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The equations of the linearized first post-Newtonian approximation to general relativity are often

written in ‘‘gravitoelectromagnetic’’ Maxwell-like form, since that facilitates physical intuition. Damour,

Soffel, and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial

mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in

Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily

extracted from their celestial mechanics papers), and then extends it to include the post-Newtonian

(Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress

tensor), and law of momentum conservation in Maxwell-like form. The authors and their colleagues

have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-

relativity simulations of compact binaries with spin.
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I. INTRODUCTION

In 1961, Robert L. Forward [1] (building on earlier work
of Einstein [2,3] and especially Thirring [4,5]) wrote the
linearized, slow-motion approximation to general relativ-
ity in a form that closely resembles Maxwell’s equations;
and he displayed this formulation’s great intuitive and
computational power. In the half century since then, this
Maxwell-like formulation and variants of it have been
widely explored and used; see e.g. [6–13] and references
therein.

In 1965–1969 S. Chandrasekhar [14,15] formulated the
first post-Newtonian (weak-gravity, slow-motion) approxi-
mation to general relativity in a manner that has been
widely used for astrophysical calculations during the sub-
sequent 40 years. When linearized, this first post-
Newtonian (1PN) approximation can be (and often is)
recast in Maxwell-like form.

In 1991, T. Damour, M. Soffel, and C. Xu (DSX [16])
extended this Maxwell-like 1PN formalism to include all
1PN nonlinearities (see also Sec. 13 of Jantzen, Carini, and
Bini [17]). DSX did so as a tool in developing a general
formalism for the celestial mechanics of bodies that have
arbitrary internal structures and correspondingly have ex-
ternal gravitational fields characterized by two infinite sets
of multipole moments. (For a generalization to scalar-
tensor theories, see [18].) In 2004, Racine and Flanagan
[19] generalized DSX to a system of compact bodies (e.g.
black holes) that have arbitrarily strong internal gravity.

During the past 18 months, we and our colleagues have
been exploring the flow of gravitational field momentum in
numerical-relativity simulations of compact, spinning bi-
naries [20,21]. In their inspiral phase, these binaries’ mo-

tions and precessions can be described by the 1PN
approximation,1 and we have gained much insight into
their dynamics by using the 1PN DSX Maxwell-like for-
malism, extended to include Maxwell-like momentum
density, momentum flux, and momentum conservation.2

In this paper, we present that extension of DSX,3 though
with two specializations: (i) we fix our coordinates (gauge)
to be fully harmonic instead of maintaining the partial
gauge invariance of DSX, and (ii) we discard all multipole
moments of the binaries’ bodies except their masses and
their spin angular momenta, because for black holes and
neutron stars, the influences of all other moments are
numerically much smaller than 1.5PN order.
The DSX celestial-mechanics papers [16,23–25] are so

long and complex that it is not easy to extract from them
the bare essentials of the DSX Maxwell-like 1PN formal-
ism. For the benefit of researchers who want those bare

1For black-hole and neutron-star binaries, the influences of
spin that interest us are formally 1.5PN, but because of the
bodies’ compactness (size of order Schwarzschild radius), they
are numerically 1PN.

2A referee has pointed out to us that some papers in the rich
literature on the Maxwell-like formulation of linearized 1PN
theory, e.g. [10], argue that the Maxwell analogy is physically
useful only for stationary phenomena. Our spinning-binary ap-
plication [20] of the momentum-generalized DSX formalism is a
counterexample.

3When we carried out our analysis and wrote it up in the
original version of this paper, we were unaware of the Maxwell-
like formalism in DSX [16]; see our preprint at [22]. When we
learned of DSX from Luc Blanchet, we used it to improve our
Maxwell-like treatment of gravitational momentum (by replac-
ing our definition for the gravitoelectric field with that of DSX)
and we rewrote this paper to highlight the connection to DSX.
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essentials and want to see how they are related to more
conventional approaches to 1PN theory, we summarize
them before presenting our momentum extension, and we
do so for a general stress-energy tensor, for a perfect fluid,
and for a system of compact bodies described by their
masses and spins.

This paper is organized as follows. In Sec. II we sum-
marize the basic DSX equations for 1PN theory in
Maxwell-like form. In Sec. III we specialize the DSX
formalism to a perfect fluid and make contact with the
conventional 1PN notation. In Sec. IV we extend DSX by
deriving the (Landau-Lifshitz-based) density and flux of
gravitational momentum in terms of the DSX gravitoelec-
tric and gravitomagnetic fields and by writing down the law
of momentum conservation in terms of them. (It is this that
we have found so useful for gaining intuition into
numerical-relativity simulations of inspiraling, spinning
binaries [20,21].) In Sec. V we briefly discuss energy
conservation. In Sec. VI, relying on Racine and Flanagan
[19], we specialize to the vacuum in the near zone of a
system made from compact bodies with arbitrarily strong
internal gravity. Finally, in Sec. VII we summarize the
DSX formalism and our extension of it both for a self-
gravitating fluid and for a system of compact bodies.

Throughout this paper, we set G ¼ c ¼ 1, Greek letters
run from 0 to 3 (spacetime) and Latin from 1 to 3 (space),
and we use the notation of field theory in flat space in a
3þ 1 split, so spatial indices are placed up or down
equivalently and repeated spatial indices are summed
whether up or down or mixed. We use boldface italic
characters to represent spatial vectors, e.g. w is the bold-
face version of wj.

II. THE DSXMAXWELL-LIKE FORMULATIONOF
1PN THEORY

Damour, Soffel, and Xu (DSX [16]) express the 1PN
metric in terms of two gravitational potentials, a scalar w
and a vector wj:

g00 ¼ �e�2w ¼ �1þ 2w� 2w2 þOðU3
NÞ;

g0i ¼ �4wi þOðU5=2
N Þ;

gij ¼ �ije
2w ¼ �ijð1þ 2wÞ þOðU2

NÞ
(2.1)

[DSX Eqs. (3.3)]. The Newtonian limit of w is UN ¼
ðNewtonian gravitational potentialÞ, and wi is of order

U3=2
N :

w ¼ UN þOðU2
NÞ; wi ¼ OðU3=2

N Þ: (2.2)

The harmonic gauge condition implies that

w;t þ wj;j ¼ 0 (2.3)

[DSX Eq. (3.17a)]; here and throughout commas denote
partial derivatives. Using this gauge condition (which DSX
do not impose), the 1PN Einstein field equations take the

following remarkably simple form:

r2w� €w ¼ �4�ðT00 þ TjjÞ þOðU3
N=L

2Þ; (2.4a)

r2wi ¼ �4�T0i þOðU5=2
N =L2Þ (2.4b)

[DSX Eqs. (3.11)]. Here T�� is the stress-energy tensor of
the source (which we specialize below to a perfect fluid),
r2 is the flat-space Laplacian (i.e. r2w ¼ w;jj), repeated

indices are summed, dots denote time derivatives (i.e. €w ¼
w;tt), and L is the length scale on which w varies.

Following DSX, we introduce the 1PN gravitoelectric
field g (denoted e or E by DSX, depending on the context)
and gravitomagnetic field H (denoted b or B by DSX):

g ¼ rwþ 4 _wþOðU3
N=LÞ; (2.5a)

H ¼ �4r� wþOðU5=2
N =LÞ (2.5b)

[DSX Eqs. (3.21)].
The Einstein equations (2.4) and these definitions imply

the following 1PN Maxwell-like equations for g and H:

r � g ¼ �4�ðT00 þ TjjÞ � 3 €wþOðgU2
N=LÞ; (2.6a)

r� g ¼ � _HþOðgU2
N=LÞ; (2.6b)

r �H ¼ 0þOðHUN=LÞ; (2.6c)

r�H ¼ �16�T0iei þ 4 _gþOðHUN=LÞ (2.6d)

[DSX Eqs. (3.22)]. Here ei is the unit vector in the i
direction.
In terms of g andH, the geodesic equation for a particle

with ordinary velocity v ¼ dx=dt takes the following form
[Eq. (7.17) of DSX, though in a less transparently
‘‘Lorentz-force’’-like form there]:

d

dt
½ð1þ 3UN þ 1

2v
2Þv� ¼ ð1�UN þ 3

2v
2Þgþ v�H

þOðgU2
NÞ: (2.7)

Note that the spatial part of the particle’s 4-momentum
is mu ¼ mð1þUN þ 1

2v
2Þv at 1PN order. This accounts

for the coefficient 1þUN þ 1
2v

2 on the left-hand side of

Eq. (2.7). The remaining factor 2UN is related to the
difference between physical lengths and times, and proper
lengths and times. In the linearized, very-low-velocity
approximation, this geodesic equation takes the
‘‘Lorentz-force’’ form dv=dt ¼ gþ v�H, first deduced
(so far as we know) in 1918 by Thirring [4], motivated by
Einstein’s 1913 [2] insights about similarities between
electromagnetic theory and his not-yet-perfected general
relativity theory.
The 1PN deviations of the geodesic equation (2.7) from

the usual Lorentz-force form might make one wonder
about the efficacy of the DSX definition of g. That efficacy
will show up most strongly when we explore the gravita-
tional momentum density in Sec. IV below.
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III. SPECIALIZATION TO A PERFECT FLUID

We now depart from DSX by specializing our source to a
perfect fluid and making contact with a set of 1PN gravi-
tational potentials that are widely used. We pay special
attention to connections with a paper by Pati and Will [26]
because that paper will be our foundation, in Sec. IV, for
computing the density and flux of gravitational field
momentum.

We describe our perfect fluid in the following standard
notation: �o ¼ ðdensity of rest massÞ, �¼ ðinternal en-
ergy per unit rest mass, i.e. specific internal energy, P ¼
ðpressureÞ, all as measured in the fluid’s local rest frame;
vj � dxj=dt ¼ ðfluid’s coordinate velocityÞ.

Following Blanchet and Damour [27], and subsequently
Pati and Will (Eqs. (4.13), (4.3) of [26]), we introduce a
post-Newtonian variant U of the Newtonian potential,
which is sourced by T00 þ Tjj: r2U ¼ �4�ðT00 þ TjjÞ.
Accurate to 1PN order, the source is [see Eq. (4.4d) of Pati
and Will]

T00 þ Tjj ¼ �oð1þ�þ 2v2 þ 2UN þ 3P=�oÞ; (3.1)

where UN is the Newtonian limit of U

UNðx; tÞ ¼
Z �oðx0; tÞ

jx� x0j d
3x0: (3.2a)

Correspondingly, U can be written as

U ¼
Z �oð1þ�þ 2v2 þ 2UN þ 3P=�oÞ

jx� x0j d3x0: (3.2b)

Here and below the fluid variables and gravitational poten-
tials in the integrand are functions of ðx0; tÞ as in Eq. (3.2a).
In Eq. (3.2a) for UN , �o can be replaced by any quantity
that agrees with �o in the Newtonian limit, e.g. by the post-
Newtonian ‘‘conserved mass density’’ �� of Eq. (3.6b)
below. We also introduce Chandrasekhar’s post-
Newtonian scalar gravitational potential � (Eq. (44) of
[14]), which is sourced by 2UN , r2� ¼ �2UN or equiv-
alently

� ¼ �
Z

�ojx� x0jd3x0: (3.3)

Pati and Will use the notation �X for � (Eqs. (4.14),
(4.12a), and (4.3) of [26]).

It is straightforward to show that the 1PN solution to the
wave equation (2.4a) for the DSX scalar potential w is

w ¼ U� 1

2
€�; (3.4)

and the 1PN solution to the Laplace equation (2.4b) for the
DSX vector potential wj is

wj ¼
Z �ovj

jx� x0jd
3x0: (3.5)

The fluid’s evolution is governed by rest-mass conser-
vation, momentum conservation, and energy conservation.
The 1PN version of rest-mass conservation takes the

following form:

��;t þ r � ð��vÞ ¼ 0; (3.6a)

where

�� ¼ �ou
0 ffiffiffiffiffiffiffi�g
p ¼ �oð1þ 1

2v
2 þ 3UÞ (3.6b)

(Eqs. (117) and (118) of Chandrasekhar [14]). Here u0 is
the time component of the fluid’s 4-velocity and g is the
determinant of the covariant components of the metric.
We shall discuss momentum conservation and energy

conservation in the next two sections.
We note in passing that Chandrasekhar and many other

researchers write their 1PN spacetime metric in a different
gauge from our harmonic one. The two gauges are related
by a change of time coordinate

tC ¼ tH � 1
2
_�; (3.7a)

and correspondingly the metric components in the two
gauges are related by

gC00 ¼ gH00 þ €�; gC0j ¼ gH0j þ 1
2
_�;j: (3.7b)

Here C refers to the Chandrasekhar gauge and H to our
harmonic gauge. DSX write their equations in forms that
are invariant under the gauge change (3.7).

IV. MOMENTUM DENSITY, FLUX, AND
CONSERVATION

We now turn to our extension of the DSX formalism to
include a Maxwell-like formulation of gravitational mo-
mentum density, momentum flux, and momentum conser-
vation. Following Chandrasekhar [15], Pati and Will [26]
and others, we adopt the Landau-Lifshitz pseudotensor as
our tool for formulating these concepts.
From Pati and Will’s 2PN harmonic-gauge Eqs. (2.6,

4.4b, and 4.4c) for the pseudotensor, one can deduce the
following 1PN expressions for the gravitational momen-
tum density and momentum flux (stress) in terms of the
DSX gravitoelectric and gravitomagnetic fields g and H:

ð�gÞt0jLLej ¼ � 1
4�g�Hþ 3

4�
_UNg; (4.1a)

ð�gÞtijLL ¼ 1
4�ðgigj � 1

2�ijgkgkÞ
þ 1

16�ðHiHj � 1
2�ijHkHkÞ � 3

8�
_U2
N�ij: (4.1b)

Each equation is accurate up to corrections of order UN

times the smallest term on the right side (2PN corrections).
For comparison, in flat spacetime the electromagnetic

momentum density is 1
4�E�B and the momentum flux is

1
4�ðEiEj � 1

2�ijEkEkÞ þ 1
4�ðBiBj � 1

2�ijBkBkÞ. Aside from a

sign in Eq. (4.1a) and the two terms involving _UN , the
gravitational momentum flux and density (4.1) are
identical to the electromagnetic ones with E ! g and
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B ! H=2. Therefore, by analogy with the electromagnetic
case, there are gravitational tensions jgj2=8� and
jHj2=32� parallel to gravitoelectric and gravitomagnetic
field lines, and gravitational pressures of these same mag-
nitudes orthogonal to the field lines. This makes the grav-
itoelectric and gravitomagnetic fields g and H powerful
tools for building up physical intuition about the distribu-
tion and flow of gravitational momentum. We use them for
that in our studies of compact binaries [20,21], relying
heavily on Eqs. (4.1).

Here are some hints for deducing Eqs. (4.1) from Pati
and Will [26] (henceforth PW): (i) Show that the last two
terms in (2.6) of PW are of 2PN order for f�;�g ¼ f0jg or
fijg and so can be ignored, when 16�ð�gÞt��LL ¼ ���.
(ii) Show that our notation is related to that of PW by � ¼
�X, U the same, w ¼ U� 1

2
€� ¼ 1

4 ðN þ BÞ � 1
8 ðN þ BÞ2

[for the last of these cf. PW (5.2) and (5.4a, c)], and at
Newtonian order UN ¼ 1

4N. (iii) In PW (4.4b, c) for ���,

keep only the Newtonian and 1PN terms: the first curly
bracket in (4.4b) and first and second curly brackets in
(4.4c). Rearrange those terms so they involve only K, N þ
B and the Newtonian-order N, use the above translation of
notation and use the definitions (2.5) of g and H. Thereby,
bring PW (4.4b and 4.4c) into the form (4.1).

In the Landau-Lifshitz formalism, the local law of 4-
momentum conservation Tj�

;� ¼ 0 takes the form

½ð�gÞðTj� þ t
j�
LLÞ�;� ¼ 0 (4.2)

(Eqs. (20.23a) and (20.19) of [28], or (100.8) of [29]). Here
(as usual), commas denote partial derivatives, and semi-
colons denote covariant derivatives. This is the conserva-
tion law that we use in our studies of momentum flow in
compact binaries [20,21].

When dealing with material bodies (e.g. in DSX) rather
than with the vacuum outside compact bodies, an alterna-
tive Maxwell-like version of momentum conservation is
useful. Specifically, using expressions (4.1) and ð�gÞ ¼
1þ 4UN [from Eq. (2.1) with w ¼ UN at leading order],
and using the field equations (2.6) for g and H, the con-
servation law (4.2) can be rewritten in the following simple
Lorentz-force-like form (Eq. (4.3) of Damour, Soffel, and
Xu’s paper II [23])

½ð1þ 4UNÞTi0�;t þ ½ð1þ 4UNÞTij�;j
¼ ðT00 þ TjjÞgi þ �ijkT

0jHk:
(4.3)

Here the Levi-Civita tensor �ijk produces a cross product of

the momentum density with the gravitomagnetic field. For
comparison, in flat spacetime, the momentum conservation
law for a charged medium interacting with electric and
magnetic fields Ei and Bi has the form Ti0

;t þ Tij
;j ¼

�eEi þ �ijkJjBk, where �e is the charge density and Jj
the charge flux (current density). The right-hand side of
Eq. (4.3) (the gravitational force density) is identical to
that in the electromagnetic case, with �e ! ðT00 þ TjjÞ,

Jj ! T0j,E ! g, and B ! H. Again, this makes g andH

powerful foundations for gravitational intuition.
For a perfect fluid, the components of the 1PN stress-

energy tensor, which appear in the momentum conserva-
tion law (4.3), are (Eqs. (20) of Chandrasekhar [14])

T00 ¼ �oð1þ�þ v2 þ 2UNÞ; (4.4a)

Ti0 ¼ �oð1þ�þ v2 þ 2UN þ P=�oÞvj; (4.4b)

Tij ¼ �oð1þ�þ v2 þ 2UN þ P=�oÞvivj

þ Pð1� 2UNÞ�ij; (4.4c)

T00 þ Tjj ¼ �ð1þ�þ 2v2 þ 2UN þ 3P=�oÞ: (4.4d)

V. ENERGY CONSERVATION

For a perfect fluid, the exact (not just 1PN) law of energy
conservation, when combined with mass conservation and
momentum conservation, reduces to the first law of ther-
modynamics d�=dt ¼ �Pdð1=�oÞ=dt; so whenever one
needs to invoke energy conservation, the first law is the
simplest way to do so. For this reason, and because deriv-

ing the explicit form of 1PN energy conservation ½ð�gÞ�
ðT0� þ t

0�
LLÞ�;� ¼ 0 is a very complex and delicate task

(cf. Sec. VI of [30]), we shall not write it down here.
However, we do write down the Newtonian law of

energy conservation in harmonic gauge, since we will
occasionally need it in our future papers. Chandrasekhar

calculated ð�gÞðT0� þ t
0�
LLÞ in [15]; his Eqs. (48) and (57)

are the time-time and time-space components, respec-
tively. When one writes the expressions in terms of the
‘‘conserved rest-mass density’’ �� [Eq. (3.6b)] and in our
Maxwell-like form, Newtonian conservation of energy
states that

�
��

�
1þ�þ 1

2
v2 þ 3UN

�
� 7

8�
g � g

�
;t

þ r �
�
��v

�
1þ�þ P

�
þ 1

2
v2 þ 3UN

�
þ 3

4�
_UNg

� 1

4�
g�H

�
¼ 0: (5.1)

While this equation is perfectly correct, it expresses
Newtonian energy conservation in terms of the post-
Newtonian gravitomagnetic field H. It is possible to
rewrite the H-dependent term using the relationship,
r � ½�1=ð4�Þðg�HÞ� ¼ r � ½�4UNT

0jej þ ð1=�ÞUN _g�,
which is accurate up to corrections of order g � _H. This
relationship can be found by applying Eq. (2.6b) once and
(2.6d) twice, in combination with elementary vector-
calculus identities. The statement of Newtonian energy
conservation then depends only upon the Newtonian po-
tential and its gradient and time derivative:
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�
��

�
1þ�þ 1

2
v2 þ 3UN

�
� 7

8�
g � g

�
;t

þ r �
�
��v

�
1þ�þ P

�
þ 1

2
v2 �UN

�
þ 3

4�
_UNg

þ 1

�
UN _g

�
¼ 0: (5.2)

Notice that going from Eq. (5.1) to Eq. (5.2) involves
adding a divergence-free piece to the energy flux, so it
entails changing how the energy flux is localized—a
change that strictly speaking takes the energy flux out of
harmonic gauge.

If the coefficients of the gravitational terms in Eq. (5.2)
look unfamiliar, it is because even at Newtonian order, the
density and flux of gravitational energy are gauge-
dependent. In some other gauge, they will be different;
see Box 12.3 of [31].

VI. GRAVITATIONAL POTENTIALS IN THE
VACUUM OFA SYSTEM OF COMPACT, SPINNING

BODIES

For a system of compact, spinning bodies (neutron stars
or black holes), the gravitational potentials UN , U, wi, and
� in the vacuum between the bodies take the following
forms (in a slightly different harmonic gauge than the one
used in Sec. III for fluids):

UN ¼ X
A

MA

rA
; (6.1a)

U ¼ X
A

MA

rA

�
1þ 3

2v
2
A �

X
B�A

MB

rAB

�
þ 2

X
A

�ijkv
i
AS

j
An

k
A

rA
2

;

(6.1b)

� ¼ �X
A

MArA; (6.1c)

w ¼ U� 1

2
€�; (6.1d)

wi ¼
X
A

MAv
i
A

rA
þ 1

2

X
A

�ijkS
j
An

k
A

rA
2

: (6.1e)

Here the notation is that of Sec. IV of Thorne and Hartle
[32]: the sum is over the compact bodies labeled by capital

Latin letters A, B;MA, S
j
A and v

j
A are the mass, spin angular

momentum and coordinate velocity of body A; rA is the
coordinate distance from the field point to the center of
mass of body A; rAB is the coordinate distance between the

centers of mass of bodies A and B; njA is the unit vector

pointing from the center of mass of body A to the field
point; and �ijk is the Levi-Civita tensor.

Equations (6.1) for the potentials can be deduced by
comparing our 1PN spacetime metric coefficients
[Eqs. (2.1) and (3.4)] with those in Eqs. (2.4), (5.11) and
(5.14) of Racine and Flanagan [19] or in Eqs. (4.4) of
Thorne and Hartle [32].4

VII. CONCLUSION

In our Maxwell-like formulation of the 1PN approxima-
tion to general relativity for fluid bodies, the evolution of
the fluid and gravitational fields is governed by: (i) the law
of momentum conservation (4.3) and (4.4) (which can be
thought of as evolving the fluid velocity vj); (ii) the law of

mass conservation (3.6) (which can be thought of as evolv-
ing the mass density �o); (iii) the equation of state Pð�oÞ
and first law of thermodynamics d� ¼ �Pdð1=�oÞ
(which determine P and � once �o is known); Eqs. (3.2),
(3.3), and (3.5) for the gravitational potentials U, �, and
wj; and Eqs. (2.5) or (2.6) for the gravitoelectric and

gravitomagnetic fields g, H.
When specialized to a system of compact bodies, e.g. a

binary made of black holes or neutron stars, the system is
governed by: (i) 1PN equations of motion and precession
for the binary (not given in this paper; see e.g. Eqs. (4.10),
(4.11), and (4.14) of [32]); (ii) momentum flow within the
binary as described by the Landau-Lifshitz pseudotensor
(4.1) and its conservation law (4.2), in which the gravito-
electric and gravitomagnetic fields are expressed as sums
over the bodies via Eqs. (6.1) and (2.5); and (iii) other tools
developed by Landau and Lifshitz (Sec. 100 of [29]). We
are finding this formalism powerful in gaining insight into
compact binaries [20,21].

ACKNOWLEDGMENTS

For helpful discussions we thank Yanbei Chen and Drew
Keppel. We also thank Luc Blanchet for bringing referen-
ces [16,27] to our attention, and anonymous referees for
helpful critiques and suggestions. This research was sup-
ported in part by NSF Grant Nos.PHY-0601459 and PHY-
0653653.

4Racine and Flanagan specialize DSX to a system of compact
bodies with a complete set of nonzero multipole moments. We
neglect all moments except the bodies’ masses and spins (see
fifth paragraph of Sec. I). Our notation is related to that of Racine
and Flanagan by UN ¼ ��, w ¼ U� 1

2
€� ¼ �ð�þ c Þ, wi ¼� 1

4 	i. The Racine-Flanagan derivation of Eqs. (6.1) avoids
considering the internal structures of the bodies and it therefore
is directly valid for black holes. The Thorne-Hartle derivation
relies on the pioneering analysis of Einstein, Infeld, and
Hoffman [33] which uses a fluid description of the bodies’
interiors. Thorne and Hartle extend Eqs. (6.1) to black holes
by the equivalent of Damour’s ‘‘effacement’’ considerations,
Sec. 6.4 of [34].
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