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Quantum light-cone fluctuations in compactified spacetimes

Hongwei Yu*
Department of Physics and Institute of Physics, and Key Laboratory of Low Dimensional Quantum Structure and Quantum Control of
the Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, China

N.F. Svaiter"
Centro Brasileiro de Pesquisas Fisicas—CBPF, Rua Dr. Xavier Sigaud 150 Rio de Janeiro, RJ, 22290-180, Brazil

L. H. Ford*

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
(Received 8 April 2009; published 14 December 2009)

We treat the effects of compactified spatial dimensions on the propagation of light in the uncompacti-

fied directions in the context of linearized quantum gravity. We find that the flight times of pulses can
fluctuate due to modification of the graviton vacuum by the compactification. In the case of a five-
dimensional Kaluza-Klein theory, the mean variation in flight time can grow logarithmically with the
flight distance. This effect is in principle observable, but too small to serve as a realistic probe of the

existence of extra dimensions. This differs from the conclusion reached in an earlier work. We also
examine the effect of the compactification on the widths of spectral lines, and find that there is a small line
narrowing effect. This effect is also small for compactification well above the Planck scale, but might

serve as a test of the existence of extra dimensions.
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I. INTRODUCTION

One of the key features expected in quantum theories of
gravity is fluctuation of the classical light cone and pos-
sible effects on signal propagation. This possibility has
been discussed in several contexts by numerous authors
[1-11]. One approach is to study variations in the flight
times of light pulses between a source and a detector [12—
16]. This approach was used in Ref. [14] to study the
effects of boundaries and periodic compactification of
one space dimension. In particular, it was found that the
fluctuation in flight time of a pulse propagating parallel to a
plane boundary, or in a direction transverse to the compac-
tified dimension, will tend to grow as the flight distance
increases. This growth can be viewed as a cumulative
effect of spacetime geometry fluctuations modified by the
boundary or the compactification.

This effect is analogous to the local Casimir effect,
whereby a boundary modifies the two-point function of
the quantized electromagnetic field. This modification can
produce observable effects, such as a force on an atom.
This force was predicted theoretically by Casimir and
Polder [17] in 1948, and measured experimentally by
Sukenik er al. [18] in 1993. Another effect of modified
electromagnetic vacuum fluctuations can be Brownian mo-
tion of charged test particles [19-22]. The presence of a
boundary can alter the mean squared velocity or position of
the particle. This modification is analogous to the effects of
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light-cone fluctuations when spacetime geometry fluctua-
tions are modified.

In the present paper, we will be concerned with modifi-
cation of light-cone fluctuations due to compact extra
dimensions. Theories with extra dimensions were intro-
duced into physics by Kaluza [23] and Klein [24], and have
been the topic of many papers in recent years [25]. We wish
to address the question of whether compact extra dimen-
sions can give rise to observable effects on the propagation
of light rays in the uncompactified directions. Such an
effect could be a potential test for the existence of extra
dimensions. A secondary purpose of this paper is to discuss
quantization of linearized gravity in arbitrary numbers of
flat spacetime dimensions and to give explicit expression
for the graviton two-point functions in the transverse-
tracefree (TT) gauge. In effect, we are searching for mod-
ifications of quantum effects in the uncompactified dimen-
sions due to the presence of the extra dimensions. A
somewhat different effect, whereby extra dimensions lead
to changes in Casimir forces has recently been discussed
by Cheng and others [26,27]. The present paper corrects
earlier work by two of us, Refs. [15,28], in which a larger
effect was claimed.

The outline of this paper is as follows: In Sec. II, we
review how quantized linear metric perturbations may give
rise to variations in flight times of pulses. In Sec. III, we
discuss quantization of linearized metric perturbations and
compute the graviton two-point function in the transverse-
tracefree gauge for flat spacetime of arbitrary dimension.
In particular, in Sec. III C we give a new derivation of the
formula for A¢, the mean flight time variation. This result is
used in Sec. IV to study light-cone fluctuations in a five-
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dimensional spacetime with one compact dimension. Some
results for more than one compact dimension are also
summarized. We also examine the issue of the correlation
of successive pulses in this model in Sec. IV B. We turn to a
different measure of light-cone fluctuations, the possible
broadening of spectral lines, in Sec. V. Our results are
discussed in Sec. VI. Appendix A provides a detailed
treatment of the graviton two-point functions.

II. LIGHT-CONE FLUCTUATIONS AND FLIGHT
TIME VARIATIONS

To begin, let us examine a d = 4 + n dimensional flat
spacetime with n extra dimensions. Consider a flat back-
ground spacetime with a linearized perturbation £, prop-
agating upon it, so the spacetime metric may be written as

ds* = (., + h,,)dxtdx”
= —d + dx* + hy,dx*dx”, (D)

where the indices u, v run through 0, 1, 2,3, ..., 3 + n. Let
o(x, x') be one half of the squared geodesic distance be-
tween a pair of spacetime points x and x’, and o (x, x’) be
the corresponding quantity in the flat background. In the
presence of a linearized metric perturbation, %, we may
expand o = o + oy + O(h%,). Here o is first order in
h,,. If we quantize h,,, then quantum gravitational vac-
uum fluctuations will lead to fluctuations in the geodesic
separation, and therefore induce light-cone fluctuations. In
particular, we have (o) # 0, since o becomes a quantum
operator when the metric perturbations are quantized. The
quantum light-cone fluctuations give rise to fluctuations in
the speed of light, which may produce a time delay or
advance At in the arrival times of pulses.

We are concerned with how light-cone fluctuations char-
acterized by (o) are related to physical observable quan-
tities. For this purpose, let us consider the propagation of
light pulses between a source and a detector separated by a
distance r on a flat background with quantized linear
perturbations. In a perturbed spacetime, the pulse will
travel on a path for which o = 0, so that o) = — 0 to
leading order. For a pulse which is delayed by time Az,
which is much less than r, we have

oy = %[—(r + A2 + ] = —rAt, (2)

in the coordinates of the unperturbed spacetime. This leads
to

o

Ar=—L. 3)

r
Square the above equation and take the average over a
given quantum state of gravitons |¢) (e.g. the vacuum
states associated with compactification of spatial dimen-
sions),
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This result is, however, divergent due to the formal diver-
gence of (¢p|d?}|¢). One can define an observable Az by
subtracting from Eq. (4) the corresponding quantity, Az3,
for the vacuum state as follows:

(@laile) ~O7il0) _ e s,

r r

AP = Ary — Arg =

In this case, we are dealing with the shift in the light-cone
fluctuations due to a change in quantum state or spacetime
topology. We do not attempt to treat the vacuum state of
uncompactified Minkowski spacetime, but rather the de-
pendence of the light-cone fluctuations on some parameter
which can be varied. Therefore, the root-mean-squared
deviation from the classical propagation time is given by

[(o2
AI=M. (6)

r

Note that Ar is the ensemble averaged deviation, not
necessarily the expected variation in flight time, 6, of
two pulses emitted close together in time. The latter is
given by At only when the correlation time between suc-
cessive pulses is less than the time separation of the pulses.
This can be understood physically as due to the fact that the
gravitational field may not fluctuate significantly in the
interval between the two pulses. This point is discussed
in detail in Ref. [13]. These stochastic fluctuations in the
apparent velocity of light arising from quantum gravita-
tional fluctuations are in principle observable, since they
may lead to a spread in the arrival times of pulses from
distant sources.

In order to find At in a particular situation, we need to
calculate the quantum expectation value (o7)z in any
chosen quantum state | ), which can be shown to be given
by [12,14]

1 r r
(o = §(Ar)2_[ dr[ dr'n*n"n’n’GR . (x, x').
ro ro
(7)

Although the previous derivations in Ref. [14] were given
in 3 + 1 dimensions, the generalization to arbitrary dimen-
sions is straightforward. Here dr = |dx|, Ar=r — ry
and n* = dx*/dr. The integration is taken along the null
geodesic connecting two points x and x/, and

Glrpo6 X) = (Plhy, (Ohye (X)) + By (X, ()
®)

is the graviton Hadamard function, understood to be suit-
ably renormalized. The gauge invariance of Az, as given by
Eq. (6), was analyzed in Ref. [14]. An alternative deriva-
tion which makes the gauge invariance more obvious is
given in Sec. III C.
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III. QUANTIZATION IN THE TRANSVERSE-
TRACEFREE GAUGE

A. Minkowski spacetimes

We will use a quantization of the linearized gravitational
perturbations %, in flat spacetime with arbitrary dimen-
sion which retains only physical degrees of freedom. That
is, we are going to work in a TT gauge defined by

h=hl =0 9#h,, =0, and u'h,,

=0 9

where u* is a timelike vector. In the frame of reference in
which u* = (1,0,0,0), the gravitational perturbations
have only spatial components 4;;, satisfying the transverse,
9! hl‘, = 0, and tracefree, hﬁ = (0 conditions. Here 7, j run
from 1 to 3 + n = d — 1. These 2d conditions remove all
of the gauge degrees of freedom and leave 3(d* — 3d)
physical degrees of freedom. We write the quantized gravi-
tational perturbation operator as

hij = [ax re;j(k, M fy + He.l (10)
k,A

Here H.c. denotes the Hermitian conjugate, A labels the
3 (d* — 3d) independent polarization states, fy is the mode
function, and the e /w(k’ A) are polarization tensors. The
graviton creation and annihilation operators satisfy the
usual commutation relation:

[ax a;i/,)g] = Sk O (11

This relation may be taken to be the fundamental quanti-
zation postulate. Units in which 327G, = 1, where G is
Newton’s constant in d dimensions, and in which 7 = ¢ =
1 will be used in this paper, except as otherwise noted.

Let us now calculate the Hadamard function,
G 11po(x, x'), for gravitons in the Minkowski vacuum state
in the transverse-tracefree gauge. (By Minkowski we mean
flat spacetime with all dimensions uncompactified.) It fol-
lows that

2Re d 1k
G ) = gy [ S5 Seuth Ve,
X efk'<X-X’>e—W<f—f’ : (12)

The summation of polarization tensors in the transverse-
tracefree gauge can be found using the tensorial argument
in the appendix of Ref. [14].
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2
Zei,’(k, Ney(K, A) = 846, + 80 — m‘siﬂskl
Py
2d—3) s
+ ———kikjkik;
d 2
d 2(k1k O + kkklét/)
— kik;8 . — kiky 8 — ik 8
— kiki8y, (13)
where 12,- = ?’ We find that
Giju = m(ZFijakl +2F0;;) — 2Fy8; — 2F ;6 ¢
4(d — 3)
2F; 6y — 2F 30y + J-> Hij
2
+ 2D(X, )Cl)<5ik6ﬂ + 5”5/]( - d ) 6kl) (14)

Here D(x, x'), F;;(x, x') and H,;,(x, x') are functions which
are defined as follows:

R d3+nk ) ) ' )
D" ()C )C) (2 )e?’+,l 0 ezk~(xfx)€7tw(t*t), (15)
Re d3+nk o
F”(_X)C) (2 )3+"aa"/. 2w3 elk(x x)e io(t 1),
(16)
and

3+
9. a 9 al[d nsk eik'(X*X')e*iM(t*l')'
2w

H%kl(x’x/) (2 )3+n i

7)

These functions are calculated in Appendix A.

B. Flat spacetimes with periodic compactification

Let us now suppose that the extra n dimensions
21, ...,2, are compactified with periodicity lengths
Ly, ..., L,, namely, spatial points z; and z; + L; are iden-
tified. For simplicity, we shall assume in this paper that
L, =...= L, = L. The effect of imposition of the peri-
odic boundary conditions on the extra dimensions is to
restrict the field modes to a discrete set

fk — (260(277.)31!1)7(1/Z)ei(k-xfwt)y (18)
with
2 .
k=20 =1,
L (19)

m;=0,+1, %2, %3, ....

Let us denote the associated vacuum state by |0, ). In order
to calculate the gravitational vacuum fluctuations due to
compactification of extra dimensions, we need the renor-
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malized graviton Hadamard function with respect to the
vacuum state [0,), GX ,,,(x, x'), which is given by a mul-
tiple image sum of the corresponding Hadamard function

for the Minkowski vacuum, G ppo

n + o0/

Gﬁvpa(t’ Zis t/’ Zi) = l_[ Z Gp,l/po'(t» Zis t/’ Z; + mlL)

i=1 m=—00

(20)

Here the prime on the summation indicates that the m; = 0
term is excluded and the notation

(t, )_C), Z],...,Zn) = (f, Zi) (21)

has been adopted.

We are mainly concerned about how light-cone fluctua-
tions arise in the usual uncompactified space as a result of
compactification of extra dimensions. So we shall examine
the case of a light ray propagating in one of the uncom-
pactified dimensions. Take the direction to be along the
x-axis in our four-dimensional world, then the relevant
graviton two-point function is G,,,,, which can be ex-
pressed as

4(n+1)

Grxnt, %, 2, 1, X, 7)) = ————
xxxx( Z; Zl) n4+2

- 2Fxx(t: 5‘: Zi» t/; 52/; Zi)

+ Hxxxx(t’ )_C)r Zis t/, 55/’ ZD] (22)

[D(t, % z;, 1, ¥, 2})

Assuming that the propagation goes
(a,0,...,0) to point (b, 0, ..., 0), we have

from point

1 b b
(o) = g(b — a)zf dx/ dx'GR...(t,x,0,¢,x,0,)

1 b b
=§(b—a)2] dxf dx’

n +o00/
X l_[ Z Gxxxx(t: X, 0’ t/r xl: O, O; m]L, ey mlL)

i=1 my=—00

(23)

With these results, we can in principle calculate light-cone
fluctuations in spacetimes with an arbitrary number of flat
extra dimensions. Recall that we are working in units in
which the Newton’s constant in d dimensions is G; =
(327)~ L. In final results, it will be useful to convert to
more familiar units using the relation that

0 = Gy = GuL*, (24)

where €p = 1073* cm is the Planck length.

C. An alternative derivation of A¢

In this section, we wish to rederive At using the geodesic
deviation equation. This derivation allows us to see the
gauge invariance more clearly, and to discuss the issue of
Lorentz invariance of light-cone fluctuations. Let us con-
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FIG. 1. A pair of nearby timelike geodesics. Here u* is a
tangent vector along the geodesic, while n* is a unit spacelike
vector pointing from one geodesic to the other.

sider a pair of timelike geodesics with tangent vector u*,
and n* as a unit spacelike vector pointing from one geo-
desic to the other (see Fig. 1). The geodesic deviation
equation is given by

Dp#
dr?

= =Rl gu“n’ub, (25)

where RY s 18 the Riemann tensor. The relative accelera-

tion per unit proper length of particles on the neighboring
geodesics is

Dnt
12 d’TZ

a=n = —Ryavpn*un"uP. (26)
Thus if ds is the spatial distance between the two particles,
then ads is their relative acceleration. It follows that the
relative change in displacement of the two particles after a
proper time 7 is

T T
ds f dr f dr'a(7!, s), 27
0 0

Now consider the case of two observers (particles) sepa-
rated by a finite initial distance s as illustrated in Fig. 2.

We can find the relative change in displacement of these
two observers by integrating on s:

S T T
As = fods[ de dr'a(7, s). (28)
0 0 0

This is the relative displacement measured at the same
moment of proper time for both observers.

Let us now consider a light signal sent from one observer
to the other. If a = 0, the distance traveled by the light ray
is so. When a # 0, this distance becomes s, + As, where
now
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So

FIG. 2. Two timelike geodesics separated by a finite interval
containing an infinite number of nearby geodesics.

As = /SO ds[s dT[T dr’a(t!, s).
o Jo 0 j

Here the under-braced integral is the displacement per unit
s of a pair of observers at a distance s from the source. The
domain of the final two integrations is illustrated in Fig. 3.

If gravity is quantized, the Riemann tensor will fluctuate
around an average value of zero due to quantum gravita-
tional vacuum fluctuations. This leads to {a) = 0, and
hence (As) = 0. Notice here that & becomes a quantum
operator when metric perturbations are quantized.
However, in general, ((As)?) # 0, and we have

(As)2) = f " ds, ] " ds, / N dr f "ar f 2 dr,
0 0 0 0 0

xfozdf’2<a(7"1,sl)a(7/2, $2)).

(29)

(30)

Thus the root-mean-squared fluctuation in the flight path is
V{(As)?), which can also be understood as a fluctuation in
the speed of light. It entails an intrinsic quantum uncer-

S
S  s+ds So
Source

Detector

FIG. 3. The displacement, As, between a source and a detector
is given by an integration within the triangular region.
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tainty in the measurement of distance. Therefore, space-

time becomes fuzzy at a scale characterized by /{(As)?).
The integrand in Eq. (30) is obviously invariant under any
coordinate transformation while the integral is gauge in-
variant within the linear approximation.

We now wish to show that this gauge-invariant quantity
is the same as Eq. (6) when calculated in the TT gauge.
Choose a coordinate system where the source and the
detector are both at rest, and suppose that the light ray
propagates in the x-direction, then we have

ut = (1,0,0,0),

(31)
n* =(0,1,0,0), (32)
and
1
a = Rxlxt = Ehxx,tt' (33)

Substitution of the above results into Eq. (30) leads to

<(AS)2> = fr dx1 [r dX2 fx} dtl ft] dtll [xl dtz
0 0 0 0 0

X [ " dialt], s)elth, ,))
0
1 r r
= an [ dnathaon xpha e x)
0 0

1
= ;<‘T%>

(34)

where we have set s, = r and used the fact that along the
light ray x = t. Thus, one has

Vi) _

r

At =

V{(A5)?)

which also demonstrates the gauge invariance of Ar.
Now we wish to discuss the rather subtle issue of the
relation of light-cone fluctuations to Lorentz symmetry. It
is sometimes argued that light-cone fluctuations are incom-
patible with Lorentz invariance. The most dramatic illus-
tration of this arises when a time advance occurs, that is,
when a pulse propagates outside of the classical light cone.
In a Lorentz invariant theory, there will exist a frame of
reference in which the causal order of emission and detec-
tion is inverted, so the pulse is seen to be detected before it
was emitted. Thus the light-cone fluctuation phenomenon,
if it is to exist at all, seems to be incompatible with strict
Lorentz invariance.

Our view of the situation is the following: light-cone
fluctuations respect Lorentz symmetry on the average, but
not in individual measurements. The symmetry on the
average insures that the mean light cone is that of classical
Minkowski spacetime. The average metric is that of
Minkowski spacetime provided that (4,,) = 0. However,
a particular pulse effectively measures a spacetime geome-
try which is not Minkowskian and not Lorentz invariant. A

(35)
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simple model may help to illustrate this point. Consider a
quantum geometry consisting of an ensemble of classical
Schwarzschild spacetimes, but with both positive and
negative values for the mass parameter M. (The fact that
the M < 0 Schwarzschild spacetime has a naked singular-
ity at r = 0 need not concern us. For the purpose of this
model, we can confine our discussion to a region where
r > |M|.) Suppose that this ensemble has (M) = 0, but
(M?) # 0.1t is well known that light propagation in a M >
0 Schwarzschild spacetime can exhibit a time delay rela-
tive to what would be expected in flat spacetime. This is the
basis for the time delay tests of general relativity using
radar signals sent near the limb of the sun. In the present
model, however, the time difference is equally likely to be
a time advance rather than a time delay. A measurement of
the time difference amounts to a measurement of M. This
model is Lorentz invariant on the average because (M) = 0
and the average spacetime is Minkowskian. However, a
specific measurement selects a particular member of the
ensemble, which is generally not Lorentz invariant.

In addition to the fact that the mean metric is
Minkowskian, there is another sense in which light-
cone fluctuations due to compactification exhibit average
Lorentz invariance. Note that As, and hence Ar,
depends on the Riemann tensor correlation function
(Ryti(x1)R s (x2)), which is invariant under Lorentz
boosts along the x-axis. Thus if we were to repeat the
above calculations of As in a second frame moving with
respect to the first, the result will be the same. In both cases
one is assuming that the detector is at rest relative to the
source. This is a reflection of the Lorentz invariance of the
spectrum of fluctuations, which is exhibited by the com-
pactified flat spacetimes studied in this paper, but not by
the Schwarzschild spacetime with a fluctuating mass.

IV. THE FIVE-DIMENSIONAL KALUZA-KLEIN
MODEL

In this section, we will specialize to the case of one extra
compactified dimension, so d = 5 and n = 1. This corre-
sponds to the original Kaluza-Klein model [23,24].

A. Calculation of A¢

To begin, let us examine the influence of the compacti-
fication of the fifth (extra) dimension on the light propa-
gation in our four-dimensional world, by considering a
light ray traveling along the x-direction from point a to
point b, which is perpendicular to the direction of com-
pactification. Define

p=x—x, b—a=r (36)

and note the fact that the integration in Eq. (23) is to be
carried out along the classical null geodesic on which ¢ —
t' = p. To calculate Az, we need the graviton two-point
function component G, which in this case is given by
Eq. (14) as

PHYSICAL REVIEW D 80, 124019 (2009)
8
Gxxxx = g(D - 2Fxx + Hxxxx)' (37)

The quantities in this expression may be computed from
Egs. (A2), (A1), (A14), (A16), and (A18), with the result
Gxxxx(t; X, O: O; O’ t/, X/, 0, O, mL’)

8 p*mL(5m’L* —3p?)

= 38
377.2 (p2+m2L2)5 ( )
Thus, we have
1 b b
(or =§r2f dx[ dx'GR .. .(t,x,0,¢,x,0,)
1 2 b b / < / /
:gr dxf dx Z Gr(,x,0,7,x',0,0,mL)
212 & ¥®
= , 39
972L mglm(mz + 92)3 (39)

where we have introduced a dimensionless parameter y =
r/L. We are interested here in the case in which y > 1.
Thus the summation can be approximated by integration as
follows:

T 7 (40)
OR = X
VR 9m2L 1y x(x2 +1)3
which leads to
272 r

Note that this quantity increases as L decreases, for fixed
r. This might come as a surprise, in light of the fact that the
discrete momentum in the fifth dimension gives rise to a
Kaluza-Klein tower of massive modes, each with a mass
which is inversely proportional to L. Furthermore, large
masses tend to give small contributions to radiative quan-
tum effects. However, one can see that this line of reason-
ing is flawed by recalling the Casimir effect in a compact
space. Consider, for example, the energy density of a
massless scalar field in four spacetime dimensions, where
one of the space dimensions is periodic with period L. The
Casimir energy density, if it is nonzero, must be propor-
tional to L™* on dimensional grounds. An explicit calcu-
lation does yield a nonzero result of —?/(90L%).
Similarly, Casimir energy density in higher dimensional
compact spacetimes scale as inverse powers of the com-
pactification scale. This is what should be expected for an
expectation value of a local quantity in quantum theory,
where systems confined in smaller spatial volumes undergo
more violent quantum fluctuations. The same applies to
integrals of such local quantities, such as appear in
Eq. (41). Apparently, the effect of a sum over an infinite
number of modes more than compensates for the large
effective mass of each mode, at least for the purpose of
calculating Casimir energy densities, or (7).
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The mean deviation from the classical propagation time
due to the light-cone fluctuations is

Azz\/zl " \/21 " 327G,

n—= n
972l L 972l L

64 r
= w’ﬁ@"lnz, (42)

where we have used Eq. (24). This result reveals that the
mean deviation in the arrival time increases logarithmi-
cally with r, which contrasts with the square root growth in
the four-dimensional case with one compactified spatial
dimension [14]. It also grows as the size of the compacti-
fied dimension decreases. However, even if r is of cosmo-
logical size and L is near the Planck scale, At is never more
than a couple of orders of magnitude larger than the Planck
scale and hence unobservable in practice. Note that
Eq. (42) corrects an erroneous result in Refs. [15,28],
where a linear growth of Az was found. This discrepancy
can be traced to an error in the calculation of the five-
dimensional graviton two-point function, now given by
Eq. (39).

We have used the results in Appendix A to perform the
analogous calculation for more than one compact dimen-
sion. For up to seven extra dimensions, the result for Az is
of the same form as Eq. (42), a logarithmic growth with r.

B. Correlation of pulses

The fluctuation in the flight time of pulses, Az, can apply
to successive pulses. However, At is the expected variation
in the arrival times of two successive pulses only when they
are uncorrelated [13]. To determine the correlation, we
need to compare [(o3)| and [(o o )|. The latter quantity
is defined by

1 r r
(101 = @2 [ar, [ dramtntnen Gy o5,
43)

where the r|-integration is taken along the mean path of the
first pulse, and the r,-integration is taken along that of the
second pulse. Here we will assume that Ar < r, so the
slopes of the two mean paths are approximately unity. Let
the time separation of the emission of the two pulses be 7.
Thus the two-point function in Eq. (43) will be assumed to
be evaluated at p = |X; — X,| = |r; — ry] and 7 = |1, —
bl =1lr —ry = TI. If Koy0))l < Ko})l, two pulses are
uncorrelated, and otherwise they are correlated.
In Appendix B, it is shown that

2
, r 2r
~——In—. 44
(o) 97’L nT (“44)
Compare this result with
22 r
Dr = —5— In—. 45
(@)r 9L L 45)
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We can see that two successive pulses separated by 7 in
time are only weakly correlated (|[{co o})| < [{o$)g|) pro-
vided that

217
P> (46)
T
Equivalently,
L2
T>—. (47)
r

However, if r << L, one can show, by series expansion, that
Kool < Kotl, if T>> L, and [oo)l = Ko}kl
when T < L.

A few comments are now in order about the physical
picture behind our correlation results. It is natural to expect
from the configuration that the dominant contributions to
the light-cone fluctuation come from the graviton modes
with wavelengths of the order of ~L. In other words, the
light cone fluctuates on a typical time scale of ~1/L. If the
travel distance, r, is less than L, successive pulses are
weakly correlated when their time separation is greater
than the typical fluctuation time scale. Otherwise they are
correlated because the quantum gravitational vacuum fluc-
tuations are not significant enough in the interval between
the pulses. However, if » > 2L?/T, then successive pulses
are in general weakly correlated. Thus the correlation time
for large r is of order L?/r, which is much smaller than the
compactification scale L. We can understand this result as
arising from the decrease in correlation as the pulses
propagate over an increasing distance.

V. REDSHIFT FLUCTUATIONS

In this section, we will use a formalism based upon the
Riemann tensor correlation function to calculate line
broadening or narrowing due to spacetime geometry fluc-
tuations [29]. Consider a source which emits signals at a
mean frequency of w( in its rest frame. The frequency
detected by an observer is subject to Doppler and gravita-
tional redshifts, and the geometry fluctuations will cause a
fluctuation in the gravitational redshift. Let

_Aw

wo

(48)

be the fractional frequency shift. Now consider two suc-
cessive signals sent from the source to the observer. The
mean squared variation in ¢ between these two signals due
to geometry fluctuations is

8¢ =((A¢)7) —(Ag). (49)

In Ref. [29], it is shown that this quantity may be expressed
in terms of the Riemann tensor correlation function

Caﬁp.vyﬁpo’(x> xl) = <Rozﬁ,uu(x)R75p0'(-x/)>
- <RaB,u,V(x)><R75po'(x/)>- (50)
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t

u="T" |4y =y 4 2r

: i

FIG. 4. The region of integration in the expressions for 82 is
illustrated. The worldline of the source is x = 0, which is
equivalent to v = u. Here u = t — x and v = ¢ + x. The world-
line of the detector is x = r, or v = u + 2r. The first null ray is
emitted at = 0 and travels on the # = 0 line. The second ray is
emitted at = T and travels on the u = T line.

Specifically,

552 - fda [da/CaBMV’ytspa'(xy xl)l‘akﬁtlu’k”t)’kﬁtpkg.
51)

Here t* is the four-velocity of both the source and detector,
which are assumed to be at rest with respect to one another,
and k” is the tangent to the worldlines of the signals. The
integrations in Eq. (51) are taken over the region bounded
by the worldlines of the two signals and those of the source
and detector, as illustrated in Fig. 4.

In our present problem, the average geometry is that of
Minkowski spacetime, so that (R,g,,(x)) =0, and we
have

8¢ = [da[da’(Rwﬁ y(,_)\)t " 17k KPRV KA. (52)
Let t* = (1,0,0,0) and k* = (1, 1, 0, 0), so that

06 = [da [ daRunRunle). 53)

The integrand in the above expression is given by Egs. (22)

and (33) to be

1 n+1
<Rlxthrxtx> = 84Gxxxx = m a?(D - 2Fxx + Hxxxx)

n+1

(92 92D, (54)

where in the last step we used 07 H, ., = dtD and 0} F,, =
0202D. Define u =t—x and v =t + x and write the
above expression as

+1

<Rtxthtxtx> = 8 nt2

9,0,09,9,D. (55)

PHYSICAL REVIEW D 80, 124019 (2009)
Then we find

5& = 4fdafda’auauzavale

n+1 u+2r
“Sn [

x[“ dv'a,d,:(8,0,D). (56)

Because D depends on v and v’ only through Av = v —
v/, we find

n+1
n+2

- (auau’D)lAUZAquZr -

8¢ =38

T T
duf dul[Z(auau’D)lAUZAu
0 0

(auau’D)lAvZAu*Zr]-
(57)

A. Four-dimensional case
Here n = 0 and
e 1
D _ !
m:z_'oo 472 (Ax* + m*L? — AP)
el 1

—AvAu + m?L

1
ey (58)

m=1

Use the relation

T T T
[ duf du' = 2[ dAu(T — Au), (59)
0 0 0

to write Eq. (57) as

352 = T] + T2 + T3, (60)

T, = 16 [ T dAu(T — Aw)(0,0,0D)]sse s,

16 Au?
_ z/ ABU(T = Aw) s,
(61)
T
Tz = _8/ dAM(T - Au)(auau’D)lAv=Au+2r
0
8 — (T
= — dAu(T — A
=) [0 u(T — Au)
+ 2
(Au + 2r) (62)

X
[—Au(Au + 2r) + m*L*) ]’

and
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T
7= =8 [ (T~ 83,0, D)l 00
0

8 «— (T
- -2 dAu(T — A
— mzlfo u( u)
(Au — 2r)?

X . 63
[—Au(Au — 2r) + m*L*) ] (©3)
In the limits » > T > L, we obtain
2
T, = 3?, (64)
Tr «— 1 2
L=orr Zlﬁ T3 (©5)
Tr «— 1 2
T~ =5 i A (66)
Thus we find
202
852~ — 3—L’; (67)

The fact that &% < 0 seems to imply a small narrowing of
spectral lines. Unless L is very small, the natural line width
of a spectral line is likely to be much larger in magnitude
than this effect. This narrowing is analogous to the negative
shifts in mean squared velocity of a charged or polarizable
particle near a boundary found in Refs. [19,20]. Unlike Az,
this effect does not grow with increasing path length.

B. Five-dimensional case

Now we turn to the five-dimensional model with one
compactified space dimension, which was studied in
Sec. IV. Here

1 o 1
D =—R . 68
4772 e[ Z (—AvAu + m2L2)3/2] (68)

m=1

As in the four-dimensional case, we may write
4
6(‘;2 - g(T] + T2 + T3), (69)
where

T
Tl = 16[ dAu(T - Au)(auau/D)lAv=Aw (70)
0

T
7= =8 [ 0T — 83,0, D)su-suezn (T1)
0

T
Iy = _Sj dAM(T - Au)(auau’D)lAUZAu—Zr (72)
0

PHYSICAL REVIEW D 80, 124019 (2009)

In the limits 7 > L and r > T&L, we now obtain

2 - 1 2£(3)
I = ? mgl m3L3 B w3’ (73)
2 & 3Tr 1
T, =~ — - 74
2 w2 Zl[ m3 L3 m3L3] (74)
2 [ 3Tr 1
T~ ,,,Zl[—mSLS - —m3L3]. (75)
Thus we find in this case
84(3)
8~ — =22 76

where (3) = 1.20 is a Riemann zeta function. We may use
Eq. (24) to write this as

| 256(3)03
37L%

Again, we find a negative value for §£ which does not
increase as the flight path length increases, and whose
magnitude is determined by the ratio €p/L.

This negative value represents a small decrease in the
bandwidth of the wave packet. Note that we are always
working in an approximation of weak quantum gravity
effects on a nearly fixed background geometry. This ap-
proximation requires that L > €p, so that |§&?| << 1. This
guarantees that we would never have |Aw|> w,.
However, we also need to have that

NP <AC§—“’, (78)
0

where Ajw is the original bandwidth of the wave packet.
Otherwise the net squared bandwidth would become nega-
tive, which is not possible. Equation (78) follows provided
that Agw > 1/L and wy < 1/€p. The latter condition is
simply the requirement that the frequencies used to probe
the spacetime geometry fluctuations be sub-Planckian.
This seems reasonable to impose on the type of semiclas-
sical analysis we are performing. The requirement that
Agw > 1/L follows if we require that our wave packets
be localized on a spacetime scale less than L. This seems to
be needed if we are to resolve geometry fluctuations whose
natural length scale is L. With these two conditions, we
obtain Eq. (78), which guarantees a positive net squared
bandwidth.

Let us next comment on the relation between the result
of Sec. IV that Az grows with increasing path length, and
the present result that §&2 does not. If the crests of a plane
wave could be treated as truly uncorrelated pulses, then we
would expect the growth of Az to lead to increasing line
broadening with increasing r. When Eq. (47) is satisfied,
the correlations between the pulses becomes weak, but is
never completely absent. Apparently the remaining corre-

8¢ ~ (77)
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lation is sufficient to prevent Aw from increasing with
increasing r. This might come as surprise, given that At
can grow. The analogy of a charged particle coupled to
electromagnetic vacuum fluctuations near a boundary,
treated in Ref. [20] is useful here. In this latter case, the
mean squared velocity of the particle can undergo a shift,
but one which does not grow in time, although the mean
squared displacement of the particle can grow in time. If
the electric field fluctuation were not correlated, one would
have obtained the linear growth characteristic of a random
walk process. The lack of growth of the mean squared
velocity can be traced to the fact that the time integral of
the electric field correlation function vanishes in the limit
of integration of an infinite time [30]. It is this property
which enforces the strict anticorrelations that prevent
growth. The same feature occurs in the present analysis.
If the Riemann tensor correlation function were to be
integrated over an infinite time, the result would be zero,
due to the same type of anticorrelation as in the electro-
magnetic case.

VI. DISCUSSION AND CONCLUSIONS

We have treated the effects of compact extra flat space-
time dimensions on quantum light-cone fluctuations. One
measure of light-cone fluctuations is variations in the flight
times of pulses. We found in a five-dimensional model that
this variation will grow as the logarithm of the flight
distance. In principle this is an observable effect, but it is
too small to be a realistic test of extra dimensions. We also
examined the correlations of successive pulses. This cor-
relation weakens as the pulse separation increases, but is
always nonzero. This nonzero correlation is presumably
responsible for the result that effect of geometry fluctua-
tions on the width of spectral lines does not increase with
increasing flight distance. In fact, we find a weak line
narrowing effect in which the spacetime geometry fluctua-
tions slightly reduce the natural line width. The fractional
line narrowing effect is

PHYSICAL REVIEW D 80, 124019 (2009)

A(,l) o €p

[(6&)] = (79)

where C is a constant of order unity. The analysis in this
paper assumes gravitons on a fixed background spacetime
and is presumable only valid when the compactification
scale is well above the Planck scale, L >> {p. Nonetheless,
this suggests a possible observational signature of the
existence of extra dimensions: a small, systematic narrow-
ing of all spectral line from what would otherwise be
expected.
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APPENDIX A: GRAVITON TWO-POINT
FUNCTIONS

Here we evaluate the functions D"(x.x'), F lf'j(x, x') and

Hyy(x, x') defined in Egs. (15)~(17), respectively. Once
these functions are given, the graviton two-point functions
are easy to obtain. Define

=|x — x|, At=1t—1, k= k|l =w, (Al)

and assume n extra dimensions, then

(3+n)
Dn(x, X/) = (2 R;;_n fd 5 k eik'(X—X’)e—iw(t—t’)
T w
R
ﬁ'[ KHle 7zkAtdk'[ d01811’11+"0 eszC099|f dﬂlen 02 f d0n+151n0n+1[ d0n+2
™
a,Re n+1,—ikAt pikRx 2\n/2 a,Re S 22
a C 202w Tk dk (I = x%)" dx = Qw3 “k dk (1 — x*)"* cos(kRx)dx
anﬁznﬂ/ﬂ‘(g 1)Re s s
- 202m)tn Rn+l/2 f K2y n+1/2(kR)e™ " dk
a,Jm2" T 2AT(E + 1)Re 1
—_n li kn+1/2J kR akdk
2(277.)3+n Rn+l/2 aﬁolﬂlm 0 n+1/2( )6‘
np(n 2 n
a2 F(23+ 1) 1 _ F(2 +1) 1 . "
Q@Y (R — AR 4 ta2 (RE — Ap2)n/2H
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Here we have defined

"d "d ey 22t A3
a, = 0,sin" 6 / 0, sind, [ 0,10 = =,
fo 2 2 . +1 1, 12 TE+1) (A3)
and used
1 T [(n 2 \n+1/2
[0 cos(kRx)(1 — x2)"2dx = \/7_1“(E + 1)(ﬁ> Jus1/2(kR), (A4)
and

2p) (v +1/2)
\/—( 2+ﬁ2)v+1/2’

When n is odd, D"(x, x") should be taken to be zero when R? < A72.
Let us now turn our attention to the calculation of F;; and H ;. We find

f Y ey (Bx)x'dx = Rev > —1/2. (AS)
0

(X X ) (2 R;-%—n fd3+nk %eik{x—x’)e—iw(t—t’)
w

R

ﬁ 9 f Jn=1 o= ikAt g f d6,sin! "9, eikReost, f d6,sin"6, .. f o, . sinf, ., f e, .,

anRe n—1 ,—ikA n

= G ,-a;fo kn—lemik ’dkf (1 — x2)"/2 cos(kRx)dx
a7+ DRe

- 2(277.)3+n i J(Rn+l/2

77.2n+1/21"(%+ 1) Re
n—3/2 ikA
2(277.)3+n i ;(Rn+l/2[ k=32 +1/2(kR)e tdk)

f k=320, 412 (kR)e™ ”‘A’dk)

_ Re 1 n—3/2 —ikA
- 202m)3 2 aia.li(RnH/zj(; k /‘I'l+1/2(kR)e fdk)

Re n—1 1 0 . 1 0 )
n—5/2 —ikA _ n—3/2 —ikA
" 2@y ’( R Rn—1/2fo Cr e alkR)e Rk Rn+1/2ﬁ) e mayalkR)e tdk)’
(A6)

where we have utilized a recursive formula for Bessel functions
2Jy1(2) + 2 41(2) = 207,(2). (A7)

Similarly, one finds that

: R)e3+ [d3+nkkzk]kkkl ok (x—X) p—iw(t=1)
277_ n w

Re n—1
n—9/2 ikA
30 )H,,/zala]aka( e 1/2[ k02, jp(kR)e™ A dk

1 1
f k72T, 3 (kR)e™ lkA’dk) (A8)

H{;kl(x, x') =

RZ Rn+1/2

To proceed further with the calculation, we need to deal with the cases when #n is odd or even separately.

1. The case of odd n

Assume n = 2m + 1 and define

S(m) = / K1 (kR)e— Sk, m =0, (A9)

R+l
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Re o .
T(m - 1) = W j:) k™ lJm_l(kR)e lkAtdk
R
== tim [ kel
R™ " a—o0t+int Jo

=(Zm—l)!! R? — AP
(2m — 1) R*(R* — A)™’

where we have appealed to integral (6.623.1) in Ref. [31].
The above result holds for R > A%, and T(m — 1) is zero
when R?> < Af%. Then it follows from Eq. (A6) that

1
P = S i8S, (Al1)
and
S(m) = %S(m )= T(m—1). (A12)

Using the recursive relation Eq. (A12), we can show that

Qm)!! Cm!! T(k—1)
S(m) = R2m S(O) Z (Zk)!! R2m 2k
_2m)! & k- R
- R S(O)[l Z(zk)!!(zk— 1) (R? — Atz)k]
B (2m) 2k + D!
=~ SO Z < 2012k + 1)(2k — 1)
R2k
X Al3
(R* — A3k (AL3)
Here
S0) =2 jim foo]l(kme“kdk
R a—0t+iat Jo k
_1 [00 J(kR) cos(kAt) i
R Jo k
_ {% cos(arcsin(At/R)) = 7VRZR_2A’2 for R > A#?,
0 for R? < Af2.
(A14)
If we define
0m) = oy [ K (RO, =0,
(A15)
then it is easy to see that
lefl'ffrl _W 1940,01(Q(m)), (A16)
and
O(m) = (m-—1) — —S(m 2). (A17)

_(kR)e~ “*dk =

m=1,

PHYSICAL REVIEW D 80, 124019 (2009)

2" 1T (m — 1/2) R?> — A7
ﬁ RZ(RZ _ At2)m’

(A10)

The above equation applies for m = 2. To use it to get a
general expression, we need Q(0), which can be calculated
in the case of R?> < A¢? as follows:

1 [ 1
00) = fo 51 (kR) cos(kA1)dk

o1 [ kl
. leBA’Il(,BR) 1 1
Mk e 2 aar AW

This leads to a vanishing H,j,;. However, in the case of
R?> > A7, the calculation becomes a little complicated.
First, let us write Q(0) as

Q(0) =

21R [°°(klz) J1(kR) cos(kAt)dk

T 1
= ll_l’)l’ol[_ﬂ COS(kAt)] + P] + P2 - EQ(O),

(A19)

where we have used the fact that

, 1
Jl(x)ZJO(x)—;Jl(x), Ji(x) ~ > as — 0,

(A20)

and defined

At [l .
and
1 fo kA1) Jo(kR
Py =— Mdk (A22)

2 K2

Note that the first term in Eq. (A19) can be dropped
although it is formally divergent. The reason is that it is
only dependent on Az and H,j, involves spatial differen-
tiation. So, it follows that
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2 1 foo[/1V
0(0) = 3 (P, + Py) (A23) Py= 3 f (%) cos(kAnJo(kR)dk
0
0 . dk
Our next task is then to evaluate P; and P,, which can be - [0 Jo(kR) sin(kAr1) %
done as follows:
R [x dk
_K f J,(kR) cos(kAr) %X
As 2 Jo k
| = f ( )Jl(kR) sin(kAt)dk At RE_ AL
2R 2 =5 arcsin(A7/R) — — s (A26)
At= foo
= — E '/(.) J] (kR) COS(kAt)T

Af oo dk where we have also discarded a formally divergent term
- — f Jo(kR) sin(kAt) — — Py. (A24)  dependent only on At since it does not contribute to H; ;.
2 Jo k A combination of the above derived results finally leads to

Substitution of integrals (6.693.1) and (6.693.2) in Ref. [31]

i i i VR* — Af*(AP +2R?) A
into the above equation yields 000) = — 6; 2t ) _ 71 arcsin(Az/R).
A At A27
P, = _WVRZ — A2 — vy arcsin(Az/R).  (A25) (AP

We next need Q(1), which can be calculated, using

As for P,, the calculation goes integral (6.693.5) in Ref. [31], as follows:
|

o(1) = 1 [00 J>(Rk) cos(Atk) dk = {Rlz[f cos(arcsin(Az/R)) + {5 cos(3arcsin(At/R))] for R* > A7,
R? k? 0 for R? < Ar.
A 2 \/Z_A2 AP
_ {(_% L) YESAL = (1 — 85)S(0)  for R* > Af, (A28)
0 for R> < Ar.
In the above calculation, we have made use of the following trigonometric relations:
cos(3x) = 4cos?(x) — 3 cos(x), cos(arcsinx) = V1 — x2. (A29)
Therefore, for m = 2, one finds, using the recursive relation Eq. (A17),
2m)!! em)" S(k —2)
Q(m) = S R2m—2 o R2 Z < 2K)!! TRIm—2k
_ @em [ o) + i "f @) + D! RY S(O)] A30)
TR & 52Kk — 2)2)N2) + D2j — 1) (R — A)
This expression can be simplified if we note that
A &1 . —j—1
= - =— , (A31)
k:jz+2k(k—1) kgzk(k—l) ,sz(k—l) m(j + 1)
and
Zkf 2j + D! R o)
=5 2k(2k = 2)2)1N(2j + 1)(2j — 1) (R? — Ar?)/
_mf i (2j + D R% 500)
= k:j+22k(2k - 2)2HNQ2j+ 1)(2j — 1) (R? — Ar?)
m—2 . . 27
—j—DEj+nN R
(m—j—12j+1) 500). (A32)

a ZO dm(j + DEHNQ2j+ 125 — 1) (R? — A?)
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So, we have in this case

PHYSICAL REVIEW D 80, 124019 (2009)

Q2m+1)!! 2 2
pAmtl — {2<2w)"'*2 ® appr for R2>Ar, (A33)
0 for R? < A7,
1 2m)! 2k + D! R%
Fam+l — 9,0 ( S(0) ) A34
Y 202mym 2 TN R © Z s (2N (2k + 1)(2k — 1) (R* — A2 (A3
and
1 2m)!! m_2 (m—j—1Q2j+ D! R%I
HH = — 9.9 a’{ [ 1 -S(0 ]} A35
KL p(qymF2 T Ram=2 o + jzo 4m(j + DRHN2j+ D(2j — 1) (R2 — AR © (A33)
for m = 2, while for m = 0 and m = 1, H;j;; can be found @2m— 1! Q2m— !
by using Eq. (A16), (A27), and (A28). S(m = 1/2) = —m—S(1/2) = Z @k D
2. The case of even n % T(k—3/2)
RZm—2k

Let n =2m with m=1,2,3.... The graviton two-
point functions for m = 0 corresponding to the usual
four-dimensional spacetime have been given previously
[14]. The analog of Eq. (A11) for this case is

Fm = b 9; a’<S<m - 1))
i 2(277.) m+3/2 ViV 2

2m — 1 3 3
= s(m-2)-1(m-2) @
B S(m 2) (m 2) (A37)
Using this recursive relation, we can express S(m — 1/2)
in terms of S(1/2) which is calculated, by employing

(sinz)’ (A38)

(A36)
Here

S(m —1/2)

2 d"

— )" n+1/2
(=12 77 (zdz)"

Jn+1/2(z)

to be

S(1/2) = 255 fo " K V2, 5 (RK) cos(Ark)dk

B 2 sm(Rk)
- \f fodk . ) S(ArK)dk

_\/7 1 sin(Rk) cos(Atk)
<R3 k 0

At oosm(Rk)sm(Atk) )
R3 k

_ 3(1 sy
m\R? 4R® \R-—At) )

It then follows that

(A39)

:(Zm—l)!!‘/:l: A <R—At)2
R \#l 4R "\R - A
| ZLok2(k—1) R ]
Qk— DI (2 — ARy 1]
(A40)

Similarly, one has for H}j;

1 1
2m — _
Hijkl 22 )m+3/2 ala/aka/(Q( 5)) (A4l)

and
2m — 1 3 1 5

(A42)

Q(m —1/2)

Now the calculation becomes a little tricky. First, let us
note that H?/ki has already been given [14] and the recur-
sive relation Eq. (A42) can only be applied when m = 3.
So, we need both Hz]kl and Hj‘jkl or O(1/2) and Q(3/2) as
our basis to use the recursive relation for a general ex-
pression. Because there is an infrared divergence in the
Q(1/2) integral, so, as we did in the four-dimensional case,
we will introduce a regulator B in the denominator of the
integrand and then let 8 approach 0 after the integration is
performed. Noting that

2 (sing
J32(2) = \/77_2<7 - cosz),

(A43)

we obtain
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0(1/2) = =5 [ k5274 5 (KR) cos(ki)dk

’2 1 fedk
= _<Fj el sinkR coskAt
\R:

1 [feodk
B f 5l coskR coskAt)
0 K

2 o sinkR coskAt
= ./—lim ( — / —5———dk
7o\ R 2/3 98 2+ B

L1 [00 k coskR COSkAtdk). (A44)
R2 2[3 B 2+ 32
We next use
[oo sin(ax) cos(bx)
— dx
0 ﬁ + x

= #e‘“ﬁ{ebBEi[,@(a —b)] + e PPEi[B(a + b)]}

= ﬁeaﬁ{ebm[—ma T b))+ e PPE[—Bla — b))

(A45)

/00 x cos(ax) cos(bx) I

0 32+x2

_ _%e—aﬂ{ebBEj[ﬁ(a — b)] + ¢ PPE[B(a + b)]}

— PRI~ Bla + b)] + ¢ PRI~ Bla — b}

(A46)
J

(2m — D!

R2m 4

_(@m-Dl

R2m 4

Q(m —1/2) =

( 0(3/2) -

0G/2) = R2 Z 2 (26— 1!

23 2k — )2k —3)

2/~
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where Ei(x) is the exponential-integral function, and the
fact that, when x is small,

1 1
Ei(x) =y +Inlx| + x + =22 + —x> + O(x%),

1 13 (A47)

where 7y is the Euler constant. After expanding Q(1/2)
around B8 = 0 to the order of 32, one finds

2(5 1 1
1/2) =1 —y ——In(B) -
0(1/2) lm\f(lg 37 =3 n(B)
A2 At (AF? R + Ar\2
S ) B . (A4
6R> " 8R <3R2 ) n(R - At) ) (A48)
Note, however, that what we need is H,j; which involves
differentiation of Q(1/2), therefore we can discard the

constant and divergent terms in Q(1/2) as far as H;j, is
concerned. To calculate Q(3/2), let us recall that

é (R — AR)

06/) = 500/2) ~ S-1/2)  (A49)

and note that S(—1/2) is given by 4/2/ times Eq. (A19) in
Ref. [14] Thus, we have

2 1 A2 At (AP
= J— —___J’__ I
0/2) ﬁ( 6R> 2R 8R3(R2 1)
% ln(R + At)Z)
R—At) )

With Q(3/2) at hand, it is easy to show that for an arbitrary
m=3

(A50)

Qm— 1) Stk —5/2)

R2m72k

! $(1/2)

1 &S TG —1)
* F\fz Z < (2j — D2k — 1)(2k — 3) (R?

2m

RY
_ At2)f‘1)

— ! 1
N R2m—4 (§ Q(3/2) = ,;(2k “Dek -3 12

f "2m - - DM -1) R
2m—DEj+ DIt (R* — Atz)f‘l)’

(AS1)

Here in the last step, we have made use of the following results

m

k=j+

and

Zz(Zk - 1)(2k -3) Z 5 (2k — 1)(2k -3) Z 5 (2k — 1)(2k — 3)

tad 1 m—j—1

Qm—1D)2j+ 1)

(A52)
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m k—2 m k—2
SN g =3 f(gk) = Z £0) Z g(k). (AS3)
k=3 j=2 k=4 j=2 =2 k=2+]
Consequently, we obtain
L 2Mm! 1
D" = Q"2 (RE — A2)m+1 (AS4)
o _ 1 s a,{(2m - 1)!![1 Y In (R Ar) R 2k (k — 1) R ]} (A55)
Yooo@mmt UL R 4R \R—A1) R A& Qk—DII (RZ—AAKT
and
. 5ala a,{(2m— 1)!![ At (Az2 1)1 <R+ At>2 1 Ar?
T = —_ n p— —_—
kL (Qqym¥2 T R4 [24R3\ R? R — At 18R*  6R*
_Z 1 (1_At (R+At)) Z(m—]—l)Zf T'G—1) R% ) (A56)
& (2k— 12k —3)\R> 4R> \R— At R @2m—1)2j+ D! (R2— A2~ 1)

APPENDIX B: DERIVATION OF EQ. (44)

Here we wish to give the details of the derivation of
Eq. (44), the expression for (o;o}) in the limit of large r.
The relevant graviton two-point function can be expressed
as

G, x,0,0,0,7,x,0,0, nL)|,—p—,—7
1 n*L* — 100202 B(p, T)? — 158(p, T)*
37 Blp. T)*(p* + n?L?)?
4 3n*L* 4+ 20n°L2B(p, T)? + 58(p, T)*
37 Blp, T)(p? + n?L?)’
4 18n*L*B(p, T) + 20n>L*B(p, T)?
37 (p* + n?L?)*
64 n*L*B(p, T)?

(B1)

where

Blp, T) = n*L? + 2pT — T2. (B2)

Utilizing the following integration relation
b b r
[Pax [(avsec=2) = [0 = p)lrto) + 1 p)dp,

(B3)
one finds that

( fy— - r? il:_ 2(4n*L? — T>)Vn?L? — T?
i 36m 4 n*L*
h(r,T) + h(=r,T)
EraEata] B4
where

h(r,T) = B(r, T)[4n*L* + n*L?*(6r — T)2r + T)

+ 3r2(2r + T)?]. (B5)

A few things are to be noticed here: (1) We need to drop
the terms when the square root is imaginary. (2) It can be
shown that the above expression for (o o) reduces to (o)
when T = 0, as it should. (3) The asymptotic behavior of
the summand when n — oo, is ~ n% hence the summation
converges.

To proceed, let us now assume that » > T, L, then

NP & 2nPL? — T?)Wn?L? — T?
(o100) = >
s 3672 & n*L*
Vn?’L? — 2rT
+ 7( n2L2 n 2;% [4n*L* + 12r7n%L% + 121%]
n r)
VL2 +2
7r[4n4L4 + 12r2n2L* + 12147 |,
(R2L? + 1)
n
(B6)
and
2rT
p=qTr>1 (B7)

is a huge number. Thus for the second term in Eq. (B6), the
sum should only start from n = p. We can now split the
summation into two parts, i.e. terms with n = p and those
with n > p. Using the asymptotic form of the summand for
the part with n > p and defining m = [T /L], where [ ]
denotes the integer part, one has

124019-16



QUANTUM LIGHT-CONE FLUCTUATIONS IN ...

’ — m2
(o)) = 36r 2L<Z 2(4n? mn)\/i
ﬁ (”4m3 [n* + 30717 /L% + 3r*/L*]

(B8)

672
+ Z 3L3)'

Hence, it follows that

2 p  2(4n? — m*)Vn* — m?
(oj0") < ——5— (/ dn
! 3672L n’
2. 44n® + p?
Z (n A [n* + 3n%r?/L* + 3r*/L*]

6T?

+ Z P Ls)' (B9)
n=p

Let us now evaluate the above expression term by term.
One has, keeping in mind that p >> 1, that

p - 2(4n? — m*)Vn* — m? 2p 2r

[ dn 3 ~ 8In— = 4In—,
m n m T
(B10)

PHYSICAL REVIEW D 80, 124019 (2009)

)4 /
Z (n4 —’:rj/lljzﬁ [n* + 3n%r2/L% + 3r*/L*]
~ ﬁl/ dx 7()( -i1-+/2T)3 (4x* + 6x%r/T + 312/T?)
P
~ 12[v2 + Coth_l(\/f)]; (B11)
and
® 11 1LL
25T ACTRE Tt b

Here we have used Eq. (B7) and the asymptotic expansion
for ¥(2, x)

1 1 1
where function W(n, x) is defined as
da" d
T AL AC S GO R SR PP
dx" dx

Keeping only the dominant terms, we obtain Eq. (44).

[1] W. Pauli, Helv. Phys. Acta, Suppl. 4, 69 (1956).

[2] S. Deser, Rev. Mod. Phys. 29, 417 (1957).

[3] B.S. DeWitt, Phys. Rev. Lett. 13, 114 (1964).

[4] B.L. Hu and K. Shiokawa, Phys. Rev. D 57, 3474 (1998).

[5]1 Y.J. Ng and H. van Dam, Phys. Lett. B 477, 429 (2000).

[6] G. Amelino-Camelia, Phys. Rev. D 62, 024015 (2000).

[7] J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos, Gen.
Relativ. Gravit. 32, 127 (2000).

[8] J. Borgman and L.H. Ford, Phys. Rev. D 70, 064032

(2004).

[9] J. Borgman and L.H. Ford, Phys. Rev. D 70, 127701
(2004).

[10] D. Polarski and P. Roche, Mod. Phys. Lett. A 20, 499
(2005).

[11] W.A. Christiansen, Y.J. Ng, and H. van Dam, Phys. Rev.
Lett. 96, 051301 (2006).

[12] L.H. Ford, Phys. Rev. D 51, 1692 (1995).

[13] L.H. Ford and N. F. Svaiter, Phys. Rev. D 54, 2640 (1996).

[14] H. Yu and L. H. Ford, Phys. Rev. D 60, 084023 (1999).

[15] H. Yu and L. H. Ford, Phys. Lett. B 496, 107 (2000).

[16] H. Yu and P. X. Wu, Phys. Rev. D 68, 084019 (2003).

[17] H.B.G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

[18] C.I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and
E. A. Hinds, Phys. Rev. Lett. 70, 560 (1993).

[19] C.H. Wu, Chung-I Kuo, and L. H. Ford, Phys. Rev. A 65,
062102 (2002).

[20] H. Yu and L. H. Ford, Phys. Rev. D 70, 065009 (2004).

[21] M. Seriu and C. H. Wu, Phys. Rev. A 77, 022107 (2008).

[22] C.H.G. Bessa, V.B. Bezerra, and L.H. Ford, J. Math.
Phys. (N.Y.) 50, 062501 (2009).

[23] Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss., Phys. Math.
KI. Part 2, 966 (1921).

[24] O. Klein, Z. Phys. 37, 895 (1926).

[25] For a recent review see, for example, A. Perez-Lorenzana,
J. Phys. Conf. Ser. 18, 224 (2005).

[26] H. Cheng, Phys. Lett. B 643, 311 (2006); 668, 72 (2008).

[27] S.A. Fulling and K. Kirsten, Phys. Lett. B 671, 179
(2009); Phys. Rev. D 79, 065019 (2009).

[28] H. Yu and L. H. Ford, arXiv:gr-qc/0004063.

[29] R.T. Thompson and L. H. Ford, Phys. Rev. D 74, 024012
(2006).

[30] L.H. Ford, Int. J. Theor. Phys. 44, 1753 (2005).

[31] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals,
Series, and Products (Academic Press, New York, 1965).

124019-17



