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For massive gravity in a de Sitter background one encounters problems of stability when the curvature

is larger than the graviton mass. I analyze this situation from the path integral point of view and show that

it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint

for massive gravity is incorporated and the proper treatment of the path integral measure is taken into

account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the

same choices as in the massless case), one obtains the opposite bound on the graviton mass.
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I. INTRODUCTION

A minimal modification of gravity with some cosmo-
logical interest [1] consists of incorporating a (sufficiently
small) graviton mass. There are several problems with this
approach, however, the first being the well-known
van Dam-Veltman-Zakharov discontinuity that persists
for arbitrarily small graviton mass [2,3]. It has been shown
that it is possible to circumvent this problem in the pres-
ence of a (positive or negative) cosmological constant [4–
6], then, however, another problem of consistency appears:
in the case of a positive cosmological constant, in particu-
lar for de Sitter spacetime, one encounters the Higuchi
instability for m2 < 2H2, where m is the graviton mass
and H the Hubble expansion rate [6]. It is argued that a
scalar degree of freedom propagates then with the wrong
sign of the kinetic term, a ghost. The analysis of [6] has
been done in the canonical quantization formalism; here I
consider this problem from the path integral point of view
in order to see how it appears in this formalism and inves-
tigate whether there are ways to circumvent it.

In pure (massless) Euclidean quantum gravity one en-
counters a (related, I will argue) problem of stability,
known as the conformal factor problem [7,8], consisting
in the unboundedness of the functional integral on the trace
part of the perturbation. In [8] (see also [9]) this problem
was analyzed using the generalized DeWitt metric on the
space of metrics and with the appropriate treatment of the
measure for the path integral, and it was shown that, for
particular choices of the metric on the conformal (trace)
part, the instability problem disappears.

Here I will apply the same analysis in the case of
massive gravity with a cosmological constant (especially
for a de Sitter background). The Bianchi identities together
with the equations of motion imply that the graviton field
satisfies a constraint, irrespectively of the sources. After a
field redefinition that disentangles this constraint one can
see that the problem of stability here is also related to the

correct definition of the measure for the functional integral.
One can see how the problem of the Higuchi instability
appears in the path integral formalism and, interestingly,
one can check that for the same choices of the DeWitt
metric as in the massless case, one obtains the opposite
bound for stability of the massive graviton.
It should be stressed, however, that the conformal factor

problem of Euclidean (massless) quantum gravity is used
mainly as a motivation and the rotation to Euclidean sig-
nature is not necessary (in fact, it was not done in [8]
either). There are similarities between the two cases, but
since they are two physically different theories (one is
massless, gauge-invariant, with two propagating degrees
of freedom, and the other massive, without gauge-
invariance, and five propagating degrees of freedom) it is
still not clear whether the limit of the graviton mass going
to zero can be taken consistently. The introduction of the
DeWitt metric, with an arbitrary value of its parameters, is
also an ad hoc procedure that should be corroborated by
some other nonperturbative or canonical method. I believe,
however, that the results and methods used here are useful
in elucidating the stability problems of massive gravity and
offer clues as to the possible ways that they may be
circumvented.
In Sec. II I start by describing the path integral treatment

of the conformal factor problem in the massless case [8]
and continue with the massive case on the same footing.
The incorporation of the path integral measure is critical in
obtaining the correct degrees of freedom in both cases and
in elucidating the problems of stability for the massive
gravitons. The Higuchi instability appears, not as a prop-
agating ghost mode, but as an inverted potential term, and,
as mentioned above, it depends on the choices of the
DeWitt metric.
In Sec. III I conclude with some comments.

II. MASSIVE GRAVITONS WITH A
COSMOLOGICAL CONSTANT

The Einstein-Hilbert action with a cosmological con-
stant,*metaxas@central.ntua.gr
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The proper quantization of the theory is performed when
the linear part of the perturbed action vanishes by virtue of
the field equations [10],

R�� ¼ �g��; (3)

and the action is gauge invariant with respect to the gauge
transformations

h�� ! h�� þr��� þr���: (4)

Massive gravitons are obtained when one adds the Pauli-
Fierz mass term,

SPF ¼ �m2

2

Z
x
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which breaks the gauge invariance (4).
The space of metric perturbations may be analyzed by

using the York decomposition [8,11],
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In terms of these variables the quadratic action for the
massless case becomes
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where �0 ¼ �r2, �2 ¼ �L � 2� and
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is the Lichnerowicz operator acting on second rank tensors.
The action is explicitly gauge invariant and one can see

that, upon Euclidean continuation, the second term, com-
ing from the trace part, is unbounded, leading to the old
conformal factor problem. The story is not complete, how-
ever, since one has to take care of the functional measure in
the path integral (and its Euclidean continuation)

Z
½dh��� expðiS2Þ: (12)

It should be stressed also that the rotation to Euclidean
signature is not necessary, and the discussion here will
continue in Lorentzian signature, one merely needs a
way to see how and why the sign of the trace part is flipped.
In [8] this was done by using the DeWitt metric on the
space of metric deformations, which gives a scalar product
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where
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is the general DeWitt metric that depends on an arbitrary
constant C and
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The primes on the determinants denote that we omit any
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zero or negative eigenvalues upon continuation to
Euclidean space, the first determinant is on the space of
transverse vectors and the second on the scalars.

The transverse and traceless tensorH�� has five degrees

of freedom, three of which are removed by the vector
determinant, leaving the two degrees of freedom of a
massless graviton. The remaining scalar, 
, in (10) does
not correspond to a propagating degree of freedom: after

the (nonlocal) redefinition,  ¼ ðdetð�0 � R
3ÞÞ1=2
, in or-

der to incorporate the scalar determinant, the apparently
kinetic term for
 becomes a potential term for . The only
remnant of the instability is the fact that this potential term
is inverted (unbounded below) when C>� 1

2 , but be-

comes of the usual sign and bounded when C<� 1
2 in

(13), corresponding to an opposite continuation of the
conformal factor. More details can be found in [8], here I
will continue to apply this procedure in the massive case,
that is to consider the combined action S ¼ S2 þ SPF.

When the Pauli-Fierz term is added to the Einstein-
Hilbert action it has the effect of propagating a massive
graviton with five degrees of freedom and the full action is
not gauge invariant. In terms of the variables used here one
has
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2

Z
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4
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The cr2c term here also has an opposite (ghostlike) sign,
like the 
r2
 term in (10), and there is also a mixing term
that has to be considered in order to investigate the stability
of the theory. Before doing so, however, we note that the
Bianchi identities, together with the equations of motion
for a massive graviton, imply the relation

r�r�h�� ¼ r2h; (22)

or

3r2
 ¼ �r2c ; (23)

which holds irrespectively of the sources. This may be used
as a constraint in order to disentangle the dynamics of the
theory and one may define the field

� ¼ 3
��c ; (24)

which is nondynamical, constrained by r2� ¼ 0. After
collecting the various terms from (10) and (21) we get for
the full action:
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Z
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plus terms of the form 
r2�, �r2� and related mass

terms involving�. Since� is constrained these additional
terms are irrelevant to the dynamics of the theory.
One sees in (25) that, for m2 < 2H2 (� ¼ 3H2 and R ¼

4� as usual), the 
 field seems to acquire a wrong sign,
ghostlike, kinetic term, signaling the Higuchi instability.
Again, the story is not complete, however, since one has to
take care of the path integral measure. In fact, the incor-
poration of the vector determinant from (20) is vital in
order to cancel the vector term in (25), leaving the five
degrees of freedom of H��, as is expected for a massive

graviton. The (nonlocal) redefinition, � ¼ ðdetð�0 �
R
4ÞÞ1=2V�, transforms the vector kinetic term into a potential

term (with the correct sign, bounded).
The change of variables in (24) has trivial Jacobian, so

the functional integral over ½d
�½dc � in (20) can be done

over ½d
�½d�� and another redefinition,  ¼ ðdetð�0 �
R
3ÞÞ1=2
, transforms the last term in (25) into a potential

term, which is, however, unbounded below for m2 < 2H2.
Thus, the Higuchi instability in the path integral formalism
does not correspond to a propagating ghost but, rather, an
inverted potential term. It should be clear that, if the same
treatment as the massless case is applied here, that is, if one
considers a DeWitt metric with C<� 1

2 , then this has the

effect of reversing the previous conclusion and massive
gravitons become stable for m2 < 2H2, a result which is
more interesting from the cosmological point of view.

III. COMMENTS

The consistency of massive gravity in general curved
backgrounds is an interesting problem because of various
possible cosmological and theoretical considerations
[4,5,12–18]. Various works deal with this problem, mostly
from the Hamiltonian (canonical) point of view [6,19–22].
Here I considered the path integral approach, following
related work [8] in the massless case, and showed how the
Higuchi instability appears in this formalism. The appro-
priate treatment of the path integral measure is critical in
this approach and it is interesting that, if a particular
definition of the measure in terms of the DeWitt metric is
employed, similarly to the massless case, one gets the
opposite bound for the graviton mass.
Naturally it would be interesting to reconcile the two

approaches, hopefully to derive the path integral measure
with a specific value of the DeWitt metric (which remains
arbitrary in this respect) from the more fundamental,
Hamiltonian, point of view. In any case, however, the
path integral approach gives some additional insight to
the problems considered.
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