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The Gauss-Codazzi method is used to discuss the gravitational collapse of a charged Reisner-

Nordström domain wall. We solve the classical equations of motion of a thin charged shell moving

under the influence of its own gravitational field and show that a form of cosmic censorship applies. If the

charge of the collapsing shell is greater than its mass, then the collapse does not form a black hole. Instead,

after reaching some minimal radius, the shell bounces back. The Schrödinger canonical formalism is used

to quantize the motion of the charged shell. The limits near the horizon and near the singularity are

explored. Near the horizon, the Schrödinger equation describing evolution of the collapsing shell takes the

form of the massive wave equation with a position dependent mass. The outgoing and incoming modes of

the solution are related by the Bogolubov transformation which precisely gives the Hawking temperature.

Near the classical singularity, the Schrödinger equation becomes nonlocal, but the wave function

describing the system is nonsingular. This indicates that while quantum effects may be able to remove

the classical singularity, it may also introduce some new effects.

DOI: 10.1103/PhysRevD.80.124027 PACS numbers: 04.70.Dy

I. INTRODUCTION

Gauss-Codazzi equations are fundamental equations in
the theory of surfaces embedded in a higher dimensional
space. They provide a very powerful tool of studying
problems in general relativity. Most of the work in the
existing literature focused on problems with sources con-
taining only mass distributions. The next natural step is to
generalize the Gauss-Codazzi method so that the stress-
energy sources with both mass and charge can be included.
First, we will setup the formalism and derive the equations
of motion for a charged two dimensional surface. The
conserved quantities will follow from these equations of
motions. A charged shell of matter (represented by a
domain wall) moves under the influence of its own gravi-
tational and electromagnetic field. If the mass of the shell is
greater than its charge, the collapse will end by the for-
mation of a black hole. When the charge is greater than the
mass parameter, the collapse will not yield a black hole, in
agreement with the cosmic censorship conjecture. In this
case, the solution becomes oscillatory. The shell will col-
lapse to some minimal radius at which the electromagnetic
repulsion will overcome the gravitational attraction and
cause the bounce. From that moment on, the shell will be
expanding until it reaches some maximal radius at which
the gravitational force will again dominate, and the new
collapsing cycle will start.

We then quantize the motion of the charged shell in the
context of the canonical formalism. Two of the most
important regimes will be the limits near the horizon and
near the singularity. Near the horizon, the Schrödinger
equation describing evolution of the collapsing shell takes

the form of the massive wave equation in a Minkowski
background with a position dependent mass. Incoming and
outgoing modes are defined and related by the Bogolubov
transformation. Despite the fact that the outgoing state is a
pure state, it has a Boltzmann distribution at the Hawking
temperature. In the absence of the matter fields propagating
in the background of the collapsing shell, this is an intrigu-
ing result, indicating perhaps that the collapsing shell loses
its mass in the form of emitted gravitons or pair production
of shells. Near the classical singularity, the Schrödinger
equation becomes nonlocal, but the wave function describ-
ing the system is nonsingular. We find that locality is
recovered in the limit of a very large domain wall tension
(i.e. mass of the collapsing shell) but negligible gravita-
tional interaction. Including gravitational interactions, the
system is manifestly nonlocal.

II. THE GAUSS-CODAZZI FORMALISM

A. The equations

Here we setup the Einstein’s equations in the presence of
stress-energy sources with both mass and charge confined
to three-dimensional timelike hypersurfaces. We follow
the technique developed in Ref. [1]. Let S denote a three-
dimensional timelike hypersurface containing stress en-
ergy and let �a be its unit spacelike normal (�a�

a ¼ 1).
The three-metric intrinsic to the hypersurface S is

hab ¼ gag � �a�b; (1)

where gab is the four metric of the space-time. Let ra

denote the covariant derivative associated with gab and let
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Da ¼ ha
brb; (2)

where Da is a projection into the hypersurface S of the
covariant derivative ra of space-time, and hac is the in-
duced metric on the hypersurface S. The extrinsic curva-
ture of S, denoted by �ab, is defined by

�ab � Da�b ¼ �ba: (3)

The contracted forms of the first and second Gauss-
Codazzi equations are then given by

3Rþ �ab�
ab � �2 ¼ �2Gab�

a�b; (4)

habDc�
ab �Da� ¼ GbcH

b
a�

c: (5)

Here 3R is the Ricci scalar curvature of the three-geometry
hab of S,� is the trace of the extrinsic curvature, andGa

b is
the Einstein tensor in four-dimensional space-time.

The stress-energy tensor Tab of four-dimensional space-
time has a �-function singularity on S for both the mass
and the charge. This in turn implies that the extrinsic
curvature has a jump discontinuity across S, since the
extrinsic curvature is analogous to the gradient of the
Newtonian gravitational potential. Therefore we can intro-
duce

�ab � �þab � ��ab (6)

and

Sab �
Z

dlTab; (7)

where l is the proper distance through S in the direction of
the normal �a, and where the subscripts � refer to values
just off the surface on the side determined by the direction
of ��a. Using the Einstein and the Gauss-Codazzi equa-
tions, one then has

Sab ¼ � 1

8�GN

ð�ab � hab�c
cÞ: (8)

We can also introduce the ‘‘average’’ extrinsic curvature

~�ab ¼ 1
2ð�þab þ ��abÞ: (9)

Then, using Eq. (8), by adding and subtracting Eq. (4) and
(5) on opposite sides of S we get

hacDbS
cb ¼ 0; (10)

hacDb ~�
cb �Da ~� ¼ 0; (11)

3Rþ ð~�ab ~�
ab � ~�2Þ ¼ �16�2G2

N

�
SabS

ab � 1

2
ðSaaÞ2

�
:

(12)

These form a complete set of equations to solve Einstein’s
equations in the presence of a thin wall.

B. Attractive energy

Here we derive equations for an observer who is hover-
ing just above the surface S on either side. Let the vector
field ua be extended off S in a smooth fashion. The accel-
eration,

uarau
b ¼ ðhbc þ �b�cÞuarau

c

¼ hbcu
arau

c � �buauc�ab; (13)

has a jump discontinuity across S since the extrinsic cur-
vature has such a discontinuity. The perpendicular compo-
nents of the accelerations of observers hovering just off S
on either side satisfy

�bu
arau

bjþ þ �bu
arau

bj� ¼ �2uaub ~�ab � 2
1

�
Sab ~�ab

¼ �2
�

�
ðhab þ uaubÞ~�ab

� 2
1

�
Sab ~�ab (14)

and

�bu
arau

bjþ � �bu
arau

bj� ¼ �uaub�ab

¼ 4�Gnð�� 2�Þ: (15)

III. MODEL

We consider a spherical domain wall with the constant
tension � representing a spherical shell of collapsing mat-
ter and charge. The wall is described by only the radial
degree of freedom, RðtÞ. The metric is taken to be the
solution of Einstein equations for a spherical domain
wall with charge. The metric is Reisner-Nordström outside
the wall, as follows from spherical symmetry [2]

ds2 ¼ �
�
1� 2GM

r
þQ2

r2

�
dt2 þ

�
1� 2GM

r
þQ2

r2

��1
dr2

þ r2d�2; r > RðtÞ; (16)

where M is the mass and Q is the charge of the wall,
respectively, and

d�2 ¼ d�2 þ sin2�d�2: (17)

In the interior of the spherical domain wall, the line ele-
ment is flat, as expected by Birkhoff’s theorem,

ds2 ¼�dT2 þ dr2 þ r2d�2 þ r2sin2�d�2; r <RðtÞ:
(18)

The equation of the wall is r ¼ RðtÞ. The interior time
coordinate, T, is related to the asymptotic observer time
coordinate, t, via the proper time of an observer moving
with the shell, �. The relations are

dT

d�
¼

�
1þ

�
dR

d�

�
2
�
1=2

; (19)
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and

dt

d�
¼ 1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ

�
dR

d�

�
2

s
; (20)

where

f � 1� 2GM

R
þQ2

R2
: (21)

By integrating the Gauss-Codazzi equations of motion
for the charged spherical domain wall derived in the pre-
vious section we find that the mass is a constant of motion
(see also [2]) and is given by

M ¼ 4��R2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
� 2�G�R� þQ2

2R
: (22)

The proof that M is really a constant of motion is given in
the Appendix. We therefore identify M and the
Hamiltonian of the system, i.e. M � H. The physical
meaning of Eq. (22) is straightforward. For a static shell,
i.e. R� ¼ 0, the first term in square brackets is just the total
rest mass of the shell. For a moving shell, R� � 0 takes
kinetic energy into account. The second term in square
brackets is the self-gravity or binding energy. Finally, the
last term in (22) is the electromagnetic contribution to the
total mass (energy). In what follows, we will identify the
conserved quantity (22) with the Hamiltonian of the
system.

It is also possible to take the nonrelativistic large radius
limit of the above Hamiltonian. For the case of constant
mass M0 ¼ 4��R2, the above Hamiltonian becomes

H ¼ M0 þ p2

2M0

�GM2
0

2R
þQ2

2R
; (23)

which is the usual Hamiltonian for a particle in a gravita-
tional and electrical potential. The extremal limit M0 ¼
�Q naturally corresponds to a free Hamiltonian. In this
case it is clear that the identification of the conserved
quantity with the Hamiltonian is justified.

The collapse of the shell also obeys charge conservation,
which is given by

Daj
a ¼ DaðquqÞ; (24)

where ja is the four-current and ua is a timelike four-
vector.

IV. CLASSICAL EQUATIONS OF MOTION

In this section we will consider the classical equation of
motion for the Reisner-Nordström domain wall (for earlier
work see e.g. [3–6] and also [7,8]). To do so we consider an
action that leads to the conserved Hamiltonian. From
Eq. (22) the form of the action is then

Seff ¼ �4�
Z

d��R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
� R�sinh

�1ðR�Þ

� 2��GRþ Q2

8��R3

�
; (25)

where � is the proper time of the observer who is falling in
with the shell and R� ¼ dR=d�. Now Eq. (25) can be
written in terms of the asymptotic time t

Seff ¼ �4�
Z

dt�R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� ð1� fÞ

f
R2
t

s

� Rt

ffiffiffi
f

p
sinh�1

�
Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

f2 � R2
t

s �

þ
�

Q2

8��R3
� 2��GR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� R2

t

f

s �
; (26)

whereRt ¼ dR=dt. From Eq. (26) the effective Lagrangian
is then

Leff ¼ �4��R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� ð1� fÞ

f
R2
t

s

� Rt

ffiffiffi
f

p
sinh�1

�
Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

f2 � R2
t

s �

þ
�

Q2

8��R3
� 2��GR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� R2

t

f

s �
: (27)

The generalized momentum � can be derived from
Eq. (27)

� ¼ 4��R2ffiffiffi
f

p
�

f3Rt

ðf2 � R2
t Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � ð1� fÞR2

t

p
þ ð1� fÞRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 � ð1� fÞR2
t

p þ ð Q2

8��R3 � 2��GRÞRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � R2

t

p
þ fsinh�1

�
Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

f2 � R2
t

s ��
: (28)

Thus the Hamiltonian in terms of Rt is given by

H ¼ 4��R2

�
f3R2

t

ðf2 � R2
t Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � ð1� fÞR2

t

p
þ f2

�ð Q2

8��R3 � 2��GRÞffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � R2

t

p þ 1ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � ð1� fÞR2

t

p ��
:

(29)

To obtainH as a function of ðR;�Þ, we need to eliminate
Rt in favor of � using Eq. (28). This can, in principle, be
done but it is messy. Instead we consider that the R is close
to RH and hence f ! 0. In the limit f ! 0 the denomi-
nators in Eq. (28) [and Eq. (29)] are equal, therefore we can
write
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� � 4�	R2Rtffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � R2

t

p ; (30)

where

	 � 1þ Q2

8��R3
H

� 2��GRH; (31)

where RH is the horizon radius. Using Eq. (30) we can then
write the Hamiltonian as

H � 4�	f3=2R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � R2

t

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf�Þ2 þ fð4�	R2Þ2

q
; (32)

and has the form of a relativistic particle,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, with a

position dependent mass term.
The Hamiltonian is a conserved quantity and so, from

Eq. (32),

h ¼ B3=2R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � R2

t

p ; (33)

where h ¼ H=4�	 is a constant. Solving Eq. (33) for Rt

we get

Rt ¼ �f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fR4

h2

s
; (34)

which, in the near horizon limit takes the form

Rt � �f

�
1� 1

2

fR4

h2

�
(35)

since f ! 0 as R ! RH, where RH is the horizon radius.
The dynamics for R� RH can be obtained by solving

the equation Rt ¼ �f. Here we will consider two different
cases, the nonextremal and extremal case.

(1) 1. Non-Extremal Case
For the nonextremal case, we consider the equality

1� 2GM

RH

þ Q2

R2
H

¼ 0; (36)

where RH is given by

RH ¼ GM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 �Q2

q
: (37)

The plus sign is the outer and the minus sign is the
inner horizon. To distinguish between them wewrite

Rþ ¼ GMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 �Q2

q
; (38)

R� ¼ GM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 �Q2

q
: (39)

Therefore we can then write Eq. (21) as

f ¼
�
1�GMþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p
R

�

�
�
1�GM� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p
R

�
; (40)

� fþf�: (41)

Since in the near horizon limit f ! 0, we can work
with two different limits, either fþ ! 0 or f� ! 0.
In both cases Rt � �fþf�. For asymptotic observ-
ers watching the collapse, the horizon of interest is
fþ. For fþ ! 0, f� goes to a finite constant num-
ber, thus we have

RðtÞ � Rþ þ ðR0 � RþÞe�f�t=Rþ : (42)

We now make some comments on Eq. (42). First, in
the limit ðGMÞ2 >Q2, the exponential term in
Eq. (42) is positive definite. Thus it is easy to see
that it takes the shell an infinite amount of time as
seen by the asymptotic observer to reach Rþ. In the
limit of ðGMÞ2 � Q2, f reduces to B, where

B � 1� 2GM

R
: (43)

This is the case studied in Ref. [9] from the view
point of an asymptotic observer and in Refs. [10,11]
from the viewpoint of an infalling observer.

(1) 2. Extremal Case
In the extremal case GM ¼ Q, so near the horizon
we can write

f ¼
�
1�Q

R

�
2 �

�
R�Q

Rh

�
2 � �2

R2
h

: (44)

Here

Rh ¼ GM ¼ Q (45)

is the position of the horizon in the extremal limit
and the small parameter � is

� � R�Q: (46)

Therefore we can write

Rt � �t ¼ � �2

R2
h

: (47)

Solving Eq. (47) to leading order in R� Rh, the
solution is

RðtÞ � Rh � ðR0 � RhÞ R2
h

tþ R2
h

: (48)

Since we are interested in the collapsing case, we
take the negative sign again. In that case, RðtÞ ¼ Rh

only as t ! 1.
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From Eqs. (42) and (48) we can see that again it takes an
infinite amount of time for the shell to reach the horizon, as
seen by the asymptotic observer. However, in the extremal
case the approach is not exponential, which is the conse-
quence of the repulsive contribution of the charge.

Cosmic censorship

We now analyze what happens in the case when the
parameters of the collapsing shell satisfy Q2 > ðGMÞ2. A
black hole with such parameters is just a naked singularity,
since the expression for the horizon,

rh ¼ GM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 �Q2

q
; (49)

would not be real. Thus, if the collapse proceeds all the
way, this would represent a violation the cosmic censorship
conjecture. However, this is not the case here. As we can
see from Eq. (42), the solutions have a complex exponen-
tial, which implies oscillating solutions. The shell will
collapse to some minimal radius at which the electromag-
netic repulsion will overcome the gravitational attraction
and cause the bounce. From that moment on, the shell will
expand until it reaches some maximal radius at which the
gravitational force will again dominate, and the new col-
lapsing cycle will start. This is in agreement with the
cosmic censorship conjecture.

V. QUANTUM EFFECTS FAR FROM THE
HORIZON

Previously we have shown that the Hamiltonian in the
nonrelativistic large radius limit is given by

H ¼ M0 þ p2

2M0

�GM2
0

2R
þQ2

2R
: (50)

As this is similar to the usual Schrödinger equation for a
hydrogen atom, bound state solutions are well known;
bound states do not exist in the extremal limit. Radial
wave functions are given by Laguerre polynomials and
the ground state energy is given by E0 ¼ �M0ðGM2

0 �
Q2Þ2=8. The factors of 2 are due to the fact that this shell
satisfies the Gauss-Codazzi equations. The shell self-
interaction is not due to the full gravitational and electrical
forces at the shell but the average of the values inside the
shell and outside the shell. The relativistic corrections to
the energy as well as to the gravitational interactions can be
further calculated perturbatively.

VI. QUANTUM EFFECTS NEAR THE HORIZON

A. Near horizon limit

The classical Hamiltonian in Eq. (32) has a square root
and so we first consider the squared Hamiltonian

H2 ¼ f�f�þ fð4�	R2Þ2; (51)

where we have made a choice for ordering f and � in the

first term. In general, we should add terms that depend on
the commutator ½f;��. However, in the limit R ! RH, we
find

½f;�� � 2

R2
H

�
GM� Q2

RH

�
: (52)

In the case of a charged black hole, the normal ordering
ambiguity arises for black holes which are small relative to
the Planck scale. For uncharged black holes, the normal
ordering ambiguity is less severe. In fact in the extremal
limit, the normal ordering ambiguity disappears com-
pletely and the Hamiltonian is uniquely defined.
We now apply the standard quantization procedure. We

substitute

� ¼ �i
@

@R
(53)

in the squared Schrödinger equation,

H2� ¼ � @2�

@t2
: (54)

Then we have

� f
@

@R

�
f
@�

@R

�
þ fð4�	R2Þ2� ¼ �@2�

@t2
: (55)

To solve this equation, we define tortoise coordinates

u ¼ RþGM ln

�������� R2

2GMR�Q2
� 1

��������
þ 2ðGMÞ2 �Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p ln

�
� R� 2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2
p �

� 2ðGMÞ2 �Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2
p ln

�
2� R� 2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p �
; (56)

which gives

f� ¼ �i
@

@u
: (57)

Equation (54) then gives

@2�

@t2
� @2�

@u2
þ fð4�	R2Þ2c ¼ 0: (58)

This is just the wave equation in a Minkowski background
with a mass that depends on the position. From the struc-
ture of Eq. (56), care needs to be taken to choose the
correct branch since the region R 2 ðRH;1Þ maps onto
u 2 ð�1;1Þ and R 2 ð0; RHÞ onto u 2 ð0;�1Þ, where
RH is given by Eq. (37).
We now turn to examine the quantization of incoming

and outgoing states describing this infalling shell. Fields
propagating in this collapsing black hole background ex-
perience particle creation at a temperature given by the
Hawking temperature. There are many ways to derive this
result including calculating the Bogolubov transformations
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between incoming and outgoing states at past and future
null infinity. Oneway to find the Bogolubov transformation
is to consider the outgoing waves at future null infinity and
using the high energy approximation, tracing these solu-
tions back to past null infinity. We now turn to this phe-
nomenon and find that we can extract the necessary
information directly from the horizon perturbations by
considering a particular set of incoming and outgoing
fields.

B. Schwarzschild

The tortoise coordinate u for Schwarzshild is

u ¼ Rþ 2GM ln

�������� R

2GM
� 1

��������: (59)

In the near horizon limit, R � 2GM we expand to lowest
order

f ¼ 1� 2GM=R � eu=2GM; (60)

where u ! �1. The equation of motion becomes, after a
further scaling of the coordinate ðt; uÞ ! 2GMðt; uÞ,

@2c

@t2
� @2c

@u2
þm2euc ¼ 0; (61)

where the constant m2 ¼ ð8�	GMÞ2. This wave equation
is similar to the example of a time dependent mass exam-
ined in [12,13]. For sufficiently slowly varying exponent,
the solution is essentially a plane wave and this occurs for
largeGM. The general solution can be found by expanding
c in positive frequency plane waves

c ðu; tÞ ¼ RðuÞe�i!t; (62)

in which case the Schrödinger equation is a form of the
modified Bessel’s equation

½@2u �m2eu þ!2�RðuÞ ¼ 0; (63)

with two classes of normalizable solutions. The modified
Bessel functions

Rþ
inð2

ffiffiffi
2

p
imeu=2Þ ¼ ðimÞi!ffiffiffiffiffiffiffi

2!
p �ð1� 2i!ÞJ�2i!ð2

ffiffiffi
2

p
imeu=2Þ;

(64)

in the near horizon limit u ! �1 become the positive
frequency solutions

Rþ
in �

e�i!uffiffiffiffiffiffiffi
2!

p : (65)

Altogether the effective potential vanishes near the horizon
and the wave equation becomes that of a free massive field
with the standard ingoing (and outgoing) Fourier modes.
At distances far from the horizon these correspond to
solutions which grow without bound and independently
of !,

Rþ
out � e�u=4þ2

ffiffi
2

p
meu=2 ; (66)

although this exponential growth in the modes is an artifact
of our approximation Eq. (60), which no longer is valid far
from the horizon. In fact in the large radius limit, the
solutions become wavelike.
In addition we consider the solutions

Rþ
out ¼

ffiffiffiffi
�

2

r
ðie2�!Þ�1=2H2

�2i!ð2
ffiffiffi
2

p
i

ffiffiffiffi
m

p
eu=2Þ; (67)

which are related by a Bogolubov transformation

Rþ
out ¼ aRin þ b �Rin; (68)

to the incoming modified Bessel functions

H2
�2i!ðxÞ ¼

J2i!ðxÞ � e2�!J�2i!ðxÞ
�i sinð�2i�!Þ : (69)

Near the horizon u ! �1, the Hankel function for the
complex argument can be expanded as

H2
�2i!ð2

ffiffiffi
2

p
i

ffiffiffiffi
m

p
eu=2Þ � e�i!u � e2�!ei!u: (70)

Relating the incoming and outgoing states we find Rþ
out �

ðRin þ e�2�! �RinÞ. This physically shows particle produc-
tion as the shell approaches the horizon and that the density
of particles created is given by the ratio

jb=aj2 ¼ e�4�!; (71)

at temperature 1=4�. Restoring the units of temperature we
find that the modes of the shell experience a temperature

T ¼ 1=8�GM; (72)

which is the Bekenstein-Hawking temperature of the black
hole. The Bogolubov transformation also shows that at
large ! the vacuum for the in and out states are identical.
The two sets of wave function solutions are related by

the Bogolubov transformation. Despite the fact that the
outgoing state is a pure state, it has a Boltzmann distribu-
tion at temperature TH ¼ 1=8�GM which is precisely the
Hawking temperature of the black hole. This is a result of
the fact that the interaction potential is periodic in
Euclidean space.
Normally the Hawking temperature is measured at

asymptotic infinity while the near horizon temperature is
blueshifted and infinite. In our near horizon analysis we
extract the finite Hawking temperature for outgoing modes
although it is measured relative to that of the incoming
modes. Naturally this should be a finite quantity. If one
were to take the usual temperature calculation and simul-
taneously measure the outgoing radiation versus the in-
coming radiation at large but finite radial distance then the
relative blueshifting would cancel out leading to the same
Hawking temperature.
We note here that this result implies outgoing thermal

radiation, though we did not consider any matter fields
propagating in the background of the collapsing shell.
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The shell itself is both the source of gravitational field and
matter that collapses. Ref. [14] performed an analysis of a
massless spherical shell and the radiation it emits. In their
analysis the shell was an approximation of a particle mov-
ing in the black hole background. Thus, we may conclude
that the shell itself loses its mass, perhaps in the form of
emitted gravitons and pairs of spherical shells.

C. Charged Reissner-Nordstrom

For the charged black hole the analysis is very similar
except that two logarithm terms are kept in the expansion
near the outer horizon and the distance from the outer
horizon is written in terms of the coordinate u as

R� Rþ � eu=ðGMþð2ðGMÞ2�Q2=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2�Q2

p
ÞÞ: (73)

Up to rescalings the equations of motion are the same
modified Bessel equations. Performing the same analysis
in terms of the near horizon modes, the temperature expe-
rienced by the gravitational modes is the same as the
Bekenstein-Hawking temperature for a charged black hole

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p
2�ðGMþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGMÞ2 �Q2

p Þ2
: (74)

D. Scalar fields and temperature

In the above analysis we have argued that the Hawking
radiation temperature can be calculated for the quantum
mechanical wave function describing gravity and the col-
lapsing shell near the horizon. In this picture it was not
necessary to invoke the asymptotically flat region of the
black hole. The relevant thermal properties could be calcu-
lated in the vicinity of the horizon. Furthermore no blue
shift factors were needed either as both the incoming and
outgoing states were localized to the horizon.

The same analysis can also be applied to a scalar field
theory in the vicinity of a black hole. For simplicity we will
work with the Schwarzschild black hole. A scalar field �
can be decomposed into modes of the form � ¼
r�1fðr; tÞYlmð�;�Þ so that the wave equation becomes

@2f

@t2
� @2f

@u2
þ

�
1� 2GM

r

��
lðlþ 1Þ

r2
þ 2GM

r3
þm2

�
f¼ 0;

(75)

where we have u as the tortoise coordinate. In the near

horizon limit ð1� 2M=rÞ � eu=2GM as before and the sec-
ond term in parenthesis becomes a constant.

The mode equation of the scalar field therefore is just the
modified Bessel equation that we found for the shell. It is
then possible to use the same analysis to find the incoming
and outgoing states which can be written as modified
Bessel functions. These outgoing states are thermal relative
to the incoming states and are at the Hawking temperature.

VII. QUANTUM EFFECTS NEAR THE
SINGULARITY

A. Near singularity limit for the uncharged black hole

In this section we investigate the question of quantum
effects when the collapsing shell approaches the origin (i.e.
classical singularity at R ! 0). An observer using time t
can not study this limit, so we perform our analysis using
the time � of an observer located on the collapsing shell.
The Hamiltonian (in terms of R�) is just the conserved
quantity in (22). After setting Q ¼ 0, the effective
Lagrangian consistent with the conserved quantity (22) is

L ¼ �4��R2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
� R�sinh

�1ðR�Þ � 2��GR�:
(76)

The generalized momentum, �, can be derived from this
Lagrangian as

� ¼ 4��R2sinh�1ðR�Þ: (77)

The Hamiltonian in terms of R� is

H ¼ 4��R2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
� 2��GR�: (78)

From the Hamiltonian we can get R� as

R� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h

R2
þ 2��GR

�
2 � 1

s
; (79)

where h ¼ H=4��. Here we can study two cases. First we
consider the ultrarelativistic limit near the origin where R�

is very large. Up to the leading term near the origin, the
Hamiltonian is

H ¼ 4��R2R�: (80)

Clearly, this choice eliminates the Newton’s constant G
from the equation, and thus important gravitational effects
are not included. In terms of the generalized momentum
(77), the Hamiltonian now is

H ¼ 4��R2 sinh

�
�

4��R2

�
: (81)

The Schrödinger equation becomes

2��R2½eð�=4��R2Þ � e�ð�=4��R2Þ�c ðR; �Þ ¼ i
@c ðR; �Þ

@�
:

(82)

Defining a new variable u ¼ R3, the equation becomes

2��u2=3½e�ðð3i=4��Þð@=@uÞÞ � eðð3i=4��Þð@=@uÞÞ�c ðu; �Þ

¼ i
@c ðu; �Þ

@�
: (83)

Since the exponentials are now just the translation opera-
tors, we have
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2��u2=3
�
c

�
u� 3i

4��
; �

�
� c

�
uþ 3i

4��
; �

��
¼ i

@c

@�
:

(84)

It is interesting to note that this equation is dependent on �
which describes the particular shell. This in general might
be solvable from a recursion relationship. This is a mani-
festly nonlocal equation. The nonlocality that we found
may be a simple consequence of the fact that we are using
the functional Schrödinger formalism which is only an
effective theory, i.e. only an approximation of some more
fundamental local theory. The other possibility is that the
quantum description of the black hole physics requires
inherently nonlocal physics. The answer to this question
requires further investigation.

Leaving this question aside, we examine a particular
local limit as follows. When � ! 1 the above expression
becomes a derivative

2��ð�3i=2��Þu2=3@uc ðu; �Þ ¼ i
@c

@�
; (85)

or after simplifying

� 3u2=3@uc ¼ @�c : (86)

Although the left side of this equation appears to vanish in
the near singularity limit, by rewriting this equation in
terms of the variable R we find the simple relationship

� @Rc ¼ @�c ; (87)

which has solutions of the form c ¼ c ðR� �Þ. In order to
maintain the same position on the profile, if R becomes
smaller � has to move to smaller values as well, which
means that the wave function moves backwards in time.
However inside the black hole horizon, time and space
switch their roles. By analyzing the conformal structure of
the black hole, we find that inside the horizon � moving to
smaller values corresponds to a normal infalling trajectory.
Our local equation for the evolution of the wave function
appears simple to understand in this limit. In this case
though there is no boundary condition imposed on the
wave function and it appears that the wave equation allows
solutions to propagate through the singularity. This is due
to the fact that this limit corresponds to the pure kinetic
energy limit which neglects gravity.

We now consider the case when the tension � is very
large and the gravitational interaction term in Eq. (79) is
dominant

2��GR � H=4��

R2
	 1: (88)

In this case R� � 2��GR and the Hamiltonian becomes
H � 4��R2=R�. The above inequality can be written as
8��2GR3 � H and substituting for the Hamiltonian we
find that this is the ultrarelativistic limit

ð�GRÞ2 � 1 $ R� � 1: (89)

In terms of the generalized momentum (77), the
Hamiltonian now is

H ¼ 4��R2

sinhð �
4��R2Þ ; (90)

which we write using the translation operator

8��u2=3

Tð�3i=4��Þ � Tð3i=4��Þ c ðu; �Þ ¼ i
@c ðu; �Þ

@�
: (91)

Taking the large � limit reduces the denominator to
�6i=4��@u so the equation of motion becomes an inverse
differential operator equation

16�2�2u2=3

3@u
c ðu; �Þ ¼ @c ðu; �Þ

@�
: (92)

Here, the wave function is noninfinite and constant at the
origin provided that the inverse differential operator has a
finite behavior. This indicates that quantum effects may be
able to remove the classical gravitational singularity at the
center. To make a definite statement one would need to
calculate the conserved probability for the whole space
(not only in the near horizon and near the classical singu-
larity limit), which is proportional to c 
c but also con-
tains a nontrivial measure term due to the curved
background. The integrated probability over the whole
space-time should then be nonsingular. Within our approx-
imations we can not do this (we do not have solutions
which are valid everywhere), but the fact that the wave
function is not singular at R ¼ 0, where the classical
singularity was located, is a strong indication that quantum
effects may make gravity nonsingular.
Equation (92) also indicates that the strong gravity

regime is manifestly nonlocal (because of the inverse
differential operator). While in the previous ultrarelativis-
tic limit with the absence of G we were able to remove
nonlocal effects by taking a large � limit, in this case we
are not able to do the same. This indicates that gravity is
inherently nonlocal, and while quantum mechanical non-
localities may be removed by taking an infinitely large
measuring apparatus, once we turn on gravity this is no
longer possible [15].

B. Near singularity limit for the charged black hole

When we include the charge, the full Hamiltonian from
(22) is

H ¼ 4��R2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
� 2�G�R� þQ2

2R
: (93)

From here we find

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

H

4��R2
� Q2

8��R3
þ 2�G�R

�
2 � 1

s
; (94)

which is in the limit of the small radius dominated by the
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charge, i.e. R� � Q2=8��R3. In this limit it is possible to
drop the gravitational energy term in the Hamiltonian and
get the relativistic kinetic energy limit

H ¼ 4��R2R� þQ2

R
: (95)

The generalized momentum in this limit becomes

� ¼ 4��R2sinh�1R� (96)

so the Hamiltonian can be written as

H ¼ 4��R2 sinh

�
�

4�R2

�
þQ2

R
: (97)

The Schrödinger equation is the same as before but with
the addition of the Coulomb term

2�u2=3
�
c

�
u� 3i

4��
; �

�
� c

�
uþ 3i

4��
; �

��

þ Q2

2u2=3
c ¼ i

@c

@�
; (98)

and we can study this in the limit of large energy density
� ! 1 to get

� @Rc � i
Q2

2R
c ¼ @tc ; (99)

which has solutions of the form

c ¼ c 0R
ð�iQ2=2ÞeAðR��Þ; (100)

where A is an arbitrary constant. There is a phase factor

R�iQ2=2 which corresponds to an infinite number of modu-
lus one oscillations. The exponential term corresponds to
the generic wave which propagates to the classical singu-
larity at R ¼ 0.

VIII. CONCLUSION

In this paper we have analyzed the collapse of a massive
shell of all perfect fluids with charge using the Gauss-
Codazzi method. The Hamiltonians and Lagrangians
were constructed for these systems and several limits
were analyzed. The key point was to then invoke the
functional Schrödinger formalism to find key quantum
features. The near horizon limit analysis led to a new
way to determine the Hawking temperature of black holes
without reference to asymptotic states. While the first order
terms led to thermal radiation it may be useful to further
study higher order terms to look for nonthermality. The
near singularity limit showed that the behavior of the wave
function was nonsingular. While the equations to solve
were inherently nonlocal and contained an infinite number
of derivatives, certain local limits (i.e. very massive shells)
were analyzed.

Questions regarding the wave function remain. Is there a
measure for the wave function which leads to the conser-
vation of probability? In particular how is the probability
conserved on spatial slices when timelike/spacelike no-

tions change through the horizon. It is also unclear if the
probability of the wave function inside the shell is finite in
the limit where the shell collapses to zero size. If it is, how
do we treat this information which is within the shell. Can
fluctuations outside the shell propagate and stay inside the
shell?
It would be interesting to see if one can find numerical

solutions to the quantum wave function in all regions of
space-time.
We note that we worked in the context of the functional

Schrödinger formalism which in many ways resembles the
Wheeler-DeWitt approach to quantum gravity [16].
Related work in the existing literature based on different
approaches also indicates that quantum effects may be
capable of removing classical singularity at the center
[17–23]. While it has been previously argued that the
standard Schrödinger formalism does not yield conclusive
claims about the nonsingularity [24], our work apparently
gives strong indications for nonsingular behavior at the
center of the black hole.

APPENDIX

Here we prove that the mass given by Eq. (22) is the
constant of motion. From Eqs. (14) and (15) one finds that
the acceleration for the charged domain wall is given by

1



R�� ¼ Q2

8��R4
� 2


R
þ 6��G; (A1)

where 
 is defined as


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

�

q
: (A2)

From Eq. (22) we have that the mass of the domain wall is
given by

M ¼ 4��R2ð
� 2��GRÞ þQ2

2R
: (A3)

To show that the mass is a conserved quantity it is sufficient
to show that M� ¼ 0. So using Eq. (22) we have

M� ¼ R�

�
� Q2

2R2
þ 8��Rð
� 2��GRÞ

þ 4��R2

�
1



R�� � 2��G

��
:

Now using the acceleration we can write this as

M� ¼ R�

�
� Q2

2R2
þ 8��Rð
� 2��GRÞ

þ 4��R2

�
Q2

8��R4
� 2


R
þ 6��G� 2��G

��
:

Multiplying out and canceling terms leaves

M� ¼ R�ð0Þ ¼ 0; (A4)

hence the mass is a conserved quantity.
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