (5.17) may be evaluated with the
trivial result

C�jpi � jpi: (5.22)

This is completely expected, since every plane wave enters
the region �.

However, for the class operator operating on the initial
state Eq. (5.17) to have a more interesting and nontrivial
form, we need to look at a two-dimensional example. This
will be useful for the purposes of examining the decoher-
ence properties of some simple states.

B. A Two-Dimensional example

We again take a free particle but in two dimensions, with
HamiltonianH ¼ ðp2

1 þ p2
2Þ=2m, and we take the region�

to be a rectangle of sides 2L1 and 2L2 centered at the
origin. We use coordinates x1, x2 and the characteristic
function of � is

f�ðx1; x2Þ ¼ fL1
ðx1ÞfL2

ðx2Þ: (5.23)

We take the initial state j�i to be a plane wave in the 1
direction, eip1x1 , with p1 > 0, so there is no momentum in
the 2 direction. The analysis of the one-dimensional ex-
ample may be used to show, very easily, that the class
operator is again of the form in Eq. (5.17), with

ð _PÞin ¼ 1

2m
½p̂1�ðx̂1 þ L1Þ þ �ðx̂1 þ L1Þp̂1�fL2

ðx̂2Þ:
(5.24)

Denoting the matrix elements of �ðH � EÞ by GðxjyÞ, we
have

hxjC�j�i ¼ 2
hx1; x2j�ðH � EÞð _PÞinj�i

¼ �i
ffiffiffiffiffiffiffi
2

p
2m

Z L2

�L2

dy2½Gðx1; x2jy1; y2Þ

� @
$
y1e

ip1y1�y1¼�L1
: (5.25)

Note that, due to the suppression effect in GV , the spatial
size 2L1 of� in the x1 direction has essentially dropped out
of the expression for the class operator, and it is expressed
now only in terms of the incoming flux at x1 ¼ �L.

Equation (5.25) may be approximately calculated, at
some length, but the form of the result for C�j�i is easy
to anticipate on general physical grounds. We still have the
result in Eq. (5.20), so we first consider the action of GF

attached to the initial state as in Eq. (5.25). The physical
situation therefore consists of an incoming plane wave
expðip1x1Þ from x1 < 0 encountering a gate of width 2L2

in the x2 direction located at x1 ¼ �L. This situation is
very similar to the Mott analysis of the particle detection in

a cloud chamber [41,43]. The localization by the gate to
spatial width 2L2 produces a momentum uncertainty in the
2 direction �p2 of order 1=L2. Since the momentum in the
1 direction is p1, it is easy to see that this produces a
spreading in x1 > 0 of angular size of order 1=ðp1L2Þ.
This will be very small for sufficiently large L2. If we

now consider also the action ofGyF on the same initial state,
it produces essentially the same effect in x1 < 0.
The final result is therefore that C�j�i consists of a

plane wave expðip1x1Þ localized on a tube of width 2L2

around the x1 axis, with the tube opening out by a small
angle 1=ðp1L1Þ as x1 ! �1. See Fig. 6. To the extent that
the angular spreading can be ignored, the result has the
very approximate form

hx1; x2jC�j�i � eip1x1f0L2
ðx2Þ; (5.26)

where f0L2
is a function localized to a width L2 around the

origin (not necessarily the same as the exact window
function used above).
This approximate result may be used to address the

decoherence properties of the initial state j�i defined
above. The class operator for not entering � is clearly

hx1; x2j �C�j�i � eip1x1 �f0L2
ðx2Þ; (5.27)

where �f0L2
¼ 1� f0L2

, so �C�j�i is localized outside the

tube defined in Eq. (5.26). We immediately see that

h�j �C�C�j�i � 0 (5.28)

quite simply because the two class operators are spatially
localized about different nonoverlapping regions. There is
therefore approximate decoherence of histories in this
case.
Another interesting case is to take the same region� but

take a superposition of initial states

j�i ¼ 1ffiffiffi
2
p ðj�1i þ j�2iÞ; (5.29)

where j�1i is a plane wave in the 1 direction, expðip1x1Þ,

FIG. 6. The class operator C� acting on the initial state j�i
produces a state consisting of a plane wave expðip1x1Þ localized
along a tube of width 2L2 centered around the x1 axis, with
spreading through a small angle as x1 ! �1.
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considered above, and j�2i is a plane wave in the 2
direction, expðip2x2Þ. Each state individually produces
decoherence of histories, as shown above, but there will
be cross terms in the decoherence functional,

h�j �C�C�j�i � 1
2h�2j �C�C�j�1i þ 1

2h�1j �C�C�j�2i:
(5.30)

The first term is approximately

h�2j �C�C�j�1i �
Z

dx1dx2f
0
L2
ðx2ÞfL1

ðx1Þ
� expðip1x1 þ ip2x2Þ: (5.31)

It is easy to see that this expression will be very small as
long as p1L1 � 1 and p2L2 � 1, due to averaging out of
oscillations. There will therefore be decoherence of super-
position states as long as the region � is sufficiently large.

The essential reason for decoherence in this case is that
the orthogonality of j�1i and j�2i is little disturbed by the
action of the class operators as long as � is large enough.
(Recall that interference effects in the double slit experi-
ment will only arise for narrow slits very close together.)
For regions� of small size, it may be necessary to consider
coupling to an environment to produce decoherence of
histories. This will not be explored here.

C. The Klein-Gordon equation and the probability for
surface crossing

We now consider the problem of assigning probabilities
to histories of the relativistic particle in flat space which
cross or do not cross the spacelike surface x0 ¼ 0 in the
spatial region �. This is slightly different to the cases
considered so far, since we need to show exactly how the
results derived above for entering regions�may be used to
derive probabilities for crossing surfaces. This example
also involves the effects of the signature of the metric. A
decoherent histories analysis of the Klein-Gordon system
was given in detail in Ref. [10], but it encountered diffi-
culties in definition of the class operators. A somewhat
heuristic definition was used, with satisfactory physical
results, but the underlying origin of this definition was
not clear. Here, we show how this heuristic definition arises
from the more rigorous definitions used in this paper.

To define a class operator for crossing the spacelike
surface �, we regard the surface as part of the boundary
of a spacetime region �. For simplicity, we take the three-
dimensional region � to be the interior of a 2 sphere at
x0 ¼ 0. We then define � by requiring that it is a null cone
in x0 > 0with� as its base. (A two-dimensional version of
this is depicted in Fig. 7.) The class operator is again given
by Eq. (4.18), with j�i as a solution to the Klein-Gordon
equation which may contain positive and negative frequen-
cies,

� ¼ �þ þ��: (5.32)

The flux operator ð _PÞin consists of contributions from the
two parts of the boundary of �,

ð _PÞin ¼ ð _PÞ�in þ ð _PÞconein : (5.33)

The flux operator on� is clearly just the positive frequency
flux at this boundary:

ð _PÞ�in ¼ ð	ðp̂0Þp̂0�ðx̂0Þ þ �ðx̂0Þ	ðp̂0Þp̂0Þf�ðx̂iÞ; (5.34)

where f�ðxiÞ is a window function localized in �. The
remaining part of the flux operator describes the incoming
flux on the null cone. Classically, since this surface is null,
every incoming trajectory crossing the cone will cross �.
An analogous result is approximately true in the quantum
case, since propagation outside the lightcone is suppressed.
Hence, these flux operators are approximately equal to the
negative frequency flux at �,

ð _PÞconein � ð	ð�p̂0Þp̂0�ðx̂0Þ þ �ðx̂0Þ	ð�p̂0Þp̂0Þf�ðx̂iÞ:
(5.35)

The class operator involves contributions from both of
these terms and may be written as

C�j��i ¼ 2
�ðH � �Þðjp̂0j�ðx̂0Þ
þ �ðx̂0Þjp̂0jÞf�ðx̂iÞj��i: (5.36)

Noting that hxj�ðHÞjyi is the same as the the Klein-Gordon

propagator Gð1Þ ¼ Gþ þG� (where G� are the positive
and negative frequency Wightman functions [10]), we
have, setting � ¼ 0,

hxjC�j�i ¼ 2
i
Z
�
d3y½Gð1Þðx; yÞ@$0�

þðyÞ

�Gð1Þðx; yÞ@$0@0�
�ðyÞ�: (5.37)

This agrees with the definition in Ref. [10]. It consists of

FIG. 7. The class operator for a relativistic particle to cross a
surface � may be calculated by regarding � as part of the
boundary of the spacetime region �, a section of null cone
whose base is�. In two dimensions, depicted here, it is a triangle
with base � whose other two sides are the null surfaces �1, �2.
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the initial state attached to Gð1Þ with a ‘‘sign-adjusted’’
Klein-Gordon inner product to take care of the negative
frequencies. It was shown in Ref. [10] that there is ap-
proximate decoherence between histories which cross
x0 ¼ 0 in � or outside �, again because propagation out-
side the lightcone is suppressed. The resulting probability
for crossing is

pð�Þ ¼ 2
i
Z
�
d3x½�þðxÞ@$0�

þðxÞ ���ðxÞ@$0�
�ðxÞ�:
(5.38)

This is the expected result and is positive.
Hence, the decoherent histories approach described in

this paper yields the expected results for the Klein-Gordon
equation, improving on the heuristic analysis of Ref. [10].
Note that the method used above to relate probabilities for
surface crossings to probabilities for entering regions is
specific to the dynamics of the relativistic particle in flat
space. More complicated systems will require a modified
approach adapted to their particular dynamics.

VI. WKB REGIME

The most important case in which to check the ideas
developed above is in the WKB regime. In the oscillatory
regime, the solutions to the Wheeler-DeWitt equation have
the form

� ¼ ReiS; (6.1)

where R and S obey Eqs. (1.24) and (1.25) as described
earlier. More generally, the wave function is a superposi-
tion of WKB wave functions, but we first consider the case
of a single term. The heuristic interpretation of such states
was described in Sec. I D. Our aim is to show that the
decoherent histories analysis reproduces the heuristic
scheme. WKB states are locally plane wave states of the
type considered in the previous section, so we will appeal
to that analysis to understand the properties WKB states.

We consider the action of the class operator for a single
region � on a WKB state. We first consider the class
operator in Eq. (4.18) acting on a WKB state (regularized
by making it an eigenstate of H with eigenvalue �):

hqjC�j��i ¼ 2
hqj�ðH � �Þð _PÞinj��i
¼ 2
i

Z
�in

dn�1q0hqj�ðH � �Þjq0i@$n��ðq0Þ:
(6.2)

Here, �in denotes the sections of the boundary where the
flux is ingoing,

n � rS < 0; (6.3)

where na is the outward pointing normal. The key property
of the WKB wave function��ðq0Þ is that it has momentum
p ¼ rSðq0Þ at each point q0 on the boundary. When the
operator �ðH � �Þ is applied, from the representation in

Eq. (4.8), we see that its effect is to evolve the state��ðq0Þ
(restricted to �in) forwards and backwards in parameter
time, and then to integrate over all times. Semiclassically,
the evolution of the state��ðq0Þwill be concentrated along
the classical trajectories defined by initial positions q0 in
�in and momenta p ¼ rSðq0Þ, with some spreading of the
wave packet, but this will be small if � is reasonably large.
(This is analogous to the model of Sec. VB.)
We thus see the following: the wave function

hqjC�j��; i in Eq. (6.2) is spatially localized around the
tube of classical trajectories passing through � with mo-
menta p ¼ rS (depicted in Fig. 2). This may be approxi-
mately written in the alternative form

hqajC�j��i � 	ð�� � �ÞReiS; (6.4)

where � > 0 is a small parameter to regularize the 	
function at zero argument. Here, ��ðqÞ is the parameter
time spent by the classical trajectory qclðtÞ [with initial
value q and momentum p ¼ rSðqÞ] in the region � and
may be written as

��ðqÞ ¼
Z 1
�1

dtf�ðqclðtÞÞ: (6.5)

This has the property that

rS � r�� ¼ 0; (6.6)

since rS � r simply translates along the classical trajecto-
ries. It follows from Eq. (1.25) that Eq. (6.4) is in fact a
WKB solution to the Wheeler-DeWitt equation, since the 	
function essentially modifies the prefactor R but in a way
that it still satisfies Eq. (1.25). (Of course, this is expected,
because C� commutes with H.)
Equation (6.4) is a very useful result and allows us to

check for decoherence very easily. The action of the class
operator for not entering � is clearly

hqaj �C�j��i � 	ð�� ��ÞReiS; (6.7)

which is aWKB state localized on the set of trajectories not
entering �. It immediately follows that

h��0 j �C�C�j��i � 0; (6.8)

since the two states in Eqs. (6.4) and (6.7) are localized
about complementary regions. There is therefore approxi-
mate decoherence of histories for a singleWKB packet and
for histories entering or not entering a single region �, as
long as � is sufficiently large.
The key reason for the decoherence with a single WKB

packet is related to the approximate determinism of the
WKB wave functions: fixing values of position to lie on
�in also fixes the momenta, since p ¼ rS, so that Eq. (6.2)
is concentrated along a tube of classical trajectories.
More generally, the initial state will be a superposition of

WKB wave packets,

� ¼X
k

Rke
iSk : (6.9)
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The component states in this sum are typically approxi-
mately orthogonal to each other as long as the phases Sk are
sufficiently different. (This will depend on the detailed
dynamics of the model.) Following the analogous example
in the simple models of Sec. VB, we would expect that the
class operators will not disturb the approximate orthogo-
nality of these states as long as the region � is sufficiently
large; again, we expect the cross terms in the decoherence
functional to average to zero because of oscillations, as in
Eq. (5.30). Therefore, superpositions may in practice be
treated as mixtures at sufficiently coarse grained scales.
Note that this statement also applies to the special state

� ¼ RðeiS þ e�iSÞ; (6.10)

which arises from the Hartle-Hawking ‘‘no boundary’’
proposal [44]. That is, the interference between the two
terms may be neglected.

Given decoherence, the probabilities are given by the
general expression in Eq. (4.24). It then follows that the
probabilities for entering � coincide with Eq. (1.29), the
sought-after result.

Now consider the case of probabilities for histories
entering two regions, as described by the (modified) class
operator in Eq. (4.36). Since the two-region class operator
is a sum of products of one-region class operators, its effect
on the WKB wave functions is easy to see. The action of a
single class operator gives Eq. (6.4). But since this is still a
wave function of the WKB type, the action of a second
class operator yields

hqajC�1�2
j��i � 	ð��1

� �Þ	ð��2
� �ÞReiS: (6.11)

That is, it is a WKB wave function but restricted in such as
way that its flux passes through both regions. See Fig. 8. [It
is easy to see that in this case, the action of the unmodified
class operator in Eq. (4.34) is the same.] It is again easy to

see that there is decoherence of histories, and the proba-
bility is given by an expression of the form in Eq. (1.29),
but with the integral over the subset of incoming flux at �1

which goes on to intersect �2.
From the above observations, one can also see why the

exponential WKB wave functions will not lead to decoher-
ence of histories. The exponential wave functions have the
form

� ¼ Re�I; (6.12)

where I is real. The key difference between states of this
type and the oscillatory type in Eq. (6.1) is that they do not
have a correlation between positions and momenta [28].
One would therefore expect the evolution of the state in
Eq. (6.2) to be spread all over the configuration space and
not concentrated around a particular region. That is, these
states do not have the approximate determinism of the
oscillatory states. The states C�j�i and �C�j�i would
then not be approximately orthogonal, so there will be no
decoherence of histories.
The decoherence of histories described here has arisen

because of the approximate determinism of the oscillatory
WKB states, together with the approximate orthogonality
properties that arise when the regions � are sufficiently
large. At finer grained scales, decoherence of histories may
only be possible in more complicated models in which
there is an environment of some sort. Models along these
lines, in more basic approaches to quantum cosmology,
have been considered previously [45], and one might ex-
pect that they may be adapted to the decoherent histories
approach to quantum cosmology. (See also Ref. [11].)
In summary, we have derived from the decoherent his-

tories approach the probabilities normally used in the
heuristic WKB interpretation. To address these issues in
more detail will require more specific quantum cosmologi-
cal models. This will be considered elsewhere.

VII. DISCUSSION AND FURTHER ISSUES

We have presented a properly defined quantization pro-
cedure for quantum cosmology using the decoherent his-
tories approach to quantum theory and derived from this
the frequently used but heuristic WKB interpretation, in-
volving fluxes of the WKB wave function.
The key idea was to use a complex potential to define the

class operators for not entering a region of configuration
space. This method is adequately justified by its successful
use in the arrival time problem in nonrelativistic quantum
theory. We showed that the class operators defined in this
way have all of the desired properties; they have the correct
classical limit, are compatible with the constraint equation,
and do not have difficulties with the Zeno effect. In a
semiclassical approximation, they have an appealing
form in terms of intersection number operators. They
give sensible results in simple models, and there is ap-

FIG. 8. The class operator C�1�2
for two regions operating on a

WKB wave function produces another WKB state localized
around the flux passing through both regions. This is the same
as the flux entering �1 across the surface �12.
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proximate decoherence of histories for certain types of
initial state at sufficiently coarse grained scales.

Future papers will address the more detailed application
of this approach to specific models and will also undertake
a comparison of the decoherent histories approach de-
scribed here to other approaches [5].
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APPENDIX: OPERATORS AND INNER PRODUCTS
FOR THE KLEIN-GORDON EQUATION

In this Appendix, we outline the relationship between
the induced inner product and Klein-Gordon inner product.
This has been described elsewhere (see, for example,
Ref. [9]), but the derivation given here is different and
will help give some insight into the form of some of the
results of Sec. IV.

We use x� ¼ ðx0;xÞ to denote spatial coordinates and
take the signature of spacetime to be (�þþþ). The
Hamiltonian for the Klein-Gordon system is

H ¼ �p2
0 þ p2 þm2: (A1)

The induced inner product begins by looking at eigenfunc-
tions of H with eigenvalue �, which we write as

hxj�psi ¼ ��psðxÞ ¼ Neisp�x; (A2)

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 � �

p
, and s ¼ �1 labels the solu-

tions as positive or negative frequency. We work with three
different inner products. The first is the standard
Schrödinger inner product

h�psj�0p0s0i ¼
Z

d4x���psðxÞ��0p0s0 ðxÞ; (A3)

and the eigenfunctions are normalized with this inner
product according to

h�psj�0p0s0i ¼ �ð�� �0Þ�ðp� p0Þ�ss0 : (A4)

The goal is to relate this to the Klein-Gordon inner product
Eq. (1.6). One way to do this is to integrate out x0 in
Eq. (A3), but here we proceed differently.

We introduce the projection operator P ¼ 	ðx̂0Þ onto
x0 > 0 and consider the current operator

Ĵ ¼
Z 1
�1

dt _PðtÞ: (A5)

On the one hand, we can carry out the integral with the
result

Ĵ ¼ ½	ðx̂0 þ 2p̂0tÞ�t¼1t¼�1 ¼ �ðp̂0Þ; (A6)

where �ðp̂0Þ is the signum function operator. On the other
hand, we can differentiate P with the result

_PðtÞ ¼ i½H; 	ðx̂0Þ� ¼ p̂0�ðx̂0Þ þ �ðx̂0Þp̂0 (A7)

so that

Ĵ ¼
Z 1
�1

dteiHtðp̂0�ðx̂0Þ þ �ðx̂0Þp̂0Þe�iHt: (A8)

We now insert the identity

�ðp̂0ÞĴ ¼ 1 (A9)

with Ĵ given by Eq. (A8) in the inner product Eq. (A4),
with the result

h�psj�0p0s0i ¼ h�psj�ðp̂0ÞĴj�0p0s0i
¼ 2
�ð�� �0Þsh�psjðp̂0�ðx̂0Þ
þ �ðx̂0Þp̂0Þj�p0s0i: (A10)

We now identify the inner product expression on the right-
hand side as the Klein-Gordon inner product between
states with the same �,

ð��ps;��p0s0 ÞKG � h�psjðp̂0�ðx̂0Þ þ �ðx̂0Þp̂0Þj�p0s0i
¼ i

Z
x0¼0

d3x���psðxÞ@
$
0��p0s0 ðxÞ (A11)

(where p̂0 ¼ �p̂0 ¼ i@0). Therefore the relationship be-
tween the Schrödinger inner product and Klein-Gordon
inner product is

h�psj�0p0s0i ¼ 2
�ð�� �0Þsð��ps;��p0s0 ÞKG: (A12)

Finally, the induced (or physical) inner product on eigen-
states with the same �, is defined as outlined in Sec. I,
essentially by factoring out the � function

h�psj�0p0s0i ¼ �ð�� �0Þh�psj�p0s0iphys; (A13)

so we deduce that

h�psj�p0s0iphys ¼ 2
sð��ps;��p0s0 ÞKG; (A14)

and we may set � ¼ 0 to obtain an inner product on
solutions to the Klein-Gordon equation. The Klein-
Gordon inner product is of course positive on positive
frequency (s ¼ 1) solutions and negative on negative fre-
quency (s ¼ �1) solutions, but the form of the above
result, with the overall factor of s, ensures that the induced
inner product is always positive.
Note that some caution is required in relation to

Eqs. (A7) and (A10), since Eq. (A7) implies that
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h�psjðp̂0�ðx̂0Þ þ �ðx̂0Þp̂0Þj�0p0s0i
¼ ih�psj½H; 	ðx̂0Þ�j�0p0s0i
¼ ið�� �0Þh�psj	ðx̂0Þj�0p0s0i: (A15)

This appears to be zero when � ¼ �0, suggesting that
Eq. (A10) is zero. This is not in fact the case since the
inner product expression on the right-hand side of
Eq. (A15) is actually divergent as �! �0.
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