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We consider the Freund-Rubin-Englert mechanism of compactification of N ¼ 1 supergravity in 11

dimensions. We systematically investigate both well-known and some new solutions of the classical

equations of motion in 11 dimensions. In particular, we show that any threeform potential in 11 dimension

is given locally by the structure constants of a geodesic loop in an affinely connected space.
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I. INTRODUCTION

The Kaluza-Klein mechanism of spontaneous compac-
tification works as follows [1–4]. The equations describing
gravity and matter fields in d dimensions are considered. A
vacuum solution of the equations in which d-dimensional
spacetimeM is of the formM4 � K is searched. HereM4 is
a maximally symmetric four-dimensional space (de Sitter
space, anti–de Sitter space or Minkowski space) and K is a
compact manifold (as a rule this is an Einstein space). The
representation ofM in the form of a direct product induces
the block diagonal form of the vacuum metric

gMN ¼ g�� 0
0 gmn

� �
; (1)

where g�� and gmn are components of gMN defined on M4

and K, respectively. In one’s turn, the block representation
of gMN is compatible with the Einstein equations

RMN � 1
2gMNR ¼ TMN ��gMN; (2)

if components of the energy-momentum tensor of matter
fields are

T�� ¼ k1g��; Tmn ¼ k2gmn: (3)

If we consider the interaction of gravity with matter fields
without the potential term gMNVð’Þ, then T00 > 0 and the
constant k1 is negative. In addition, if the cosmological
constant� ¼ 0, then it follows from (3) thatM4 is an anti–
de Sitter space. On the contrary, if TMN contains the
potential term, then the solution ’ ¼ const is equivalent
to the introduction of the � term and the spaceM4 may be
flat [5,6].

Now we briefly consider the Freund-Rubin-Englert
mechanism [7,8] of spontaneous compactification of d ¼
11 supergravity. In the Bose sector of this theory the
equations of motion (Einstein equations and equations
for the antisymmetric gauge field strength) have the form
[9]

RMN � 1
2gMNR ¼ 12ð8FMPQRFN

PQR � gMNFSPQRF
SPQRÞ;

(4)

FMNPQ
;M ¼ �

ffiffiffi
2

p
24

"NPQM1...M8FM1M2M3M4
FM5M6M7M8

; (5)

where "M1...Mr is a fully antisymmetric covariant constant

tensor such that "1...r ¼ jgj1=2. The Freund and Rubin
solution [7] is

F���� ¼ �"����; (6)

where � is a real constant, and all other components of
FMNPQ are zero. A more composite solution is obtained if

we assume that FMNPQ � 0 not only for the spacetime

components, assuming the Freund-Rubin form, but also
for the internal space components. Such solutions (Englert
solution [8]) were first constructed on the sphere S7 with
torsion. The Englert solution is to set

F���� ¼ �"����; (7)

Fmnpq ¼ �@½qSmnp�; (8)

where Smnp ¼ S½mnp� is a suitable totally antisymmetric

torsion tensor.
Note that the connection between an antisymmetric

gauge field strength and a torsion defined by (8) has an
universal character in the 11-dimensional supergravity.
Bars and McDowell [10] have shown that the gMN=AMNP

gravity-matter system may be reinterpreted, in first-order
formalism, as a pure gravity theory with torsion SMNP such
that

AMNP ¼ �S½MNP�; (9)

FMNPS ¼ @½SAMNP�: (10)

In this sense, even the Abelian gauge invariance of AMNP

may be regarded as a spacetime symmetry of pure gravity.
Besides, the deformation,

�
�
MNP ! �

�
MNP þ S½MNP�; (11)

of the Riemann connection converts M into an affinely*ek.loginov@mail.ru
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connected space with torsion. Note that such an interpre-
tation is possible only for three-index fields since the
torsion tensor is rank 3.

II. PRELIMINARIES

Out next goal is to think about algebraic properties of the
threeform potential and its field strength. The requisite
concepts are geodesic loops in an affinely connected space
and its tangent algebras. In [11] Kikkawa introduced the
idea of a geodesic loop in an affinely connected space. In
that article it is proved that in a neighborhood of each point
of an affinely connected space we can define, in a natural
way, the operation of multiplication, relative to which
this neighborhood becomes a local loop. Let us recall
Kikkawa’s construction.

Let M be an affinely connected space and e an arbitrary
point in it. In a neighborhood of this point, we introduce a
binary operation as follows. Let x and y be two points
belonging to this neighborhood. We connect them to the

point e by geodesic lines ex
_

and ey
_
. Then we translate the

arc ex
_

in a parallel way into the position yz
_
. The point z is

then by definition the product of the points x and y, i.e. z ¼
xy. We denote the obtained binary system by the symbol
Ge. It is easy to prove that e is the unity element of Ge, the
equations ax ¼ b and ya ¼ b are uniquely solvable for all
a, b 2 Ge, and Ge satisfies the identity

xx2 ¼ x2x: (12)

Thus, Ge is a local monoassociative loop. The loop Ge

is said to be a geodesic loop of the affinely connected
space M.

To study geodesic loops in affinely connected spaces we
may use a method which is usually employed to study the
local structure of Lie groups. Despite the lack of associa-
tivity in geodesic loops, this method enables us to uniquely
define binary ½x; y� and ternary ðx; y; zÞ operations in their
tangent spaces Te and to construct the local algebras
[12,13]. These operations are expressed in terms of the
coordinates of the vectors x, y, z 2 Te as follows:

½x; y�i ¼ 2�i
jkx

jyk; (13)

ðx; y; zÞi ¼ 2�i
jklx

jykzl: (14)

If �i
jk ¼ 0, then the corresponding geodesic loop Ge is

Abelian, if �i
jkl ¼ 0, then the loop Ge is associative, i.e. it

is a local Lie group. The tensors �i
jk and �

i
jkl are called the

fundamental tensors of the geodesic loop Ge [14]. They
satisfy the relation

�i
½jkl� ¼ �m

½jk�
i
l�m; (15)

which follows from (12). The right-hand side of the rela-
tion is obtained from the Jacobiator of the vectors x, y, and

z. This is the reason that relation (15) is called the gener-
alized Jacobi identity.
Now suppose M is an affinely connected space with

torsion and �i
jk is a metric-compatible affine connection,

the difference with the Levi-Civita connection is given by
the contortion tensor. It is easy to prove that Sijk ¼ S½ijk�.
Therefore

�ijk ¼ �
�
ijk þ Sijk (16)

is a metric-compatible affine connection with skew-
symmetric torsion. We choose the torsion and curvature
tensors of M in the form

Sijk ¼ �i
½jk�; (17)

Ri
jkl ¼ @k�

i
jl � @l�

i
jk þ �m

jl�
i
mk � �m

jk�
i
ml: (18)

It is known [14] that for any geodesic loop constructed in a
neighborhood of e 2 M, the fundamental tensors can be
expressed using values of the torsion and curvature tensors
in e by the formulas

�i
jk ¼ �Sijk; (19)

4�i
jkl ¼ �2rlS

i
jk � Ri

jkl: (20)

Thus, noncommutativity and nonassociativity of the local
geodesic loops are intimately related to torsion and curva-
ture of the space M. Note that the formulas (19) and (20),
full antisymmetry of the torsion tensor, and the Bianchi
identities

Ri
½jkl� þ 2r½jSikl� þ 4Sm½jkS

i
l�m ¼ 0; (21)

r½kRij
lm� � 2Rij

n½kS
n
lm� ¼ 0; (22)

will play an important part in following constructions.
Note also that the first Bianchi identity (21) is obtained if
we substitute (19) and (20) in the identity (15).

III. THE FREUND-RUBIN TYPE SOLUTIONS

In this section, we begin an analysis of the M4 � K
compactification of d ¼ 11 supergravity. We consider the
Bose sector of this theory as a pure gravity theory with
torsion. We show that the torsion is given locally by
structure constants of a geodesic loop. Then we apply
this result to an analysis of the Freund-Rubin solution.

A. Geodesic groups

We consider the M ¼ M4 � K compactification of d ¼
11 supergravity. Obviously, M is a Riemann space with a
metric of the block diagonal form (1). We deform the
Riemannian connection by the rule (16) and convert M
into an affinely connected space with a fully antisymmetric
torsion tensor Sijk. Since the projections M4 � K ! M4
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and M4 � K ! K are Riemannian submersions, we can
construct objects inM by pulling back the objects fromM4

and K along these projections. In particular, we consider
geodesic loops in M4 and in K separately in order to later
pull them back to M in this way.

Suppose e is an arbitrary point in M4 or K. In a neigh-
borhood of this point, we define a geodesic loop Ge. Then
using the full skew-symmetry of Sijk, we rewrite the ten-

sors (19) and (20) in the form

�ijk ¼ �Sijk; (23)

4�ijkl ¼ �2Sijk;l þ 6Sm½ijSkl�m � Rijkl: (24)

Now suppose the loop Ge is associative. Then we have the
identities

�ijkl ¼ 0; (25)

�m
½jk�

i
l�m ¼ 0; (26)

instead of (15). It follows from here that the tangent
algebra AG of the local loop Ge in the point e is a Lie
algebra. We prove that this algebra is compact if e 2 K.
Indeed, we choose the basic feig in AG such that

½ei; ej� ¼ �ij
kek; (27)

and define the bilinear form

ðei; ejÞ ¼ gij: (28)

Using the full skew-symmetry of �ijk, we prove the equal-

ity

ð½ei; ej�; ekÞ ¼ ðei; ½ej; ek�Þ: (29)

If the point e 2 K, then the inner product (28) is Euclidean
and hence it is positive definite. Therefore the Lie algebra
AG is compact. It is well known (see e.g. [15]) that any
compact Lie algebra is reductive, and hence isomorphic to
the direct sum of a semisimple Lie subalgebra and the
center, which is Abelian. Therefore if the algebra AG is
non-Abelian, then we have one of the following isomor-
phisms:

AG ’ suð2Þ � suð2Þ � uð1Þ;
AG ’ suð2Þ � uð1Þ � uð1Þ � uð1Þ � uð1Þ: (30)

If the point e 2 M4, then the inner product (28) is
Lorentzian. The classification of Lorentzian metric Lie
algebras is known [16]. Any such algebra is isomorphic
to one of the following metric Lie algebras:

(1) Abelian with Lorentzian inner product,
(2) suð2Þ � uð1Þ with a timelike inner product on uð1Þ,
(3) suð1; 1Þ � uð1Þ with Lorentzian inner product on

suð1; 1Þ and Euclidean on uð1Þ,
(4) the Nappi-Witten solvable Lie algebra [17].

We find an explicit form of the Lie brackets (27) for the
above Lie algebras. Obviously, the algebra AG is Abelian if
and only if all �ijk ¼ 0. Suppose 1, 2, and 3 are spatial

indexes. Then

AG ’ suð2Þ � uð1Þ if only �123 � 0;

AG ’ suð1; 1Þ � uð1Þ if only �124 � 0:
(31)

In order that to find the Lie brackets for the Nappi-Witten
Lie algebra, we note that the algebra has the following
explicit description:

½J; Pi� ¼ "ijPj; ½Pi; Pj� ¼ "ijT;

½T; J� ¼ ½T; Pi� ¼ 0:
(32)

This algebra is a central extension of the d ¼ 2 Poincaré
algebra to which it reduces if one sets T ¼ 0. We suppose

ei ¼ Pi; e3 ¼ J � T; e4 ¼ J: (33)

Then it is easily shown that

�123 ¼ �124 ¼ 1; �134 ¼ �234 ¼ 0: (34)

Thus, if the group Ge is non-Abelian, then any nonzero
torsion defined in the point e 2 K or M4 is given by
structure constants of the algebras (30) or (31) and (32)
respectively. It follows from (9) that it is true for any
threeform potential with components that take nonzero
expectation values in M4 or K.
Now, we consider the identities (23) and (24). Since the

curvature tensor Rijkl is skew symmetric in the last two

indexes and the torsion tensor is fully antisymmetric, it
follows from (24) that

� Rijkl ¼ 2Sijk;l ¼ 2@½lSijk�: (35)

Hence the tensor Rijkl also is fully antisymmetric. We sum

the Bianchi identity on the indexes i, m and use the anti-
symmetry of Sijk and Rijkl. Then we get

Ri
jkl;i ¼ Sin½jR

n
kl�i: (36)

It follows from the identities (26) and (35) that

Ri
jkl;i ¼ �2Sin½jS

n
kl�;i ¼ 0: (37)

Since the threeform potential and its gauge field strength
are connected with the torsion by the relations (9) and (10),
we get

Fijkl
;i ¼ 0: (38)

Thus, if we consider the Bose sector of d ¼ 11 supergrav-
ity as a pure gravity theory with torsion, then the gauge
field strength must satisfy Eq. (38).
Further, suppose e is an arbitrary point inM4 andGe is a

geodesic group defined in a neighborhood of e. Using (16),
we represent the curvature tensor (18) in the form
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Ri
jkl ¼ R

�
i
jkl þ ðSijl;k � Sijk;l þ SmjlS

i
mk � SmjkS

i
mlÞ: (39)

Since the tensor Sijk is fully antisymmetric, it follows from

(35) that the Ricci tensor

R
�

ij ¼ SmikS
k
mj: (40)

Suppose the tangent Lie algebra AG is non-Abelian. Then it
is isomorphic to one of the algebras (31) and (32).
Therefore in a suitable local coordinate system the compo-
nents of �ijk satisfy to one of the conditions (31) and (34).

Then it follows from (40) that components of the Ricci
tensor in the point e have the form

R
�

i4 ¼ 0; R
�

i3 ¼ 0; or R
�

i1 ¼ R
�

i2 ¼ 0: (41)

Since the metric gij is nondegenerate, it follows from here

that R
�

ij � �gij if � is nonzero, i.e. the spacetime M4 is

non-Einstein. Now suppose Ge is a non-Abelian geodesic
group defined in a neighborhood of e 2 K. Using the
isomorphisms (30) and arguing as above, we easy prove
that the internal space K is non-Einstein. Thus, if M ¼
M4 � K is an Einstein space, then the geodesic loop de-
fined in a neighborhood of any point of M is either non-
associative or it is an Abelian group. It follows from here
that there is no Freund-Rubin background M4 � K of 11-
dimensional supergravity where M4 and K are Lie groups
with bi-invariant metric. This, of course, is a known result.

B. The Freund-Rubin Ansatz

Now we start to analyze the Freund-Rubin solution.
Suppose M4 is a four-dimensional Riemann spacetime of
signature ðþ þþ�Þ. We deform the Riemannian connec-
tion by the rule (16) and convert M4 into an affinely
connected space with a fully antisymmetric torsion tensor
Sijk. Let e be an arbitrary point inM4. In a neighborhood of

this point, we define a geodesic loop Ge and consider the
right-hand side of the identity (15). Since the tensor �ijk ¼
gis�

s
jk is fully antisymmetric and its indices take only four

different values, we have

�m
½jk�

i
l�m ¼ 0; (42)

�i
½jkl� ¼ 0; (43)

instead of (15). It follows from (42) that with respect to the
operation of commutation the tangent algebra AG is a Lie
algebra. Suppose the algebra AG is non-Abelian. Then
arguing as above, we see that it has the form (31) or (32).
Thus, any nonzero torsion in e 2 M4 is given by the
structure constants of these algebras. It follows from (9)
that it is true for any threeform potential with the compo-
nents taking nonzero expectation values in M4. Note that
the similar assertion for S7 torsion and the Cayley structure

constants was proved in [18], where the Englert’s solution
[8] was analyzed.
Antisymmetrizing the curvature tensor (39) on i, j, and

k, we get

R½ijkl� ¼ �2Sijk;l ¼ �2@½lSijk�: (44)

Hence the gauge field strength

Fijkl ¼ �0R½ijkl�: (45)

Substituting Fijkl in the Bianchi identity (22) and summing

on i and m, we obtain

Fi
jkl;i ¼ Sin½jF

n
kl�i: (46)

Since the tensor indices in (46) take only four different
values, the covariant derivative

Fijkl;m ¼ 0: (47)

Hence, the gauge field strength Fijkl is proportional to the

fully antisymmetric covariant constant 4 tensor, i.e. it must
have the form (6). Note that this assertion is true for any
four-dimensional Riemann spacetime of Lorentzian signa-
ture. Indeed, using the full skew symmetry of Sijk, the

Jacobi identity (42), and the equality (39), we may repre-
sent the fundamental tensor (20) in the form

4�ijkl ¼ SmijSklm � R
�

ijkl: (48)

Since the Riemannian curvature tensor is satisfied, the
Bianchi identity

R
�

i
½jkl� ¼ 0; (49)

and the conditions (42) and (43) do not impose any re-
strictions on the spacetime M4.

IV. THE ENGLERT’S TYPE SOLUTIONS

In this section, we continue the investigation of theM ¼
M4 � K compactification of d ¼ 11 supergravity. We
again consider the Bose sector of this theory as a pure
gravity theory with torsion. However now we suppose that
the matter fields have nonvanishing components in the
internal space K. We analyze the Englert’s type solutions
and prove that the torsion is given locally by the Cayley
structure constants.

A. Geodesic Moufang Loops

We recall (see i.e. [19]) that the algebra O of octonions
(Cayley algebra) is a real linear algebra with the canonical
basis 1, e1; . . . ; e7 such that

eiej ¼ ��ij þ cijkek; (50)

where the structure constants cijk are completely antisym-

metric and nonzero and equal to unity for the seven combi-
nations (or cycles)
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ðijkÞ ¼ ð123Þ; ð145Þ; ð167Þ; ð246Þ; ð275Þ; ð374Þ; ð365Þ:
The algebra of octonions is not associative but alternative,
i.e. the associator,

ðx; y; zÞ ¼ ðxyÞz� xðyzÞ; (51)

is totally antisymmetric in x, y, z. The algebra O permits
the involution (antiautomorphism of period two) x ! �x
such that the elements

tðxÞ ¼ xþ �x and nðxÞ ¼ �xx (52)

are in R. It is easy to prove that the quadratic form nðxÞ is
positive definite and permits the composition

nðxyÞ ¼ nðxÞnðyÞ: (53)

It follows from here that the set

S ¼ fx 2 O j nðxÞ ¼ 1g (54)

is closed relative to the multiplication in O and hence it is
an analytic loop. The loop S is the unique, up to isomor-
phism, analytic compact simple nonassociative Moufang
loop. The tangent algebra of S is isomorphic to the seven-
dimensional commutator subalgebra

M ¼ fx 2 Oð�Þ j tðxÞ ¼ 0g: (55)

The algebra M is the unique compact simple non-Lie
Malcev algebra and it satisfies the identity

½½x; y�; z� þ ½½y; z�; x� þ ½½z; x�; y� ¼ 6ðx; y; zÞ: (56)

The algebra M has the canonical basis e1; . . . ; e7. Using
(50) we can find the commutators and associators of the
basis elements

½ei; ej� ¼ 2cijkek; (57)

ðei; ej; ekÞ ¼ 2cijklel; (58)

where cijkl is a completely antisymmetric nonzero tensor

equal to unity for the seven combinations

ðijklÞ ¼ ð4567Þ; ð2367Þ; ð2345Þ; ð1357Þ; ð1364Þ;
ð1265Þ; ð1274Þ:

Now let K be a compact seven-dimension Riemann
space and Ge be a geodesic Moufang loop defined in a
neighborhood of e 2 K. If the loop Ge is associative, then
its tangent algebra is either Abelian or a compact Lie
algebra of the form (30). Suppose Ge is a nonassociative
Moufang loop. Then arguing as above, we prove that its
tangent algebra is a compact seven-dimension non-Lie
Malcev algebra. Since any such algebra is isomorphic to
the algebra (55), it follows that Ge is locally isomorphic to
the loop (54). Therefore we have the identity

�i
jkl ¼ �m

½jk�
i
l�m; (59)

instead of (15). It can easily be checked that this identity is

equivalent to the Malcev identity (56). On the other hand, it
follows from (39) that

1
2R½ijk�l ¼ Sm½ijSk�lm � Sijk;l: (60)

Hence the tensors �ijkl and Sijk;l are fully antisymmetric.

Then it follows from (24) that the curvature tensor Rijkl is

also fully antisymmetric.
Conversely, letGe be a geodesic loop and Rijkl be a fully

antisymmetric tensor. Then

1
2Rijkl ¼ Sm½ijSkl�m � Sijk;l; (61)

and hence the tensor Sijk;l is fully antisymmetric. Again,

using the identity (24), we prove the fully antisymmetry of
�ijkl. Therefore we have the Malcev identity (59) instead

of (15) and henceGe is a Moufang loop. Thus, the geodesic
loopGe is Moufang if and only if the curvature tensor Rijkl

is fully antisymmetric. In addition, any non-Abelian geo-
desic Moufang loop in K is locally isomorphic to either the
Lie group (30) or the nonassociative Moufang loop (54).

B. The Englert’s Ansatz

We consider the Bose sector of d ¼ 11 supergravity as a
pure gravity theory with torsion and suppose that the
matter fields have nonvanishing components in the internal
spaceK. We suppose thatK is an Einstein space andGe is a
geodesic Moufang loop defined in a neighborhood of e 2
K. As we proved above, Ge is nonassociative and hence its
tangent algebra is isomorphic to the algebra M. We select
the basis ~e1; . . . ; ~e7 in M such that

½~ei; ~ej� ¼ 2kcijk~ek; (62)

ð~ei; ~ej; ~ekÞ ¼ 2k2cijkl~el; (63)

where k is a real constant. By comparing these equalities
with (13) and (14), we get the following relations:

�ijk ¼ kcijk; (64)

�ijkl ¼ k2cijkl: (65)

It is known [20] that the tensors cijk and cijkl are connected

by self-duality relations. For the fundamental tensors ofGe

these relations are

"npqlijkk�ijk ¼ 6�npql; (66)

"npqlijk�ijkl ¼ 24k�npq: (67)

In addition, the following identities are true:

�ijm�
ijn ¼ 6k2�n

m; (68)

�mijk�
nijk ¼ 24k4�n

m; (69)
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�im
j�jn

k�kp
i ¼ 3k2�mnp: (70)

Now we substitute the Freund-Rubin ansatz (6) in the
equations of motion (5). We obtain

Fmnpq
;m ¼ ffiffiffi

2
p

�"npqijklFijkl; (71)

where "npqijkl is the fully antisymmetric covariant constant
7 tensor. Further, it follows from the Bianchi identity (36)
and the identity (61) that

1
2Rmnpq

;m ¼ Stm½nSt;mpq� � Smnp;q
;m

¼ Slm½nS
mt

pSq�tl � Slm½nS
m
pq�;l: (72)

Using (68) and (70), we get

Snpq;m
;m þ 4k2Snpq ¼ 0: (73)

Moreover, it follows from (61) that

Snpq;m ¼ @½mSnpq�: (74)

Note that these formulas are true for the geodesic loop of
any point in the Einstein space K. Note also that the
identity (73) generalizes the Englert’s identity that was
found in the work [8].

By taking into account the obtained identities, we re-
write Eqs. (71) as

4k2Snpq þ ffiffiffi
2

p
�"npqijklSijk;l ¼ 0: (75)

We will find solutions of these equations in the form

Smnp;q ¼ hSt½mnS
t
pq�: (76)

Such ansatz converts (75) into the (anti)self-duality equa-
tions. In order to obtain a value of h, we find

Smnp;qS
rnp;q ¼ h2�mnpq�

rmnpq ¼ 24h2k4�r
m: (77)

On the other hand, it follows from (73) that

Smnp;qS
rnp;q ¼ �SmnpS

rnp;q
;q ¼ 24k4�r

m: (78)

By comparing (77) and (78), we get h ¼ �1. Substituting
the ansatz (76) in (75), we obtain the values

k ¼ �6
ffiffiffi
2

p
�: (79)

Obviously, the obtained solution is self-dual as h ¼ 1 and
anti–self-dual as h ¼ �1. Besides, it follows from (61)
that the curvature tensor

Rijkl ¼ 0 if h ¼ 1; (80)

Rijkl � 0 if h ¼ �1: (81)

Note that the equality (80) is a necessary and sufficient
condition of parallelizibility of K. Precisely this condition
was used in [8] for a construction of solution of d ¼ 11
supergravity on the sphereS7. It follows from (81) that this
condition is not obligatory. Thus, if we choose

Fmnpq ¼ ��St½mnS
t
pq� (82)

and take into account the conditions (79), we get self-dual
and anti–self-dual solutions of Eqs. (71).
Now we find restrictions that must lay on the spaces K

and M4. To this end, using (61) and (76), we rewrite
Eqs. (39) in the form

R
�

i
jkl ¼ SijtS

t
kl � hSijk;l; (83)

where h ¼ �1. By summing on the indices i and k, we
obtained the Ricci tensor

R
�

mn ¼ 6k2gmn: (84)

It follows from here that the K is really an Einstein space.
Substituting (84) and

F����F�
��� ¼ �6�2g��; (85)

FmrpqFn
rpq ¼ 24k4�2gmn; (86)

in the Einstein equation (4), we get

R
�

�� ¼ �10k2g��; 2�2 ¼ ð12kÞ�2: (87)

It follows from here that the four-dimensional spacetime
M4 is the anti–de Sitter space. Note that all constants in the
solutions are defined by the condition ~ei ¼ kei, i.e. its
values depend only on a selection of basis in the Malcev
algebra M.

V. CONCLUSION

In this paper, we have studied the Freund-Rubin-Englert
mechanism of the M4 � K compactification of d ¼ 11
supergravity. We have shown that any threeform potential
in 11 dimensions is given locally by the structure constants
of a geodesic loop in an affinely connected space. In
particular, we have shown that any threeform potential
with components that take nonzero expectation values in
M4 is given by structure constants of the Lie algebras (31)
and (32). We have found the Englert’s type solution of d ¼
11 supergravity on the Einstein space K and shown that the
corresponding threeform potentials are given locally by the
Cayley structure constants. The solution is such that the
affine curvature tensor ofK is nonzero. It follows from here
that the space K may be not parallelizable. Since every-
thing considered in the paper is of a local character, the
global geometry of K is not clear though.
Note that the geodesic loops method that was used in the

paper may be applied to the analysis of M theory compac-
tifications on singular manifolds with G2 holonomy
[21,22]. The point is that in addition to the compact
Moufang loop S there exists a noncompact nonassociative
Moufang loop that is analytically isomorphic to the space
S3 � R4. This is exactly the asymptotically conical mani-
folds with G2 holonomy.
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