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Binary black-hole systems with spins aligned or anti-aligned to the orbital angular momentum, and

which therefore do not exhibit precession effects, provide the natural ground to start detailed studies of the

influence of strong-field spin effects on gravitational-wave observations of coalescing binaries.

Furthermore, such systems may be the preferred end state of the inspiral of generic supermassive binary

black-hole systems. In view of this, we have computed the inspiral and merger of a large set of binary

systems of equal-mass black holes with spins parallel to the orbital angular momentum but otherwise

arbitrary. Our attention is particularly focused on the gravitational-wave emission so as to quantify how

much spin effects contribute to the signal-to-noise ratio, to the horizon distances, and to the relative event

rates for the representative ranges in masses and detectors. As expected, the signal-to-noise ratio increases

with the projection of the total black-hole spin in the direction of the orbital momentum. We find that

equal-spin binaries with maximum spin aligned with the orbital angular momentum are more than ‘‘3

times as loud’’ as the corresponding binaries with anti-aligned spins, thus corresponding to event rates up

to 30 times larger. We also consider the waveform mismatch between the different spinning configurations

and find that, within our numerical accuracy, binaries with opposite spins S1 ¼ �S2 cannot be

distinguished, whereas binaries with spin S1 ¼ S2 have clearly distinct gravitational-wave emissions.

Finally, we derive a simple expression for the energy radiated in gravitational waves and find that the

binaries always have efficiencies Erad=M * 3:6%, which can become as large as Erad=M ’ 10% for

maximally spinning binaries with spins aligned with the orbital angular momentum. These binaries are

therefore among the most efficient sources of energy in the Universe.
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I. INTRODUCTION

It has been a long-standing goal of the field of numerical
relativity to provide results for gravitational-wave data
analysis and thus enhance the capabilities of current and
future gravitational-wave detectors, in particular, regarding
the observation of compact binary coalescence. With a
series of breakthroughs in 2005 [1–3], this long-term
goal has suddenly become reality. However, much further
work is required to actually understand the practical im-
plications of numerical solutions of the full Einstein equa-
tions for gravitational-wave data analysis. Indeed, first
studies suggest that template banks that use numerical
information can increase the reach of detectors [4–6], aid
the calibration of search pipelines [7–9], and improve the
estimation of parameters, such as, e.g., sky location [10].

In this paper we use gravitational waveforms from
numerical-relativity (NR) calculations of a number of se-
quences of equal-mass spinning black-hole binaries whose
spins are aligned (anti-aligned) with the orbital angular
momentum, and consider the detectability of these binaries
for the ground-based gravitational-wave-detectors as well
as for the planned space-based LISA interferometer.

Our interest in this type of binary stems from the fact
that there are indications they represent preferred configu-
rations in nature, at least if the black holes are supermas-

sive. It has been shown, in fact, that when the binary is
surrounded by a massive circumbinary disc, as the one
expected by the merger of two galaxies, the dissipative
dynamics of the matter produces a torque with the effect of
aligning the spins to the orbital angular momentum [11]. In
addition, the merger of binaries with aligned spins yields
recoil velocities which are sufficiently small (i.e.,
& 450 km=s [12–14]) to prevent the final black hole
from being expelled from the host galaxy. This would
then be compatible with the overwhelming astronomical
evidence that massive black holes reside at the centers of
most galaxies.
Our parameter space is therefore two-dimensional, pa-

rametrized by the projections a1, a2 of the dimensionless
spins ai � Si=M

2
i of the individual black holes on to

direction of the angular momentum (chosen as the z
axis). As a result, spins that are aligned with the orbital
angular momentum are characterized by positive values of
a1, a2, while anti-aligned spins have negative values.
Previous studies of this parameter space [12–26], have
considered the recoil velocity and final spin of the merger
remnant, and have constructed phenomenological formulas
for these quantities given the initial spins a1 and a2 of the
binary.
In this work, we move our focus to the detectability

of a given set of binaries in the parameter subspace of
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(anti-) aligned spins, i.e., for each of these binaries and
across a set of different masses we calculate the signal-to-
noise ratio (SNR) for the LIGO [27,28], enhanced LIGO
(eLIGO) [29], advanced LIGO (AdLIGO) [5,30], Virgo
[31], advanced Virgo (AdVirgo) [32], and LISA [33,34]
detectors.

In this way we attempt to address the following ques-
tions:

(i) Which among the aligned-spin configurations is the
‘‘loudest’’ and which one is the ‘‘quietest’’?

(ii) How large is the difference in signal-to-noise ratio
between the loudest and the quietest?

(iii) How do these considerations depend on the detec-
tor used, the mass of the binary, and the number of
harmonics?

(iv) Are there configurations whose waveforms are dif-
ficult to distinguish and are hence degenerate in the
space of templates?

Overall, and as expected, we find that equal-spinning,
maximally anti-aligned binaries generally produce the
lowest SNR, while equal-spinning, maximally aligned bi-
naries produce the highest SNR. For any mass, the SNR
can be well described with a low-order polynomial of the
initial spins � ¼ �ða1; a2Þ and generally it increases with
the total dimensionless spin along the angular momentum

direction, a � 1
2 ða1 þ a2Þ � L̂. The possibility of describ-

ing the whole behavior of the waveforms from equal-mass,
aligned/anti-aligned binaries in terms of a single scalar
quantity, namely a, provides a certain amount of optimism
that also more complex spin configurations can, ultimately,
be described in terms of a few parameters only.

We also analyze the impact that modes of the
gravitational-wave field of order larger than ‘ ¼ 2 but
smaller than ‘ ¼ 5 have on the maximum SNR and show
that for low masses M 2 ½20; 100� they contribute, say for
the LIGO detector, � 2:5%, whereas for intermediate
masses M> 100M� they contribute � 8%.1 In addition,
we determine the ratio between maximum and averaged

SNR for ‘ > 2, which is known to be
ffiffiffi
5

p
when considering

only the ‘ ¼ 2, m ¼ 2 mode. We also calculate the mis-
match between the waveforms from different binaries
across our spin-diagram and find that binaries along the
diagonal a1 ¼ �a2 cannot be distinguished within our
given numerical accuracy, whereas configurations along
the diagonal a1 ¼ a2 are clearly different (cf. Fig. IV).
Finally, we derive a simple expression for the energy
radiated in gravitational waves and find that this is bounded
between ’ 3:6% and ’ 10% for maximally spinning bi-
naries with spins anti-aligned or aligned with the orbital
angular momentum, respectively.

The plan of the paper is as follows: in Sec. II, we recall
very briefly the numerical setup and illustrate the proper-
ties of the initial data used in the simulations. Sec. III is
dedicated to the discussion of the gravitational-wave ob-
servables used for the subsequent analysis, while Sec. IV
presents the results in terms of the SNR and how this is
influenced by higher-order modes. This section also con-
tains a discussion of the match between the waveforms
from different binaries and an assessment of the accuracy
of our results. Section V, on the other hand, provides a
brief discussion of the analytic expressions we have found
representing either the SNR or the energy radiated in
gravitational waves. Finally, conclusions are summarized
in Sec. VI.

II. NUMERICAL SETUP AND INITIAL DATA

The numerical simulations have been carried out using
the CCATIE code, a three-dimensional finite-differencing
code solving a conformal-traceless ‘‘3þ 1’’ BSSNOK
formulation of the Einstein equations [15] using the
CACTUS computational toolkit [35] CACTUSWEB and the

CARPET [36] adaptive mesh-refinement driver. The main

features of the code have been presented in several papers,
and recently reviewed in [15]. The code implements the
‘‘moving-punctures’’ technique to represent dynamical
black holes following [2,37] (see also [38,39]), which has
proven to be a robust way to evolve black-hole spacetimes.
For compactness we will not report here the details of

the formulation of the Einstein equations solved or the
form of the gauge conditions adopted. All of these aspects
are discussed in great detail in [15], to which we refer the
interested reader. More specific to these simulations, how-
ever, is the numerical grid setup. In the results presented
below we have used 9 levels of mesh refinement with a
fine-grid resolution of �x=M ¼ 0:02 and fourth-order fi-
nite differencing. The wave-zone grid has a resolution of
�x=M ¼ 0:128 and extends from r ¼ 24M to r ¼ 180M,
in which our wave extraction is carried out. The outer
(coarsest) grid extends to a spatial position which is
819:2M in each coordinate direction. Furthermore, be-
cause the black holes spins are all directed along the z
axis of our Cartesian grids, it is possible to use a reflection
symmetry condition across the z ¼ 0 plane.
The initial data are constructed applying the ‘‘puncture’’

method [40–43] as described in [44]. We have considered
four different sequences labeled as ‘‘r,’’ ‘‘s,’’ ‘‘t,’’ and ‘‘u’’
along straight lines in the ða1; a2Þ parameter space, also
referred to as the ‘‘spin diagram’’ (cf. Table I for details).
As shown in Fig. 1, these sequences allow us to cover the
most important portions of the space of parameters which,
we recall, is symmetric with respect to the a1 ¼ a2
diagonal.
We note that similar sequences have also been consid-

ered in [12,15–18] but have here been recalculated both
using a higher resolution and with improved initial orbital

1Note that for some specific angles at which the SNR is not
maximum, the contribution of the higher modes can be much
more significant
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parameters. More specifically, we use post-Newtonian
(PN) evolutions following the scheme outlined in [45],
which provides a straightforward prescription for initial-
data parameters with small initial eccentricity, and which
can be interpreted as part of the process of matching our

numerical calculations to the inspiral described by the PN
approximations. The free parameters to be chosen for the
puncture initial data are therefore: the puncture coordinate
locations Ci, the puncture bare mass parameters mi, the
linear momenta pi, and the individual spins Si. The initial
parameters for all of the binaries considered are collected
in the left part of Table I. The initial separations are fixed at
D ¼ 8M, where M is the total initial black-hole mass,
chosen as M ¼ 1 (note that the initial Arnowitt-Deser-
Misner (ADM) mass of the spacetime is not exactly 1
due to the binding energy of the black holes), while the
individual asymptotic initial black-hole masses are there-
fore Mi ¼ 1=2. The only exception is for the binary s�8,
for which D ¼ 10M.

III. GRAVITATIONAL-WAVE OBSERVABLES

In this section we discuss the gravitational-wave observ-
ables that have been studied from the sample reported in
Table I and how these have been used to compute the
radiated energy, the SNR, the horizon distances and the
event rates.

A. Numerical-Relativity waveforms

Although the CCATIE code computes the gravitational
waveforms either via the Newman-Penrose curvature sca-
lar �4 or via gauge-invariant metric perturbations on a
Schwarzschild background, the analysis carried hereafter
will be made in terms of the latter. While the two prescrip-
tions yield, in fact, estimates which are in very good
agreement with each other and with differences below
2% (see discussion in [15]), we have found that the results

TABLE I. Binary sequences for which numerical simulations have been carried out, with various columns referring to the puncture
initial location �x=M, the mass parameters mi=M, the dimensionless spins ai, and the normalized ADM mass ~MADM � MADM=M
measured at infinity. Finally, the last four columns contain the numerical values of the energy radiated during the simulation using the
two methods described in the text and the corresponding errors between them, as well as the error to the fitted values.

�x=M m1=M m2=M a1 a2 ðpx; pyÞ1 ¼ �ðpx; pyÞ2 ~MADM ENR
rad EQ�;þ

rad err. (%) fit err. (%)

r0 4.0000 0.3997 0.3998 �0:600 0.600 (0.002103, �0:112457) 0.9880 0.0366 0.0356 2.8 1.6

r2 4.0000 0.3997 0.4645 �0:300 0.600 (0.002024,� 0:111106 0.9878 0.0407 0.0394 3.3 0.6

r4 4.0000 0.3998 0.4825 0.000 0.600 (0.001958, 0.001958) 0.9876 0.0459 0.0445 3.1 1.9

r6 4.0000 0.3999 0.4645 0.300 0.600 (0.001901, �0:108648) 0.9876 0.0523 0.0504 3.8 2.2

s�8 5.0000 0.3000 0.3000 �0:800 �0:800 (0.001300, �0:101736) 0.9894 0.0240 0.0231 3.8 3.0

s0 4.0000 0.4824 0.4824 0.000 0.000 (0.002088, �0:112349) 0.9877 0.0360 0.0354 1.7 0.2

s2 4.0000 0.4746 0.4746 0.200 0.200 (0.001994, �0:110624) 0.9877 0.0421 0.0410 2.7 1.7

s4 4.0000 0.4494 0.4494 0.400 0.400 (0.001917, �0:109022) 0.9876 0.0499 0.0480 4.0 2.5

s6 4.0000 0.4000 0.4000 0.600 0.600 (0.001860, �0:107537) 0.9876 0.0609 0.0590 3.2 0.2

s8 4.0000 0.4000 0.4000 0.800 0.800 (0.001816, �0:106162) 0.9877 0.0740 0.0744 0.5 2.2

t0 4.0000 0.3995 0.3995 �0:600 �0:600 (� 0:002595, 0.118379) 0.9886 0.0249 0.0243 2.5 1.1

t1 4.0000 0.3996 0.4641 �0:600 �0:300 (� 0:002431, 0.116748) 0.9883 0.0271 0.0264 2.7 1.8

t2 4.0000 0.3997 0.4822 �0:600 0.000 (� 0:002298, 0.115219) 0.9881 0.0295 0.0289 2.1 2.2

t3 4.0000 0.3998 0.4642 �0:600 0.300 (� 0:002189, 0.113790) 0.9880 0.0326 0.0317 2.8 1.8

u2 4.0000 0.4745 0.4745 �0:200 0.200 (0.002090, �0:112361) 0.9878 0.0361 0.0354 2.0 0.2

u4 4.0000 0.4492 0.4494 �0:400 0.400 (0.002095, �0:112398) 0.9879 0.0363 0.0355 2.3 0.7

u8 4.0000 0.2999 0.2999 �0:800 0.800 (0.002114, �0:112539) 0.9883 0.0374 0.0363 3.0 3.7

FIG. 1 (color online). Schematic representation in the ða1; a2Þ
plane, also referred to as the ‘‘spin-diagram,’’ of the initial data
collected in Table I. These sequences cover most important
portions of the space of parameters, which is symmetric with
respect to the a1 ¼ a2 diagonal.

GRAVITATIONAL-WAVE DETECTABILITY OF EQUAL- . . . PHYSICAL REVIEW D 80, 124026 (2009)

124026-3



obtained using gauge-invariant quantities have a smaller
numerical error, and are thus preferable.

More specifically, we compute the gravitational-wave
amplitudes hþ‘m and h�‘m in terms of the even and odd

master functions Qþ
‘m and Q�

‘m via the relations [46]

h‘mðtÞ ¼ hþ‘mðtÞ � ih�‘mðtÞ ¼ Qþ
‘mðtÞ � i

Z t

�1
dt0Q�

‘mðt0Þ;
(1)

where the gauge-invariant perturbations are typically ex-
tracted at a radius of rE ¼ 160M (see Sec. IVD for a
discussion of the accuracy of our measurements and
Ref. [15] for a comparison among different extraction
radii).

As mentioned before, all our binaries (but s�8) have
initial separations of D ¼ 8:0M (D ¼ 10:0M), which, in
the parameter space that we have considered, leads to a
maximum initial frequency of the numerical waveforms,
that is !ini ¼ 0:084=M. Depending therefore on the mass
M, such an initial frequency can be greater than the lower
cutoff frequency of the detector!co for a given source at an
arbitrary distance. Because we expect that for most masses
!co will be smaller than!ini, we need to provide additional
information about the gravitational-wave signal in the
frequency range between!co and!ini. This can be accom-
plished by ‘‘gluing’’ the NR waveform with a PN part as
discussed in the next section.

The values of the initial frequencies and of the associ-
ated minimum masses Mmin for each of the detectors
considered are reported in Table II.

B. Matching PN and NR waveform amplitudes

The existence of a cutoff mass set by the initial fre-
quency of the NR simulations would clearly restrict the
validity of our considerations to large masses only. To
counter this and thus include also binaries with smaller
masses, we account for the early inspiral phase by describ-
ing it via PN approximations. To produce the PN wave-
forms, and the PN energy that we are using directly in
Sec. VB, we have used the spinning TaylorT1 approximant
used in Hannam et al. [47], and which is based on the PN
expressions described in [48–55]. The choice of TaylorT1
is motivated by that fact, that in [47] it is found to be more
robust in the spinning case than the TaylorT4 approximant,
which was previously found to yield excellent results in the
nonspinning case [56] (see, e.g., [56] for a comparison of
different techniques to obtain the gravitational-wave phase
information for quasicircular inspiral). These waveforms
are 3.5 PN accurate in the nonspinning phase, and 2.5 PN
accurate in the spin-dependent terms entering the phasing.
The gravitational-wave amplitudes, on the other hand, have
been computed according to Ref. [57] (see also [58]) to the
highest PN order that is currently known for each of the
spherical harmonic modes that we use.
A phase-coherent construction of hybrid PN-NR wave-

forms is rather delicate, and has not yet been achieved for
the higher spherical harmonic modes we use here (see [4,5]
for some recent work in the case of nonspinning binaries).
However, for the present purpose of computing the SNR
and the radiated energies, such a construction in the time
domain is not necessary and all of the relevant work can be
done much more simply in the frequency domain. In
practice, we Fourier transform the PN and NR waveforms
and ‘‘glue’’ them together at a suitable gluing frequency
!glue. Since the SNR depends only on the amplitude of the

waveform, [cf. Eq. (5)], it is not necessary to match the PN
waveform in the phase. This greatly simplifies the process
of waveform matching and basically reduces to a simple
check of the amplitude matching to address the error of the
mismatch. Indeed, we have found that without any parame-
ter adjustment, the PN-waveform amplitudes match rather
well with the inspiral part of the NR waveforms, and result
in an error that is usually � 1:5% and in the worst case
� 4:0% for the binary configuration t0. The only care
which is important to pay in the time-domain analysis,
and in order to limit the noise artifacts in the Fourier-
transformed amplitudes, is the use of a windowing function
(e.g., a hyperbolic tangent) to smoothly blend the wave-
form to zero before the initial burst of spurious radiation
and after the ringdown, in order to limit spurious oscilla-
tions in the Fourier-transformed waveform. A representa-
tive example is shown in Fig. 2, where we report the noise

TABLE II. Initial instantaneous frequencies M!ini and asso-
ciated minimum masses Mmin of the NR waveforms for the
different models and for each detector according to the corre-
sponding lower cutoff frequency (i.e., at 30 Hz for Virgo, at
40 Hz for eLIGO, at 10 Hz for AdLIGO/AdVirgo, and at
10�4 Hz for LISA). All the values for the masses are in units
of solar masses.

M!ini Mmin Mmin Mmin Mmin

Virgo eLIGO AdLIGO/AdVirgo LISA

r0 0.080 86.2 64.6 258.5 2:58� 107

r2 0.078 84.0 63.0 252.0 2:52� 107

r4 0.077 82.9 62.2 248.8 2:49� 107

r6 0.076 81.8 61.4 245.5 2:46� 107

s�8 0.060 64.6 48.4 193.8 1:93� 107

s0 0.080 86.2 64.6 258.5 2:58� 107

s2 0.078 84.0 63.0 252.0 2:52� 107

s4 0.076 81.8 61.4 245.5 2:46� 107

s6 0.075 80.8 60.6 242.3 2:42� 107

s8 0.073 78.6 59.0 235.8 2:36� 107

t0 0.084 90.5 67.8 271.4 2:71� 107

t1 0.083 89.4 67.0 268.2 2:68� 107

t2 0.082 88.3 66.2 264.9 2:65� 107

t3 0.081 87.2 65.4 261.7 2:62� 107

u2 0.080 86.2 64.6 258.5 2:58� 107

u4 0.080 86.2 64.6 258.5 2:58� 107

u8 0.080 86.2 64.6 258.5 2:58� 107
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strain for the Virgo and Advanced LIGO detectors, to-
gether with the Fourier-transformed amplitude of the PN
and NR waveform for the maximally spinning model s8.
The waveform is assumed to be observed at � ¼ 0, � ¼ 0
for a total mass M ¼ 200M� and from a distance d ¼
100 Mpc. The gluing frequency in this case is at fglue ¼
!glue=ð2�Þ ¼ 27:14 Hz.

Since each ‘, m mode of the gravitational-wave field
will have a different initial frequency, we need to make
sure that they are all properly taken into account when
determining the gluing frequency, so that, at least in prin-
ciple

!glue 	 max
‘;m

ð!iniÞ‘m: (2)

In practice, the initial frequency of our highest mode, ‘ ¼
4, m ¼ 4, has an initial frequency ð!iniÞ44 ¼ 2ð!iniÞ22. As
a result, we select the gluing frequency according to the
binary configuration with the largest initial frequency, i.e.,
the binary t0, and take !glue ¼ 2ð!iniÞ22 ¼ 0:168=M. We

also measure how sensitive this choice is, by considering
how the results are affected when choosing instead!glue �
�!, with �! 
 !glue. More specifically, for �! ¼
0:01=M we find a maximal difference in the computed
SNR of �2:0% over all configurations and all masses.
Note that such a difference affects equally the maximum
and averaged SNRs (see Sec. III D for a discussion on these
two different measures of the SNR). Furthermore, a change
of �! in !glue affects only marginally the relative differ-

ence between SNRs computed by including modes up to
‘ ¼ 2 and ‘ ¼ 4, and also in this case the differences are
�2:0%. Overall, therefore, the uncertainties introduced by
the choice of !glue are much smaller than the typical error

at which we report the SNRs.

C. Radiated energy

Since the total energy must be conserved, we can use the
radiated energy as an important tool to verify the accuracy
of the gravitational-wave amplitude and thus the overall
precision of our calculations. More specifically, because it
is straightforward to determine the initial and the final total
mass, it is also straightforward to compare the difference in
the two with the radiated energy. In practice, we compute
the initial mass of the system as Mini ¼ ~MADM, while the
final mass of the merger remnant Mfin is deduced from the
properties of the apparent horizon within the isolated-
horizon formalism as first discussed in [59] and then ex-
tensively investigated in [60]. The radiated energy is then
simply given by the difference

ENR
rad ¼ MADM �Mfin; (3)

and should be equal to the energy that has been radiated
through gravitational waves during the simulation [46]

EQ�;þ
rad ¼ 1

32�

X
‘;m

Z t

0
dt0

���������dQ
þ
‘m

dt

��������2þjQ�
‘mj2

�
: (4)

Overall, we have found that for all binaries the difference

between Erad and E
Q�;þ
rad is between�0:5% and�4:0% and

a detailed comparison of the numerical values is reported
in Table I. In Sec. VB, we will discuss an analytic fit to the
computed data that provides a simple-to-use measure of
the amount of mass radiated during the inspiral, merger,
and ringdown as a function of the initial spins.

D. SNR, horizon distances, and event rates

Following Ref. [61], we define the SNR, �, for matched-
filtering searches as

�2 �
�
S

N

�
2

matched
¼ 4

Z 1

0

j~hðfÞj2
ShðfÞ df; (5)

where ~hðfÞ is the Fourier transform of the time-domain
gravitational-wave signal hðtÞ, defined in the continuum as

~hðfÞ ¼
Z 1

�1
hðtÞe�2�iftdt; (6)

and ShðfÞ is the noise power spectral density for a given
detector. Hereafter, we will consider the ShðfÞ for the
ground-based detectors LIGO, enhanced LIGO, advanced
LIGO and Virgo, as well as the space-bound LISA inter-
ferometer. (The associated noise power spectral densities
are reported in Appendix A.)

FIG. 2 (color online). Noise strain for the Advanced LIGO and
Virgo detectors and the Fourier-transformed amplitude of the PN
and NR waveform at � ¼ 0,� ¼ 0 for a total massM ¼ 200M�
at a distance d ¼ 100 Mpc for the maximally spinning model s8.
The gluing frequency is at fglue ¼ 27:14 Hz.
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Note that since the SNR (5) depends on the angle from
the source to the detector, it is useful to introduce the angle-
averaged SNR h�2i, which can be computed straightfor-
wardly after decomposing the gravitational-wave signal in
terms of spherical harmonic modes. More specifically,
using the orthonormality of the spin-weighted spherical
harmonic basis sY‘m, the ‘‘angle-averaged’’ SNR

�avg � h�2i � 1

�

Z
d�

Z
df

jP‘m
~h‘mðfÞ�2Y‘mð�Þj2

ShðfÞ
(7)

can be written as a simple sum of integrals of the absolute

squares of the Fourier-transformed modes ~h‘mðfÞ

�avg ¼ 1

�

X
‘m

Z
df

j~h‘mðfÞj2
ShðfÞ ; (8)

and hence it can be evaluated straightforwardly. For each
binary, distance and mass, we have calculated both the
‘‘maximum’’ SNR �max for an optimally oriented detector,
i.e., the SNR for a detector oriented such that it measures
only the þ polarization of the gravitational-wave signal,
and the averaged SNR. Here, the mass is always meant to
be the redshifted total mass, i.e., ð1þ zÞMsource, where z is
the redshift and Msource is the mass at the source. For
sources at small distances, i.e., less than 100 Mpc, then z &
0:024 and hence M ’ Msource to within a few percent.
Identical results would have been obtained if we had
considered the � polarization.

It is worth noting that if the gravitational-wave signal is
modeled simply through the dominant ‘ ¼ 2 ¼ m mode
(or in our case via a superposition ‘ ¼ 2 ¼ �m),2 the
maximum SNR can be deduced from the average SNR
after exploiting the properties of the spin-weighted spheri-
cal harmonic �2Y22 and �2Y2�2, namely,

�max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

avgð‘ ¼ 2; m ¼ 2Þ
q

(9)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2
�2
avgð‘ ¼ 2; m ¼ �2Þ

s
: (10)

However, such a relation is no longer true when including
modes with ‘ > 2, and the relation between the maximum
and the averaged value of the SNR can only be determined
numerically.

When computing the SNR, a reference distance needs to
be fixed and we have set such a distance to be d� ¼
100 Mpc. The results of the SNR at d� across the spin

diagram can then be recast in terms of an ‘‘horizon dis-
tance’’, namely, the distance at which a given binary

system with redshifted mass M has an SNR equal to a
threshold for detectability, which we chose to be � ¼ 8, as
customary for ground-based detectors. The horizon dis-
tance is then simply defined as

dH ¼ d�

�
�ðd ¼ d�Þ

8

�
Mpc: (11)

The quantity dH is clearly equivalent to the SNR but has
the advantage to provide, at least for detectors not operat-
ing at large SNRs, a simple estimate of the increase in the
relative event rate R as

R�
�

dH
dH;a¼�1

�
3
; (12)

where dH;a¼�1 is the horizon distance of the configuration

with lowest SNR, i.e., which belongs to the extrapolated
case a ¼ �1. Although simple, this formula requires a
caveat. Expression (12) is valid as an equality only for
small horizon distances, namely, those for which the red-
shift is negligible. This is because at large redshifts the
observed masses would differ considerably from the
masses at the source. In other words, at large redshifts
the horizon distances would be different not only because
of the spin, but also because the masses at the sources
would be intrinsically different. This clearly impacts the
deduced event rate as defined in (12), which considers only
the contributions coming from the spin. Hence, for large
redshifts the event rate R defined here serves only as a
lower limit for masses larger than the optimal one and,
vice versa, as an upper bound for masses smaller than the
optimal.
To fix the ideas, let us consider a concrete example. Let

us assume that we have calculated the horizon distance for
a binary with a ¼ �1 which, as can be deduced from
Fig. 4 and will be discussed in the next section, will lead
to the smallest SNR for a given detector. We also assume
that this binary has a mass at the detector which is smaller
than the optimal one. Let us now consider a binary with the
same mass at the detector but with a >�1; this binary will
clearly lead to a larger SNR but because the masses at the
detector are the same, the mass of the binary with a >�1
will be (because of the redshift) smaller at the source. As a
result, its horizon distance will be overestimated, and
hence the event rate coming from (12) only an upper
bound. A similar argument for masses larger than the
optimal one would instead lead to the conclusion that the
event rate R is only a lower bound.

IV. RESULTS

In what follows we discuss the results obtained in terms
of the SNR and how this is influenced by higher-order
modes. We also discuss the match between the waveforms
from different binaries and an assessment of the accuracy
of our results.

2Note that in our binary configurations due to symmetry, we
always have h‘m ¼ h‘�m
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A. Horizon distances and SNRs

The results of the analysis discussed above are nicely
summarized in Fig. 3, which shows the averaged and
maximum horizon distance dH ¼ dHða;MÞ for some of
the detectors considered. As mentioned above, the horizon
distance has been computed at a reference SNR � ¼ 8:0,
and is parametrized in terms of the total mass of the system
(in solar masses) and of the average dimensionless spin
‘‘a’’ as projected along the orbital angular momentum L

a � 1
2ða1 þ a2Þ � L̂ ¼ 1

2ða1 þ a2Þ � ez; (13)

where L̂ � L=jLj, and the orbital plane has been chosen to
coincide with the ðx; yÞ plane of our Cartesian coordinate
system. More specifically, the top left panel of Fig. 3 refers
to the LIGO detector, the top right panel to the Virgo
detector, while the lower left and right panels refer to the
advanced versions of both detectors, respectively.

While quite self-explanatory, these panels deserve some
comments. First, as expected, the maximum SNR is always
larger than the average one but the difference between the
two is not constant, changing both with the total dimen-
sionless spin a and with the total mass M. Second, for any
fixed value of a, the horizon distance (and hence the SNR)
grows steeply to a maximum mass and then rapidly de-
creases to very small values of�Oð1Þ. Clearly, this reflects
the existence of a sweet-spot in the sensitivity curve of all
detectors. Third, for any value of a, the maximum horizon
distance/SNR also marks the ‘‘optimal mass’’ for the bi-

nary Mopt, namely, the mass of the binary whose inspiral

and merger is optimally tuned with the given detector and
hence can be seen from further away. Note that the differ-
ences between the maximum and average SNR are largest
in the neighborhood of the optimal mass. Fourth, the
configuration with spins parallel and aligned to the orbital
angular momentum are generically ‘‘louder’’ than those
with spins parallel but anti-aligned with the orbital angular
momentum, with the binaries having a ¼ �1 being the
loudest and quietest, respectively; this is essentially the
answer to question (i) in the Introduction.3 Fifth, in the
cases of the LIGO and advanced Virgo detectors the hori-
zon distance is essentially zero at cutoff masses, which are
�900M� and�3000M�, respectively. Sixth, for any fixed
value of the total mass, the SNR grows with a and, as we
will discuss later on, this growth is very well described
with a polynomial of 4th order (cf. discussion in Sec. VA).
This is shown more clearly in Fig. 4, which reports the
maximum SNR �max for the LIGO detector and for a given
set of masses at a distance d ¼ 100 Mpc. Note that the
growth of �max with a becomes steeper for masses M>
200M�, for which the NR-part of the waveform and hence
the plunge and ringdown phase dominates. In these cases,
the SNR is more then doubled between a ¼ �1 and
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FIG. 3 (color online). Averaged and maximum horizon distance dH ¼ dHða;MÞ for the LIGO detector (top left panel), for the Virgo
detector (top right panel), and for the advanced versions of both detectors (bottom left and right panels, respectively). The horizon
distance has been computed at a reference SNR � ¼ 8:0.

3This behavior can be easily understood in terms of the orbital
dynamics: the binaries with larger total angular momentum will
have a larger number of cycles and hence a larger SNR

GRAVITATIONAL-WAVE DETECTABILITY OF EQUAL- . . . PHYSICAL REVIEW D 80, 124026 (2009)

124026-7



a ¼ þ1. Finally, when going from the present LIGO/Virgo
detectors to their advanced versions, the average horizon
distances go from �600=800 Mpc to �104=1:2�
104 Mpc, thus with an observational volume of the
Universe that is increased by a factor of �5000=3000,
respectively. Note that if we assume a Hubble radius of
�4:1 Gpc, both detectors would effectively detect binaries
within a large range of masses (e.g., 60 & M=M� & 500
for advanced LIGO) across the whole Universe.

Figure 5 shows similar information but for the planned
LISA mission. Since the horizon distance can well exceed

the whole Hubble horizon, the figure reports the averaged
and maximum SNR � ¼ �ða;MÞ for sources at d ¼
6:4 Gpc (z ¼ 1). Many of the considerations made above
hold also for the LISA detector, and it is interesting to
note that for sufficiently high and aligned spins (i.e.,
a * 0:8), the SNR is* Oð10Þ already with binaries having
masses * few� 103M�.
Finally, the most salient information of Figs. 3 and 5 is

collected in Table III, which reports the properties of the
‘‘optimal’’ aligned binaries for the different detectors.
More specifically, the Table reports in its different rows
the optimal total aligned spin a, the optimal total mass in
solar masses, the optimal maximum � and average �avg

SNRs, the optimal horizon distance dH (expressed in Mpc
and with H�1 being the Hubble radius), the optimal rela-
tive event rate R, and the gluing frequency fglue for the

optimal binary. The masses have been sampled with an
accuracy of 2:5M� for the ground-based detectors and of
2:5� 104M� for LISA.

B. Influence of higher ‘ modes

As discussed in Sec. III D, it is interesting to consider the
impact that higher-order modes have on the SNR of equal-
mass aligned binaries and some representative examples of
this impact is shown in Fig. 6. The left panel of this figure,
in particular, shows the maximum SNR �max as a function
of the mass for the highly spinning model s8 and for the
present detectors LIGO and Virgo. Different lines refer to
the SNRs computed using only the ‘ ¼ 2 multipoles (con-
tinuous line), or up to the ‘ ¼ 4 multipoles (dashed line).
Clearly, the contribution of the higher modes is most
important near the optimal mass (i.e., M� 200M� for
LIGO and M� 400M� for Virgo) but this is also non-
negligible for larger masses, where it can produce an
increase of �8% in SNR in a detector such as Virgo.

FIG. 4 (color online). Maximum SNR �max ¼ �ða;MÞ for the
LIGO detector for a given set of masses at a distance d ¼
100 Mpc. Note that the growth of �max with a is very well
described with a low-order polynomial which is of 4th order for
the optimal mass (cf. discussion in Sec. VA). Note also that the
dependence on a becomes stronger for masses M> 200M�, for
which the NR part of the waveform and hence the plunge and
ringdown phase dominate. In these cases, the SNR is more then
doubled between a ¼ �1 and a ¼ þ1.
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FIG. 5 (color online). Averaged and maximum SNR � ¼
�ða;MÞ for the planned LISA mission and for sources at d ¼
6:4 Gpc (z ¼ 1).

TABLE III. Properties of the optimal aligned binaries for the
different detectors. Shown in the different rows are the optimal
total aligned spin a, the optimal total mass in solar masses, the
optimal maximum �max and average �avg SNRs, the optimal

horizon distance dH (expressed in Mpc and where cH�1 is the
Hubble radius), the lower bound for the optimal relative event
rate R, and the gluing frequency fglue for the optimal binary. The

masses have been sampled with an accuracy of 2:5M� for the
ground-based detectors and of 2:5� 104M� for LISA.

LIGO eLIGO AdLIGO Virgo AdVirgo LISA

a 0.8 0.8 0.8 0.8 0.8 0.8

MoptðM�Þ 197 180 290 395 390 5:35� 106

�max 87 175 1667 118 1591 2:91� 106

�avg 52 104 991 70 944 1:77� 106

dH (Mpc) 1091 2190 >cH�1 1476 >cH�1 >cH�1

R 18 17 16 16 17 26

fglue (Hz) 27.48 30.51 18.71 13.74 13.91 1:0� 10�3
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The right panel of Fig. 6, on the other hand, shows the
ratio between maximum and averaged SNR as a function
of the total projected spin a for a binary of M ¼ 200M�
(5:35� 106M�) and the LIGO (LISA) detector. As men-
tioned in Sec. III D, this ratio is not expressed by a simple
algebraic expression [cf. Eq. (9)], but needs to be deter-
mined numerically. Interestingly, this ratio is not constant
but increases by �10% for larger total projected spins,
underlining the importance of higher-order contributions
as the initial spins increase. Overall, therefore, Fig. 6 pro-
vides the answer to question (iii) in the Introduction.

C. Match between different models

A quantity providing a wealth of information is the
match between the amplitudes of the waveforms from
two different binaries, so as to quantify the differences in
the gravitational-wave signal relative to some reference
models. The match between two waveforms h1ðtÞ and
h2ðtÞ (or a template and a waveform) can be calculated
via the weighted scalar product in frequency space between
two given waveforms

hh1jh2i ¼ 4<
Z 1

0
df

~h1ðfÞ~h�2ðfÞ
ShðfÞ ; (14)

where ~h1ðfÞ is the power spectral density of h1ðtÞ, the
asterisk indicates a complex conjugate, and ShðfÞ is the
noise power spectral density of a given detector. The over-
lap is then simply given by the normalized scalar product

O ½h1; h2� ¼ hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p : (15)

Two parameters need to be taken into account when
computing the overlap. The first one is the ‘‘time of
arrival’’ tA corresponding to an offset in the Fourier-
transform of the signal exp½i!ðt� tAÞ�. The second one
is the ‘‘initial phase’’� of the orbital motion when it enters
the detector band.
For both of these parameters the overlap should be

maximized. We have considered two possible ways of
doing this. The first approach involves the best match,
which gives an upper bound by maximizing over both of
the phases of each waveform

M best � max
tA

max
�1

max
�2

fO½h1; h2�g: (16)

The second way, instead, involves the minimax match, and
is obtained by maximizing over the phase of one waveform
but minimizing over the phase of the other

M minimax � max
tA

min
�2

max
�1

fO½h1; h2�g; (17)

and thus represents a ‘‘worst-case’’ scenario since it gives
lower matches although one is maximizing over the tem-
plate phase. More details on the maximization procedure
can be found in [62,63]. Note that all the matches com-
puted hereafter refer to the numerical-relativity part of the
waveform only.

FIG. 6 (color online). Left panel: maximum SNR �max as a function of the mass for the highly spinning model s8 and for the present
detectors LIGO and Virgo. Different lines refer to the SNRs computed using only the ‘ ¼ 2 multipoles (continuous line), or up to the
‘ ¼ 4 multipoles (dashed line). Right panel: ratio between maximum and averaged SNR � as a function of the spins a1 ¼ a2 for
M ¼ 200M� (M ¼ 3:53� 106M�) by including modes up to ‘ ¼ 2 and ‘ ¼ 4 for LIGO (LISA). In contrast to the case ‘ ¼ 2, the
‘ ¼ 4-curve is not constant but depends on the initial spins a1, a2.
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A sensible way, if not the most sensible way, of evaluat-
ing expressions (16) and (17) is to use the binary s0, the
nonspinning binary, as a reference and to compute the
overlap with the binaries at representative locations in
the spin diagram, e.g., at the corners for s0 � s8, s0 � u8,
s0 � s�8, or along the main diagonal, e.g., s�8 � s8. In this
way we can assess whether the waveform produced by a
nonspinning binary can be used to detect also spinning
binaries and how much the overlap is decreased in this
case.

This is shown in Fig. 7, which reports the best and
minmax matches as a function of mass for a waveform
containing only the ‘ ¼ 2, m ¼ 2 contribution and refers
to the LIGO detector. Different lines show the match
computed between s0 and other representative binaries,
and show the remarkable similarity between the wave-
forms of binaries having a zero total spin. This is shown
by the s0 � u8 match, which is essentially very close to 1
for all the masses considered (cf. also Table IV). This result
extends to all the other measured quantities, such as the
radiated energy or angular momentum, and is not particu-
larly surprising. Indeed, it was already discussed by [63],
although the investigation in that case was restricted to
what is here the u sequence. In addition, the equivalence
between nonspinning binaries and binaries with equal and
opposite spins has been exploited in the derivation of
expressions for the final spin presented in a series of works
[16–19]. The results of Fig. 7 and Table IV are therefore a
simple example, although probably not the only possible
one, of a well defined region of the space of initial con-

figurations (i.e., those of binaries with equal masses and
opposite spins) which can be mapped to an almost degen-
erate region (i.e., essentially to a single point) in the space
of templates. This is the answer to question (iv) in the
Introduction and clearly represents a serious obstacle to-
wards a proper estimate of physical parameters of the
binaries that may be removed, at least in part, only if the
waveform is measured with a sufficiently high SNR. A
proper discussion of this problem, as well as the determi-
nation of other degenerate patches in the space of tem-
plates, will be the subject of future work.
An equally remarkable result, presented in Fig. 7, is that

the overlap is also very high between the nonspinning
binary and the binary with equal and anti-aligned spins,
s0 � s�8; also in this case, in fact, the best match is
Mbest * 0:9 for the range of masses that is relevant here.
Slightly smaller and decreasing with increasing masses are
the best matches computed when comparing the nonspin-
ning binary with the binary of parallel and aligned spins, so
that Mbest � 0:8, but only for very large masses. The
waveforms appear clearly different (i.e., with Mbest &
0:6) only when comparing the binaries along the main
diagonal of the spin diagram, for s8 � s�8, although even
in this rather extreme case the differences tend to become
smaller for smaller masses. Overall, this result underlines
that even simple waveforms, such as those relative to
nonspinning binaries, will be effective enough to provide
a detection for most configurations of equal-mass and
aligned/anti-aligned binaries.
A different way to assess ‘‘how different’’ the wave-

forms are across all of the equal-mass aligned/anti-aligned
spins configurations considered here is nicely summarized
in Fig. 8, which shows the best match as a function of the
total projected spin a for waveforms containing only the
‘ ¼ 2, m ¼ 2 contribution and referring to the LIGO
detector. The top panel, in particular, refers to a binary
with a total mass of 200M� that is close to the optimal one
for the LIGO/Virgo detectors, while the bottom panel
refers to a binary with mass 400M� and close to the
optimal one for the advanced LIGO/Virgo detectors
(cf. Table IV). Besides the remarkably smooth behavior
of Mbest across all the values of a considered, it is clear
that the waveform from a nonspinning binary can be
extremely useful across the whole spin diagram and yield
very large overlaps even for binaries with very high spins.
In both panels, in fact, the dotted line shows the minimum
best match (Mbest ¼ 0:965) needed for a detection [64].
This result is reassuring in light of the fact that most of the
searches in the detector data are made using phenomeno-
logical waveforms based on nonspinning binaries.
For completeness, the results presented in Fig. 7 (as well

as those in Fig. 9) are also reported in Table IV, where the
different columns showMbest andMmin max and for wave-
forms computed either using only the ‘ ¼ 2, m ¼ 2 con-
tribution (third and fourth columns), only the ‘ ¼ 3,m ¼ 2

FIG. 7 (color online). Best and minmax match as a function of
mass for a waveform containing only the ‘ ¼ 2, m ¼ 2 contri-
bution and referring to the LIGO detector. Very similar behaviors
can be shown also for the other detectors.
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contribution (fifth and sixth columns), or all contributions
up to ‘ ¼ 4 (last two columns). Interestingly, the matches
among the high-order modes, e.g., ðs0Þ‘¼3;m¼2 �
ðu8Þ‘¼3;m¼2, is systematically higher than those of the

lower ones and remains true even for higher modes beyond
‘ ¼ 3, m ¼ 2 which, however, we do not report here. This
indicates that in order to do high-precision parameter
estimation by including higher modes it is also important
that these modes are accurately resolved, so that they can
be clearly distinguished from one another.

We generally expect the match to degrade when the
waveforms are computed by including higher-order modes
(e.g., up to ‘ ¼ 4) and that this degradation will become
larger with increasing inclination �. The most notable

example is for the degeneracy along the diagonal a1 ¼
�a2, which should be broken by the inclusion of higher-
order modes (We recall that these configurations lead to
different recoil velocities [16] which can only be produced
by gravitational-wave contributions other than the leading
order ‘ ¼ m ¼ 2 mode). For this reason we have com-
puted the sky-averaged match of waveforms including
modes up to ‘ ¼ 4 (i.e., the ‘‘complete’’ waveforms) and
the corresponding matches are reported in the last two
columns of Table IV. Similarly to what was found in
[63], we measure a marked decreased in the minmax
match, but a much smaller decrease in the best match
(the latter was not considered in [63]). Although our reso-
lution should be marginally enough for us to detect such a

TABLE IV. Best and minmax matches as computed for the LIGO detector for binaries with different spins in the spin diagram.
Different columns show Mbest and Mmin max for waveforms computed either using only the ‘ ¼ 2, m ¼ 2 contribution (third and
fourth columns), only the ‘ ¼ 3, m ¼ 2 contribution (fifth and sixth columns), or the sky-averaged contributions of all modes up to
‘ ¼ 4 (last two columns). Finally the last eight rows show the matches at different resolutions (i.e.,�x=M ¼ 0:024, 0.024, 0.020, 0.018
or low, medium and high, respectively) for the binary r0.

M=M� Mbest Mmin max Mbest Mmin max Mbest Mmin max

only

‘ ¼ 2, m ¼ 2
only

‘ ¼ 2, m ¼ 2
only

‘ ¼ 3, m ¼ 2
only

‘ ¼ 3, m ¼ 2
avg. up

to ‘ ¼ 4
avg. up

to ‘ ¼ 4

s0 � s8 100 0.87 182 0.86 914 0.87 802 0.85 061 0.86 337 0.8 3272

200 0.79 987 0.79 642 0.82 533 0.80 236 0.80 070 0.75 679

300 0.74 394 0.74 026 0.82 570 0.78 819 0.74 785 0.71 139

400 0.71 981 0.71 568 0.84 074 0.81 285 0.72 345 0.69 019

s0 � u8 100 0.99 926 0.99 914 0.99 497 0.97 411 0.99 673 0.95 443

200 0.99 928 0.99 906 0.99 372 0.95 193 0.99 483 0.95 919

300 0.99 923 0.99 870 0.99 189 0.93 888 0.99 251 0.96 105

400 0.99 919 0.99 822 0.99 147 0.93 493 0.99 110 0.96 054

s0 � s�8 100 0.93 942 0.93 907 0.95 717 0.94 843 0.93 695 0.92 143

200 0.90 746 0.90 536 0.95 647 0.94 521 0.89 646 0.88 041

300 0.89 491 0.89 197 0.95 015 0.93 814 0.87 303 0.84 960

400 0.89 369 0.89 065 0.94 806 0.93 550 0.85 492 0.82 103

s�8 � s8 100 0.78 948 0.78 493 0.87 041 0.85 222 0.78 310 0.74 895

200 0.63 309 0.62 703 0.90 722 0.88 543 0.63 456 0.59 426

300 0.56 934 0.56 008 0.90 322 0.88 869 0.56 941 0.52 170

400 0.54 235 0.53 960 0.91 199 0.89 848 0.55 470 0.49 338

s�8 � u8 100 0.94 250 0.94 187 0.96 299 0.94 669 0.93 897 0.89 017

200 0.91 444 0.91 229 0.96 316 0.93 068 0.90 315 0.85 958

300 0.90 188 0.89 885 0.95 486 0.91 256 0.87 846 0.83 428

400 0.89 772 0.89 492 0.95 132 0.90 583 0.85 870 0.80 907

s8 � u8 100 0.87 127 0.86 817 0.87 656 0.84 229 0.85 866 0.80 969

200 0.79 750 0.79 477 0.83 582 0.81 476 0.79 074 0.73 526

300 0.74 063 0.73 884 0.83 897 0.8 0378 0.73 616 0.68 774

400 0.71 798 0.71 343 0.84 955 0.81 925 0.71 203 0.66 611

r0 100 0.99 979 0.99 970 0.99 495 0.98 812 0.99 855 0.99 463

(0.024, 0.020) 200 0.99 963 0.99 929 0.99 133 0.97 100 0.99 633 0.98 800

300 0.99 943 0.99 894 0.98 752 0.95 775 0.99 379 0.98 152

400 0.99 924 0.99 868 0.98 630 0.95 317 0.99 209 0.97 683

r0 100 0.99 990 0.99 989 0.99 873 0.99 299 0.99 881 0.99 639

(0.020, 0.018) 200 0.99 980 0.99 970 0.99 806 0.98 074 0.99 705 0.98 952

300 0.99 956 0.99 924 0.99 707 0.97 238 0.99 497 0.98 070

400 0.99 935 0.99 866 0.99 666 0.9 7017 0.99 320 0.97 429
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difference in the best match, we also believe that a much
higher accuracy is required to determine this with certainty.
Note also that the matches with complete waveforms along
other directions, e.g., s0 � s8 or s0 � s�8 do not decrease
and this is simply due to the very large mismatch we
already have with the ‘ ¼ 2 ¼ m waveforms (in these
cases, in fact, the final black holes are considerably differ-
ent and hence the associated ringdowns are expected to be
different).
Finally, we note that although Figs. 7 and 8 show data

computed for the LIGO detector, very similar behaviors
can be shown also for the other detectors.

D. Accuracy of NR waveform amplitudes

A reasonable concern that can be raised when looking
the very high matches between the waveforms in the u
sequence is that these are simply the result of insufficient
resolution. In other words, the waveforms may appear
similar simply because our resolution is not sufficient to
pick up the differences. To address this concern we have
computed the overlap among the waveforms obtained at
three different resolutions and for a representative binary
with nonzero spins, i.e., r0. Clearly, a low match in this
case would be an indication that our results are very
sensitive to the numerical resolution and hence the con-
clusions drawn on the degeneracy of the space of templates
would be incorrect.
The results of this validation are presented in Fig. 9 and

are reported in the last eight rows of Table IV. More
specifically, shown with different lines in Fig. 9 are the
matches obtained when comparing the numerical wave-
forms of the binary r0 computed at low resolution
(�x=M ¼ 0:024) and medium resolution (�x=M ¼
0:020, which is also the standard one), as well as at a
medium and high resolution (�x=M ¼ 0:018). The
matches are computed considering only the ‘ ¼ 2, m ¼
2 mode and for the LIGO detector, but very similar behav-
iors can be shown also for higher modes or for the other
detectors.
Overall, the results reported in Fig. 9 and in Table IV

show that Mbest;min max½�x1;�x2�>Mbest;min max½h1; h2�,
i.e., that the differences we measure in the overlaps among
two different waveforms h1 and h2 are always larger than
the differences we are able to measure at two different
resolutions �x1 and �x2. In other words, the differences in
the waveforms across the spin diagram are always larger
than our numerical errors, even along the degenerate u
sequence (of course, as we have a convergent numerical
code, the match between medium and low resolution is
worse than the match between medium and high resolu-
tion). It is also worth mentioning that as long as the
dominant ‘ ¼ 2, m ¼ 2 mode is considered, the differ-
ences in the matches are well within the margin of error
for numerical-relativity simulations of black-hole binaries.
A recent work has in fact estimated that the differences in

FIG. 8 (color online). Best match as a function of the total
projected spin a for a waveform containing only the ‘ ¼ 2, m ¼
2 contribution. The top/lower panels refers to a binary with a
total mass (200=400M�), which are close to the optimal ones for
the LIGO/Virgo or advanced detectors, respectively. In both
panels the dotted line shows the minimum best match (0.965)
needed for a detection. While the data have been computed for
the LIGO detector, very similar behaviors can be shown also for
the other detectors.

FIG. 9 (color online). As in Fig. 8 but now different lines
represent the matches obtained when comparing the numerical
waveforms of the binary r0 computed at different resolutions.
The matches are computed for the LIGO detector, but very
similar behaviors can be shown also for the other detectors.
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the waveforms produced by distinct codes is Mmismatch ¼
1�M � 10�4 for the last � 1000M of the dominant
mode of nonspinning equal-mass coalescence [65]. Since
the next higher mode ‘ ¼ 3, m ¼ 2 starts to suffer from
numerical noise, it does not yield the same high agreement,
and the differences between best and minimax match show
a larger deviation.

As a final comment on the accuracy of our waveforms,
we note that the error made by using waveforms extracted
at a finite radius, and not extrapolated at spatial infinity is
well within the error budget of our estimates. We have
validated this by comparing the waveforms extracted at a
finite radius against the waveforms computed at future null
infinity, via a newly developed Cauchy-characteristic code
[66]. In the case of the nonspinning configuration s0 we
have found an error in the calculated SNR of less than 1.0%
(details on this comparison can be found in Appendix B).

V. FITTING FORMULAS

In what follows we provide some simple analytic repre-
sentation of most of the results presented in the previous
sections and, in particular, we give a brief discussion of
fitting expressions that can be derived to express the SNR
for an optimal mass and the energy radiated in gravitational
waves.

A. SNR

As discussed in Sec. III D, the maximum SNR depends
on several factors, most notably on the two initial spins, the
total mass of the system and, although more weakly, on the
number of multipoles included in the waveforms. The
resulting functional dependencies when 1
 of freedom is
suppressed and the SNRs are presented in terms of the total
projected spin are shown in Figs. 3 and 5 and are clearly
too cumbersome to be described analytically (although still
possible).

However, most of the complex functional dependence
can still be captured when concentrating on the best case
scenario, and hence on the SNRs relative to the optimal
mass Mopt. The behavior of the SNR in this case is shown

in Fig. 10, where the different symbols show the numeri-
cally computed values of �maxða;MoptÞ for the different

detectors. Stated differently, Fig. 10 represents the cross
section along the optimal mass of Figs. 3 and 5 (note that
the SNR for the advanced detectors have been divided by 7
to make them fit onto the same scale).

Clearly, the behavior of the SNR in this case is suffi-
ciently simple that it can be represented with a simple
quartic polynomial of the type

�maxða; ‘ � 4;M ¼ MoptÞ ¼
X4
n¼0

kna
n; (18)

whose coefficients kn are reported in Table V for the five
detectors considered.

These results address therefore question (ii) formulated
in the Introduction. More specifically, when considering
the optimal mass, the ratio of the SNRs for maximally anti-
aligned spinning binaries to maximally and aligned spin-
ning binaries, i.e., �maxða ¼ 1Þ=�maxða ¼ �1Þ is �3 for
both the LIGO and Virgo detectors. This ratio is also
preserved when considering the advanced LIGO and
Virgo detectors. Because the event rate scales like the
cube of the SNR [cf. expressions (9)–(12)], an increase
of a factor �3 in the SNR of binaries with a ¼ �1 and
a ¼ 1 will translate into an increase of a factor�27 in the
event rate. It is therefore likely that many of the binaries
observed will have high spins and aligned with the orbital
angular momentum. This will be particularly true in the
case of LISA if the prediction that the spins of super-
massive black holes are aligned with the orbital angular
momentum will hold [11].

FIG. 10 (color online). Different symbols show the numeri-
cally computed values of �maxða;MoptÞ for the different detectors
and represent therefore the cross section along the optimal mass
of Figs. 3 and 5. Note that the SNR for the advanced detectors
have been divided by 7 to make them fit onto the same scale.

TABLE V. Fitting coefficients for the maximum SNR com-
puted for the optimal mass [cf. Eq. (18)]. The different rows refer
to the various detectors and have been computed including all
modes up to ‘ ¼ 4.

detector k0 k1 k2 k3 k4

LIGO 50.76 27.11 13.43 8.58 4.63

eLIGO 102.45 53.63 25.33 17.67 11.26

AdLIGO 1020.42 492.25 243.60 153.84 46.99

Virgo 71.86 35.23 17.140 10.92 3.789

AdVirgo 968.08 481.52 236.45 140.69 37.91
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B. Radiated energy

While the SNR is effectively a measure of the amount of
energy released during the inspiral, it also incorporates
information on the properties of the detectors and is not
therefore an absolute measure of the efficiency of the
gravitational-wave emission process. This information
can have a number of important astrophysical applications,
and, in particular, it can be used to study the effect the
merger has on the dynamics of the circumbinary disk
accreting onto the binary when this is massive (see [67]
for the first suggestion and [68] for a recent nonlinear
study).

In this section we present a simple formula to compute
the amount of energy released and express it only in terms
of the initial spins. Our formula is restricted to aligned
binaries and is therefore not as generic as the one recently
presented in [69], which however also requires the deter-
mination of a larger set of coefficients, some of which have
uncertainties of �100%. As we will show below, the two
expressions yield results in reasonably good agreement, at
least in the part of the parameter space we investigate.

In practice, the expression for the radiated energy Erad is
derived by combining a fit to the numerical data for the
binaries at an initial and finite separation D ¼ 8M4 (we
refer to this energy as to ENR

rad ), with the estimate of the

energy released from the binary when it goes from an
infinite separation down to D (we refer to this energy as
EPN
rad), i.e.,

Erad ¼ ENR
rad þ EPN

rad ¼ MADM �Mfin þ EPN
rad; (19)

where MADM is the initial ADM mass as measured at
spatial infinity of the binary with separation D, and Mfin

the Christodoulou mass of the final black hole.5 For the fit
of the radiated energy during the numerical evolution, ENR

rad ,

we use the same symmetry arguments first made in [16]
and then successfully used in [17–19] to write a simple
expression which is a Taylor expansion in terms of the
initial spins

ENR
rad ðq ¼ 1; a1; a2Þ

M
¼ p0 þ p1ða1 þ a2Þ þ p2ða1 þ a2Þ2:

(20)

Fitting then the numerical data we obtain the following

values for the coefficients

p0 ¼ 3:606� 0:0271

100
; p1 ¼ 1:493� 0:0260

100
;

p2 ¼ 0:489� 0:0254

100
:

(21)

where the reduced chi-squared is �2
red ¼ 0:008, and where

the largest error is in the 2nd-order coefficient but this is
only �5%. The different coefficients (21) can then be
interpreted as the nonspinning orbital contribution to the
energy loss (p0, which is the largest and of �3:6%), the
spin-orbit contribution (p1, which is & 3:0%), and the
spin-spin contribution (p2, which is & 2:0%). The relative
error between the numerically computed value of ENR

rad and

the fitted one is reported in the last column of Table I.
The PN expression for the energy radiated by the

binary when going from an infinite separation down to a
finite one r ¼ d, depends on the total mass of the binary,
the mass ratio and the spin components, i.e., EPN

rad ¼
EPN
radðr;M; �; a1; a2Þ, which is the generalization to unequal

masses of the energy expression used in the definition of
the TaylorT1 approximant in Ref. [47]. However, exploit-
ing the fact that for equal-mass binaries the PN radiated
energy EPN

rad follows the same series expansion used for

ENR
rad , we obtain for M ¼ 1 ¼ q

EPN
radða1; a2Þ

M
¼ EPN

rad;0 þ EPN
rad;1ða1 þ a2Þ þ EPN

rad;2ða1 þ a2Þ2;
(22)

where the coefficients for D ¼ 8M are given by

EPN
rad;0 ¼

6401

524 288
’ 1:220

100
;

EPN
rad;1 ¼

985

1 048 576
ffiffiffi
2

p ’ 0:0664

100
;

EPN
rad;2 ¼ � 1

32 768
’ � 0:00 305

100
:

(23)

A rapid inspection of the coefficients (23) is sufficient to
appreciate that the PN orbital contribution is only �33%,
the one of the strong-field regime, but also that the spin-
related PN contributions are mostly negligible, being at
most of �4% as produced in the last orbits.
We can now combine expressions (20) and (21) with

expressions (22) and (23) and estimate that for equal-mass
binaries with aligned spins the energy radiated via gravi-
tational waves from infinity is

Eradða1; a2Þ
M

¼ ~p0 þ ~p1ða1 þ a2Þ þ ~p2ða1 þ a2Þ2; (24)

4Note that for the binary s0, we use an initial separation of
D ¼ 10M. In order to obtain the radiated energy obtained during
a simulation starting from an initial separation of D ¼ 8M, we
only need to recalculate the initial ADM mass of the spacetime
for this initial separation. The final mass of the remnant is in fact
the same.

5Note that MADM þ EPN
rad is effectively the mass of the system

when it has an infinite separation. This is approximately set to 1
in most simulations but with a precision which is smaller than
the one needed here.
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where

~p 0 ¼ 4:826

100
; ~p1 ¼ 1:559

100
; ~p2 ¼ 0:485

100
: (25)

Of course these numbers are specific to equal-mass bi-
naries and refer to a situation in which the match between
the PN evolution and the one in the strong-field regime is
made at a specific separation of D ¼ 8M. However, we
expect the results to depend only weakly on this matching
separation (as long as it is within a PN regime) and hence
that expressions (24) and (25) are generically valid at the
precision we are considering them here, namely, �5%.

Using expression (24) a number of quantitative consid-
erations are possible. First, the largest energy is clearly
emitted by equal-mass, maximally spinning binaries with
spins parallel and aligned with the orbital angular momen-
tum at is Eradða ¼ 1Þ=M ¼ 9:9%. Excluding the astro-
physically unlikely head-on collision of two black holes
moving near the speed of light (in which case Erad < 14�
3% [70]), these binaries are among the most efficient
sources of energy in the Universe. Second, equal-mass
nonspinning binaries lose a considerable fraction of their
mass via radiation, with Eradða ¼ 0Þ=M ¼ 4:8%, while
maximally spinning binaries with spins parallel and anti-
aligned with the orbital angular momentum have Eradða ¼
�1Þ=M ¼ 3:7%.

Note that expression (24) is not a strictly monotonic
function of the total spin and has a local minimum at a1 ¼
a2 ¼ �~p1=ð4~p2Þ ’ �0:8 rather than at a1 ¼ a2 ¼ �1,
and yields Eradða ¼ �0:79Þ=M ¼ 3:6% (cf. Fig. 11).
Although rather shallow, we do not expect such a local
minimum. We therefore interpret it as an artifact of the
numerical error of our calculations (the difference between
the energy radiated at a1 ¼ a2 ¼ �1 and that at a1 ¼
a2 ¼ �0:8 is �2% and hence compatible with our overall
error). Such a local minimum can be removed by adding
higher-order terms in expression (20) (e.g., up to 4th order
in a1 þ a2) but these improvements are so small that they
do not justify the use of a more cumbersome expression. A
comparison between the numerical values and the fitting
expression (24) is shown in Fig. 11, where crosses and
squares represent the ENR

rad and Erad respectively, along the

diagonal of the spin-diagram (i.e., for a1 ¼ a2), while the
continuous line refers to our fitting expression. Note that
such a line is a one-dimensional cut of a two-dimensional
surface and hence it is not expected to exactly fit all points.

As mentioned above, Lousto and collaborators [69] have
recently proposed a more general formula that should
account for the radiated energy in all of the relevant space
of parameters, namely, for binaries with arbitrary mass
ratio, spin orientation and size. Restricting their expression
to the specific subset of binaries considered here corre-
sponds to setting in their expression (2): EB ¼ EE ¼ 0,
� ¼ 1=4 and q ¼ 1. The resulting expression is then

ERIT
rad

M
¼ 1

4
EISCO þ 1

16
E2 þ 1

64
E3 þ 1

64
½ESða1 þ a2Þ

þ EAða1 þ a2Þ2 þ EDða1 � a2Þ2�; (26)

where the fitting coefficients have been determined to be
E2 ¼ 0:341� 0:014, E3 ¼ 0:522� 0:062, ES ¼ 0:673�
0:035, EA ¼ �0:014� 0:021, ED ¼ �0:26� 0:44 [69],
and where

EISCO ¼
�
1�

ffiffiffi
8

p
3

�
þ 0:103803

4
þ 1

48
ffiffiffi
3

p ða1 þ a2Þ

þ 5

648
ffiffiffi
2

p ða1 � a2Þ2: (27)

After a bit of algebra we can rewrite (27) as

ERIT
rad ða1; a2Þ

M
¼ ~q0 þ ~q1ða1 þ a2Þ þ ~q2ða1 þ a2Þ2

þ ~q3ða1 � a2Þ2; (28)

where now

FIG. 11 (color online). Energy radiated during the numerical
calculation ENR

rad (crosses), the total radiated energy Erad ¼
ENR
rad þ EPN

rad (squares) along the diagonal of the spin diagram,

i.e., for a1 ¼ a2. Shown as a continuous line is the analytic
expressions given here (AEI fit), while the dashed line is the one
suggested in Ref. [69] (RIT fit). Note that the lines represent one-
dimensional cuts of two-dimensional surfaces and hence are not
expected to fit well all points. Finally, indicated with a dotted
line is the prediction for the radiated energy coming from the
point-particle approach of [20] and refined in [72].
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~q0 ¼ 1

4

�
1�

ffiffiffi
8

p
3

þ 0:103803

4

�
þ E2

16
þ E3

64
’ 5:025

100
;

~q1 ¼ 1

192
ffiffiffi
3

p þ ES

64
’ 1:352

100
;

~q2 ¼ EA

64
’ � 0:0219

100
;

~q3 ¼ 5

2592
ffiffiffi
2

p þ ED

64
’ � 0:270

100
:

(29)

Comparing (24) and (25) with (28) and (29) is now
straightforward and shows that: the reduced expression
from [69] has a second order contribution �ða1 � a2Þ2,
which is absent in our expression. The remaining coeffi-
cients are rather similar but not identical. This comparison
is summarized in Fig. 11, where the dashed line corre-
sponds to the fitting proposed in Ref. [69]. Note that the
maximum efficiency for maximally spinning black holes
predicted by expression (28) is �8%, but our estimate is
larger and �10%. Not reported in Fig. 11 is the prediction
made in Ref. [71], which is linear in the total spin and very
close to that coming from (28).

While the two expressions provide very similar esti-
mates for �0:5 & a1 ¼ a2 & 0:4, they also have predic-
tions differing by more than �20% for highly spinning
binaries. Because both expressions come as a result of a
number of simplifications and assumptions, it is not easy to
judge which one is the most accurate one, if any. It is useful
to bear in mind, however, that expressions (24) and (25)
have been obtained from a ‘‘controlled’’ set of simulations
with small truncation errors and therefore have coefficients
with error bars of the order of 5%. Expressions (28) and
(29), on the other hand, because coming from more ex-
tended formulas and thus fitting a wider set of different
simulations across many groups, have error-bars that are
intrinsically larger, as high as 100%. In view of this, and of
the fact that the coefficients are constant, the simulations
carried out here could be used for a new estimate of the free
coefficients E2, E3, ES and EA in (28) [Note that because in
the expression for the radiated energy (20) there is no need
for a contribution proportional to ða1 � a2Þ2, it should be
possible to set ~q3 ¼ 0 and obtain a numerical constraint for
the presently inaccurate coefficient ED]. Finally, indicated
with a dotted line in Fig. 11 is the prediction for the
radiated energy coming from the point-particle approach
of [20] and refined in [72].

Simulations involving aligned binaries with unequal
masses will help to settle this issue and provide an exten-
sion to our expression (24). This will be the subject of
future work.

VI. CONCLUSIONS

We have considered in detail the issue of the detectabil-
ity of binary system of black holes having equal masses
and spins that are aligned with the orbital angular momen-

tum. Because these configurations do not exhibit preces-
sion effects, they represent a natural ground to start
detailed studies of the influence of strong-field spin effects
on gravitational-wave observations of coalescing binaries.
Furthermore, such systems are far from being unrealistic
and may be the preferred end state of the inspiral of generic
supermassive binary black-hole systems. In view of this,
we have computed the inspiral and merger of a large set of
binary systems of equal-mass black holes with spins par-
allel to the orbital angular momentum but otherwise arbi-
trary. Our attention is particularly focused on the
gravitational-wave emission so as to provide simple an-
swers to basic questions such as what are the loudest and
quietest configurations and what is the difference in SNR
between the two.
Overall we find that the SNR ratio increases with the

projection of the total black-hole spin in the direction of the
orbital momentum. In addition, equal-spin binaries with
maximum spin aligned with the orbital angular momentum
are more than ‘‘3 times as loud’’ as the corresponding
binaries with anti-aligned spins, thus corresponding to
event rates up to 30 times larger. On average these consid-
erations are only weakly dependent on the detectors, or on
the number of harmonics considered in constructing the
signal.
We have also investigated whether these binaries can

lead to a degenerate patch in the space of templates. We do
this by computing the mismatch between the different
spinning configurations. Within our numerical accuracy
we have found that binaries with opposite spins S1 ¼
�S2 cannot be distinguished, whereas binaries with spin
S1 ¼ S2 have clearly distinct gravitational-wave emis-
sions. This result, which was already discussed in the
past [63], may represent a serious obstacle toward a proper
estimate of the physical parameters of binaries and will
probably be removed only if the SNR is sufficiently high.
Finally, we have derived a simple expression for the

energy radiated in gravitational waves, and find that the
binaries always have efficiencies Erad=M * 3:6%. This
can become as large as Erad=M ’ 10% for maximally
spinning binaries with spins aligned to the orbital angular
momentum. These binaries are, therefore, among the most
efficient sources of energy in the Universe.
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APPENDIX A: SENSITIVITY CURVES

For convenience, we report below the sensitivity curves
used to compute the SNRs that are often difficult to collect
from the literature. For LISAwe use the same noise curve
as for the LISA Mock Data Challenge 3 [73] as imple-
mented by Trias and Sintes, and made available by the
LISA Parameter Estimation Task Force [74]. The noise
curve for advanced Virgo can be found in tabulated form in
Ref. [32].
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APPENDIX B: COMPARISON OF WAVEFORMS AT
FUTURE NULL INFINITY

A systematic source of error in the results given in this
paper is the finite radius rE ¼ 160M at which our wave-
forms are computed. In order to determine its influence on
the accuracy of the values reported here, we have exploited
the recent possibility of computing waveforms unambigu-
ously at future null infinity Jþ [66]. In this approach,
which makes use of the Cauchy-characteristic extraction
technique [75–79], the gravitational-wave information �4

is computed at Jþ in a gauge-invariant way and with no
causal influence from the outer boundary.

In practice, we have computed the match between the
waveforms extracted at rE and at Jþ for the nonspinning
configuration s0, and found that Mbest ¼ 0:999, which is
thus within the error given by the match between different
numerical resolutions (cf. discussion in Sec. IVC and see
also Table IV). Note that the initial separation of the two
black holes as reported in [66], d ¼ 11M, is larger than the

one reported here, thus resulting in a much smaller initial
frequency!ini. Nevertheless, we have considered the same
gluing frequency !glue ¼ 0:168=M so as to have a fair

comparison between the two waveforms.
In addition, we have also compared SNRs obtained in

the two cases, when the Fourier-transform of hðtÞ as given
in terms of �4 is easily obtained as

~hðfÞ ¼ �
~�4

4�2f2
; (B1)

where ~�4 is the Fourier transform of �4. For any of the
total masses considered here and for all of the detectors, we
find that the differences in the SNRs is less than 1.0%.
Overall, both results show that the error introduced by the
use of a finite radius calculation is within our numerical
error bars of�2:0% and thus does not modify significantly
the results obtained in this work.
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1422 (2008).

[17] L. Rezzolla, P. Diener, E. N. Dorband, D. Pollney, C.
Reisswig, E. Schnetter, and J. Seiler, Astrophys. J. 674,
L29 (2008).

[18] L. Rezzolla, E. Barausse, E. N. Dorband, D. Pollney, C.
Reisswig, J. Seiler, and S. Husa, Phys. Rev. D 78, 044002
(2008).

[19] E. Barausse and L. Rezzolla Astrophys. J. 704, L40
(2009).

[20] A. Buonanno, L. E. Kidder, and L. Lehner, Phys. Rev. D
77, 026004 (2008).

[21] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 74, 041501 (2006).

[22] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 74, 084023 (2006).

[23] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 73, 061501 (2006).

[24] L. Boyle, M. Kesden, and S. Nissanke, Phys. Rev. Lett.
100, 151101 (2008).

[25] L. Boyle and M. Kesden, Phys. Rev. D 78, 024017
(2008).

[26] P. Marronetti, W. Tichy, B. Bruegmann, J. Gonzalez, and
U. Sperhake, Phys. Rev. D 77, 064010 (2008).

[27] B. Abbott et al. (LIGO Scientific Collaboration) (2007).
[28] S. Waldman and (for the LIGO Science Collaboration),

Classical Quantum Gravity 23, S653 (2006).
[29] R. Adhikari, P. Fritschel, and S. Waldman (Scientific

Collaboration), LIGO Tech. Report No. LIGO-T060156-
01-I, 2006.

[30] Advanced LIGO, http://www.ligo.caltech.edu/advLIGO/.
[31] F. Acernese et al., Classical Quantum Gravity 23, S635

(2006).
[32] Virgo Collaboration, Virgo Technical Report No. VIR-

089A-08, 2008.
[33] K. Danzmann, P. Bender, A. Brillet, I. C. A. Cruise, C.

Cutler, F. Fidecaro, W. Folkner, J. Hough, P. McNamara,
M. Peterseim et al., Max-Planck-Inistitut für
Quantenoptik, Report No. MPQ 233, 184 1998.
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N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71,
024035 (2005).

[61] E. E. Flanagan and S. Hughes, Phys. Rev. D 57, 4535
(1998).

[62] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.
D 57, 885 (1998).

[63] B. Vaishnav, I. Hinder, F. Herrmann, and D. Shoemaker,
Phys. Rev. D 76, 084020 (2007).

[64] B. Abbott et al. (LIGO Collaboration), Phys. Rev. D 73,
102002 (2006).

[65] M. Hannam et al., Phys. Rev. D 79, 084025 (2009).
[66] C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilagyi,

Phys. Rev. Lett. 103, 221101 (2009).
[67] N. Bode and S. Phinney, APS Meeting Abstracts (2007),

p. 1010.
[68] M. Megevand, M. Anderson, J. Frank, E.W. Hirschmann,

L. Lehner, S. L. Liebling, P.M. Motl, and D. Neilsen,
Phys. Rev. D 80, 024012 (2009).

[69] C. O. Lousto, M. Campanelli, and Y. Zlochower
arXiv:0904.3541 [gr-qc].

[70] U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, and J. A.
Gonzalez, Phys. Rev. Lett. 101, 161101 (2008).

[71] W. Tichy and P. Marronetti, Phys. Rev. D 78, 081501
(2008).

[72] M. Kesden, Phys. Rev. D 78, 084030 (2008).
[73] S. Babak et al., Classical Quantum Gravity 25, 184026

(2008).
[74] LISA parameter estimation wiki, http://www.tapir.

caltech.edu/dokuwiki/lisape:home.
[75] N. T. Bishop, Classical Quantum Gravity 10, 333 (1993).

CHRISTIAN REISSWIG et al. PHYSICAL REVIEW D 80, 124026 (2009)

124026-18



[76] N. Bishop, R. Isaacson, R. Gómez, L. Lehner, B. Szilágyi,
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