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We study the role of nonperturbative quantum gravity effects in the ekpyrotic/cyclic model using the

effective framework of loop quantum cosmology in the presence of anisotropies. We show that quantum

geometric modifications to the dynamical equations near the Planck scale as understood in the quantiza-

tion of Bianchi-I spacetime in loop quantum cosmology lead to the resolution of classical singularity and

result in a nonsingular transition of the Universe from the contracting to the expanding branch. In the

Planck regime, the Universe undergoes multiple small bounces and the anisotropic shear remains bounded

throughout the evolution. A novel feature, which is absent for isotropic models, is a natural turn-around of

the moduli field from the negative region of the potential leading to a cyclic phenomena as envisioned in

the original paradigm. Our work suggests that incorporation of quantum gravitational effects in the

ekpyrotic/cyclic model may lead to a viable scenario without any violation of the null energy condition.
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I. INTRODUCTION

One of the most intriguing issues in cosmology concerns
the state of the Universe in the earliest epoch of its evolu-
tion. It is this phase where answers to some of the most
difficult questions in conventional cosmology are hidden
which includes understanding the initial conditions of our
universe. It is difficult to understand the latter via cosmo-
logical models based on classical general relativity (GR)
since it breaks down at very large spacetime curvatures and
predicts an initial singularity. Therefore, any viable de-
scription of the history of our Universe must necessarily
have inputs from a framework beyond GR. Not surpris-
ingly, one expects that any such model must capture quan-
tum aspects of gravity in order to be successful. Though a
treatment based on a full theory of quantum gravity is
beyond the scope at the present stage, nevertheless useful
insights have been obtained on the nature of the Universe at
the Planck scale in various frameworks. In one of the
earliest works in this direction, Wheeler showed that the
spacetime near the initial singularity resembles a quantum
foam [1] (a picture shared with the analysis of quantization
of conformal modes in gravity [2]). In recent years a
different picture seems to emerge in some models based
on nonperturbative canonical quantum gravity. In loop
quantum cosmology (see Ref. [3] for an introductory re-
view) a quantization of symmetry reduced spacetimes
based on background independent loop quantum gravity,
backward evolution of states for different stress-energy
contents, show existence of a bounce near the Planck scale
to a classical contracting branch [4–6]. The quantum
bounce is nonsingular and allows a unitary evolution across

the ‘‘big bang’’ without any violation of null energy con-
dition. These results indicate that the Universe may have a
‘‘pre big bang’’ branch which plays an important role in the
history and the fate of the Universe.
Interestingly, though loop quantum cosmology predicts

the existence of a contracting universe preceding ours, the
idea of a pre big bang branch of the Universe is not new.
Various paradigms in theoretical cosmology have conjec-
tured an existence of such a pre big bang branch and the
existence of a nonsingular bounce is the most crucial
element for them to be viable. As an example, a pre big
bang branch is envisioned in the ekpyrotic/cyclic model
paradigm [7–9] which is also considered as an alternative
to the inflationary scenarios (see Ref. [10] for a review). It
is based on the inputs fromM-theory where it is envisioned
that the Universe undergoes cycles of expansion and con-
traction governed by the interbrane dynamics of two
boundary branes in a five dimensional bulk.1 Our observ-
able Universe is hypothesized to be confined on one of the
boundary branes which interacts only gravitationally with
the other brane. Attraction between the branes leads to
their collision, an event which corresponds to a big bang
or big crunch singularity for the observable Universe.
The transition from the contracting to the expanding

branch when the branes collide and separate is a tricky
issue in the ekpyrotic/cyclic models. Though insights on
this problem from the bulk spacetime perspective have
been gained (see Refs. [13–15]), its solution remains elu-
sive in the 4-dimensional cosmological picture. In its ab-
sence a viable nonsingular cosmological model of the early
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1Based on string theory, idea of a bouncing Universe has also
been extensively studied in pre big bang models [11] and more
recently in string gas cosmologies [12].
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Universe is difficult to construct. Insights on obtaining a
nonsingular transition in the ekpyrotic/vyclic model is
expected from understanding the role of nonperturbative
quantum gravitational effects which are well understood in
loop quantum gravity. In particular a lot of progress has
been made in recent years on understanding the resolution
of singularities in the framework of loop quantum cosmol-
ogy [3,16–18]. This leads to a natural question (which is
the focus of this work): Is it possible to obtain a non-
singular transition in the ekpyrotic/cyclic model using
inputs from loop quantum cosmology?

Loop quantum cosmology is a canonical nonperturba-
tive quantization of homogeneous spacetimes based on
Dirac’s method of constraint quantization. The gravita-
tional part of the classical phase space is labeled by the
Ashtekar variables: SU(2) connection Ai

a (which in a cos-
mological setting is proportional to rate of change of scale
factor at the classical level) and conjugate triad Ea

i (pro-

portional to the square of the scale factor). The elementary
variables used for quantization in loop quantum cosmology
are the holonomies of the connection components and
triads. Quantization proceeds with expressing the classical
Hamiltonian constraint, consisting of the field strength
tensor of the Ashtekar connection, in terms of elementary
variables. The resulting quantum constraint captures the
underlying discreteness in quantum geometry (one of the
predictions of loop quantum gravity) and turns out to be
uniformly discrete in volume. This has been shown to be a
property of isotropic models (for all values of curvature
index k) [6,19–23] and Bianchi-I spacetimes [24] where
one has rigorous analytical control and extensive numeri-
cal simulations have been performed.

Some of the novel features of loop quantization can be
described as follows. Let us consider a isotropic universe
filled with a massless scalar field. Take a state which is
peaked at the classical trajectory at late times and evolve it
with the loop quantum constraint toward the big bang. It
turns out that the state remains peaked at the classical
trajectory until spacetime curvature (R) is approximately
1% of the Planck value, however on further evolution there
are significant departures from the classical theory. Instead
of following the classical trajectory until the big bang as in
the Wheeler-DeWitt theory, evolution leads to a bounce of
the Universe when energy density of the Universe reaches a
critical value, �crit ¼ 0:41�Pl [6]. After the bounce the
state then evolves further to peak on the classical trajectory
for a contracting universe. These turn out to be robust
features of the theory. Using an exactly solvable model it
can be proved that the bounce is a property for all the states
in the physical Hilbert space and there exists a supremum
for the energy density operator given by the above value
[23]. Moreover, the fluctuations are bounded across the
bounce and the state which is semiclassical at late times
post bounce is also semiclassical at early times pre bounce
[25]. It is important to note that existence of bounce does

not require any fine tuning of initial conditions or a special
choice of matter. In fact for the above case, matter satisfies
the stiff equation of state throughout the evolution.
Existence of bounce and nonsingular evolution has also
been shown for the scalar field with a cosmological con-
stant (for positive [26] as well as negative values [27]) and
the inflationary potential [28]. Another important feature
of loop quantum cosmology is that it turns out that there
exists a unique consistent loop quantization for the iso-
tropic spacetimes as well as the Bianchi-I spacetime
[29,30].
Interestingly, it is possible to write an effective

Hamiltonian in loop quantum cosmology with a resulting
dynamics which approximates the underlying quantum
dynamics to an excellent accuracy. The effective
Hamiltonian can be derived using coherent state tech-
niques for different matter sources [31–33]. Assuming
that effective dynamics is valid for arbitrary matter (an
assumption which turns out to be true for various cases), it
is possible to prove that isotropic flat loop quantum cos-
mology is generically nonsingular and geodesically com-
plete [34]. It resolves all known types of cosmological
singularities. Similar results are expected for curved and
anisotropic models. Results obtained in the full quantum
theory, numerical simulations, and the effective theory
strongly indicate that resolution of cosmological singular-
ities is natural in loop quantum cosmology.
The availability of an effective description leads us to

explore a viable nonsingular bouncing model in the effec-
tive description of loop quantum cosmology with the ek-
pyrotic/cyclic model potential. This serves as a first step to
investigate the role of nonperturbative quantum gravity
effects as derived in loop quantum gravity to the ekpyr-
otic/cyclic models. For the case when anisotropies are
absent, such an analysis was performed earlier [35]. It
was shown that a nonsingular bounce is generically pos-
sible for the flat isotropic ekpyrotic/cyclic model in loop
quantum cosmology. Despite this a viable model was not
possible due to lack of a turn-around of the moduli field in
the epoch when the branes collide and separate, inhibiting
a cyclic phenomena. It was shown that unless the ekpyr-
otic/cyclic model potential becomes positive when the
singularity is approached it is not possible for the moduli
field to turn around in the process of transition from con-
tracting to the expanding branch (or vice versa) and lead to
cycles.2

However in a realistic universe anisotropies are always
present, even if their strength is very small. Hence it is
important to analyze whether the limitations pointed out in
the analysis of Ref. [35] were artifacts of the assumption of
pure isotropy. It is pertinent to ask whether there exists a
viable nonsingular ekpyrotic/cyclic model for effective

2Such a modification to the cyclic model potential has also
been suggested in Refs. [36,37].
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loop quantum dynamics incorporating anisotropic proper-
ties of spacetime. As we will show the answer turns out to
be positive. We will see that the mere presence of the shear
term in the cosmological dynamics leads to a turn-around
of the moduli field from the negative region of the poten-
tial. Instead of a single bounce of the scale factor, the
anisotropic effective dynamics obtained from the loop
quantization of Bianchi-I model exhibits bounces for
each of the directional scale factors. Numerical simulations
show that the turn-around of the moduli occurs in the
middle of the transition of the mean scale factor from the
contracting to the expanding branch. Further, the aniso-
tropic shear remains bounded throughout the evolution.
Thus a nonsingular transition from the contracting to the
expanding phase with a turn-around of the moduli as
envisioned in the ekpyrotic/cyclic model paradigm is
achieved in the effective loop quantum dynamics. This is
the main result of our analysis.

This paper is organized as follows. In the next section we
revisit the classical theory of the Bianchi-I model in the
Ashtekar variables. We describe the way the classical
generalized Friedman equation for an anisotropic model
can be derived in a Hamiltonian treatment. In Sec. III we
consider the effective Hamiltonian of the Bianchi-I model
for the loop quantization performed in Ref. [24]. This
quantization for Bianchi-I model has recently been shown
to be the only consistent choice which leads to a bounded
shear and expansion factors [30]. Using Hamilton’s equa-
tions we derive the dynamical equations for connections
and triad components (the dynamical equations for matter
such as the Klein-Gordon equation are not changed by
quantum gravitational effects) and highlight some of the
properties of the effective theory. In Sec IV, we use the
effective dynamics to analyze the potential in the ekpyr-
otic/cyclic model. Using numerical techniques we study
the evolution of the moduli field focusing, in particular, on
the transition from the contracting branch to the expanding
branch. We show that a nonsingular turn-around of the
scale factor along with the same for the moduli field is
possible in the effective 4-dimensional description without
any extra inputs. We summarize the results and discuss
open issues in the concluding section.

II. BIANCHI-I MODEL: CLASSICAL THEORY IN
ASHTEKAR VARIABLES

The Bianchi-I spacetime is one of the simplest examples
of spacetimes with anisotropies. It has vanishing intrinsic
curvature and unlike the Bianchi-IX model, the classical
dynamics do not exhibit Belinski-Khalatnikov-Lifshitz be-
havior as the singularity is approached. The isotropic limit
of this spacetime is k ¼ 0 Friedman-Robertson-Walker
cosmological spacetime. We consider a homogeneous
Bianchi-I anisotropic spacetime with a manifold �� R
where � is topologically flat (R3). The spatial manifold is
noncompact and in order to define the symplectic structure

and formulate a Hamiltonian theory, it is necessary to
introduce a fiducial cellV . The cellV has fiducial volume

Vo ¼ l1l2l3 with respect to the fiducial metric q
�
ab endowed

on the spatial manifold. Here li refer to the coordinate
lengths of the each side of the fiducial cell.3

Because of the homogeneity of the Bianchi-I spacetime,
the Ashtekar variables take a simple form. The matrix
valued connection Ai

a and triad Ea
i can be expressed as ci

and pi respectively (where i ¼ 1, 2, 3) [38]. The canonical
conjugate phase space variables satisfy

fci; pjg ¼ 8�G��ij; (1)

where � ¼ 0:2375 is the Barbero-Immirzi parameter. The
triad pI are related to the three scale factors aI of the
Bianchi-I metric

ds2 ¼ �N2dt2 þ a21dx
2 þ a22dy

2 þ a23dz
2; (2)

as

jp1j ¼ l2l3a2a3; jp2j ¼ l1l3a1a3; jp3j ¼ l2l3a2a3;

(3)

where the modulus sign arises because of orientation of the
triads (and is suppressed in the following).
The only nontrivial constraint to be solved in this model

is the Hamiltonian constraint which when expressed in
terms of ci and pi takes the form:

H cl ¼ � N

8�G�2V
ðc1p1c2p2 þ c3p3c1p1 þ c2p2c3p3Þ

þH matt; (4)

where H matt is the matter Hamiltonian which may de-
scribe perfect fluid and/or scalar fields. Physical solutions
are obtained by the vanishing of the Hamiltonian con-
straint:H cl � 0. Equations of motions for the phase space
variables are obtained by solving Hamilton’s equations:

_p i ¼ fpi;H clg ¼ �8�G�
@H
@ci

; (5)

and

_c i ¼ fci;H clg ¼ 8�G�
@H
@pi

: (6)

If we choose the lapse function N ¼ 1, then using (4) and
(6) we obtain

3As should be expected from any consistent treatment, physi-
cal predictions of this model are insensitive to the choice of li
and one could choose these to be unity. We do not restrict to this
choice in order to stress the independence of physics in the
classical and especially the effective theory on the fiducial cell.
The latter feature is not shared by alternative quantizations of
Bianchi-I model in loop quantum cosmology.
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ci ¼ �li _ai ¼ �liHiai; (7)

where Hi � _ai=ai is the Hubble rate in the i-th direction.
Similarly we can obtain the dynamical equations for the

matter degrees of freedom. As an example, in case H matt

corresponds to a minimally coupled scalar field � with
momentum p� (satisfying f�;p�g ¼ 1) and potential

Vð�Þ, the dynamical equations take the standard form

_� ¼ @

@p�

H matt and _p� ¼ � @

@�
H matt: (8)

Taking the second derivative of � and using _p�, we obtain

the standard Klein-Gordon equation for �:

€�þX
i

Hi� ¼ �@�Vð�Þ: (9)

Before we study the properties of dynamical equations it
is useful to note the behavior of the classical Hamiltonian
constraint under one of the underlying freedoms in the
framework. This has to do with the change of the shape
of the fiducial cell. Let us consider this change as
ðl1; l2; l3Þ ! ðl01; l02; l03Þ. Under this change V ! l01l

0
2l

0
3V

and c1, p1 (and similarly other components) transform as

c1 ! c01 ¼ l01c1; p1 ! p0
1 ¼ l02l03p1: (10)

Thus, the gravitational part of the constraint transforms as
H grav ! l01l

0
2l

0
3H grav. It can be shown that the matter part

of the constraint also transforms in the same way. Thus,
H class=V is invariant under arbitrary change in shape of
the fiducial cell.

Solving the classical constraint H cl � 0, dividing by

the total volume V ¼ Voða1a2a3Þ ¼ ðp1p2p3Þ1=2, and us-
ing (7) we obtain the following equation relating direc-
tional Hubble rates with energy density:

H1H2 þH2H3 þH3H1 ¼ 8�G
H matt

V
¼ 8�G�; (11)

where � is the energy density of the matter component:
� ¼ H matt=V. As expected, using (10) one finds that
Hubble rates and energy density are invariant under
ðl1; l2; l3Þ ! ðl01; l02; l03Þ.

An interesting property of equations of motion for pi

and ci arises for matter with vanishing anisotropic stress. It
can then be shown that (pici � pjcj) is a constant of

motion satisfying [38], i.e.

pici � pjcj ¼ VðHi �HjÞ ¼ �Vo�ij; (12)

where �ij is a constant antisymmetric matrix.

The directional Hubble rates can be considered to be the
diagonal elements of an expansion matrixHij. The trace of

this matrix is related to the expansion rate of geodesics in
this spacetime as

� ¼ 1

3
ðH1 þH2 þH3Þ ¼ 1

a

da

dt
; (13)

where a is identified as the mean scale factor for our
anisotropic model:

a ¼ ða1a2a3Þ1=3: (14)

The trace-free part of the expansion matrix leads to the
shear term �ij:

�ij ¼ Hij � ��ij; (15)

and defines the shear scalar �2 � �	
�
	
 given by

�2 ¼ X3
i¼1

ðHi � �Þ2

¼ 1

3
ððH1 �H2Þ2 þ ðH2 �H3Þ2 þ ðH3 �H1Þ2Þ

¼ 1

3a6
ð�2

12 þ �2
23 þ �2

31Þ; (16)

where to obtain the last expression we have used Eq. (12).
The generalized Friedman equation for the mean scale

factor can be obtained by considering the mean Hubble rate

H ¼ _a

a
¼ 1

3

X3
i¼1

Hi; (17)

which yields

H2 ¼ 1
3ðH1H2 þH2H3 þH3H1Þ þ 1

18ððH1 �H2Þ2
þ ðH2 �H3Þ2 þ ðH3 �H1Þ2Þ:

On using Eqs. (11) and (16) we obtain

H2 ¼ 8�G

3
�þ�2

a6
; (18)

with

�2 � 1
6�

2a6: (19)

From (16) it follows that the shear scalar � is a constant of
motion in the classical theory. As we will show later, this
feature does not hold in the loop quantization where only at
the classical scales � approaches a constant value.
Analysis of the generalized Friedman equation (18)

immediately shows that the singularity is inevitable in
the classical theory as the scale factor approaches zero. It
is important to note that in the classical theory the aniso-
tropic term dominates on the approach to singularity unless
� corresponds to matter with the equation of state w> 1,
i.e. with an equation of state of an ultrastiff fluid. In the
case when matter has the equation of state w< 1, the
energy density grows slower than the anisotropic term as
aðtÞ ! 0. We will discuss later that in the ekpyrotic/cyclic
model the equation of state w � 1 during the ekpyrosis
phase (when the moduli is in the steep negative region of
the potential). This causes the anisotropic term to be sub-
dued in the subsequent evolution. Thus, as the Universe
approaches classical big bang/crunch singularities in this
model one expects anisotropies to become very small [39].
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III. EFFECTIVE DYNAMICS

In the loop quantization the elementary variables are the
holonomies of the connection and the flux of the triad
(related by a constant for the present case). Elements of
the holonomies are of the form expði	ciÞ where 	 labels
the edge length along which a holonomy is computed. The
classical Hamiltonian constraint is expressed in terms of
holonomies and triads and then quantized. The resulting
quantum constraint is generically nonsingular and the pic-
ture at the Planck scale in Bianchi-I model turns out to be
similar to the one in the isotropic model [24]. One can also
derive the effective Hamiltonian using similar techniques
as used for the isotropic model [31] and for N ¼ 1 is given
by4

H eff ¼ � 1

8�G�2V

�
sinð �	1c1Þ

�	1

sinð �	2c2Þ
�	2

p1p2

þ cyclic terms

�
þH matt; (20)

where

�	 1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
p1

p2p3

s
; �	2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
p2

p1p3

s
; and �	3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
p3

p1p2

s
:

(21)

Here � arises due to regularization of the field strength of
the connection by the underlying quantum geometry. Its
value is given by [40]

�2 ¼ 4
ffiffiffi
3

p
��‘2Pl: (22)

It is to be noted that the effective dynamics resulting from
the above Hamiltonian is invariant under the choice of the
fiducial cell. In particular this is the only known loop
quantization of Bianchi-I spacetime which is independent
of the shape of the fiducial cell [30]. Comparing (20) and
(4) we notice that the change from classical to effective
theory only comes in the form of replacement of connec-
tion components cI with sinð �	IcIÞ= �	I. Under the trans-
formation: ðl1; l2; l3Þ ! ðl01; l02; l03Þ, �	I ! �	0

I ¼ ð1=l0IÞ �	I.

Hence sinð �	IcIÞ= �	I transforms in the same way as cI.
Thus, transformation properties remain same as in the
classical theory and the resultant dynamics and physical
predictions are unaffected by the freedom of the choice of
the fiducial cell.5

Substituting (21) in (20) and solving for the Hamiltonian
constraint H eff � 0 we obtain

� ¼ 1

8�G�2�2
ðsinð �	1c1Þ sinð �	2c2Þ þ cyclic termsÞ:

(23)

Since sinð �	iciÞ are bounded functions, the above equation
implies that the energy density can never diverge in the
effective loop quantum cosmology. The maximum value of
the terms in the parenthesis determines the upper bound for
the energy density:

� � �max; �max ¼ 3

8�G�2�2
: (24)

The upper bound for the energy density in the Bianchi-I
anisotropic model coincides with the value in the isotropic
model [6].
It should be noted that the matter Hamiltonian H matt in

(20) is unmodified from its classical expression, due to
which the dynamical equations for matter remain the same
as Eqs. (8) and (9). Modified dynamical equations can be
obtained from the Hamilton equations using (20). As an
example, for the triad component p1 we get

_p 1 ¼ �8�G
@H eff

@c1

¼ p1

��
cosð �	1c1Þðsinð �	2c2Þ þ sinð �	2c2ÞÞ; (25)

(and similarly for p2 and p3).
In order to find the equation for directional Hubble rates

we first note that from (3) we get

a1 ¼ 1

l1

�
p2p3

p1

�
1=2

;

a2 ¼ 1

l2

�
p3p1

p2

�
1=2

; and a3 ¼ 1

l3

�
p1p2

p3

�
1=2

:

(26)

Taking their derivatives and using Eq. (25) and correspond-
ing equations for p2 and p3 we obtain

H1 ¼ _a1
a1

¼ 1

2��
ðsinð �	1c1 � �	2c2Þ þ sinð �	1c1 � �	3c3Þ

þ sinð �	2c2 þ �	3c3ÞÞ: (27)

Similar equations can be derived for the directional Hubble
ratesH2 andH3. It is clear from the above equation, unlike
in the classical theory the directional Hubble rates in
effective loop quantum dynamics are always bounded.
The Hamilton equation for connection components can

be derived in a similar way. As an example, for c1 one
obtains

4In order to compare with earlier works (for e.g. equations in
Refs. [30,38]), in our convention �	i correspond to often used �	0

i.
5This is in contrast to other proposals for quantization of

Bianchi-I spacetimes such as in Ref. [41] and those motivated
by lattice refinement considerations [42]. As emphasized in
Ref. [30], since the effective dynamics in these models is not
invariant under the change in shape of the fiducial cell, they lack
predictive power. It turns out that in the effective dynamics of
these proposals the expansion factor and shear are also un-
bounded, even if one fixes the fiducial cell.
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_c1 ¼ 8�G�
@Heff

@c1

¼ 1

2p1��
½c2p2 cosð �	2c2Þðsinð �	1c1Þ þ sinð �	3c3ÞÞ þ c3p3 cosð �	3c3Þðsinð �	1c1Þ þ sinð �	2c2ÞÞ

� c1p1 cosð �	1c1Þðsinð �	2c2Þ þ sinð �	3c3ÞÞ � �	1p2p3½sinð �	2c2Þ sinð �	3c3Þ þ sinð �	1c1Þ sinð �	2c2Þ

þ sinð �	3c3Þ sinð �	1c1Þ�� þ 8�G�

ffiffiffiffiffiffiffiffiffiffiffi
p2p3

p1

s �
�

2
þ p1

@�

@p1

�
: (28)

Using (25) with (28) and similar equations for other connection and triad components, it can be shown that matter with
vanishing stress satisfies

d

dt
ðpici � pjcjÞ ¼ 0: (29)

Thus, as in the classical theory ðpici � pjcjÞ is a constant of motion in the effective loop quantum dynamics. However, due
to Eq. (27), unlike in the classical theory the relation (7) is no longer satisfied. A consequence is that in the effective
dynamics

pici � pjcj � VðHi �HjÞ: (30)

In the classical approximation �	ici 	 1, Eq. (27) leads to ci � �li _ai which implies pici � pjcj � VðHi �HjÞ as we
approach the classical scales.

We can now evaluate the shear scalar�2 in the effective description of loop quantum cosmology. Since ðHi �HjÞ are no
longer constant except at the classical scales, we note from Eq. (16) that �2 is not a constant in the effective loop quantum
cosmology . Using the Hamilton equations for pi, a straightforward calculation leads to

�2 ¼ 1

3�2�2
½ðcosð �	3c3Þðsinð �	1c1Þ þ sinð �	2c2ÞÞ � cosð �	2c2Þðsinð �	1c1Þ þ sinð �	3c3ÞÞÞ2 þ ðcosð �	3c3Þðsinð �	1c1Þ

þ sinð �	2c2ÞÞ � cosð �	1c1Þðsinð �	2c2Þ þ sinð �	3c3ÞÞÞ2 þ ðcosð �	2c2Þðsinð �	1c1Þ þ sinð �	3c3ÞÞ
� cosð �	1c1Þðsinð �	2c2Þ þ sinð �	3c3ÞÞÞ2�: (31)

This implies that �2 defined via Eq. (19) is not a
constant of motion in the effective loop quantum dynamics.
Nevertheless, it is clear that �2 is bounded above by a
fundamental value in loop quantum cosmology. A detailed
analysis of the behavior of anisotropy and energy density
will be done else where. It is worth pointing out some of
the notable features of the effective dynamics. These in-
clude:

(i) Unlike the bounce in the isotropic model, due to the
presence of anisotropies the energy density at the
bounce may be less than �max. In fact it is possible
for the bounce to occur with � ¼ 0. In this case the
bounce occurs purely because of interplay of quan-
tum geometric effects with anisotropy.

(ii) The maximum value of the anisotropic shear at the
bounce is

�2
max ¼ 4

3�2�2
: (32)

(iii) It is also possible for the effective dynamics to
saturate Eq. (24) at the bounce. However, in that
case anisotropy vanishes at the bounce.

These featuresthe exhibit richness of the effective dy-
namics in the Bianchi-I model. They result due to incor-
poration of quantum geometry effects in the effective
Bianchi-I spacetime. When the components of the space-
time curvature become large, there are significant depar-
tures from the classical theory. When these components are
small compared to the Planck scale then dynamical equa-
tions approximate their classical counterparts and one
recovers the classical description. It is important to note
that the upper bounds on the energy density, shear, and
Hubble rate are direct consequences of the underlying
quantum geometry. In the classical limit � ! 0, �max,
Hmax, and �max diverge and the evolution is singular. The
boundedness of these quantities plays the crucial role to
construct nonsingular ekpyrotic/cyclic model as we discuss
in the following section.

IV. EVOLUTION WITH THE CYCLIC POTENTIAL

In the previous section we analyzed the effective dy-
namics of the Bianchi-I model in loop quantum cosmology
for matter with vanishing anisotropic stress. An important
feature of quantum geometry modified dynamics turns out
to be singularity resolution. We showed that the energy
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density, Hubble rates, and shear are always bounded in
loop quantum cosmology independent of the equation of
state of the matter content. This result is very encouraging
for the primary question posed in this work: Is there a
viable nonsingular evolution with the ekpryotic/cyclic po-
tential in the effective loop quantum cosmology? We now
explore the answer to this question.

Let us first briefly recall some of the salient features of
the ekpyrotic/cyclic model which is motivated by the M-
theory. It is hypothesized that the observable Universe is
constrained on a visible brane which interacts gravitation-
ally with a shadow brane. The collision between these
branes constitutes the big bang/big crunch singularities
for the observable Universe in the 4-dimensional effective
description. The interbrane separation is determined by a
moduli field (�) and the interaction potential is given by
[8]

V ¼ Voð1� e��1�Þ expð�e��2�Þ; (33)

where Vo, �1, and �2 are the parameters of the potential.
An attractive feature of the ekpryotic/cyclic models is

the different roles which the moduli plays in various
epochs. When the branes approach each other, the moduli
field moves slowly in an almost flat and positive part of the
potential which in the effective 4-dimensional description
leads to a period of dark energy domination. Eventually
when the potential energy of the moduli balances the
Hubble expansion rate, the moduli field turns around and
the interbrane separation starts decreasing leading to a
contracting phase in the Universe. When the branes ap-
proach each other, the moduli potential is steep and nega-
tive leading to an ultrastiff equation of state, i.e. w> 1. It
turns out that this feature leads to a decrease in the anisot-
ropy of the Universe at small scale factors [39]. The ultra-
stiff equation of state is also responsible for producing a
scale invariant spectrum of fluctuations with a significant
nongaussian contribution [43]. The latter serves as a dis-
tinct prediction to the inflationary scenarios, and is avail-
able for test in the near future. The branes collide at
� ¼ �1 which follows their separation and running of
the moduli field towards the positive value of potential,
leading to a cyclic phenomena. Thus, the 4-dimensional
effective dynamics description of the ekpyrotic/cyclic
model is very rich and interesting.

A primary issue in the ekpyrotic/cyclic model is to
understand the transition from the contracting to the ex-
panding branch. This transition must be nonsingular and is
vital to propagate the perturbations generated prior to the
collision of the branes to the regime following the colli-
sion. In the 5 dimensional picture, the bulk spacetime near
the collision of the branes appears as a compactified Milne
space and it has been argued that the resulting singularity is
milder than the conventional big bang/crunch singularity
[44]. Further, in this picture it may be possible to match the
perturbations across the transition [13]. This however re-

sults in the mixing of the modes with a strong sensitivity of
predictions to the process of transition which ignores
quantum gravitational effects. Other ideas to understand
this transition have been proposed including perturbative
string theoretic treatment [45] and AdS/CFT correspon-
dence [14,15]. Though promising directions to explore,
these reveal little about the transition from the contracting
to the expanding branch in the 4-dimensional effective
theory. If one assumes that the 4-dimensional effective
theory has no inputs from a theory beyond GR, this diffi-
culty is not surprising. The reason is that in GR such a
nonsingular turn-around is forbidden unless matter violates
the null energy condition. Though it is not possible to have
this violation in the ekpyrotic/cyclic models, a variant of
these has been proposed in form of a new ekpyrotic model
[46,47] which includes a ghost condensate. The latter is
responsible for the violation of a null energy condition and
can result in a bounce. Whether such a nonsingular bounce
is a generic feature of this model and is not affected by the
instabilities is not an open issue. Further, it is not clear
whether the 4-dimensional effective picture with a ghost
condensate as conjectured in this model is valid at high
energies of interest [48].
Given that nonperturbative quantum geometric modifi-

cations and their role in singularity resolution is well
understood in the homogeneous models of loop quantum
cosmology, we now explore the effective 4-dimensional
loop quantum dynamics of the moduli field to understand
the transition from the contracting to the expanding branch.
An underlying assumption of such an analysis is the treat-
ment of the potential (33) as an effective one for the field�
in four spacetime dimensions. This enables us to use
effective equations derived in the previous section with �
as the source of matter. An investigation on these lines was
carried out earlier with an additional assumption that the
spacetime be isotropic [35]. Its main conclusions were:
(i) The big bang/big crunch singularity is generically

avoided irrespective of the choice of the parameters
of the potential and initial conditions for the field �.

(ii) However, it is not possible in the isotropic effective
loop quantum description for the field � to turn
around from � ¼ �1. Thus a cyclic evolution as
envisioned in the ekpyrotic/cyclic model paradigm
was not possible in the isotropic loop quantum
cosmology.6

It should be noted that the absence of the turn-around of
� from large negative values is not a limitation of the loop
quantum dynamics, but is a feature shared also by the
classical theory. This can be easily seen from the classical
Friedmann equation for the isotropic model. For simplicity

6If the interbrane potential is modified such that it is positive
for large negative values of �, then the turn-around of the field
and a cyclic description is possible [35]. A modification to the
cyclic potential as proposed in the bicyclic scenario [36] would
hence result in a desired nonsingular evolution.
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let us assume that the only contribution to the matter
energy density originates from the moduli field

H2 ¼ 8�G

3
��; (34)

where

�� ¼ 1
2
_�2 þ Vð�Þ: (35)

For the moduli field to turn around it is essential that _�
must vanish. Using (35) in (34) we get

_� 2 ¼ 2

�
3

8�G
H2 � Vð�Þ

�
: (36)

It is clear that a turn-around of the field is not possible
when the potential is negative. Since in the ekpyrotic/
cyclic model the potential is negative (and asymptotes to

zero) when the branes are supposed to collide, _� can not
vanish and the moduli can not turn around. The presence of
additional energy density components such as radiation is
unlikely to affect this conclusion. The reason being that in
the vicinity of brane collision (a ! 0), the dominant con-
tribution to the energy density comes from the kinetic
energy of the moduli.

Interestingly, the above situation changes if the space-
time has a nonvanishing anisotropic shear. In this case, the
classical generalized Friedmann equation yields

_� 2 ¼ 2

�
3

8�G

�
H2 � �2

a6

�
� Vð�Þ

�
: (37)

The shear term can be seen as an additional component of
energy density which scales the same way as ��. Thus

depending on the strength of the shear term, it is possible
that � can turn around even when Vð�Þ< 0. However, the
classical theory is singular and the above equation breaks
down when spacetime curvature becomes very large.
Hence, though we get some insights on the possible role
of anisotropic shear to alleviate the above problem, it is not
possible to obtain a nonsingular cyclic evolution without
any additional inputs from quantum gravity or going be-
yond the scope of the classical theory.

Given the nontrivial role the shear term can play in the
dynamics of the moduli field in this model, it becomes
important to analyze the effective loop quantum equations
with anisotropies. For simplicity we assume that the only
contribution to the matter density originates from the field
�. By specifying the H matt corresponding to the cyclic
potential [8] we can derive the dynamics from the
Hamilton equations for ci, pi, the moduli �, and its mo-
mentum p� as obtained in Sec. III. These equations can be

numerically integrated to obtain the behavior of directional
scale factors, the mean scale factor, Hubble rates, energy
density, and the shear [which is calculated from its defini-
tion (16)].

We performed various numerical simulations with dif-
ferent initial data for the moduli field, expansion rates, and

anisotropy. The initial conditions to solve the dynamics
were provided for a contracting universe with small initial
anisotropy and the value of the field � in the positive part
of the cyclic model potential. Since the primary aim of our
analysis is to investigate the resolution of a singularity, we
choose without the loss of generality, parameters and initial
conditions independent of the consideration from the ones
constrained by observations. We now illustrate some nu-
merical results obtained from the effective dynamics.
The first set of the evolution is depicted in Figs. 1–4.

Parameters in the potential (33) were chosen as Vo ¼ 0:02,

�1 ¼ 0:3
ffiffiffiffiffiffiffi
8�

p
, and �2 ¼ 0:09

ffiffiffiffiffiffiffi
8�

p
. (For simplicity we

choose G ¼ @ ¼ c ¼ 1.) Initial conditions for the moduli

field were � ¼ 0:43 and _� ¼ �0:038. Initial conditions
(provided at time t ¼ 0) for the triad and connection
components were p1 ¼ 64, p2 ¼ 72, p3 ¼ 68, c1 ¼
�0:8, c2 ¼ �0:7 with the initial anisotropy �2

i ¼
5:804 07. (The connection component c3 was determined
by solving the Hamiltonian constraint H eff � 0.) These
initial conditions correspond to a contraction of all the
scale factors, i.e. _a1 < 0, _a2 < 0, and _a3 < 0. Figure 1

shows the evolution of the mean scale factor a ¼
ða1a2a3Þ1=3. We find that the mean scale factor undergoes
multiple bounces and recollapses in the Planck regime and
there is a nonsingular evolution from the contracting to the
expanding branch. This is a sharp contrast to the classical
theory where such a transition is forbidden and the con-
tracting and expanding branches are disjointed in the 4-
dimensional description. Interestingl, as depicted in the
Fig. 2 we also obtain a turn-around of the moduli field.
The moduli starts from the positive part of the potential

a

FIG. 1 (color online). The plot of the mean scale factor (in
Planck units), a ¼ ða1a2a3Þ1=3 is shown for the initial conditions
(all values in Planck units) � ¼ 0:43, _� ¼ �0:038, p1 ¼ 64,
p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:8, c2 ¼ �0:7, and �2 ¼ 5:804 07.
The mean scale factor experiences multiple small bounces as a
result of bounces of the individual scale factors (ai). Unlike the
classical theory, there is a nonsingular transition from the con-
tracting to the expanding branch.
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when the Universe is contracting, rolls down the negative
region of potential and when the spacetime curvature
reaches the Planck value, it turns around and goes back
to the positive part. In the subsequent evolution the classi-
cal friction term stops the moduli field and it turns around
causing a contraction of the Universe. Thus leading to a
cyclic phenomena. In the above numerical simulation, the
turn-around of the moduli field occurs at approximately
t
 100 (in Planck units) coinciding with the midpoint of
the transition from contraction to expansion of the scale
factor.

Figure 3 shows the evolution of the shear term obtained
by the numerical integration. We find that the shear term
varies significantly from its classical value in the region

where the transition occurs. However, it is everywhere
bounded and does not affect the occurrence of bounces.
As discussed earlier, due to the property of evolution of the
shear in loop quantum cosmology, the value of the shear
scalar in the low curvature regime before and after the
transition turns out to be the same. Also for this numerical
run, the shear scalar is very small when the moduli field
turns around. We also find that the behavior of �2 consists
of spikes in the Planck regime where the mean scale factor
of the Universe undergoes multiple bounces. Using the
expression of the shear factor [obtained from (16) and
(19) for loop quantum evolution], the cause of these spikes
turns out to be due to rapid variation in the Hubble rates in
different directions occurring during multiple bounces.
This is illustrated in Fig. 4 where we have shown the
behavior of the directional Hubble rate in the x direction
(The directional Hubble rates in other directions have
similar behavior.) As can be seen the spikes in the shear
scalar coincide with the spikes in the directional Hubble
rates which occur due to multiple bounces and recollapses
of anisotropic scale factors in the Planck regime.
Another example of results obtained from numerical

integration are shown in Figs. 5–8. The parameters of the

potential (33) were chosen as Vo ¼ 0:01, �1 ¼ 0:3
ffiffiffiffiffiffiffi
8�

p
,

and�2 ¼ 0:09
ffiffiffiffiffiffiffi
8�

p
. The initial conditions specified at time

t ¼ 0were� ¼ 0:4, _� ¼ �0:03, p1 ¼ 64, p2 ¼ 72, p3 ¼
68, c1 ¼ �0:6, c2 ¼ �0:5, and�2 ¼ 9:2365. These initial
conditions correspond to two of the anisotropic directions
contracting ( _a1 < 0, _a2 < 0) and one expanding ( _a3 > 0).
To understand the nontrivial role played by the anisotropic

FIG. 4 (color online). The variation in the directional Hubble
rate H1 is plotted for the initial data in Fig. 1. The spikes reflect
the bounces and recollapses of individual scale factors in the
Planck regime during the transition from the contracting to the
expanding branch.

(Σ  )log 2

FIG. 3 (color online). The plot shows the variation of the shear
�2 in the transition region from the contracting to the expanding
branch for the initial conditions in Fig. 1. Considerable variation
for a short period before and after the bounce is evident from the
spikes in value of logð�2Þ. We also see that in the classical
regimes at both small and large values of t, the shear approaches
similar values.

φ

FIG. 2 (color online). The evolution of the moduli field in
Planck units is shown for the initial conditions in Fig. 1. The
moduli field starts from a positive region of the potential, rolls to
the negative part, and turns around in the Planck regime. After
the turn-around the moduli again reaches the positive part of the
potential, ready for another cycle.
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term we also performed an analysis of the evolution in the
isotropic loop quantum model for the same initial condi-
tions for the moduli field and the isotropized initial con-
ditions for triad and connection. In Fig. 5 we have shown
the evolution of the scale factor in the present model (solid
curve) and the isotropic model (dashed curve). We find that
the bounce of the scale factor is present both in the pres-
ence and absence of anisotropy. The loop quantum evolu-
tion with the cyclic potential is thus nonsingular with or
without anisotropy. Figure 6 shows the evolution of the
moduli field and we find that as for the previous case
(Fig. 2) there is a turn-around of the moduli field from
the negative values of the potential to the positive part
resulting in a cyclic phenomena. As before, the turn-around
of the field occurs at the midpoint of the transition of the
mean scale factor from the contracting to the expanding
branch. Figure 6 also shows that for the same initial con-
ditions the turn-around of the moduli is absent for the
isotropic model. Thus, anisotropies play a very important
role to obtain a nonsingular viable cyclic description.

The evolution of the shear and energy density are de-
picted in Figs. 7 and 8. We see that the shear term under-
goes a significant variation in the region of nonsingular
transition but remains bounded. The spikes in the variation
correspond to the spikes in the directional Hubble rates
which occur due to multiple bounces and recollapses of the
scale factors ða1; a2; a3Þ. Further, its value before and after
the transition is preserved. Unlike the previous case in
Fig. 2, the shear scalar is not small at the turn-around of
the moduli field but shows a spike. The behavior of the
energy density is shown in Fig. 7 which demonstrates that
at the bounces of the directional scale factors (associated
with the occurrence of spikes) the energy density does not
saturate to its maximum value, a feature due to the non-

vanishing anisotropy at the bounces. In contrast, the energy
density at the bounce in the isotropic model always reaches
its maximum value, �crit ¼ 0:41�Pl at the bounce.
In both of the previous simulations, though the initial

anisotropic shear is small it is nevertheless of the same
order. An interesting question which arises is whether the
nonsingular transition of the scale factor and the turn-
around of the moduli field occurs if the shear is decreased.
It is to be noted that as shown in Ref. [30] the loop
quantization of Bianchi-I model leads to an upper bound
on the expansion rate and anisotropic shear. These bounds
are generic and independent of initial conditions for the
matter content. The upper bound on the expansion rate
implies that the mean scale factor would always bounce for
the Cyclic model potential as the classical singularity is

φ

FIG. 6 (color online). The evolution of the moduli field is
compared for the initial conditions in Fig. 5 for the anisotropic
(blue solid curve) and isotropic (red dashed curve) model. As in
Fig. 2 the moduli field turns around in the presence of anisotro-
pies in the Planck regime and leads to a nonsingular cyclic
model. It fails to turn around, and approaches � ¼ �1, in the
absence of anisotropies in confirmation with results of Ref. [35].

a

FIG. 5 (color online). The plot shows the evolution of the scale
factor in the presence (solid curve) and absence (dashed curve)
of anisotropy for initial conditions � ¼ 0:4, _� ¼ �0:03, p1 ¼
64, p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:6, c2 ¼ �0:5, and �2 ¼
9:2365. The classical singularity is avoided in both the cases.

Σ2

FIG. 7 (color online). The shear scalar � is plotted for the
numerical run in Fig. 5. We see that its value is preserved before
and after the transition period. The shear term is bounded across
the evolution with spikes corresponding to multiple bounces and
recollapses of the individual scale factors.
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approached. Further, from the discussion of the classical
theory we recall that the turn-around of moduli field would
require appropriate choice of initial conditions of the scalar
field and anisotropy. In various simulations which we
performed, we found that there exists a large range of
initial data for which the turn-around of moduli field can
occur even for very small anisotropies. Results from one
such example are depicted in Figs. 9 and 10. We chose the
same values of parameters as in previous simulations. The
initial values are p1 ¼ 64, p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:6,
c2 ¼ �0:532, and�2 ¼ 0:8517. As can be seen from these
plots a significant decrease in the initial anisotropy does
not affect the bounce of the scale factor or the turn-around
of the moduli field.

It is interesting to note that in these simulations the
behavior of the mean scale factor and the scalar field seems
symmetric across the middle of the transition from the
contracting to the expanding branch. To understand this
we first note that the weak symmetry of the variation of the
scalar field in the transition regime stems from a lack of

interaction with any other form of matter. We expect that
the presence of additional matter of degrees of freedom
would lead to a pronounced asymmetry. Further, we note
that in the plots we depict the mean scale factor which
actually suppresses the asymmetry of the individual scale
factors across the bounce. This becomes clear if we plot the
anisotropic scale factors as shown in Fig. 10 for the nu-
merical simulation for Fig. 9. In Fig. 11 we show results
from another numerical simulation where the asymmetry
in the mean scale factor is not suppressed. The parameters
are chosen as the same in previous cases and the initial
conditions are p1 ¼ 64, p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:6,
c2 ¼ �0:1, and �2 ¼ 1449:4278. As we can see the be-

FIG. 10 (color online). This plot shows the evolution of differ-
ent scale factors for the simulation corresponding to Fig. 9. We
have plotted the logarithm of directional scale factors. The
darker curve depicts a1 and lighter curve a3. The behavior of
a2 (not shown in the figure) is very similar to that of a1.

ρ

FIG. 8 (color online). The plot of the energy density of the
moduli field in the transition regime is shown. Bounces of the
individual scale factors result in spikes in its behavior. Because
of the presence of nonvanishing anisotropy, the energy density at
these bounces does not need to saturate to its maximum allowed
value.

a
φ

FIG. 9 (color online). The plots of the mean scale factor a and the scalar field � are shown for the initial conditions with very small
anisotropies. These are � ¼ 0:4, _� ¼ �0:03, p1 ¼ 64, p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:6, c2 ¼ �0:532, and �2 ¼ 0:8517.
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havior of the scale factor and the scalar field across the
bounce is not symmetric.

We summarize the main results of the numerical analy-
sis as follows:

(1) Irrespective of the choice of initial conditions, the
classical singularity at a ¼ 0 is generically avoided
in the effective dynamics of loop quantum cosmol-
ogy for the cyclic model potential.

(2) Starting from arbitrary anisotropic conditions, scale
factors in different directions bounce when the
spacetime curvature becomes close to the Planck
value. This causes a bounce of the mean scale factor
in the Planck regime. The shear term remains
bounded during the evolution and it approaches
the constant classical value when spacetime curva-
ture becomes small.

(3) Interestingly, it is not difficult to choose the initial
conditions such that avoidance of the singularity is
accompanied by a turn-around of the moduli field in
the negative regime of the potential. The moduli
then rushes towards the positive part of the potential,
stops at certain positive value of the potential, and
rolls back toward the negative value of the potential.
This leads to a cyclic model of the Universe.

V. SUMMARYAND OPEN ISSUES

The ekpyrotic/cyclic model is a very interesting para-
digm for the early Universe which is considered as an
alternative to the inflationary scenarios. A key issue in
this model is to understand the transition from the con-
tracting to the expanding branch in the 4-dimensional
spacetime picture. In the 5-dimensional picture this tran-
sition corresponds to the collision between boundary
branes in the bulk. Though novel insights have been gained
in the latter phenomenon [14,15,44,45], obtaining a non-
singular transition in the 4-dimensional picture has re-

mained an open issue. Understanding which is important
for various reasons including the way cosmological per-
turbations propagate from the contracting to the expanding
branch. Given the Penrose-Hawking singularity theorems,
a nonsingular transition is not possible in the framework of
classical theory. There are hopes to alleviate this problem
in the classical framework by the introduction of a ghost
condensate, however, the approach has its own limitations
[46,48].
Our analysis is based on the widely accepted notion that

the resolution of singularities involves going beyond the
classical description of gravity. In particular, inputs from
the nonperturbative quantization of gravity may be neces-
sary to avoid singularities. In our approach we have used
the effective spacetime description of loop quantum cos-
mology to analyze the dynamics of the ekpyrotic/cyclic
model. It is a nonperturbative quantization of homogene-
ous spacetimes based on loop quantum gravity and it has
successfully addressed the resolution of cosmological sin-
gularities in various settings [4,6,19,23,24] with a general
picture of the replacement of big bang with big bounce at
the Planck scale. In this work we have focussed on the
resolution of the big bang/crunch singularity in the ekpyr-
otic/cyclic model. Such an investigation has been per-
formed earlier [35]7 using the assumption that the
spacetime be purely isotropic. It was found that though
the 4-dimensional scale factor generically bounces in the
Planck regime a viable cyclic model is not possible due to
lack of a turn-around of the moduli field from the negative
region of the cyclic model potential.
To probe whether the conclusions reached in the pre-

vious work [35] were artifacts of ignoring the anisotropic
shear, we include them in the analysis and investigate the
dynamics with the effective description of loop quantiza-

a

φ

FIG. 11 (color online). These plots depict the evolution of the scale factor and scalar field for the initial conditions: � ¼ 0:4, _� ¼
�0:03, p1 ¼ 64, p2 ¼ 72, p3 ¼ 68, c1 ¼ �0:6, c2 ¼ �0:1, and �2 ¼ 1449:4278. Unlike the previous cases, we find that the
asymmetry in the mean scale factor and the moduli field around the bounce point is enhanced. Note that the moduli field reaches the
positive value for t
 220 before starting a new cycle.

7See also Ref. [49] for an earlier work which ignored mod-
ifications to the gravitational part of the Hamiltonian.
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tion of the Bianchi-I spacetime. Our analysis assumes

vanishing intrinsic curvature (whose consequences are dis-
cussed below) and the moduli field as the only source of the
matter energy density. The effective dynamical equations

are complicated to solve analytically due to which various
numerical simulations were performed with different
choices of the parameter of the cyclic model potential
and initial conditions. We find that the Universe undergoes
a nonsingular transition from the contracting to the ex-
panding branch accompanied by small multiple bounces
for individual scale factors in the Planck regime. In con-
trast to the previous results, we find that it is possible to
easily choose initial conditions such that the moduli field
turns around from the negative part of the potential in the
Planck regime. Thus leading to a potentially viable non-

singular ekpyrotic/cyclic model without introduction of
any exotic matter. This is the novel result of our analysis.

It should be noted that the anisotropies play a very
nontrivial role to obtain a nonsingular cyclic model in
our analysis. At first sight it seems perplexing because in
the ekpryosis phase, which occurs when the moduli field is
in the steep negative region of the potential, anisotropies
become small and the Universe evolves towards an iso-
tropic phase. However as we demonstrated, even though
anisotropies may become very small during the evolution,
their nonzero value is important to turn around the moduli

field in the negative part of the potential. Recall that such a
turn-around is not possible even for the classical theory in

the absence of anisotropies. Hence the loop quantum evo-
lution successfully leads to a turn-around of the scale factor
and the moduli without affecting the nice features of the

ekpyrotic/cyclic model.
There remain several open questions which require fur-

ther investigations. One of them deals with generalizing
our model to include the intrinsic curvature of the space-
time which will require studying loop quantization of

spacetimes such as Bianchi-IX. It will also help in obtain-
ing insights on the Belinski-Khalatnikov-Lifshitz behavior
in loop quantum cosmology and whether it affects the
conclusion reached in this work. A second issue is to
gain more analytical control on the effective dynamics of
the anisotropic loop quantum cosmology. Because of its
complexity it is difficult to obtain an analog of generalized
Friedmann equations with the shear term in loop quantum
cosmology, however, various insights have been obtained
on general features of the effective dynamics. These in-
clude, showing that the expansion parameter and the shear
term are universally bounded [30]. Further analytical stud-
ies in this direction on the ekpyrotic/cyclic model will be
reported elsewhere. It will also be useful to understand the
full loop quantum dynamics with the cyclic potential and
compare them with the effective dynamics treatment as
done presently. Also in order to have a more realistic
ekpyrotic/cyclic model, it is important to include radiation,
and study its interaction with the moduli field and its
influence on the nonsingular transition obtained in this
work. Finally, it is an open problem to introduce inhomo-
geneities in our framework and understand the role of
quantum gravitational effects on their propagation through
the bounce. Recent results on the study of Fock quantized
inhomogeneous modes on the loop quantum spacetime are
encouraging in this respect [50]. It is quite possible that
incorporation of these inhomogeneities may reveal subtle
imprints of quantum gravity on the predictions of the
ekpyrotic/cyclic model.
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