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Teukolsky-Starobinsky identities: A novel derivation and generalizations
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We present a novel derivation of the Teukolsky-Starobinsky identities, based on properties of the
confluent Heun functions. These functions define analytically all exact solutions to the Teukolsky master
equation, as well as to the Regge-Wheeler and Zerilli ones. The class of solutions, subject to Teukolsky-
Starobinsky type of identities is studied. Our generalization of the Teukolsky-Starobinsky identities is
valid for the already studied linear perturbations to the Kerr and Schwarzschild metrics, as well as for
large new classes of such perturbations which are explicitly described in the present article. Symmetry of
parameters of confluent Heun’s functions is shown to stay behind the behavior of the known solutions
under the change of the sign of their spin weights. A new efficient recurrent method for calculation of

Starobinsky’s constant is described.
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I. INTRODUCTION

Today the Teukolsky-Starobinsky identities (TSI) are
essential ingredients of the theory of perturbations to a
gravitational field of Kerr black holes. For spin one and
two the TSI were discovered together with their first ap-
plications in the study of perturbations of rotating relativ-
istic objects pioneered by Teukolsky [1] and Starobinsky
[2]. An independent derivation and detailed study of TSI
was given by Chandrasekhar in [3,4] and by other authors
in [5]. Later on a proper generalization of the TSI for all
physically interesting spins, as well as the TSI in the
presence of a nonzero cosmological constant was found
and justified in [6]. Some more recent applications can be
found in [7].

All known derivations of TSI are based on a direct use of
the famous Teukolsky master equation (TME), or its gen-
eralizations, and on some very special properties of the
solutions in use. For example, one utilizes the regularity
and integrability of the used angular solutions, parameters
with real values, etc.

The TME describes the perturbations W(z, r, 6, ¢) of
fields of all interesting spin weights s =0, *=1/2, *1,
+3/2, *2 in Kerr background in terms of Newman-
Penrose scalars. Various significant results and references
may be found in [1-8].

The key feature is that in Boyer-Lindquist coordinates

PACS numbers: 04.70.Bw, 04.25.Nx, 04.30.—w

sin?#, and the Teukolsky radial equation (TRE):
4 1 d
A s—(As LRA) + V() - R =0, (12)
dr dr

V(r) =4iswr + 2maw — a*w* + s(s + 1) + W
The real parameter a = J/M = 0 is related with angular
momentum J of the Kerr metric (a < M for black holes, or
a > M for naked singularities), M is the Keplerian mass of
the Kerr solution, K = w(r* + a?) — ma, A = (r — r;) X
(r—r_) =1r>—2Mr + a*. The two complex separation
constants w and FE are to be determined using the boundary
conditions of the problem.

At present the usage of the Kerr metric for the descrip-
tion of astrophysical black holes is widely accepted. The
astrophysical application of the naked singularities seems
to be more problematic because of their instability [9].
However, such instability may be useful for construction
of models of astrophysical explosions like gamma ray
bursts [10]. Our method for the derivation of the general-
ized TSI is applicable to both cases, despite of the fact that
some quantities (like r.) are complex for the naked
singularities.

The TSI for angular Teukolsky’s function (S(6) of arbi-
trary spin weight s can be written in the form

‘£2ﬁv‘£ ce S*1£S£(+SS(6)) = s@:(—ss(a));

one can separate the variables using the ansatz I=s
V(t, 1, 0, p) = exp(—iwt + im@)R(r)S(0). Thus, a pair  _ rt, £t . £t rt s0) = ,6(,80); (1.3)
of two connected differential equations arises—the
Teukolsky angular equation (TAE): where
1 d ( i< 5(9)) (W) + E)S(0) = 0, (L1) m
sinf d6 S0 ’ ' L =0y F <—0 —aw sin0) + ncotd,
sin
W(6) = a?w?cos?0 — 2saw cosd — (m? + s + 2mscosh)/ m (14)
LT =0, — (— —aw sinG) + ncotf.
- sinf
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Using the operators

K K
= + t =
D=0, +ig+ A 0,4, ,Dt=a,—ig AaA

(1.5)

one obtains the TSI for the radial Teukolsky function (R(r)
of arbitrary spin weight s in the form [11]:

A ((D)* (A, R(r) = (D(,R(1)),
A (D> (LR(r) = (D (A R(r)).

In Egs. (1.3) and (1.6) ,& and ;D are the corresponding
Starobinsky constants [12]. The standard calculation of
these constants for arbitrary s is quite complicated [3,4].

In the widespread derivation of TSI, proposed for the
first time in [3], one supposes to work with real frequencies
w. This is explicitly stressed in [3], as well as in some of
the articles in [5,6]. As a result, the operators D and D
can be considered conjugated; this property is systemati-
cally used for derivation of the TSI [3-6]. However, the
well-known boundary problems, related to black holes and
naked singularities, yield complex frequencies w with
certainly nonzero imaginary part 3(w) # 0. (See, for ex-
ample, Refs. [4,8] and the recent articles [13], where a new
boundary problem was studied and some very preliminary
results of our attempts to apply singular solutions of TAE
to the description of collimated relativistic jets are re-
ported.) The physical reason is clear: The systems under
consideration are open physical systems and their energy is
not conserved. Hence, for them J(w) # 0. Our derivation
of TSI does not imply complex conjugation of the corre-
sponding quantities. It is valid for complex frequencies w,
as well as for complex values of all other parameters.
Despite the fact that our derivation is quite different in
form, it is closely related to the original one, outlined in
[1,2]. This original method is also valid for complex
frequencies.

It has been well known for a long time [14] that for a #
M [15] the TAE (1.1) and TRE (1.2) can be reduced to the
confluent Heun ordinary differential equation [16].
Recently in [17] all classes of the exact solutions to TAE
(1.1) and TRE (1.2) were described using the confluent
Heun function HeunC(e, B, y, 8, 1, z)—a unique particu-
lar solution of the confluent Heun equation, written here in
the simplest uniform shape:

n n

H”+(a+ﬁ L/ 1)H' (’“+ v )H=O.
z z—l z z-—1

(1.7)

The function HeunC(e, B, v, 8, 1, z) is defined as a solu-
tion of Eq. (1.7) which is regular in vicinity of the singular
point z =0 and subject to the normalization condition
HeunC(a, B, v, 8, ,0) = 1 [16]. The parameters a, S3,
v, 8, m, introduced in [16] and used in the widespread
computer package MAPLE, are related with u and », ac-

(1.6)
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cording to the equations u = %(a - B—y+aB—
By)—mandv=1(a+B+y+ay+ By +5+n.

The other particular solutions to Eq. (1.7) are not termed
“confluent Heun’s functions,” according to the accepted
modern terminology [16]. The reason is that in the general
case other solutions can be represented in a nontrivial way
in terms of solutions HeunC(a, B, v, 8, 1, z). An example
of the application of this specific property of the Eq. (1.7) is
the basic formula (2.1) in the next section. Therefore from
a computational point of view it is sufficient to study the
Taylor series of this standard local solution and its analyti-
cal continuation in the complex plane C,. Thus, the in-
strumental use of the confluent Heun function
HeunC(a, B, v, 6, ;, z) is much more advantageous than
the simple fact, recognized already in [14], that the TRE
and TAE can be reduced to the Eq. (1.7).

Essential novel properties of the confluent Heun func-
tions HeunC(a, B, v, 8, i, z) were studied for the first time
in the recent article [18]. These properties are prerequisites
for our derivation of the TSI in the next section. The
subclass of 6 y-confluent-Heun’s-functions,

HeunC y(a, B, v, 1, z) = HeunC(a, B, v, Sy, 1, 2), (1.8)

was introduced fulfilment of the

“&y-condition,”

Sy =—alN+1+(B+7v)/2)

assuming the

(1.9)

for some fixed nonnegative integer N =0, 1,2, ...
For functions (1.8) and their associate functions

HeunC %(e, B, v, 1, z) = HeunC(ak, BE, vE, 8% 0%, 2),

(1.10)
at = a, T=B+N+1, YE=y+N+1,
8% 8 N+ DN +1—n)
N ="+ N+1, =+ ,
at o« K 2

(1.11)

» = a — B — v; the following simple basic relation is
available:
N+1

e NHHeunCN(a B,v,m, 2)

= ByHeunC¥(a, B, v, m, 2).

By =N+ D0wvyyy(a, By, —a(N+
1 + (B + 7y)/2), n) is a constant related to the coefficients
in the Taylor series

(1.12)

Z vn(a) B’ Y, 0, 77)2". (113)

n=0

HeunC (a, 8,7, 6,1, 2) =

These new results are the mathematical basis of the
present article. We derive TSI using the above properties
of the confluent Heun function HeunC(a, 8, v, 6, 1, z) and
show that the Starobinsky constant is related to its Taylor

124001-2



TEUKOLSKY-STAROBINSKY IDENTITIES: A NOVEL ...

series coefficients. This yields a new effective method for
the calculation of Starobinsky’s constant for any spin.

Our derivation of the TSI, being simpler, universal, and
straightforward, supplements and justifies the usual ap-
proach. It is uniform and valid for both the TAE and
TRE. It extends the TSI to new classes of solutions to the
TME, described below. Thus the known fascinating prop-
erties of the standard solutions of the TME acquire a
natural mathematical framework and proper extension.

Moreover, the same derivation yields Teukolsky-
Starobinsky like identities for the Regge-Wheeler equation
(RWE) and Zerilli equation (ZE). To our knowledge, until
now the TSI were not known for the RWE and ZE.

Our approach is in accord with the Chandrasekhar ex-
pectation that the Newman-Penrose formalism for pertur-
bations of the Kerr metric may “...enable us to discover
new classes of identities among the special functions of
mathematical physics when they occur as solutions of
Einstein’s equations” and his suggestion to ... include
Teukolsky’s functions among ‘“‘special” functions of
mathematical physics...” [3]. Today it is clear that for
realization of this general idea we need to use the Heun
functions and some of their generalizations [19].

II. THE EXACT SOLUTIONS TO THE TAE, TRE,
AND RWE IN TERMS OF THE CONFLUENT HEUN
FUNCTION AND THE GENERALIZED TSI

The exact local solutions around the singular points
z+ =0 (& zz = 1) of the three differential equations
listed in the introduction—the TRE, TAE, and RWE—
can be written in the following common and universal
form [17]:

szE,m,{(r}(Zi) = 0(z+)e® /2Z§/2Z7://2

X HeunC(a, B, v, 6, m,z+).  (2.1)

The TSI turn out to be a representation of the basic
relation (1.12) in terms of the corresponding &, solutions
of type (2.1). Indeed, let us use the short notation Xy(z-),
X7%(z+) for the 8y solutions (2.1) which correspond to the
functions (1.8) and (1.10) of argument z. in the place of
the factor HeunC(e, B, v, 6, 1, z=) in Eq. (2.1). Then, us-
ing relations (1.11) and o* = @, we obtain from (1.12) the
following universal form of the generalized Teukolsky-
Starobinsky identities:

(2420 )VED2ZDYHIX (z0) = By X (z0), (2.2)
where
. d a_B1 y1 1dp
D,=— -2 +7 "% 2.3
t T d. 2727 27 o0dz 2.3)

For compactness, in the right-hand side of Egs. (2.1) and
(2.3) we are using the following abbreviated notation: @ =
T+, B = O-'BBi$ ')’ = O-'y’yt; {0-}={0-00 0’[8: O-'y}’
0484 = 1. Thus, we obtain 16 local solutions to any
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of the TRE, TAE, and RWE, making use of the confluent
Heun’s function HeunC(a, B, v, 8, 1, z) of different argu-
ment z, or z_ in the right-hand side of Eq. (2.1) and
changing the signs of the parameters «, £, .

The difference among the solutions to the above three
problems (the TRE, TAE, and RWE) is in the values of the
parameters and arguments in their common form (2.1):

(1) According to [17], for the TAE (1.1) ¢(z+) = 1 and

ar = Haw, B+ =s+m,

Y+ =s5s*tm, 0+ = *saw,

mP+s?
2

2+ = 24(0) = (cos(6/2))%,

7_ = z_(0) = (sin(6/2))>.

¥ 2saw — a*w? — E; (2.4)

M+

(2) For the TRE (1.2) o(z-) = A~*/2. Using the quan-
tities p=Ari/r_ —\r_/ry, Q. =
M/(hr-i-r_), Q,=Q:+0Q)/2=
1/2a), Q, = Q. Q_ = 1/(2M) we have

ar = 2iw(ry —r_) = *ipw/Q,, (2.5a)

B+ =5 *2ilm— w/Q5)/p, (2.5b)

v+ =s5F2i(m— w/Q)/p, (2.5¢)

0 =a.(s —iw/Q,), (2.5d)
B ) , | 2m*Ql — w?
Nne=—E+s°+m +7P2Qg

— )2 ’
_ (2m2;49§ of _ %(s - ié’ﬁig) . (2.5¢)
L r: —rr__’ “ r’:r— rr_ (2.50

(3) For the Schwarzschild metric the discussed results
(in terms of the Weyl scalars) can be obtained from
the case of the Kerr metric in the limit a — 0; see
[17]. An independent treatment is possible, making
use of the RWE. Then in units 2M = 1 we have

[17,20]
o=r, E=11+1), L= sl Is| +1,...;
(2.6a)
0. = 2w, 5. :{ 2s }’ ye = {2iw }’
- - 2iw - 2s
(2.6b)
5. = F2w?, Ny = { —E+s }
- B —E+ s +202)
(2.6¢)
7. =1, z.=1—r (2.6d)
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The knowledge of the 16 local solutions (2.1) to the each
of the TRE, TAE, and RWE makes it possible to write
down their local general solutions as linear combinations
of different pairs of linearly independent particular solu-
tions. Then we can formulate different boundary problems
for the TRE, TAE, and RWE [17]. For example, one can
impose the standard black hole boundary conditions on the
solutions of the TRE and combine them with the standard
regularity requirement of the solutions to the TAE on the
poles & = 0, 7. This way we obtain the standard quasi-
normal modes of the Kerr black holes in terms of confluent
Heun’s functions [17]. Considering polynomial solutions
of the TRE and TAE we are able to describe collimated
one-way running waves of perturbations to the Kerr metric
in terms of confluent Heun’s polynomials [17]. One may
hope that the proper usage of the singular solutions to the
TAE may help us to describe the creation of relativistic jets
by such collimated running waves; see [13,17]. These
important physical problems need a separate careful
investigation.

In the present article we are concentrating our efforts on
the mathematical properties of the solutions related to the
TSI. Knowledge of these properties is necessary for further
progress in the field. As we shall see in the next sections, it
is natural to formulate these common general properties in
terms of confluent Heun’s functions.

III. 6 y~-CONFLUENT HEUN’S FUNCTIONS AND
SOLUTIONS TO THE TAE, TRE, AND RWE

The fulfilment of the 6y condition for solutions to the
TAE, TRE, and RWE is tightly related to the specific
values of the parameters (2.4), (2.5), and (2.6). One can
find a detailed general consideration of this problem in
[17].

For the TAE the d, condition yields two different cases:

N+1=2s|=1, Is| =1/2,
3.1
O, =0p5=0,=—0.
N, +1=|s| *xmo=1,
v (3.2)

Oy = —0g=0,=—0.

For the TRE the 6 condition yields four different cases.
In the first one relations (3.1) are also valid. Note that,
there, o = sign(s). In the other three cases instead of the
integer N, the frequencies sa)im‘gmgﬁﬂy are fixed:
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I
3
)
+
I+

4_'(1 _ ’”;)(N +175), (34a)

ry
: (r—+— 1)(N+ 1+5). (3.4b)

The &, condition yields the following cases for the
RWE:

N+1=|s] =1,

” (3.5)
o= —0, O O,=0g o, = —0,
Lo
Ny, = N+ 1+ 0ps),  0g=—0p (.6a)
io
_ __log B
sONogor, = T(N + 1+ oy9), Ty = —0,. (3.6b)

Until recently only solutions of a very special kind were
studied and used in the existing literature. For these special
solutions the relations (3.1) take place and the 6 condition
is fulfilled automatically and simultaneously for both the
TRE and TAE.

As we have seen, there exist a lot of other interesting
solutions to the TRE, TAE, and RWE, listed above, for
which the 8y condition yields important extra restrictions
on the free parameters of the problem. We call
“8y-solution” any solution (2.1) to the TAE, TRE, or
RWE, subject to the &y condition (1.9). In Sec. IV we
will use the term ““8y-solution” for the solutions (4.6b) to
the ZE, having in mind the fulfillment of the d, condition
(1.9), too.

Up to now only 6 - solutions to the TRE and TAE which
obey the relations (3.1) were studied. The &y solutions,
which obey the other relations—(3.2), for the TAE, (3.3)
and (3.4), for the TRE, and (3.6), for the RWE—are new.
Their physical meaning and applications still have to be
recovered. In the next section we derive the generalized
TSI, valid for all &, solutions.

IV. A NOVEL DERIVATION OF THE TEUKOLSKY-
STAROBINSKY IDENTITIES

For all eight classes of &y solutions to the TRE, TAE,
and RWE described in Sec. 111, one can derive in a uniform
way identities of the Teukolsky-Starobinsky type, starting
from the basic form (2.2). Relations (2.3), (2.4), and (2.5)
yield the following explicit representations of the general-
ized TSI [21]:

(1) In the case of the TAE,

124001-4
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(sine)N“(de—’i)Nﬂsf(a) = CySy™ (6)
si N NPN ’

2
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4.1
inf (4.1a)
. — F(og+ + F(og—
B =L 4 o awsing + TEZ IS Flogroym _(gpto)sTlopmam Lo
: deo 2sinf 2
Sy (0) = Xy(z=), (4.1¢c)
Cy = =DV By, (4.1d)
Disentangling the differential operators in TRE or TAE but with spin weight ( — s). The last
Eq. (4.1a), we can represent it in a form similar to fact was discovered for the first time in [1], as a
Eq. (1.3): special property of the particular solutions to the
N4l TRE or TAE considered there. As seen, we obtain a
l‘[ ((20 + — kcot)SE(6) = Gy Sﬁ’x‘(ﬁ). (4.2) natural explanation of this phenomenon using the
— symmetry properties of Jy-confluent Heun’s
k=0 functions.
Here an ordered operator product is used. The arrow Now it remains only to point out that
indicates the operator ordering and points in the (A) From Egs. (4.1) for 0, = 0p =0, = —0 and
direction of the increase of the integer k. n = s — k one obtains
In the case of the TRE,
A(N+1)/2(L2,+)N+1Rﬁ(r) _ @NRli\;»X«(r), (4.32) dg+ — kcotd =, L, S;(@) = ..5(0),
. d SyE(0) = _;S(6)
d.+ =——ioc,w
' dr
iia'y(m—a)/Qi) when o = +1; or
pr—ry) .
_ O'B(m_ (l)/Q:) d0,+ _kCOt0 :n-ﬁT: S[J\r/(g) = 7SS(0);
P A et
plr—r-) SHEB) = ,,S(0)
(4.3b)
Ry(r)=(r— ry)s1=0y)/2 when o = —1. Hence, for these particular values of
s(—0g)/2 the parameters Eq. (4.2) coincides with the standard
X (r—r )t angular TSI (1.3).
X Xy(z<), (4.3¢) (B) From Egs. (4.3) for 0, =0 =0, = —0 one
Dy = (= 1)N+1(_1)(N+1)/251§N. obtains
4.3d N
( ) d,+ =D, Ry (r) = A R(r),

It is easy to check that in the case of Egs. (3.1)
relations (4.1) and (4.3) produce the standard TSI
(1.3) and (1.6) with Starobinsky’s constants &, and
@N.

To reach this result one has to apply the new non-
trivial hidden symmetry of the parameters of
6 y-confluent Heun’s functions, considered as func-
tions of the spin weight s in the special case N +
1 = 2|s|. Then

{@Z(s), BE(s), vE(5), 8%(s), nE(s)}
={a=(=s), B+(—5), y+(—=5), 8+(—s), n=(—s)}
“4.4)

Equation (4.4) follows from (1.11), (2.4), and (2.5),
if N+ 1=2|s|. As a result, in the case (3.1)
XE(s,z+) = Xy(—s,z+) is a solution to the same

124001-5

Ry (r) = _,R(r),

and Dy = ;D when o = +1; or

A

dr,+ = ODT’ R;(F) = —sR(r))
RY*(r) = A%, R(7),

and Dy = ;D* when o = —1. Hence, for these
particular values of the parameters Eq. (4.3a) co-
incides with the standard radial TSI (1.6).

To our knowledge, the TSI for the other seven
cases—Eqs.(3.2), (3.3), (3.4a), (3.4b), (3.5), (3.6a),
and (3.6b)—have not been studied up to now. In
particular, relation (4.3c) extends to all cases (3.3)
and (3.4) the transformation invented for the case
(IIL.1) in [1,4].
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(3) For RWE (in units 2M = 1 = Ay = r(r — 1)),

Ag\”1)/2(6?r,o,i)NHRﬁ,o(’) = SN,ORﬁ,%(V)’ (4.5a)

A d
dpo- = i o,
— %(S + ia))
+
* M(S — iw),
2
(4.5b)
Ry o(r) = r'Xy(z+),  (4.50)
Dyo = (EDVN IRy, (4.50)

For TSI (4.5) we have N + 1 = |s]|.

(4) The case of ZE is slightly different. In it we may
proceed in the following way. The solutions Zg (r)
to the Zerilli equation are known to be simply
related with the solutions Rj (r) to the RWE [4].
We write down the corresponding relations (in units
2M = 1) in the following form (see the appendix):

i@Ry (r) = (1 - %)MU)i(e*W”Z&(r)), (4.62)

dr
1

1072 (r) = (1 - ;)e’*”(’)%(e‘/’(’)Rg(r)). (4.6b)

Let us introduce the notation Zy ,(r) for &y solu-
tions to the ZE, and Z};5(r) for corresponding asso-
ciate  solutions, and the new operator
2d,0+ =d,o~ + Ay'. Then after substitution of
(4.6a) into Eq. (4.5a) we obtain the following non-
standard Teukolsky-Starobinsky-like identities for
the solutions to the ZE:

. d -
A8N+1)/2(Zdr,0,i)N_H(el//(r) o (e—w(r)Zﬁ,o(r)))

d .
- @N,O(ew)E(e*w)zﬁg(r))). @)

V. A NEW METHOD FOR CALCULATION OF
STAROBINSKY’S CONSTANTS €y AND Dy

Equations (4.3d), (4.1d), and (4.5d) show that in all cases
the corresponding Starobinsky constants coincide (up to
known numerical factors) with the coefficients
v,(a, B, 7, 6, ) in the Taylor series expansion (1.13) of
o y-confluent Heun’s function evaluated for proper values
of the parameters. These coefficients can be determined by
the three-terms recurrence relation [16,18]:

An'Un = ann*l + Cnvn,z, n = 1, vl 00

(5.1
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with the initial condition wv_; =0, wvy,=1. For
S6y-confluent Heun’s functions in (5.1) we have coeffi-
cients

(5.2)

Relations (5.1) and (5.2) give a very efficient new
method for calculation of Starobinsky’s constant for all
values of the spin |s|, confirming the known results and
easily solving the problem for all cases (3.1), (3.2), (3.3),
(3.4), (3.5), and (3.6) of validity of the &, condition.

VI. CONCLUSION

In the present article, we showed that TSI exist for a
large class of physical problems when the background
vacuum metric is of Petrov type D. We constructed explic-
itly the TSI for different perturbations of any spin to the
Kerr metric, as well as to the Schwarzschild one. Our
derivation of TSI is valid for complex values of the sepa-
ration constants w and E, as well as for complex values of
all other parameters. The obtained results can be applied to
both the black holes and naked singularities.

The exact solutions to the TRE, TAE, RWE, and ZE
were briefly described in terms of confluent Heun’s func-
tions. One can find more details in the articles [17]. Having
in hands these explicit solutions we are able

(1) To write down the corresponding general solutions.

(2) To formulate different boundary problems.

(3) To derive all properties of the solutions using ex-
plicitly the properties of Heun’s functions.

In particular this article accomplished the following

aims:

(i) We found that the TSI and all their possible general-
izations have a common origin—the recently un-
veiled property (1.12) of the confluent Heun
function, related with the 6, condition (1.9); see
[13]. As a result of this condition, the multiple
derivative of order (N + 1) of a given 6 y-confluent
Heun’s function becomes proportional to another
(associated) confluent Heun’s function. The coeffi-
cient is precisely (N + 1)! times the (N + 1)-th co-
efficient in the Taylor series expansion of the first
function. This algebraic property is universal and not
related to the usually considered specific boundary
problems, nor with other properties of their solutions
like regularity, integrability, etc. Using the relation of
the exact solutions at hand with the confluent Heun’s
function, one can express this property directly in
terms of the very solutions. Thus one obtains the TSI
for the TRE, TAE, RWE, and ZE in a uniform and
universal way.
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(i) We discussed all classes of d solutions to the above
problems. For the specific class of 6y solutions,
defined by relation (3.1), the novel symmetry (4.4)
of the parameters of & ,-confluent Heun’s functions
(1.8) ensures that its multiple derivative of order
(N + 1) is a solution to the same Heun equation.
Thus, this symmetry yields a second solution to the
same TME equation. As a result, we obtain the
known pair of solutions to the TME with the opposite
signs of their spin weights ( = ) [1].

(iii) We extended the familiar results for TSI to all pos-
sible cases on a firm and general mathematical basis.
Thus, using the &, condition we found the possible
generalizations of the TSI

(iv) We made transparent the origin of some of the
properties of the solutions to the TRE, TAE, RWE,
and ZE, relating them with the specific form of the
parameters in confluent Heun’s functions, which
solves these equations. For example, such unex-
pected property is the symmetry (4.4), which is
specific for large class of solutions to TRE and
TAE. This symmetry does not take place for all
confluent §,-Heun’s functions.

(v) Using the recurrence relation for the Taylor series
expansion of the confluent Heun’s function we pro-
posed a new efficient and universal method for the
calculation of Starobinsky’s constants.

Thus, the confluent Heun function was proven to be an
adequate tool for solving the above problems. The usage of
this function gives a natural treatment and deeper under-
standing of the Teukolsky-Starobinsky identities, as well as
of the solutions to the Teukolsky equations. The results,
presented here, are a basis for future physical applications.
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APPENDIX: ON THE RELATION BETWEEN THE
SOLUTIONS TO THE RWE AND ZE

The relation between the solutions to the RWE and ZE
were discovered by Chandrasekhar; see, for example, [4]
and the references therein. We slightly modify the form of
these relations using the notation Zj (r) for solutions to the
Zerilli equation and R (r) for solutions to the RWE. These
functions have additional constant phases in comparison
with the functions Z)(r), used in [4]. (Note that the
meaning of the signs * in our notation is completely
different; see [17].) Our choice of these additional phases
ensures the appearance of the common factor i@ simulta-
neously in the two of the Eqgs. (4.6).

As usual, here we consider only the ZE for gravitational
waves with spin |s| =2= N+ 1 =2. Then in units
2M = 1 we obtain

v = |r—1| 1+ 3 3!
r) — _ w; ,W T
¢ ' ¢ ( (I—DU+ 2)r) '

1
o =cU=DId+DU+2), =23,

@ =40’ +wl #0 forw# *iw,

The Egs. (4.6) do not relate the solutions Zj (r) and R (r)
when w = *iw,;. Instead, in this case one obtains from the
Egs. (4.6) the well known algebraically special solutions in
the following explicit quasipolynomial form:

(AD

R (r) = const X e*¥1),
Z5(r) = const X e~ ¥,

(A2a)
(A2b)

Thus we see that the case of the algebraically special
solutions (A2) is a degenerate one.

The system of the ordinary differential equations (4.6)
can be easily split to the decoupled RWE and ZE, written in
the form

(A3a)
(A3b)

R// + a—)ZR — (_ Lp.l/ + ¢//2)R,
7'+ &*Z = (+y" + y?)Z

Here the prime denotes differentiation with respect to the
tortoise coordinate r, = r + In|r — 1|. This splitting re-
flects the physical independence of the axial and polar
perturbations to the Schwarzschild metric.
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