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We study a unification of gravity with Yang-Mills fields based on a simple extension of the Plebanski

action to a Lie group G which contains the local Lorentz group. The Coleman-Mandula theorem is

avoided because the dynamics has no global spacetime symmetry. This may be applied to Lisi’s proposal

of an E8 unified theory, giving a fully E8 invariant action. The extended form of the Plebanski action

suggests a new class of spin foam models.
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I. INTRODUCTION

Ashtekar’s formulation of general relativity [1] taught us
to think of gravitational theories as theories of connections,
on a bare manifold with no metric structure. This insight is
deepened by the Plebanski form of the action [2] and
related forms studied by Capovilla, Dell and Jacobson
and others [3,4] which reveal that general relativity is a
simple perturbation or constraint of a topological field
theory. This taught us, for example, that the metric is not
fundamental; it emerges from solutions to the classical
field equations. These insights into the structure of the
classical theory led to much progress on the quantization
of gravity, in loop quantum gravity and spin foam models
[5].

The idea that general relativity has its deepest formula-
tion as a connection theory suggested immediately a new
approach to the unification of general relativity with Yang-
Mills theories. The group of the connection in the connec-
tion formulations of general relativity is the local Lorentz
group SOð3; 1Þ or a subgroup of it. What if one just takes a
larger group G containing SOð3; 1Þ and plugs it into the
same action or Hamiltonian constraint that gives general
relativity so that one now has a theory with local G
invariance? Does one get a theory that contains general
relativity coupled to Yang-Mills fields in a subgroup of
G=SOð3; 1Þ?

This question was answered affirmatively, in the
Hamiltonian formulation, by Peldan [6]. All that was re-
quired was a simple modification of the Hamiltonian con-
straint, to keep the field equations consistent. Peldan’s
approach was further studied by Peldan and Chakraborty
[7], and Gambini, Olson and Pullin [8].1

More recently, it has been understood by Krasnov [10]
and Bengtsson [11] that these extensions of general rela-
tivity have elegant formulations in terms of action prin-
ciples which extend the Plebanski action in a natural way.

In this paper we study a very simple theory of this kind. We
find that the addition of one simple term to the Plebanski
action suffices to get a consistent dynamics for any G
containing the local Lorentz group. There is a simple
mechanism which breaks the symmetry down in such a
way that the resulting dynamics is Yang-Mills coupled to
general relativity plus corrections. These corrections in-
volve gauge fields which mix local Lorentz transforma-
tions with local internal gauge transformations.
One reason for revived interest in these kinds of uni-

fications is Lisi’s recent proposal [12] of a unified theory,
based on the same strategy, where G ¼ E8. There are
several open issues regarding this proposal, which would
have to be resolved for the idea to rise to the level of a
theory. At least two of them have to do with making the
dynamics fully E8 invariant. Lisi proposes a form of the
action based on an approach to writing general relativity as
a gauge theory, invented by MacDowell and Mansouri
[13]. In that scheme the metric and local Lorentz connec-
tion are unified in a de Sitter or anti–de Sitter connection,
but the action is only invariant under a local Lorentz
subgroup. Lisi’s action is similar, with E8 playing the
role of the de Sitter group. The action studied here, applied
to E8, gives a fully gauge invariant action, which has
solutions which spontaneously break the symmetry and
give, when expanded around, the bosonic part of Lisi’s
action, plus corrections.2

In the next section we describe the general extension of
the Plebanski action and show how it reduces to Einstein-
Yang-Mills plus corrections. We review the standard SOð4Þ
Plebanski formulation [4,15] and describe the simplest
extension in this case along the lines of [10]. We then
show how a simple ansatz leads to a low energy theory
which is a unification of general relativity and Yang-Mills
theory.
Another way in which Lisi’s proposal breaks the gauge

invariance is by a strategy of incorporating fermions by
means of a Becchi-Rouet-Stora-Tyutin extension of the

*lsmolin@perimeterinstitute.ca
1Other, possibly related approaches to unification of the gauge

groups of general relativity and Yang-Mills theory are explored
in [9].

2It was also recently shown that the action proposed here also
naturally incorporates Higgs fields. This and other aspects of the
unification will be discussed in [14].
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connection. In Sec. III A I propose an alternative way to
incorporate the fermions, which would not break the gauge
symmetry. It is based on proposals that matter degrees of
freedom arise in loop quantum gravity as a result of the
phenomena of disordered locality discovered by
Markopoulou [16,17]. This is in fact a version of a proposal
of Misner and Wheeler from 1957 that matter might be
nothing but the mouths of Planck scale wormholes [18],
and in the context of loop quantum gravity, this was argued
previously to give fermions [19]. In this kind of mecha-
nism, the full local symmetry remains present, but the cost
is that for every generator of G there is both a gauge boson
and a fermion degree of freedom.

Regarding the quantization, the class of actions pro-
posed here suggest a particularly simple class of spin
foam models. This is discussed in Sec. III B.

There are many aspects of the theories proposed here to
be developed. In general, and in regard to E8, there are
many open issues and many things to work out. For ex-
ample in the latter there are open issues concerning how
the structure of the generations is realized. Nonetheless,
these approaches are worth exploring because it is very
possible that they give rise to consistent, finite quantum
theories. Many of the kinematical results of loop quantum
gravity will go over to them, and as for dynamics, they
involve simple modifications of by now well studied spin
foam models.

We close the introduction by noting that the well-known
Coleman-Mandula no-go theorem [20] is avoided because
that only applies to an S-Matrix whose symmetries include
global Poincare invariance. This theory, like general rela-
tivity, has no global symmetries, the Poincare symmetry
acts only on the ground state not the action, and only in the
limit in which the cosmological constant is zero. In fact,
there is a nonzero cosmological constant, as it is related to
parameters of the theory. By the time the S matrix in
Minkowski spacetime could be defined in this theory one
will be studying only small perturbations of a ground state
in a certain limit and the symmetry will only apply in that
limit and approximation. As we shall see below, the sym-
metry will already be broken by the time that approxima-
tion and limit are defined, in such a way that Coleman-
Mandula theorem could be satisfied in its domain of
applicability.

II. PLEBANSKI ACTION FOR AGENERAL GROUP

We will study here a general extension of the Plebanski
action based on a connection valued in a semisimple G
which contains the Euclidean Lorentz group SOð4Þ. (For
simplicity we consider only the case of Euclidean
signature.)

We begin by reviewing the Plebanski action for general
relativity, based on the group SOð4Þ [15], parametrized by
antisymmetric pairs of four dimensional vector indices,
½ab�, where a ¼ 1; . . . 4,

SPleb ¼ 1

G

Z
M

Bab ^ Fab � 1

2
�abcdB

ab ^ Bcd: (1)

The integral is over a four manifold, M. Fab is the curva-
ture of the spacetime connection Aab that gauges the local
Lorentz symmetry, Bab is a two-form valued in the Lie
algebra of SOð4Þ and �abcd is a multiplet of scalar fields
that satisfy

�abcd ¼ �cdab ¼ ��bacd: (2)

We do the variation subject to the constraint that

�abcd�abcd ¼ �; (3)

where� is the cosmological constant. For the derivation of
the Einstein field equations from (1), see [4,15]; how this
works will also be clear shortly.
We now extend this by embedding SOð4Þ in a larger Lie

algebra, G, and adding one term to the action. The new,
extended, Plebanski action is (generators of G are labeled
by I; J ¼ 1; . . . ; n.)

SG ¼ 2

G

Z
M

�
BJ ^ FJ � 1

2
�JKB

J ^ BK

þ g

2
�KL�KLB

J ^ BJ

�
: (4)

Now, AI is a G connection, BI is a two-form valued in the
Lie algebra of G and �IJ ¼ �JI is a multiplet of scalar
fields. These are no longer constrained by (3). A has
dimensions of inverse length, and B is dimensionless, so
� has dimensions of ðlengthÞ�2. g is a new coupling
constant with dimensions of length2.
The field equations are

FJ ¼ �JKB
K � g�KL�KLB

J; (5)

D ^ BK ¼ 0; (6)

BðJ ^ BKÞ ¼ 2g�JKBL ^ BL: (7)

We can note that a theory is most natural when all the
constraints that need to be imposed on its degrees of free-
dom follow from variation of the action. It is then satisfy-
ing that a constraint such as (3) no longer needs to be
imposed.
Let us now consider the consequences of the last field

equation (7) which resulted from varying the �IK.
Tracing (7) we find, so long as BL ^ BL � 0,

�K
K ¼ 1

2g
: (8)

We also see that generally3

3The ratio of two 4-forms is a scalar which can be computed in
any coordinate system.
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�JK ¼ 1

2g

BðJ ^ BKÞ

BL ^ BL

: (9)

Putting (5) and (6) together we find

ðD�JKÞ ^ BK ¼ 2g�KLD�KL ^ BJ: (10)

So far all equations are fully G invariant. I will now
exhibit a natural symmetry breaking mechanism that dis-
tinguishes an SOð4Þ subalgebra, leading to a coupling of
general relativity to Yang-Mills fields in the quotient
G=SOð4Þ.

To exhibit the symmetry breaking mechanism we first
decompose G into its SOð4Þ subalgebra and remaining
generators in G=SOð4Þ. As before, we label the generators
of SOð4Þ by antisymmetric pairs of four dimensional vec-
tor indices, ½ab�, where a ¼ 1; . . . 4. The remaining gen-
erators in G=SOð4Þ we label by i ¼ 7; 8 . . . n. Then we
have I ¼ f½ab�; ; ig.

We look for a solution to the equations of motion to
leading order in g which breaks the symmetry from G
down to SOð4Þ. To find it, we consider the component of
(7) in the SOð4Þ directions

Bab ^ Bcd ¼ 2g�abcdBL ^ BL: (11)

We require a solution to this to leading order in g for which
BL ^ BL is nonvanishing. This can be solved by taking as
an ansatz a form discussed in [21],

�abcd ¼ 1

2g
�abcdW þ �

2g
�a½c�d�b (12)

with the rest of the components of �IJ of order zero in g
and higher. Here W is a scalar dimensionless function of
the fields. This breaks the symmetry, as it gives, to zeroth
order in g,

Bab ^ Bcd

BL ^ BL

¼ �abcdW þ ��½a
c �

b�
d : (13)

Tracing (11) we find that

�ab
ab ¼ 3�

g
¼ 1

2g

Bab ^ Bab

BL ^ BL

: (14)

It is consistent to assume that Bi are of higher order in g so
that to leading order

BL ^ BL ¼ 1
2ðBab ^ BabÞ þOðgÞ; (15)

which implies that

� ¼ 1
3 þOðgÞ (16)

We next solve the remaining components of (7) to order
zero in g. To solve (11) by ansatz (12) we write, to leading
order in g,

Bab ¼ ��ab þ ��ab; (17)

where �ab ¼ ea ^ eb. It follows that

Bab ^ Bab ¼ 24�e; (18)

where e is the determinant of the frame field. � is a
parameter which labels the solutions (17), and must not
vanish. We also exclude the case � ¼ �1, which is the
self-dual case.
We multiply (13) and (11) by �abcd, which tells us that

W ¼ 1þ �2

12�
: (19)

We now consider the equations satisfied by Bi. To zeroth
order in g we have

Bab ^ Bi ¼ 0; (20)

which becomes for solutions

ð��ab þ ��abÞ ^ Bi ¼ 0: (21)

For each i 2 G=SOð4Þ these are six linear equations in the
six components of Bi, and they imply, so long as the metric
is nondegenerate,

Bi ¼ 0 (22)

to zeroth order in g.
Thus we see that the ansatz (12) has broken the symme-

try. The n BI all start out on the same footing representing
the full G gauge symmetry. But if n > 6 the equations (7)
to zeroth order in g

BðJ ^ BKÞ ¼ 0 (23)

cannot be solved to make more than 6 of the BI nonvanish-
ing. This is bound to happen at some n because there are 6n
components of BI but nðnþ 1Þ=2 equations in (23). But we
see that as soon as there are six nonvanishing BI valued in
the Lorentz algebra, each additional Bi must satisfy the 6
linear equations (21). These are six linear equations for the
six components of each Bi, so the result is that they all
vanish to zeroth order in g. They will be nonvanishing at
OðgÞ. Hence this is a mechanism to break G down to the
Lorentz algebra at a scale given by g.
To higher order in g we will have

Bab ¼ ��ab þ ��ab þ gbab þ . . . ; (24)

Bi ¼ gbi: (25)

Wewill not here develop the solutions to higher order but it
is straightforward to do so. What we have so far is enough
to see that we get the fields for general relativity coupled in
some nontrivial way to additional matter fields represented
by the fields with indices wholly or partly in G=SOð4Þ.
There will also be corrections to the Einstein and Yang-
Mills equations given by a power series in g. We note that
the terms proportional to g, quadratic in�IK, are necessary
because otherwise the only solutions (7) would lead to
most of the fields vanishing.
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To see how the coupled Einstein-Yang-Mills dynamics
arises, we can go use the equation of motion for �IJ,
Eq. (7), and use it to eliminate the �IJ. This is fair to do
since we have so far just used the consequences of the
equations of motion for the �IJ. Since in our ansatz BK ^
BK is nonvanishing, we use (9) to eliminate�IJ. The result
is an action equivalent to (4) on solutions to (7) where
BK ^ BK is nonvanishing:

Sno� ¼ 4

G

Z
BI ^ FI � 1

8g

ðBI ^ BJÞðBI ^ BJÞ
BK ^ BK

: (26)

We can divide this into a gravity and matter part

Sno� ¼ Sno�grav þ Sno�matter: (27)

The gravity part is

Sno�grav ¼ 2

G

Z
Bab ^ Fab � 1

8g

ðBab ^ BcdÞðBab ^ BcdÞ
Bef ^ Bef

¼ 2

G

Z �
�ab� ^ Fab þ ��ab ^ Fab ��

2
e

�
; (28)

where

� ¼ �

g
½1þ 36W2�: (29)

We see that we recover the Palatini action with the Holst
term, where ð2�Þ�1 is the Immirzi parameter and G ¼
8�GNewton, where GNewton is Newton’s constant.4 So our
ansatz leads to standard gravity with a parity breaking
topological term.

To work out the matter part it is convenient to define

Fi ¼ 1
2F

i
ab�

ab; Bi ¼ 1
2B

i
ab�

ab; (30)

where Fi
ab and Bi

ab are functions. Then we can expand the

matter part of (26) as

Sno�matter ¼
4

G

Z
e

�
2Bi

abF
i�
ab�

1

16g

�
WBiabB

iabþ2

3
Bi
abB

i�
ab

��
:

(31)

We can solve the equations of motion for Bi
ab and then plug

the solution into the action, and we find that

Sno�matter ¼ � 1

4

Z �
e

g2YM
FiabFiab þ �Fi ^ Fi

�
; (32)

where

1

g2YM
¼ 256gW

GðW2 � 4
9Þ2

�
W2 þ 23

54

�
; (33)

and

� ¼ 4g

9GðW2 � 4
9Þ2

�
W2 � 133

3
W þ 4

9

�
: (34)

By comparing with (29), we see that roughly g2YM � G�
so the Yang-Mills theory is weakly coupled when the
cosmological constant is small. It is also interesting to
note that our ansatz naturally leads to a parity breaking
topological term in the Yang-Mills sector, as it does for the
gravitational part of the action. However, the � angle is
large.
It is also interesting to take into account the fact that, as

shown in [22], the ansatz (12) is only consistent for special
values of the Immirzi parameter, which are �0 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
3

p � 1
q

. For these values, W2 ¼ 1
108 .

It is also interesting to note that we get the Yang-Mills
form (32) for the dynamics of all the components of the
connection, Ai,with components in G=SOð4Þ. These in-
clude Yang-Mills fields in the largest compact subgroup
of the quotient G=SOð4Þ, which we can call H. However,
note that Fi are the components of the full G curvatures,
which for i 2 H are the Yang-Mills field strength plus
corrections. Note also that there are generally connection
and curvature components in G=ðSOð4Þ �HÞ which will
not be Yang-Mills fields as they will transform nontrivially
under both H and SOð4Þ. The details of this are studied in
[14] where it is shown that the degrees of freedom in these
off diagonal connections contain the Higgs fields for H.
The scheme we have described works for any gauge

group so it will work for G ¼ E8. This gives a fully E8
covariant dynamics for Lisi’s unification proposal [12].

III. DISCUSSION

A. Fermions

In Lisi’s proposal the fermions of the standard model are
described by a Becchi-Rouet-Stora-Tyutin extension of the
connection. There is within loop quantum gravity another
alternative, which is that fermions and scalars arise due to
the possibility of disordered locality. As described in [16]
this phenomenon arises because there are two notions of
locality in loop quantum gravity. Microscopic locality is
determined by the connections of the spin network graphs;
two nodes are neighbors if they are connected. In the
semiclassical limit a classical metric will emerge, gener-
ally from a superposition of spin network states. This gives
rise to a notion of macrolocality. As described in [16,17]
these two notions of locality disagree when two nodes x
and y, which are far from each other in terms of the
classical emergent metric, are connected by a single edge
exy. Furthermore, in those papers it is argued that disor-

dered locality is generically to be expected in the semi-
classical limit. Consider a graph as in Fig. 1 which is
regular and therefore may occur in the superposition of
states making up a semiclassical state associated with a flat
metric. There is in loop quantum gravity no apparent

4In a related paper [22] it is shown that the ansatz made here is
consistent only if � is fixed to specific values.
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energy cost to contaminating that latticelike graph with
nonlocal links as shown in the figure. Nor is there an
incompatibility with the semiclassicality of the state. As
there are many more ways to add a link to a lattice that
connects two far away nodes than two nearby nodes, there
is an instability for the formation of such nonlocal links as
the universe expands from Planck scales. Moreover, once
inserted in a graph, nonlocal links are trapped, as they can
only be eliminated if two of them annihilate by the coin-
cidence of their ends arriving by local moves at neighbor-
ing nodes. The proposal is then that these act as Planck
scale wormholes, carrying quantum numbers associated
with gauge fields carried by the nonlocal link.

Let us consider observations made by local observers in
the neighborhood of x. From their point of view the edge
exy simply comes to an end; that is, it appears to connect to

a one valent node. But ends, or one valent nodes, in loop
quantum gravity represent matter degrees of freedom.
Thus, the dislocations due to disordered locality appear
in the semiclassical limit as matter degrees of freedom.

Let us suppose that the gauge group is SUð2Þ �H,
where H is an internal gauge symmetry. Then the edge
exy carries representations of these groups, ðj; rÞ. Local
observers will describe exy as a particle of spin j and charge

r.
This leads to a picture in which for every generator ofG,

the gauge symmetry, the semiclassical limit has a gauge
field plus a set of particle excitations given by the repre-
sentations of G.

This emergence of particle states is so far kinematical;
more work needs to be done to ensure that in the low
energy limit these particles have the correct dynamics
and statistics. Earlier work, described in [19], indicates
that in the Hamiltonian constraint formulation of loop
quantum gravity, Planck scale wormholes do behave as
spinors.

We then turn to some comments on the quantum
dynamics.

B. A class of spin foam models

I would like to comment that the form of the extended
Plebanski action may have a simple quantization in terms
of a spin foammodel. Let us consider the action in the form
(26). The Euclidean path integral naively will have the
form,

Z ¼
Z

dAdBeð1=GÞ
R

BI^FI�ð�=8GÞððBI^BJÞðBI^BJÞ=BK^BKÞ:

(35)

The B ^ F term alone would give rise to a topological field
theory with a spin foam formulation of the form of

Z ¼ X
r;i

Y
4 simplices

f15-jgG; (36)

where the four dimensional manifold has been triangulated
whose faces are labeled by representations r and the tetra-
hedra by the intertwiners i of the group G. f15� jgG are
the 15j symbols which are functions of the labels on each
four simplex. The usual Barrett-Crane strategy is to modify
this by constraining the sums over representations and
intertwiners to the balanced representations. Instead, the
action (26) suggests using the simplicity constraints as
Gaussian weights so we have

Z ¼ X
r;i

Y
4 simplices

f15-jgGe�ð�=8GÞððBI^BJÞðBI^BJÞ=BK^BKÞ;

(37)

where the BI are functions of the representation labels on
each face.5

C. Open issues

I would like to close by listing a few out of many open
issues facing this kind of unification.

(i) The kinematical quantum theory can now be devel-
oped along loop quantum gravity lines for a general
G, as well as for the particular case of E8.

(ii) The spin foam quantization may also be explored
based on the proposal discussed here. It will be
interesting to see if the ultraviolet convergence re-
sults from the Barrett-Crane model also apply here.

(iii) The proposal of matter as the ends of long-distance
links needs more development. One needs to check
whether the spin foam dynamics gives the right
dynamics for the fermions in the case of graviweak
unification or a larger unification. There are also
open issues regarding spin and statistics; these may
be addressed by generalized or topological spin-
statistics theorems.

(iv) Another application of the present formulation is to
an SOð8Þ based unification of gravity and the elec-
troweak gauge theory, along the lines discussed in
[24].

(v) We have shown that general relativity follows from a
particular ansatz for solutions (12), but this does not
show that there are not other gravitational degrees of
freedom which could be excited. An analysis in [25]

FIG. 1 (color online). Disordered locality: A regular graph
contaminated by nonlocal links.

5A related form has been considered by Speziale for 2þ 1
gravity coupled to a Yang-Mills field [23].
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indicates that there are; their physics is studied in
[26]. Another interesting line of development would
be to extend just the chiral part of the Plebanski
action to a unification of gravity and Yang-Mills
gauge symmetry.
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