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We investigate the entanglement of a quantum field in the expanding universe. By introducing a

bipartite system using a coarse-grained scalar field, we apply the separability criterion based on the partial

transpose operation and numerically calculate the bipartite entanglement between separate spatial regions.

We find that the initial entangled state becomes separable or disentangled after the spatial separation of

two points exceed the Hubble horizon. This provides the necessary conditions for the appearance of

classicality of the quantum fluctuation. We also investigate the condition of classicality that the quantum

field can be treated as the classical stochastic variables.
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I. INTRODUCTION

Inflation provides the mechanism to generate the seed
fluctuation which leads to the formation of the large scale
structure in our present Universe. During the accelerated
expansion stage of the inflationary universe, short wave-
length quantum fluctuations of the inflaton field are gen-
erated by particle creations and then they becomes
longwavelength fluctuations larger than the Hubble hori-
zon by the cosmic expansion. The generated longwave-
length fluctuations are considered as the classical
fluctuations responsible for the origin of structure in our
Universe. The important question is how such quantum
fluctuations change to classical fluctuations; quantum fluc-
tuations must acquire the classical stochastic nature and
transfer to classical density perturbations which lead to the
gravitational instability to form the nonlinear structure in
the Universe. We must explain what kind of mechanism
causes such a quantum to classical transition of primordial
fluctuations [1–8].

In this paper, we aim to investigate this problem from the
viewpoint of the quantum correlation, entanglement. The
entanglement is the specific nature of the quantum system.
When we calculate a correlation function of observables,
we have a possibility that the correlation function cannot
be reproduced using a classical probability distribution
function if the system is entangled and the classical locality
is violated [9,10]. Thus, we cannot regard the quantum
fluctuations as the classical stochastic fluctuations as long
as the system is entangled. If the quantum fluctuation
becomes classical, the entanglement must be lost. We
consider the entanglement of the quantum field between
two spatially separated regions in the expanding universe
and investigate how the quantum fluctuation acquires the
classical nature during inflation. For the quantum field to
behave as the classical stochastic field, it is necessary to
lose the quantum correlation and the classical distribution

function must appear. The entanglement property for the
general N-partite system is complicated and we do not
have a general tool to treat such a system. For a bipartite
system, however, we have the necessary and sufficient
conditions for the existence of quantum correlation (en-
tanglement) [11–14] and apply this criterion to our
problem.
In our previous work [15], we investigated the behavior

of the entanglement of the quantum field using a lattice
model of a scalar field. We considered the entanglement
between spatially separated two blocks and found that the
bipartite entanglement between these two blocks is lost
after their separation exceeds the horizon length. We also
discussed that the disappearance of the entanglement
yields only the necessary condition for the quantum fluc-
tuation to be classical. For the establishment of the classi-
cality of the quantum fluctuation, the existence of the
classical distribution function which reproduces any corre-
lation function of the quantum field is necessary. We
presented this condition of the classicality in terms of the
symplectic eigenvalue of the covariance matrix [15]. In this
paper, we prepare a bipartite system for the scalar field
using the coarse graining of the quantum field. As the
coarse graining, we introduce the infrared and the ultra-
violet cutoff of the Fourier expansion of the scalar field.
This coarse graining formally corresponds to the stochastic
approach to inflation [16] which derives the quantum dy-
namics of the longwavelength mode of the scalar field as
the classical Langevin equation. We investigate the entan-
glement and the condition of the classicality for the coarse-
grained scalar field. Especially, we concentrate on the
effect of the expansion rate of the Universe and the effect
of the mass of the scalar field on the entanglement. We
further investigate the condition of the classicality and look
for the condition of the appearance of the classical sto-
chastic nature.
This paper is organized as follows: In Sec. II, we first

introduce the concept of the bipartite entanglement and the
condition of the classicality. Then, we define the bipartite
system for the scalar field via coarse graining. In Sec. III,
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we investigate the entanglement of the scalar field in the
Minkowski spacetime. In Sec. IV, we consider the entan-
glement of the scalar field in the expanding universe and
investigate the effect of the expansion rate and the mass on
the entanglement. We further derive the condition for the
classicality. Section V is devoted to the summary and
conclusion. We use units in which c ¼ @ ¼ 8�G ¼ 1
throughout the paper.

II. FORMALISM

A. Bipartite entanglement and condition of classicality

In this paper, we focus on a bipartite system composed
of two Gaussian modes. A quantum state �̂ of the bipartite
system is defined to be separable if and only if �̂ can be
expressed in the following direct product form

�̂ ¼ X
j

pj�̂jA � �̂jB;
X
j

pj ¼ 1; pj � 0; (1)

where �̂jA and �̂jB are density operators of the modes of

subsystems A and B. If the state of the system cannot be
expressed in this form, the quantum state of the system is
entangled. If the state is entangled, the observables asso-
ciated to parties A and B are correlated and their correla-
tions cannot be reproduced with purely classical means.
This leads to the phenomena peculiar to the quantum
mechanics such as the EPR correlation [9] and the viola-
tion of Bell’s inequality [10].

For a bipartite Gaussian state with two modes, we have
the necessary and sufficient conditions for the separability
and we can judge whether the system is entangled or not
using these criteria. We adopt in this paper a criterion based
on the partial transposed operation for a bipartite system
[12–14]. The canonical variables and the commutation
relations for the bipartite system with two modes are ex-
pressed as

�̂ ¼
q̂A
p̂A

q̂B
p̂B

0
BBB@

1
CCCA; ½�̂j; �̂k� ¼ i�jk; j; k ¼ 1; 2; 3; 4

(2)

where

� ¼ J 0
0 J

� �
; J ¼ 0 1

�1 0

� �
: (3)

The Gaussian state is completely specified by the following
covariance matrix

Vjk ¼ 1
2h�̂j�̂k þ �̂k�̂ji ¼ 1

2 Trðð�̂j�̂k þ �̂k�̂jÞ�̂Þ (4)

where we assume the state with h�̂ji ¼ 0. For a physical

state, the density matrix must be non-negative and the
corresponding covariance matrix must satisfy the inequal-
ity [13]

V þ i

2
� � 0 (5)

which is the generalization of the uncertainty relation
between two canonically conjugate variables. The separa-
bility of the bipartite Gaussian state is expressed in terms

of the partially transposed covariance matrix ~V obtained by
reversing the sign of party B’s momentum. The necessary
and sufficient condition of the separability is given by the
inequality [13,14]

~V þ i

2
� � 0; (6)

which represents the physical condition for the partially
transposed state.
The covariance matrix can be diagonalized by an appro-

priate symplectic transformation S 2 Spð4;RÞ, S�ST ¼
� as follows: [17,18]

SVST ¼ diagð�þ; �þ; ��; ��Þ; �þ � �� � 0; (7)

where �� are symplectic eigenvalues. In terms of sym-
plectic eigenvalues, the physical condition (5) can be ex-
pressed as

�� � 1
2

and the separability condition (6) can be expressed as

~�� � 1
2 (8)

where ~� represents the symplectic eigenvalue of the par-

tially transposed covariance matrix ~V. The logarithmic
negativity which measures the degree of the entanglement
is defined by

EN ¼ �min½log2ð2~��Þ; 0�: (9)

If EN > 0, the bipartite system is entangled. If EN ¼ 0, the
bipartite system is separable.
For the establishment of classicality of the bipartite

system, the separability condition (8) is necessary but not
sufficient. The separability only means disentanglement of
quantum correlations. For the classicality, the quantum
expectation values of any operators must be reproduced
by an appropriate classical distribution function. Then
classical stochastic variables can mimic the original quan-
tum dynamics. We have discussed in our previous paper
[15] that the condition for the symplectic eigenvalue

~�� � 1
2 (10)

is required for the system to be regarded as classical. If the
system is separable, there exists a positive normalizable
function called the P function [13,14,19]

Pð�Þ ¼ 1

4�2

ffiffiffiffiffiffiffiffiffiffi
detP

p
exp

�
� 1

2
�TP�

�
;

P ¼
�
V þ 1

2
�STS�T

��1
;

(11)
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where S 2 Spð2;RÞ � Spð2;RÞ is the local symplectic
transformation of each party and transforms the covariance
matrix V to the following standard form [14]

VII ¼ SVST ¼

ar cr

a=r c0=r
cr ar

c0=r a=r

0
BBBBB@

1
CCCCCA;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� jc0j
a� jcj

s
:

(12)

Using the P function as a distribution function, it is pos-
sible to calculate the quantum expectation value of the
normally ordered product of any operators

h:Fðq̂A; p̂A; q̂B; p̂BÞ:i ¼
Z

dqAdpAdqBdpB

� PðqA; pA; qB; pBÞ
� FðqA; pA; qB; pBÞ: (13)

If the condition (10) is satisfied, the P function acquires the
feature of the classical distribution function; the quantum
expectation value for any operators can be reproduced by
using the P function as the distribution function. This
implies that noncommutativity between operators becomes
negligible.

B. Entanglement of the quantum field

We consider a massive scalar field in the spatially flat
expanding universe. The metric is

ds2 ¼ �dt2 þ a2ðtÞdx2 ¼ a2ð�Þð�d�2 þ dx2Þ: (14)

The equation of motion for the scalar field is

’00 þ
�
m2a2 � a00

a

�
’�r2’ ¼ 0 (15)

where 0 denotes the derivativewith respect to the conformal
time �. To define the bipartite system for the scalar field,
we introduce the coarse-grained scalar field using a filter
function in k space. That is, we only include modes with
k0 � k � kc in the Fourier expansion of the scalar field.
The lower bound k0 is the infrared cutoff and corresponds
to the system size. The upper bound kc is the ultraviolet
cutoff and this value determines the resolution of the
measurement. The quantized field ’̂ and its conjugate
momentum p̂ can be expressed as

’̂ð�; xÞ ¼
Z d3k

ð2�Þ3=2 W0�ðk� k0Þ�ðkc � kÞ

� ðfkâk þ f	kâ
y
�kÞeik
x; (16)

p̂ð�; xÞ ¼
Z d3k

ð2�Þ3=2 W0�ðk� k0Þ�ðkc � kÞð�iÞ

� ðgkâk � g	kâ
y
�kÞeik
x;

½âk1 ; âyk2� ¼ �3ðk1 � k2Þ; (17)

whereW0 is a normalization constant of the filter function.
The mode functions obey

f00k þ
�
k2 þm2a2 � a00

a

�
fk ¼ 0;

gk ¼ i

�
f0k �

a0

a
fk

�
;

fkg
	
k þ f	kgk ¼ 1:

(18)

The commutation relation between the coarse-grained
fields (16) and (17) becomes

½’̂ð�; x1Þ; p̂ð�; x2Þ� ¼ iW2
0

2�2r3
½ðsinðkcrÞ � ðkcrÞ cosðkcrÞÞ

� ðsinðk0rÞ � ðk0rÞ cosðk0rÞÞ�; ;
r ¼ jx1 � x2j: (19)

For k0 ¼ 0, kc ¼ 1, W0 ¼ 1, the ordinal equal time com-
mutation relation is recovered

½’̂ð�; x1Þ; p̂ð�; x2Þ� ¼ i�3ðx1 � x2Þ: (20)

As our purpose is to define the bipartite system for the
quantum field, we specify two spatial points x1, x2 and
define the phase space variables using the scalar field at
these points:

�̂ ¼
’̂ðx1Þ
p̂ðx1Þ
’̂ðx2Þ
p̂ðx2Þ

0
BBB@

1
CCCA: (21)

The variables ð’̂ðx1Þ; p̂ðx1ÞÞ and ð’̂ðx2Þ; p̂ðx2ÞÞ correspond
to each mode of the bipartite system. For these variables to
satisfy the condition of the bipartite system (2), the com-
mutation relation (19) must vanish for x1 � x2 and equals
to be i for x1 ¼ x2. The latter condition gives the normal-
ization of the filter function

W2
0 ¼ 6�2

k3c � k30
:

To analyze the former condition, we consider the following
equation

fcðxÞ � ðsinx� x cosxÞ � ðsincx� cx coscxÞ ¼ 0;

0 � c � 1: (22)

Let x0 ¼ x0ðcÞ be the solution of this equation. As shown
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in Fig. 1, the function x0ðcÞ is the multiple valued function
of c and

x0 ¼ x0nðcÞ; x0nð1Þ ¼ n�; n ¼ 1; 2; 3; 
 
 
 :
(23)

To make the commutation relation vanish at r � 0, the
distance r must satisfy the following equation

kcr ¼ x0

�
k0
kc

�
; k0 � kc: (24)

Conversely, for any given two points with r � 0, this
relation provides the scale of the coarse graining k0=kc
which defines the bipartite system for the variable (21). In
other words, if we specify the distance between spatially
separated two points, at which we want to observe the
quantum correlation between them, the scale of the coarse
graining of the scalar field is determined by the relat-
ion (24). If this condition is satisfied, a measurement of
the scalar field as the bipartite system becomes possible.
We rewrite Eq. (24) as

k0r ¼ �x0ð�Þ (25)

where

� � k0
kc

; 0 � � � 1

determines the scale of the coarse graining. For � ¼
1ðkc ¼ k0Þ, the distance is maximum

k0rmax ¼ x0ð1Þ ¼ n�: (26)

As the value rmax corresponds to the system size related to
the infrared cutoff k0, we must set n ¼ 1. Hereafter, we
adopt the smallest branch x01 as the function x0ðcÞ.

The correlation functions of the scalar field are given by

c1 � 1

2
h’̂ðx1Þ’̂ðx2Þ þ ’̂ðx2Þ’̂ðx1Þi

¼ W2
0

2�2

Z kc

k0

dkk2
�
sinkr

kr

�
jfkj2;

c2 � 1

2
hp̂ðx1Þp̂ðx2Þ þ p̂ðx2Þp̂ðx1Þi

¼ W2
0

2�2

Z kc

k0

dkk2
�
sinkr

kr

�
jgkj2;

c3 � 1

2
h’̂ðx1Þp̂ðx2Þ þ p̂ðx2Þ’̂ðx1Þi

¼ W2
0

2�2

Z kc

k0

dkk2
�
sinkr

kr

�
i

2
ðfkg	k � f	kgkÞ;

a1 ¼ c1ðr ¼ 0Þ; a2 ¼ c2ðr ¼ 0Þ;
a3 ¼ c3ðr ¼ 0Þ:

(27)

By changing the integral variable to z ¼ k=kc, we have

c1 ¼ 3

1� �3

Z 1

�
dzz2j0ðx0ð�ÞzÞjfkð�Þj2k¼k0z=�

;

c2 ¼ 3

1� �3

Z 1

�
dzz2j0ðx0ð�ÞzÞjgkð�Þj2k¼k0z=�

;

c3 ¼ 3

1� �3

Z 1

�
dzz2j0ðx0ð�ÞzÞ i2 ðfkð�Þg

	
kð�Þ

� f	kð�Þgkð�ÞÞjk¼k0z=�:

(28)

They are components of the 4� 4 covariance matrix (4)

V ¼ A C
C A

� �
; A ¼ a1 a3

a3 a2

� �
;

C ¼ c1 c3
c3 c2

� �
:

Using these components of the covariance matrix V, the
symplectic eigenvalues are expressed as

ð��Þ2 ¼ a1a2 � a23 þ c1c2 � c23 � ja1c2 þ a2c1 � 2a3c3j;
(29)

ð~��Þ2 ¼ a1a2 � a23 � c1c2 þ c23 � jða1c2 � a2c1Þ2
þ 4ða1c3 � a3c1Þða2c3 � a3c2Þj1=2: (30)

III. ENTANGLEMENT OF THE QUANTUM FIELD
IN THE MINKOWSKI SPACETIME

As an application of our formalism, we first investigate
the entanglement of the massive scalar field in the
Minkowski spacetime. The mode function for the vacuum
state in the Minkowski spacetime is

FIG. 1 (color online). The function x0ðcÞ. Each line corre-
sponds to x01, x02, x03.
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fk ¼ 1ffiffiffiffiffiffiffi
2!

p e�i!t; gk ¼ i

ffiffiffiffi
!

2

r
e�i!t;

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
:

(31)

The correlation functions are

c1 ¼ 3

2k0

�

1� �3

Z 1

�
dzz2j0ðx0ð�ÞzÞ

�
z2 þm2�2

k20

��1=2
;

c2 ¼ 3k0
2

1

�ð1� �3Þ
Z 1

�
dzz2j0ðx0ð�ÞzÞ

�
z2 þm2�2

k20

�
1=2

;

c3 ¼ 0:

The relation between the distance r and the logarithmic
negativity is shown in Fig. 2. For any value of m, as the
distance increases, the logarithmic negativity monotoni-
cally decreases but does not become zero. This implies that
the Minkowski vacuum is always entangled. For r & rc �
1=m, we observe that r dependence of EN is given by

EN � e�r=rc (32)

and the exponential decay rate is proportional to the mass
m (see the inset of Fig. 2). The entanglement concentrates
in the region with the size of the Compton wavelength
�1=m. For rc & r 
 1, the decay law is

EN � e�r=r0 (33)

where r0 is a constant independent of mass m. In this
region, the decay rate of the entanglement is the same for
different values of m including the massless case.

IV. ENTANGLEMENT OF THE QUANTUM FIELD
IN THE EXPANDING UNIVERSE

We investigate the effect of the expansion rate of the
Universe and the scalar field mass on the entanglement of
the coarse-grained scalar field. We assume the following
power law expansion of the Universe

aðtÞ ¼
�
1þH0t

p

�
p
; p > 1; H0 > 0: (34)

The conformal time is given by

� ¼
Z t

0

dt

a
¼ 1

H0

p

1� p

��
1þH0t

p

�
1�p � 1

�
; (35)

and in terms of the conformal time, the scale factor is

að�Þ ¼
�
�

�0

þ 1

�
p=ð1�pÞ

; �0 ¼ 1

H0

p

1� p
: (36)

For the accelerated expansion p > 1, we have �1<�<
��0 and in the limit of p ! 1,

lim
p!1a ¼ 1

1�H0�
¼ expðH0tÞ:

We set the initial time and the initial scale factor as t ¼
� ¼ 0 and a0 ¼ 1.
We choose the cutoff parameter for the coarse graining

of the scalar field as follows

kc ¼ ��aH ¼ ��H0

�
1þ �

�0

��1
; k0 ¼ �H0: (37)

At the initial time t ¼ � ¼ 0, we prepare the spatial region
with the size H�1

0 and investigate how the entanglement of

the scalar field between the spatially separated regions
evolves as the Universe expands. We introduce the parame-
ter � to specify the scale of coarse graining and this
parametrization is conventionally used for the stochastic
approach to inflation [16]. In our analysis, this parameter
must satisfy

H0

aH
� � (38)

which comes from k0 � kc. The value � need not be
smaller than unity that is usually assumed for the stochastic
approach to inflation. We calculate the symplectic eigen-
value ~�� as a function of the physical distance

rphys ¼ ar ¼ 1

��H
x0

�
H0

�aH

�
(39)

and the e-folding N ¼ lnða=a0Þ. What we are interested in
is the condition of the separability (8) and the classicality
(10). We plot these conditions in the ðrphys; NÞ space.

A. The effect of expansion rate on the entanglement

We first investigate the effect of the expansion rate of the
Universe on the entanglement of the massless scalar field.

FIG. 2 (color online). The relation between the spatial distance
r and the logarithmic negativity EN [log plot of ENðrÞ]. Each line
corresponds to the different value of the mass m=k0 ¼ 0 (blue),
10 (red), 20 (yellow), 40 (green) (top to bottom). The inset is the
same plot in the small r region and shows exponential decay of
EN . The decay rate depends on the mass m in the small r region.
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In our previous paper [15], we used a lattice model of the
massless scalar field and found that the bipartite system
becomes separable when the size of the spatial region
exceeds the Hubble horizon. We aim to confirm this be-
havior for the accelerated universe with the power law
expansion. The mode equation for the massless field is

f00k þ
�
k2 � 	2 � 1=4

ð�þ �0Þ2
�
fk ¼ 0; 	2 ¼ 1

4

�
3p� 1

p� 1

�
2
;

gk ¼ i

�
f0k �

p

1� p

fk
�þ �0

�
: (40)

As the quantum state of the scalar field, we choose the
Bunch-Davis vacuum state, the mode function is given by

fk ¼
ffiffiffiffi
�

p
2

eið2	þ1Þ�=4ð�ð�þ �0ÞÞ1=2Hð1Þ
	 ð�kð�þ �0ÞÞ;

(41)

gk ¼ �i

ffiffiffiffi
�

p
2

eið2	þ1Þ�=4kð�ð�þ �0ÞÞ1=2

�Hð1Þ
	�1ð�kð�þ �0ÞÞ: (42)

We first present the spatial dependence of the logarith-
mic negativity EN at the e-folding N ¼ 10 for the power
index p ¼ 100, 10, 5, 3 (Fig. 3). EN decays as rphys
increases and becomes zero at rphys ¼ rseparable. For large

spatial separation rseparable < rphys, EN ¼ 0 and the system

is separable. We numerically check that the p dependence
of rseparable is given by

rseparable � H�1
0 exp

�
N

p

�
¼ H�1: (43)

Hence, the horizon scale gives the scale of the separa-
bility and this result is consistent with our previous analy-
sis using a lattice model [15].
In Fig. 4, we show the behavior of the symplectic

eigenvalue ð~��Þ2 in the ðrphys; NÞ space for the power index
p ¼ 100, 10, 5, 3. For the Universe with the power law
expansion, the horizon scale H�1 changes with time. We
observe that the line of the separability condition ð~��Þ2 ¼
1=4 asymptotically coincides with the horizon line (the
thick solid line). When the distance between two points is
smaller than the horizon H�1, they are entangled and they
become disentangled after their separation exceeds the
horizon length. This behavior of disentanglement does
not depend on the expansion rate p and the condition of
the separability is determined by rphys � H�1. Thus, for

any value of p > 1, for a sufficiently large value of e-
folding, the boundary between separable and entangled
regions coincides with the horizon line H�1. This means
the accelerated expansion of the Universe or the existence
of the horizon determines the property of the separability
of the massless scalar field in the expanding universe.
The line ð~��Þ2 ¼ 1 giving the criterion of classicality,

asymptotically approaches several times larger than the
horizon scale. In the region ð~��Þ2 > 1, the noncommuta-
tivity between canonical variables can be neglected when
we evaluate the expectation values of operators and bec-
consistent with the result obtained in the previous analysis
for the behavior of the each comoving wave mode [1,5–8];
for superhorizon scale quantum fluctuations, the noncom-
mutativity between canonical variables becomes negligible
because the growing mode solution is dominant and we can
neglect @ in the uncertainty relation. We confirmed the
equivalent condition for the classicality from the condition
of the existence of the classical distribution function and
the symplectic eigenvalues.

B. The effect of the mass on the entanglement

We next investigate the effect of the mass of the scalar
field on the entanglement. For the massive scalar field in
the de Sitter spacetime (p ¼ 1), the mode equation be-
comes

f00k þ
�
k2 � 	2 � 1=4

ð�þ �0Þ2
�
fk ¼ 0; 	2 ¼ 9

4
� m2

H2
0

;

gk ¼ i

�
f0k þ

fk
�þ �0

�
; �0 ¼ � 1

H0

:

(44)

Assuming the Bunch-Davis vacuum state, the mode func-
tion is given by

fk ¼
ffiffiffiffi
�

p
2

eið2	þ1Þ�=4ð�ð�þ �0ÞÞ1=2Hð1Þ
	 ð�kð�þ �0ÞÞ;

(45)

FIG. 3 (color online). Spatial dependence of the logarithmic
negativity at N ¼ 10 for the massless field. The distance rphys is

in the unit of H�1
0 . EN goes to zero at rphys ¼ rseparable. Each line

corresponds to p ¼ 100 (blue), 10 (red), 5 (yellow), 3 (green)
(left to right).
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gk ¼ i

ffiffiffiffi
�

p
2

eið2	þ1Þ�=4ð�ð�þ �0ÞÞ�1=2

�
��

	� 3

2

�
Hð1Þ

	 ð�kð�þ �0ÞÞ þ kð�þ �0Þ

�Hð1Þ
	�1ð�kð�þ �0ÞÞ

�
: (46)

Figure 5 shows the spatial dependence of EN at N ¼ 10
for m2=H2

0 ¼ 0, 1=4, 1=2, 1. EN decays as rphys increases

and becomes zero at rphys ¼ rseparable. For large spatial

separation rseparable < rphys, EN ¼ 0. We observe that the

mass dependence of rseparable is given by

rseparable � H�1
0

�
1� c0

m2

2H2

��1=2
; c0 � 1:4: (47)

For m � 0, rseparable does not coincide with the horizon

scale H�1
0 , which is the characteristic scale of the disen-

tanglement for the massless scalar field. The mass depen-

FIG. 4 (color online). The value of the symplectic eigenvalue ð~��Þ2 in the ðrphys; NÞ space for the massless scalar field in the Universe
with power law expansion. The distance rphys is in the unit ofH

�1
0 . Each panel corresponds to the different expansion rate p ¼ 100, 10,

5, 3 from the top left to the down right. The contour lines ð~��Þ2 ¼ 0:25; 1:0; 1:5 are shown. The dark green region corresponds to
ð~��Þ2 < 1=4 and the system is entangled in this region. The light green region corresponds to 1=4< ð~��Þ2 < 1 and the system is
separable but the classicality condition is not satisfied. The pink region corresponds to 1< ð~��Þ2. The blue solid line is rphys ¼ H�1

(horizon scale) and the black solid lines represent different comoving scales.

FIG. 5 (color online). Spatial dependence of the logarithmic
negativity at N ¼ 10 for the massive scalar field in the de Sitter
spacetime. The distance rphys is in the unit of H�1

0 . Each line

corresponds to m2=H2
0 ¼ 0 (blue), 1=4 (red), 1=2 (yellow), 3=4

(green), 1 (blue) (left to right).
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dence (47) of rseparable can be understood as follows. Let us

recall the form of the mode equation (18). The mode
changes its behavior depending on the following wave
numbers: �

k	
a

�
2 � a00

a3
�m2: (48)

For k > k	, the mode behaves oscillatory and for k < k	,
the mode becomes unstable and frozen. This critical wave
number corresponds to the physical length

r	 ¼ 1

H0

�
1� m2

2H2
0

��1=2
: (49)

If the physical wavelength of the scalar field is smaller than
this length, the scalar field behaves oscillatory and then
becomes frozen after its wavelength exceeds r	 by the
cosmic expansion. For the massless case, r	 coincides
with the horizon length H�1 and the nonzero mass in-
creases the length r	. Our numerical result (47) indicates

rseparable � r	: (50)

Figure 6 shows the ðrphys; NÞ dependence of the sym-

plectic eigenvalue ð~��Þ2. For the massless case, for the
sufficiently large value of the e-folding, the system be-
comes separable after the physical distance between two
points exceeds the horizonH�1

0 . As the mass increases, the

line ð~��Þ2 ¼ 1=4 representing the separability condition
deviates from the horizon line H�1

0 as expected from (50).

The line ~�� ¼ 1, which gives the criterion of the classi-
cality (10), corresponds to the scale 6� 7 times larger than
the horizon size.
We compare this behavior of the mass dependence on

the entanglement with the Minkowski case. For the
Minkowski spacetime, the characteristic size of the en-
tangled region is given by the Compton wavelength 1=m
and this size decreases as the mass increases. For the
de Sitter case, if we consider a sufficiently small region
compared to the horizon length, we can neglect the effect
of the cosmic expansion and the behavior of the entangle-

FIG. 6 (color online). The ðrphys; NÞ dependence of the symplectic eigenvalue ð~��Þ2 for the massive scalar field in the de Sitter
spacetime. The distance rphys is in units ofH

�1
0 . Each panel show ð~��Þ2 form2=H2

0 ¼ 0, 1=4, 1=2, 1 from the top left to the down right.

The contour lines ð~��Þ2 ¼ 0:25; 1:0; 1:5 are shown. The dark green region corresponds to ð~��Þ2 < 1=4 and the system is entangled.
The light green region corresponds to ð~��Þ2 > 1=4 and the system is separable. The pink region satisfies the condition of the
classicality ð~��Þ2 > 1. The black solid lines represent the different comoving scales. The line ð~��Þ2 ¼ 1=4 deviates from the horizon
scale H�1

0 (the blue solid line) as the mass increases.
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ment is the same as the Minkowski case. For larger scales
r	 < rphys, the system becomes separable and this disen-

tanglement behavior does not occur in the Minkowski
spacetime. The size of the entangled region is larger than
the horizon scale and increases as the mass increases. We
expect that this behavior of the entanglement is related to
the causal structure of the de Sitter spacetime.

C. Classicality condition and scale of coarse graining

In this subsection, we discuss the relation between the
classicality and the scale of coarse graining. As we have
already observed, the coarse graining with a sufficiently
large scale leads to ~�� � 1=4 and the system becomes
classical. To investigate the effect of the scale of coarse
graining on the classicality, we plot the symplectic eigen-
values as the function of � ¼ k0=kc in Fig. 7: The relation
between � and the coarse-graining parameter � is

� ¼ H0

�aH
� 1: (51)

As the physical distance is

ar ¼ 1

��H
x0

�
H0

�aH

�
� 1

�H
; (52)

� represents the comoving scale of the bipartite system.
For the super horizon scale H0=ðaHÞ< � � 1, as we have
already confirmed, the separability condition ð~�Þ2 > 1=4 is
satisfied. For late time a � 1, the classicality condition
ð~�Þ2 � 1=4 is also satisfied for a wide range of the comov-
ing scale �. However, as is shown in the right panel of
Fig. 7, for too large a value of �, the classicality condition
is not satisfied as �, ~� are decreasing functions of � for ��
1. Thus, we have the maximum scale of the coarse graining
to retain the classicality. We can estimate this scale using
the asymptotic form of the correlation functions (28) and
the definition of the symplectic eigenvalue (30). Assuming
the large scale coarse graining � 
 1, we obtain the fol-
lowing asymptotic form of the symplectic eigenvalue � and
~� for the massive scalar field in the de Sitter spacetime:

�2; ~�2 �
( ða�Þ4	�4 ¼ ð1�Þ2 ðfor �� 0Þ;
a4	�4ð1� �Þ2 þ 1

4 ¼ �4m
2=ð3H2

0
Þða� 1

�Þ2 þ 1
4 ðfor �� 1Þ (53)

where we have used 	 � 3=2�m2=ð3H2
0Þ, m2=H2

0 
 1.
For the small comoving scale �� 0, the classicality con-
dition ~�2 � 1=4 requires � 
 1 and this is consistent with
�� 0 provided that a � 1 (late time). Thus, sufficiently
large scale coarse graining � 
 1 is necessary to obtain the
classicality of the scalar field. For the large comoving scale
�� 1, to keep ~�2 � 1=4,

1 
 �2m
2=ð3H2

0
Þ ¼ e2m

2=ð3H2
0
Þ ln� (54)

is necessary and this yields the lower bound of �:

e�3H2
0
=ð2m2Þ 
 �: (55)

Therefore, we need the following condition for the coarse-
graining parameter to guarantee the classicality of the
coarse-grained field

e�3H2
0
=ð2m2Þ 
 � 
 1: (56)

For the massless scalar field in the Universe with a power
law expansion, we have

FIG. 7 (color online). The dependence of the comoving scale � of the symplectic eigenvalues for the massive scalar field in the
de Sitter universe. The left panel shows ð��Þ2 (the upper line) and ð~��Þ2 (the lower line) at N ¼ 2. The right panel is at N ¼ 5. The
mass of the scalar field is m2=H2

0 ¼ 1=4. At any time, ~�� > 1=2 for 1=a < � � 1.
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�2; ~�2 �
( ða�HH0

Þ4	�4 ¼ ð1�Þ2 ðfor �� 0Þ;
ðaHH0

Þ4	�4ð1� �Þ2 þ 1
4 ¼ ��4=pðaHH0

� 1
�Þ2 þ 1

4 ðfor �� 1Þ (57)

where we have used 	 � 3=2þ 1=p, p � 1. The condi-
tion ~�2 � 1=4 leads to

� 
 1: (58)

The conditions (56) and (58) for the coarse-graining pa-
rameter � are the same as the ones that appeared in the
stochastic approach to inflation [16,20,21] to ensure the
amplitude of the stochastic noise is independent of the
coarse-graining parameter. With these conditions, the sto-
chastic calculus based on the Langevin equation reprodu-
ces the field theoretic result of expectation values.
However, in the context of the stochastic approach, it
was not clear why these conditions guarantee the validity
of the stochastic approach. From the view point of the
entanglement and the classicality of the quantum field,
the conditions (56) and (58) are equivalent to ~�2 � 1=4;
with this condition, the coarse-grained quantum field be-
comes separable and there exists a classical distribution
function which reproduces the expectation values of the
original quantum system. In other words, we have appro-
priate classical stochastic variables or stochastic processes
that mimic the original quantum dynamics. This supports
the validity of the stochastic approach which treats the
quantum field as the classical stochastic variables.

V. SUMMARYAND CONCLUSION

We investigated the behavior of the bipartite entangle-
ment of the scalar field in the expanding universe. To define
the bipartite system for the quantum field, we introduced
the coarse graining of the scalar field. In our formalism, the
scale of the coarse graining corresponds to the spatial
distance between two points at which we want to measure
the bipartite entanglement. This defines the bipartite sys-
tem with the two mode Gaussian state and we can judge the
separability of the system by the criterion based on the
partial transpose operation.

For the massless field, the disentanglement occurs when
the scale of the coarse graining equals to the horizon length
H�1. The horizon scale determines the causal structure of
the accelerated expanding universe and two points are
causally disconnected beyond this scale. We have con-
firmed that the quantum correlation or the bipartite entan-
glement disappears beyond this scale for the massless

scalar field. This disentanglement behavior is necessary
for the quantum field to acquire the classical nature. With
inclusion of the mass of the scalar field, we found that the
mass increases the scale of the disentanglement. The sys-
tem becomes separable when the oscillatory behavior of
the mode function stops and changes to be frozen. This
scale is larger than the horizon length and corresponds to
the sonic horizon which discriminates the behavior of the
mode function. After the disentanglement occurs and the
system becomes separable, the classicality condition is
satisfied at a sufficiently late time or for sufficiently large
scale coarse graining. We derived the condition for the
scale of the coarse graining needed to satisfy the classi-
cality condition at late time and found that the upper and
the lower bound for the coarse-graining parameter. These
bounds are equivalent to ones that appeared in the stochas-
tic approach to inflation to guarantee the cutoff indepen-
dence of the stochastic dynamics of the scalar field.
After the classicality condition is satisfied, it is possible

to calculate the quantum expectation value of any operators
using the classical distribution functions such as the P
function and the Wigner function. However, this does not
mean that the information on the quantum correlation or
the entanglement before the classicalization is lost. The
remnant of the quantum correlation is encoded in the
classical distribution function and this is responsible for
the origin of structure in our Universe. It will be interesting
to investigate the relation between the classical stochastic
property of the fluctuation after the classicalization and the
encoded quantum correlation. The analysis towards such a
direction will make clear the mechanism of the quantum to
classical transition of the quantum fluctuation in the infla-
tionary universe.
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