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A new relativistic formulation of MOND is advanced, involving two metrics as independent degrees of

freedom: the MOND metric g��, to which alone matter couples, and an auxiliary metric ĝ��. The main

idea hinges on the fact that we can form tensors from the difference of the Levi-Civita connections of the

two metrics, C�
�� ¼ ��

�� � �̂�
��, and these act like gravitational accelerations. In the context of MOND,

we can form dimensionless ‘‘acceleration’’ scalars and functions thereof (containing only first derivatives)

from contractions of a�1
0 C�

��. I look at a subclass of bimetric MOND theories governed by the action

I¼�ð16�GÞ�1�R½�g1=2Rþ�ĝ1=2R̂� 2ðgĝÞ1=4fð�Þa20Mð~�=a20Þ��d4xþ IMðg��;c iÞþ ÎMðĝ��;�iÞ,
with ~� as a scalar quadratic in the C�

��, � ¼ ðg=ĝÞ1=4, IM as the matter action, and allow for the existence

of twin matter that couples to ĝ�� alone. Thus, gravity is modified not by modifying the elasticity of the

space-time in which matter lives, but by the interaction between that space-time and the auxiliary one. In

particular, I concentrate on the interesting and simple choice ~� / g��ðC�
�	C

	
�� � C�

��C	
	�Þ. This theory

introduces only one new constant, a0; it tends simply to general relativity (GR) in the limit a0 ! 0 and to

a phenomenologically valid MOND theory in the nonrelativistic limit. The theory naturally gives MOND

and ‘‘dark energy’’ effects from the same term in the action, both controlled by the MOND constant a0. In

regards to gravitational lensing by nonrelativistic systems–a holy grail for relativistic MOND theories–the

theory predicts that the same potential that controls massive-particle motion also dictates lensing in the

same way as in GR: Lensing and massive-particle probing of galactic fields will require the same ‘‘halo’’

of dark matter to explain the departure of the present theory from GR. This last result can be modified with

other choices of ~�, but lensing is still enhanced and MOND-like, with an effective logarithmic potential.

DOI: 10.1103/PhysRevD.80.123536 PACS numbers: 95.35.+d, 04.80.Cc

I. INTRODUCTION

From the inception of MOND [1], it has been clear that
the paradigm needs buttressing by a relativistic formula-
tion. Indeed, efforts to construct such a formulation started
shortly thereafter, with the tensor-scalar version sketched
in [2]. This was the first in a chain of theories of increasing
force, culminating in the advent of the tensor-vector-scalar
theory (TeVeS) of Bekenstein [3]. Some landmarks along
this track are described in [3–8]; see, in particular, the
reviews in [5,8]. All of these theories involve, as indepen-
dent degrees of freedom, an Einstein metric, whose free
action is the standard Einstein-Hilbert action, with addi-
tional scalar and/or vector degrees of freedom, with their
own actions. These scalar/vector degrees of freedom are
used to dress up the Einstein metric into the ‘‘physical’’
metric to which matter couples. TeVeS has a version of the
nonrelativistic (NR) theory proposed in [2] as an NR limit.

Another line of relativistic theories that aim to reproduce
MOND phenomenology has been propounded in [9,10],
based on the omnipresence of a gravitationally polarizable
medium proposed in [11].

Here, I propound a new class of relativistic formulations
for the MOND paradigm in the form of bimetric MOND
(BIMOND) theories. These came to light as follows: I have
recently described [12] a new class of nonrelativistic, bi-
potential MOND theories, a subclass of which is governed
by a Lagrangian density of the form

L ¼ � 1

8�G
f�ð ~r
Þ2 þ �ð ~r 
̂Þ2

� a20M½ð ~r
� ~r 
̂Þ2=a20�g þ �

�
1

2
v2 �


�
; (1)

leading to the field equations

~r� ½��ðj ~r
�j=a0Þ ~r
��¼ 4�G�;

��ðyÞ����þ�

�
M0ðy2Þ

�
¼ ~r� ½ð1���1M0Þ ~r
��
¼ 4�G��1�þ��1 ~r� ðM0 ~r
�Þ;

(2)

with 
� ¼ 
� 
̂. I also described in detail the require-
ments from �, �, and MðzÞ that lead to the required
MOND and Newtonian limits of these theories. In particu-
lar, I discussed at length the interesting case �þ � ¼ 0
(� ¼ 1 then normalizes G to be the Newton constant),
which leads to the field equations

�
� ¼ 4�G�;

�
¼ ~r� ½ð1þM0Þ ~r
�� ¼ 4�G�þ ~r� ðM0 ~r
�Þ; (3)

withM0 as a function of ð ~r
�=a0Þ2, such thatM0ðzÞ ! 0
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for z ! 1 ensures the Newtonian limit, and M0ðzÞ �
z�1=4 in the MOND regime z � 1. This is a particularly
tractable MOND theory, as it requires solving only linear
differential equations, with the inevitable MOND nonline-
arity entering only algebraically. In all of the NR theories
above, matter couples only to one of the potentials: the

MOND potential 
, while 
̂ is an auxiliary potential, and
in the special case of Eq. (3) their difference 
� is exactly
the Newtonian potential of the problem.

These NR MOND theories have inspired the construc-
tion of closely analogous relativistic MOND theories with
two metrics as independent, gravitational degrees of free-
dom, which I begin to investigate here.1 This new class of
BIMOND theories involves only a0 as a new constant.
They tend to general relativity (GR) in the limit a0 ! 0,
which is a desirable trait. And, they tend to a MOND
theory compatible with MOND phenomenology in their
NR limit.

These theories, like all other relativistic versions of
MOND proposed to date, must, I believe, be only approxi-
mate, effective theories to be derived from some more
fundamental picture that underlies them. This is pointed
to by the appearance of an a priori unspecified function in
all these theories.

The use of two (or more) metrics to describe gravity has
a long history. For example, Rosen [13] considered bimet-
ric theories, where the auxiliary metric is forced to be flat.
More recently, it was found [14] that ghosts appear in a
large class of bimetric theories (apparently not including
the present BIMOND). More matter-of-principle questions
regarding bimetric gravities are discussed in [15–18], but
these authors confined themselves to metric couplings that
involve only the metrics, not their derivatives, as in the case
of BIMOND.

In Sec. II, I present the formalism underlying the
BIMOND theories; in Sec. III, I consider the NR limit of
these theories, showing how they lead to NR MOND
theories. Section IV demonstrates how the theories go to
GR in the limit a0 ! 0. Section V discusses lensing,
Sec. VI discusses cosmology briefly, and Sec. VII is a
discussion.

II. FORMALISM

The NR theories mentioned above involve two poten-
tials, the MOND potential 
 felt by matter, and an auxil-

iary one 
̂. They point to relativistic BIMOND theories
involving the MOND metric g��, to which matter couples,

and which reduces to 
 in the NR limit, and involving, in
addition, an auxiliary metric ĝ��.

Working with two metrics enables us to form nontrivial
tensors and scalars from the difference in their Levi-Civita

connections ��
�� and �̂�

��,

C�
�� ¼ ��

�� � �̂�
��; (4)

involving only first derivatives of the metrics, which is not
possible with a single metric. This is particularly pertinent
in the context of MOND, since connections act like gravi-
tational accelerations. So, without introducing new con-
stants in the relativistic formulation, we can write
Lagrangian functions of dimensionless scalars constructed
from a�1

0 C�
�� that enable us to interpolate between the GR

limit, a0 ! 0, and the MOND limit, a0 ! 1.
The tensor C�

�� is related to covariant derivatives of one

metric with the connection of the other (more generally,
they relate covariant derivatives of tensors with respect to
the two connections):

g��:	 ¼ g��C
�
�	 þ g��C

�
�	;

ĝ��;	 ¼ �ĝ��C
�
�	 � ĝ��C

�
�	;

(5)

C	
�� ¼ 1

2g
	�ðg��:� þ g��:� � g��:�Þ

¼ �1
2ĝ

	�ðĝ��;� þ ĝ��;� � ĝ��;�Þ; (6)

where the covariant derivative (;) is taken with the connec-

tion ��
�� and (:) with �̂�

��. We can form various scalars out

of C�
�� and the metrics. One scalar that will be of particular

use to us is based on the tensor

��� ¼ C�
�	C

	
�� � C�

��C	
	�; (7)

with the same index combination that appears in the ex-
pression for the Ricci tensor

R�� ¼ ��
��;� � ��

��;� þ ��
�	�

	
�� � ��

���	
	�; (8)

and in R̂�� constructed similarly from ĝ��. One finds

R�� � R̂�� ¼ C	
�	;� � C	

��;	 ����: (9)

Thus, using well-known manipulations, the scalar � �
g����� connects the two Ricci scalars R ¼ g��R�� and

the mixed R̂m ¼ g��R̂�� by

R� R̂m ¼ ��þ g�1=2ðg1=2g��C	
�	Þ;�

� g�1=2ðg1=2g��C	
��Þ;	: (10)

Similarly, interchanging the roles of g�� and ĝ��,

R̂� Rm ¼ ��̂� ĝ�1=2ðĝ1=2ĝ��C	
�	Þ;�

þ ĝ�1=2ðĝ1=2ĝ��C	
��Þ;	; (11)

where �̂ ¼ ĝ�����, Rm ¼ ĝ��R��, R̂ is the Ricci scalar

1In these theories, the two metrics are independent degrees of
freedom. Theories like Brans-Dicke, TeVeS, etc., are also some-
times described as being bimetric, because they involve two
metrics, but those two metrics are a priori related conformally or
disformally via other degrees of freedom such as scalars or
vectors.
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of ĝ��, and g and ĝ are minus the determinants of g�� and

ĝ��, respectively.

We can construct gravitational Lagrangian densities us-

ing the scalars R, R̂, Rm, R̂m, and scalars constructed by
contracting powers of C	

�� with the two metrics and their

inverses (there are also ĝ=g, �! � g��ĝ��, etc. that can be

used). If we only contract with g�� and g��, a quadratic

scalar is a linear combination (possibly with coefficients
depending on scalars such as g=ĝ or �!) of the following
scalars:

g��C�
�	C

	
��; �C�C�; g��

�C� �C�;

g��C�C�; g�	g
��g��C�

��C
	
��;

(12)

where �C� � g��C�
��, C� � C�

��. The choice of scalars to

be used may be forced on us by various theoretical and
phenomenological desiderata (see below). The main point
is that C�

�� have only first derivatives of the metrics, that
they reduce to derivatives of the potential difference in the
Newtonian limit (in the sense to be discussed below), and
that we can form dimensionless quantities from them with
the MOND acceleration a0 (or a MOND length ‘ ¼
c2=a0). In regards to the four curvature scalars, is will be
advantageous to include them in the action only linearly
and to eschew terms such as in the voguish fðRÞ theories.
Such nonlinear terms render the theory a higher derivative
one, which I would like to avoid.2 Another reason to avoid
such terms in the MOND context is that they do not
naturally lead in their NR limit to a single constant a0
controlling the dynamics.3 Neither obstacle appears if we
allow functions of scalars made of C�

��. These contain only

first derivatives of the metrics and give NR limits in which
only a0 appears (see below). We see from Eqs. (10) that

g1=2R and g1=2R̂m differ by� plus a total derivative, so it is
enough to include one of these in the action, as we permit

functions of� anyway. The same is true of the pair ĝ1=2Rm

and ĝ1=2R̂. Because the number of possible combinations is
too large to explore here, I limit myself to the subclass of
actions of the form

I ¼ � c4

16�G

Z
½�g1=2Rþ �ĝ1=2R̂� 2ðgĝÞ1=4fð�Þ

� ‘�2Mð‘m�ðmÞ
i Þ�d4xþ IMðg��; c iÞ þ ÎMðĝ��; �iÞ;

(13)

where ‘ � c2=a0, � � ðg=ĝÞ1=4, fð1Þ ¼ 1, and �ðmÞ
i are

scalars formed by contracting a product of (even) m C�
��,

which can be used in principle. In what follows, I shall
confine myself to quadratic scalars.4 I have included two
matter actions: The first, IM, involves the matter degrees of
freedom with which we interact directly, designated sym-
bolically as c i. It contains only the MOND metric g�� to

which matter is coupled in the standard way. The other, ÎM,
involves other matter degrees of freedom, �i, and only ĝ��,

to account for the possibility that ĝ�� controls a matter

world of its own. There are no direct (electromagnetic, etc.)
interactions between the c matter and the twin � matter.5

I make two requirements of the action: a. Require that it
gives an NR MOND theory in its NR limit. This means the
following: given a nonrelativistic system of slow masses,
one can express the metrics solution of the relativistic
theory in terms of potentials so that the equations of motion
for slow particles in the resulting (multi) potential theory
are those required by NR MOND, with the appropriate
MOND and Newtonian limits; this is a phenomenological
requirement (by itself, it does not dictate the effects on
massless particles–e.g., gravitational lensing–even in NR
systems). b. Require that the action gives GR in the limit
a0 ! 0. This is not a phenomenological necessary (for
example, TeVeS does not satisfy it), but I feel that it is
highly desirable for various reasons. This automatically
causes the theory to agree with the stringent constraints
from the solar system and binary pulsars–which are known
to agree with GR–because the accelerations in these sys-
tems are many orders of magnitude larger than a0. I also
require this limit lest we have to introduce additional
constant(s) to the theory, which has to give GR in some
limit of its parameters.
When the two metrics are conformally related, which

might be the case in certain circumstances, g�� ¼
e#ðxÞĝ��, we have C	 ¼ 2#;	, �C	 ¼ �g	�#;�, ��� ¼
ð1=2Þðg��g

��#;�#;� � #;�#;�Þ, � ¼ ð3=2Þg��#;�#;�. If

we a priori constrain our metrics to be conformally related
(i.e. vary the action only over such pairs), we get the Brans-
Dicke theory with the choice MðzÞ / z (and appropriate

2For the same reason, I avoid scalars that are higher order in
the curvature tensors, such as the different possible contractions
of R�� with itself or with R̂��. These are even less appealing as
explained in [19].

3For example, to account for dimensions correctly, a function
of R has to be introduced as fð‘2RÞ, with ‘ as some length scale.
The NR limit of R includes c�2�
 as the dominant term in

=c2, and second order ones such as c�4ð ~r
Þ2 and c�4
�
.
Thus, in the argument of f, the second term will give ð ~r
=a0Þ2
with a0 ¼ c2=‘, which fits well into the MOND frame. But the
first, dominant term would involve a time scale ‘=c, not an
acceleration. When R appears linearly, the first term becomes
immaterial in the action, as a complete derivative, and we are left
with terms that are welcome in MOND [the 
�
 term is also
ð ~r
Þ2 up to a derivative].

4The MOND constant a0 is normalized so that the mass-
asymptotic-velocity relation is MGa0 ¼ V4. It defines the scale
length ‘ that is used in the coefficient and the argument of M.
Any dimensionless factors can be absorbed in the definition of
M so that its coefficient is ‘�2 ¼ c�4a20 and its argument is as
prescribed here.

5To obviate possible confusion, note that the twin matter is not
to play the role of the putative dark matter in galactic systems.
This is still fully replaced by MOND effects; see below.

BIMETRIC MOND GRAVITY PHYSICAL REVIEW D 80, 123536 (2009)

123536-3



choice of the constants and fð�Þ and possibly using �̂ in
the argument of M). With a more general form of MðzÞ,
we then get the relativistic MOND theory sketched in [2].

Without the interaction M term, the theory separates
into two disjoint copies of GR. It is important to note that
as a combined structure, the theory then enjoys a larger
symmetry involving separate coordinate transformations in
the two separate actions. This double symmetry has to be
brought to bear when solving the field equations of the
theory, which now satisfy two sets of Bianchi identities.
So, eight gauge conditions can, and have to, be employed.
It is the interaction that breaks this larger symmetry, as,
generically, it is only invariant to application of the same
coordinate transformation to the two metrics. However,
under certain circumstances, the interaction is symmetric
under a more extended set of coordinate transformation,
and we must be careful then to employ the larger gauge
freedom. The above mentioned complete decoupling is an
example that, as we shall see in Sec. IV, applies in the
formal limit a0 ! 0 of the theory (leading, as we want, to
GR). It may also happen, in principle, that the interaction
term vanishes only in some limited regions of space-time;
for example, if the extreme GR limit applies in some
regions. In this case, we must allow for gauge freedom
involving coordinate transformations that coincide only
outside these regions, but not inside them. We shall see
another example in Sec. III, where the NR limit of the
theory has such a partial double gauge freedom.

A. Concrete simple example

I shall hereafter concentrate on a simple special case of
the class. Some generalizations will be mentioned briefly
below, in this section, and in Sec. VI.

In the first place, I take M to be a function of only one
scalar, quadratic in the C�

��. In particular, I find the scalar

� defined above a natural choice for this argument, as it
has the same structure as the first-derivative part of the
Ricci curvature scalar (not itself a scalar)

�ð2Þ � g��ð��
�	�

	
�� � ��

���	
	�Þ: (14)

It is well known that one can replace R in the Einstein-

Hilbert action by �ð2Þ and still get GR. Here, we can also do
this, replacing also R̂ by the corresponding �̂ð2Þ, and mak-
ing M a function of �, which is constructed in the same
way from C�

��. We shall also see that with this choice of

scalar argument, the NR limit of the theory is especially
simple.

As a further simplification, I take �þ � ¼ 0. This will
yield a particularly interesting and simple subclass of
theories, which turn out to have the theory (3) as their
NR limit for slowly moving masses in a double Minkowski
background. I then take � ¼ 1 for G to be Newton’s
constant.

Work in units in which c ¼ 1, and use a0 ¼ ‘�1 to
highlight the connection with MOND. Also, anticipating
the expression for NR limit of�, I take the argument ofM
to be ��=2a20. The relativistic action I then consider is

I ¼ � 1

16�G

Z
½g1=2R� ĝ1=2R̂� 2ðgĝÞ1=4fð�Þ

� a20Mð��=2a20Þ�d4xþ IMðg��; c iÞ � ÎMðĝ��; �iÞ:
(15)

[Using Eq. (11), we can replace the first two terms by

ðg1=2g�� � ĝ1=2ĝ��ÞR�� þ ĝ1=2�̂.] I take a mixed volume

element for the interaction term, with f normalized such
that fð1Þ ¼ 1. Note the change of sign in the definition of
the twin matter action to match the negative sign for the
Hilbert-Einstein action of ĝ��.

Varying over g�� and over ĝ��, we get, respectively,

G�� þ S�� ¼ �8�GT ��; (16)

Ĝ �� þ Ŝ�� ¼ �8�GT̂ ��; (17)

where G�� and Ĝ�� are the Einstein tensors of the two

metrics,

G�� ¼ R�� � 1
2Rg��; Ĝ�� ¼ R̂�� � 1

2R̂ĝ��: (18)

T �� and T̂ �� are the matter energy-momentum tensors

(EMT); e.g., �IM � �ð1=2ÞR g1=2T ���g
��, and S��,

Ŝ�� are the functional derivatives (one with an opposite

sign) of the interaction term with respect to the two met-
rics:

�
Z

�2ðgĝÞ1=4fð�Þa20Mð��=2a20Þd4x

�
Z
ðg1=2�g��S�� � ĝ1=2�ĝ��Ŝ��Þd4x: (19)

For the present choice of the scalar argument of M, we
have

S�� ¼ ��M0��� þ ð��M0~S	
��Þ;	 ��mg��; (20)

Ŝ �� ¼ ð�þM0Ŝ	
��Þ:	 � �̂mĝ��; (21)

~S 	
�� ¼ C	

�� � �	
ð�C�Þ þ 1

2ðC	 � �C	Þg��; (22)

Ŝ 	
�� ¼ q�ð�C

	
�Þ� þ g	�C�

�ð�ĝ�Þ� � ĝ	�C�
��q

�
ð�ĝ�Þ�

� q	ð�C�Þ þ 1
2g

�
��ĝ

	�C� � 1
2
�C	ĝ��; (23)

�m ¼ � 1

2�
½�fð�Þ�0a20M;

�̂m ¼ ��3

2
½��1fð�Þ�0a20M:

(24)
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Here,

C	 � g�	C�; �	 � �	1fð�Þ;
q
�
� ¼ g��ĝ��; g��� ¼ ĝ��g

��ĝ��;
(25)

and ð� . . .�Þ ¼ f� . . .�þ � . . .�g=2 signifies symmetri-
zation over the two indices.

The tensor

~T �� ¼ 1

8�G
½��M0��� þ ð��M0~S	

��Þ;	� (26)

may be viewed as the EMT of the phantom dark matter
(DM); whereas, the �m term may roughly be viewed as

dark energy. Note that the last term in ~S	
��, which contrib-

utes 1
2 ½��M0ðC	 � �C	Þ�;	g�� may also contribute to the

dark energy due to its form. Define in analogy with ~T��,

T̂ �� ¼ 1

8�G
ð�þM0Ŝ	

��Þ:	: (27)

The Einstein tensors satisfy the usual Bianchi identities

G�
�;� ¼ Ĝ�

�:� ¼ 0,6 derivable from the invariance of the

Einstein-Hilbert actions to coordinate transformations. In
addition, we have here, for the general action (13), a set of
four identities following from the fact that the mixed term
is a scalar; these read

S��;� � ��2Ŝ��:� ¼ 0: (28)

Given that the matter EMTs are divergence free (for
matter degrees of freedom satisfying their own equations

of motion): T �
�;� ¼ T̂

�
�:� ¼ 0, the above identities imply

four differential identities satisfied by our 20 field equa-

tions. If we write these equations as Q�� ¼ 0 and Q̂�� ¼
0, respectively, then the four relations

Q�
�;� � ��2Q̂�

�:� ¼ 0 (29)

hold identically, and, as usual, deprive us of four equations
to account for the fact that the solution can be determined
only up to a coordinate transformation. This seems to leave
us with a tractable Cauchy problem, although this requires
more careful checking.7

Of course, for solutions of the field equations, we do
have separately

S��;� ¼ Ŝ��:� ¼ 0; (30)

which can be used as useful constraints of the solutions
(only one set is independent).
Note the useful identities

C� ¼ 1
2g

��g��:� ¼ �1
2ĝ

��ĝ��;� ¼ 2�;�=�;

�C	 ¼ ���2ð�2g	�Þ:�C	 ¼ � �C	 � g	�:�;
(31)

~S	
��;	 ¼ R̂�� � 1

2R̂mg�� � ðR�� � 1
2Rg��Þ

� ð��� � 1
2�g��Þ;

ðC	 � �C	Þ;	 ¼ R� R̂m þ�: (32)

Identities (32) follow from Eqs. (9) and (10). Similar

manipulations are possible for Ŝ	
��, and the field Eq. (17).

Contracting Eq. (16) with g�� gives

R� ½��M0ðC	 � �C	Þ�;	 � ��M0�þ 4�m ¼ 8�GT :

(33)

Contracting Eq. (17) with ĝ�� gives

R̂� ½�þM0ð12 �!ĝ	�C� � �C	 � ĝ	�q��C
�
��Þ�:	 þ 4�̂m

¼ 8�GT̂ ; (34)

where �! ¼ g��ĝ��. We can thus replace Eq. (16) by

R�� þ ��M0ð��� � 1
2�g��Þ

� ½��M0ð�	
ð�C�Þ � C	

��Þ�;	 þ�mg��

¼ �8�GðT �� � 1
2T g��Þ; (35)

and similarly for Eq. (17). We can also use identities (9)–
(11) to write these equations in different forms. Equations
(33) and (34) can be used to write possibly useful integral
(virial) relations by integrating them over space-time, each
with its own volume element.
It was deduced in [14] that under certain assumptions

about the theory, bimetric theories generically posses
ghosts. One of their assumptions was that to lowest order
in departure from double Minkowski the theory is a sum of
Pauli-Fierz actions for the different metrics, which are
quadratic in the metric departures. This, however, leads
to a linear theory in this limit, which is at odds with
MOND: MOND phenomenology dictates that at g�� ¼
ĝ�� ¼ 
��, any BIMOND theory (or any relativistic

MOND theory for that matter) is not even analytic in the
squares of the departures g�� � 
��, ĝ�� � 
�� (where

the argument of M0 in the above version of the theory
vanishes, and M0 diverges). It thus remains to be seen if
obstacles similar to these are at all relevant to BIMOND,
and if they are to what extent they are deleterious.

For conformally related metrics g�� ¼ e#ðxÞĝ��, we

have ~S	
�� ¼ e#ðxÞŜ	

��.

6For each tensor, indices are raised with the corresponding
metric; so, e.g., G�

� ¼ g��G��, Ĝ
�
� ¼ ĝ��Ĝ��.

7As a result of identities (28) and the Bianchi identities, the
four expressions G0

� þ S0� � ��2ðĜ0
� þ Ŝ0�Þ contain only up to

first time derivatives of the metric and cannot be used to
propagate the problem in time. Instead, the initial conditions
have to satisfy the four equations Q0

� � ��2Q̂0
� ¼ 0, and the

remaining 16 field equations, with the aid of four gauge con-
ditions, propagate us in time, and insure that these four are
always satisfied.
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B. Generalizations

Some generalizations of the above simple theory include
the following.

1. Instead of using � as the argument ofM, we can use
other scalars, or several scalar variables. A quadratic scalar
variable can be written, most generally, as

� ¼ Q����
�	 C�

��C
	
��; (36)

whereQ
����
�	 is built from g��, ĝ��, their inverses, �

�
�, and

scalars such as � and �!. In this case, the � terms take a
more general form, and so do terms that are second order in

the C�
��. The only terms in S�� and Ŝ�� that survive in the

NR limit, which we treat below, are those involving ~S	
��

and Ŝ	
��. For these, we now have, for example,

~S 	
�� ¼ 2U�	

ð�g�Þ� �U��
� g��g��g

	�;

U��
	 ¼ �2Q����

�	 C�
��;

(37)

which I shall need in what follows.
For example, taking as the argument of M,

�C�
�	C

	
��=2a

2
0 instead of ��=2a20, would leave us with

only the first term in expression (22) for ~S	
��, and with the

first three terms in expression (23) for Ŝ	
��.

2. One can consider more general �, � values.
3. We can increase the symmetry with respect to the two

metrics by taking interaction terms of the form Mð��̂Þ,
Mð�ÞMð�̂Þ, etc.

4. One can make M a function of scalars such as � and
�!.
Additional generalizations will be mentioned in Sec. VI.

III. NONRELATIVISTIC LIMIT

Consider now the NR limit of the theory derived from
the action (15). This limit applies to systems where all
quantities with the dimensions of velocities, such as v,

ffiffiffiffi



p
,

etc., are much smaller than the speed of light. In the context
of GR, this limit is attained by formally taking c ! 1
everywhere in the relativistic theory. In the context of
MOND, one has to be more specific, since system attrib-
utes with the dimensions of acceleration, such as v2=R,
~r
, etc., cannot be assumed very small in the limiting
process, even though they have velocities in the numerator.
We want to consider systems, such as galaxies, in which
these are finite compared with the MOND acceleration,
which is also a relevant parameter. The NR limit in MOND
is thus formally attained by taking everywhere c ! 1, but
at the same time ‘ ! 1, so that a0 ¼ c2=‘ remains finite.

Take a system of quasistatic (nonrelativistically moving)
masses, so that to a satisfactory approximation we can, as
usual, neglect all components of the matter EMT except
T 00 ¼ �. I also neglect here the possible effects of the

presence of twin matter.8 First, I consider the system in a
double Minkowski background. This is aesthetically the
most appealing option, which I shall assume. It relies on
the possibility that on cosmological scales the two metrics
are, somehow, maintained the same from some symmetry.
There are indeed versions of BIMOND [made more sym-
metric in the two metrics than our simple action (15) is]
that have cosmological solutions with ĝ�� ¼ g��, either at

all times, or as vacuum solutions, which might be appro-
priate for today (see Sec. VI). In this case, we have C�

�� ¼
0 for the cosmological background, and finite C�

�� values

occur only due to local inhomogeneities. We can then take
locally, on scales much smaller then cosmological ones, a
double Minkowski background. Departures from this as-
sumption will be discussed below.
Write, then, the metrics as slightly perturbed from

Minkowski. Because the source system is time-reversal
symmetric in the approximation, we treat it (neglecting
motions in the source), we are looking for a solution for
which the mixed space-time elements of the two metrics
vanish.9 We can then write most generally

g�� ¼ 
�� � 2
��� þ h��;

ĝ�� ¼ 
�� � 2
̂��� þ ĥ��;
(38)

where h0� ¼ h�0 ¼ ĥ0� ¼ ĥ�0 ¼ 0. We denote the dif-

ferences

g��� ¼ g�� � ĝ�� ¼ �2
���� þ h���; (39)

with 
� ¼ 
� 
̂, h��� ¼ h�� � ĥ��. We wish to solve

the field equations to first order in the potentials 
, 
̂, hij,

ĥij (Roman letters are used for space indices).

Note that there is a subtlety here (as in all metric MOND
theories) due to the fact that the NRMOND potential for an
isolated mass diverges logarithmically at infinity; so,
strictly speaking we cannot formulate a first-order theory
for such an isolated mass assuming 
 � 1 at all radii.
However, we are, in any event, dealing with an effective
theory to be understood in the context of the Universe at
large, and in this context there are no isolated masses; our
approach is meant to work only well within the distance
from the central mass to the next comparable mass, where
we can assume the first-order theory to be a good
approximation.

8This is justified if this matter is nonexistent, or of it is
smoothly distributed so its local contribution is negligible, or
if there does not happen to exist a twin body in the near vicinity
of the c body under study.

9We do not have to assume this a priori; if we do not, the
equations themselves will tell us that there is a choice of gauge in
which the solution satisfies this ansatz; see the end of this
subsection. The ansatz simplifies the presentation, and is justified
a posteriori by our showing below that such a solution exists.
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To the required order, the only nonvanishing compo-
nents of C�

�� are10

Ci
00 ¼ C0

0i ¼ C0
i0 ¼ �1

2g
�
00;i ¼ 
�

;i;

Ci
jk ¼ 1

2ðg�ij;k þ g�ik;j � g�jk;iÞ
¼ 1

2ðh�ij;k þ h�ik;j � h�jk;iÞ þ
�
;i�jk �
�

;j�ik �
�
;k�ij:

(40)

These reflect the same relations between the separate con-
nections with their respective potentials.

The only nonvanishing components of the Ricci tensors
(shown here for R��) are

R00 ¼ ��
; Rij ¼ 1
2Hij � �
�ij; (41)

with

Hij � �hij þ h;i;j � 2hkði;jÞ;k; (42)

where h is the trace of hij. The nonvanising components of

the Einstein tensor are

G00 ¼ �2�
þ 1
4H; Gij ¼ 1

2

�
Hij � 1

2H�ij

�
(43)

(H is the trace of Hij). The same expressions exist for the

hatted and for the starred quantities. We are now ready to
use these expressions in the field Eqs. (16) and (17). We
neglect the small cosmological-constant terms (in line with
our assuming background Minkowski metrics), and note
that terms such as��� are of second order in the potentials,

so they can be neglected. Also, ~S	
�� and Ŝ	

�� are linear in

components of the tensor C�
��, which are first order in the

potentials; so everywhere else in these expressions, we can
take the metrics as Minkowski, so that fð�Þ � 1, �	 � 1,
q	� � �	

�, etc. Also, for the same reason, the covariant

derivatives can be replaced by normal derivatives. All in

all, we get that the two terms involving ~S	
�� and Ŝ	

�� are

equal. Thus, taking the difference of the two field equa-
tions, we get

G�
00 ¼ �8�GT 00; G�

ij ¼ 0: (44)

Substituting from Eq. (43), we get

�
� � 1
8H

� ¼ 4�G�; H�
ij � 1

2H
��ij ¼ 0: (45)

Taking the trace of the second part, we get H� ¼ 0, and
substituting in the first, we get

�
� ¼ 4�G�: (46)

We impose for 
� the boundary condition at infinity

� ! 0, which establishes it as the Newtonian potential of
the problem. But the second Eq. (45) does not, in itself,

determine h�ij, because G�
ij, like Gij, satisfy three Bianchi

identities G�
ij;j ¼ 0, which are the reductions of identities

(29) to our case (the fourth identity is automatically sat-
isfied for our choice of vanishing mixed elements of the
metrics).
We have only used one of the field equations (or rather

their difference). Now consider the first field equation
alone in the form (35). Again, neglect the second order �
terms, etc. to get

R�� þ
�
M0

�
�Si
�� � 1

2
�Si
��

��
;i
¼ �4�G����; (47)

where �Si
�� is the NR limit of ~S	

��, and �Si its (four) trace.

The (0i) components of the equations hold identically (to

first order), since �Si
0j ¼ 0.11 The (00) and (ij) components

give, respectively,

��
þ ½M0ð �Sk
00 þ 1

2
�SkÞ�;k ¼ �4�G�; (48)

1
2Hij � �
�ij þ ½M0ð �Sk

ij � 1
2
�Sk�ijÞ�;k ¼ �4�G��ij:

(49)

Multiply Eq. (48) by �ij and subtract from Eq. (49) to get

1
2Hij þ ½M0ð �Sk

ij � �Sk
mm�ijÞ�;k ¼ 0; (50)

which I use instead of Eq. (49). Equation (50) does not
satisfy any more identities and thus gives six independent
equations, which together with the above four unused
independent equations, and the remaining freedom to
choose three gauge conditions, should determine the re-
maining 13 potentials 
, hij, h

�
ij.

It is beneficial to employ three of these six equations
encapsuled in Eq. (50) by taking its divergence, taking the
Bianchi identities for Hij into account, to get

ðM0 �Sk
ijÞ;k;j ¼ 0: (51)

These three equations, together with the three independent
equations in the second of (45) now involve only the six h�ij
(so we managed to decouple these from 
 and hij; 


�,
which also appears in these equations, is already known),
and can be solved for these.12 Once this is done (imposing
boundary conditions at infinity), 
 is determined from
Eq. (48) by solving a Poisson equation, and hij are likewise

determined from Eq. (50) with the aid of gauge conditions.
The remaining gauge freedom is associated with coordi-
nate transformations that preserve our assumed form of the

10Because the metric derivatives, connections, and curvature
components are already first order, all the metrics that are used to
contract them can be taken as 
��.

11To see this, note that from Eq. (37), we have �Si
0j / ð2Q��ji

�0 �
Q��0i

�j ÞC�
��. Now, the NR limit of the Q tensor is constructed

only from 
�� and 
��. This means that its only nonvanishing
components must have three pairs of equal indices. This means,
in turn, that the only contributions to �Si

0j come from C�
�� with

one or three time indices, but these all vanish.
12These are coupled nonlinear equations, since h�ij appear also
in the argument as M0.
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metrics, i.e., near-Minkowski and stationary (time inde-
pendent and lacking mixed elements). These are of the
general form

t ¼ t0; xi ¼ x0i þ �iðx0Þ; (52)

with �iðx0Þ first order in the potentials. They do not affect
g��� and so leave h�ij and 
� intact,13 changing only hij by

�i;j þ �j;i.

Everything so far is valid for an arbitrary choice of
quadratic scalar argument. I now specialize to my preferred
choice of scalar argument ��=2. In this case, we have

�Si
00 ¼ 2
�

;i þ 1
2ðh�ij;j � h�;iÞ;

�Si
jk ¼ 1

2ðh�ij;k þ h�ik;j � h�jk;iÞ þ 1
4½2ðh�;i � h�im;mÞ�jk

� h�;k�ij � h�;j�ik�: (53)

What is special about this case is that the space compo-

nents �Sk
ij depend only on h�ij, not on 
�. This greatly

simplifies the solution of Eqs. (45) and (51), which has to
be h�ij ¼ 0 (with boundary conditions h�ij ! 0 at

infinity).14

The fact that h�ij ¼ 0 causes the C�
��, as given in

Eq. (40), to be linear combinations of derivatives of 
�,
and the argument of M0 becomes a function of ð ~r
�Þ2.
Now Eq. (48) reads

�
 ¼ 4�G�þ ~r � fM0½ð ~r
�=a0Þ2� ~r
�g: (54)

Equation (50) becomes

Hij ¼ 0 (55)

and can be used with three gauge conditions, to determine
hij–as would be done in GR, where this equation is always

satisfied. This implies, with the appropriate boundary con-
ditions, that there is a gauge in which hij ¼ 0, and we work

in this gauge.
The matter action for a system of slowly moving masses

is, to our present approximation,

IM � 1

2

Z
�ðv2 �
Þd3xdt: (56)

So the motion of such particles is governed by the potential

, which is thus identified as the MOND potential. It is
determined from the field equation in Eq. (54) (with 
�
being the Newtonian potential of the system), which is the
quasilinear MOND formulation described by Eq. (3), and
discussed at length in [12]. Note that it requires solving
only linear differential equations. To have the required

Newtonian limit, we have to have M0ðzÞ ! 0 for z ! 1
(i.e., a0 ! 0). In the MOND regime z � 1, we have to

have M0ðzÞ � z�1=4 to get space-time scale invariance,
which is the defining tenet of the NR MOND limit [20]
(the normalization is absorbed in the definition of a0).
To recapitulate, we end up with the simple result in the

chosen gauge:

g�� ¼ 
�� � 2
���; ĝ�� ¼ 
�� � 2
̂���; (57)

with 
� ¼ 
� 
̂ being the Newtonian potential, and the
MOND potential 
 determined from the quasilinear
MOND Eq. (3). The relation between the first-order
MOND metric and the MOND potential is thus exactly
the same as that between the first-order GR metric and the
Newtonian potential.
Suppose we have not assumed a priori that the mixed

elements of the first-order metrics vanish. This does not
change expressions (40) for C�

��, but we now have addi-

tional nonvanishing elements

Ci
0j ¼ ðh�0i;j � h�0j;iÞ=2; C0

ij ¼ �ðh�0i;j þ h�0j;iÞ=2:
(58)

The (0i) component of the difference Ricci tensor is R�
0i ¼

ð�h�0i � h�0j;i;jÞ=2. So Eq. (45) is now complemented by

ð�h�0i � h�0j;i;jÞ ¼ 0: (59)

With our boundary conditions h�0i ! 0 at infinity, the so-

lution of this equation is h�0i ¼ v�
;i for some v�ðxÞ (the left-

hand side is identically divergence free, which leaves us
with only two independent equations). Note now that the
first-order limit of the theory, discussed here, enjoys a less
obvious symmetry beside the general invariance to simul-
taneous coordinate transformations: it is invariant under a
‘‘small’’ transformation of the form t ¼ t0 � uðx0Þ applied
separately to the g�� and the ĝ�� sectors (with u first order

in the potentials). In other words, there is symmetry to
transforming g0i ! g0i þ u;i, ĝ0i ! ĝ0i þ û;i (hence

g�0i ! g�0i þ u�;i; u� ¼ u� û), with u and û free for us to

choose (the EMTs are unchanged to lowest order). We thus
have the freedom to choose a gauge for ĝ�� alone, in which

v� ¼ 0, and hence h�0i ¼ 0. This means that Ci
0j ¼ C0

ij ¼
0, and so the (0i) components of Eq. (47) read

ð�h0i � h0j;i;jÞ ¼ 0; (60)

whose solution is h0i ¼ v;i for some vðxÞ. We still have the

gauge freedom to chose vðxÞ ¼ 0, and so we do. We thus
end up with a gauge in which the field equations them-

selves dictate h0i ¼ ĥ0i ¼ 0, as we assumed a priori.
The double gauge symmetry we use can be seen to apply

directly to the first-order equations. It can be traced back to
the fact that the NR limit of� is invariant to it: If we do not
assume a priori that the mixed elements h�0i vanish, then
the addition to the lowest order expression for � is Ci

0kC
k
0i,

13Since g��� is already first order, in our approximation the
transformation affects it only to zeroth order; i.e., not at all.
14All of the above holds if we use both � and �� as variables,
because they degenerate into one in the NR limit. Also, note that
�C0 ¼ 0, and �Ci ¼ h�ij;j � ð1=2Þh�;i; so, adding the scalar
g��

�C� �Cn should not change this conclusion.
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because Ci
0j is antisymmetric in i, j, while C0

ij is symmet-

ric. But, under the double gauge transformation, h�0i
changes by u�;i, so Ci

0k is invariant, and so is �.

It remains to be checked if this symmetry is a remnant of
some symmetry enjoyed by the relativistic theory itself.

Anticipating the discussion of the next subsection, note
that not all scalar arguments are invariant to this double
gauge in their NR limit. For example, the change induced
in the scalar g��

�C� �C� is �h�0i;i�u
�. For the more general

case, Eq. (59) is still valid, and again gives h�0i ¼ v�
;i, while

instead of Eq. (60), we have more generally

ð�h0i � h0j;j;iÞ=2þ ½M0 �Sk
0i�;k ¼ 0: (61)

The first term is identically divergence free, so we can
write one of these three equations as

½M0 �Sk
0i�;k;i ¼ 0: (62)

Now, �Sk
0i is linear in v� (which may also appear in the

argument of M0), so this equation generically dictates
v� ¼ 0. For the scalar �, this does not work, because at

this stage we already have �Sk
0i ¼ 0, but in return we have

the double gauge freedom to help us remove v�. For the
scalar g��

�C� �C�, we do not have the double gauge free-

dom, but we can write �Sk
0i / �k

i�v
�, so Eq. (62) gives

�ðM0�v�Þ ¼ 0, which implies v� ¼ 0. In any event, we
can always have h�0i ¼ 0 and continue from there as before

to show that there is always a gauge where the mixed
elements of the metrics vanish.

A. Other choices of the scalar argument of M

Here, I consider the NR limit of theories with other
choices of the quadratic scalar argument of M. The
main purpose is to see whether these give theories that
are different in their NR limits, and so can be distinguished
using observations of NR systems such as rotation curves
and lensing in galaxies.

Take then the general quadratic argument as given by
Eq. (36). All of our procedures in the present section, up to
Eq. (52), remain valid. Up to that point, we had not made

use of the particular expressions for ~S	
�� and Ŝ	

��, only of

the fact that they become equal to first order in the poten-
tials, and this is still the case.15

Departure from the above occurs, however, for more
general scalars in the employment of Eq. (51). Now, the

space components �Si
jk do, in general, depend on the gra-

dient of 
�, and it is easy to see that h�ij ¼ 0 is no longer a

solution, in general: Substituting h�ij ¼ 0 in Eq. (51) would

result in three constraints on the Newtonian potential 
�,
which it does not satisfy (
� is really arbitrary if we allow

arbitrary density distributions, including negative ones).
So, in general, after 
� is calculated as the Newtonian
potential of the system, we have to solve the nine coupled
Eqs. (45) (second part) and (51) (only six of which are
independent) for the h�ij. After this is done, we determine


from Eq. (48), and hij from Eq. (50) with the aid of gauge

conditions. Note that in the Newtonian limit, a0 ! 0, 

becomes the Newtonian potential, and hij ! 0 as fast as

M0 does.
We can derive some scaling properties of the h�ij, even in

the general case: It is easy to see that the second Eq. (45)

and (51) are invariant under mi ! 	mi, r ! 	1=2r, where
mi stand for the masses in the system. This is because the
only quantities appearing in these equations, beside the
variables h�ij, are
�

;i and a0 both of the same dimensions as

miG=r
2. This means that the h�ij;k are invariant under this

scaling.
Consider now in more detail a spherically symmetric

problem. We are looking for solutions in which the various

potential tensors hij, ĥij, h
�
ij are of the form exemplified by

h�ij ¼ h�1ðrÞ�ij þ h�2ðrÞninj; (63)

where n ¼ r=r. It can be shown that h�ij satisfying the

second Eq. (45), namely, annuling H�
ij, is tantamount to

h�2 ¼ rh�01 , which means, in turn, that h�ij ¼ q;i;j for some

qðrÞ. It thus remains to determine q from Eq. (51). Because
of the spherical symmetry, the different i components of
Eq. (51) give equivalent equations16; so we are left with
only one equation from which to determine qðrÞ.
Once qðrÞ is known, we use Eq. (50) to solve for hij.

Write hij in the form (63). We can use the remaining gauge

freedom to eliminate one of the two functions. In the
spherically symmetric case, the remaining freedom is to
transform r ¼ r0½1þ �ðr0Þ� for some �ðr0Þ, treated to first
order. This transformation takes hij ! hij þ 2��ij þ
2r�0ninj; so, we can use such a transformation to eliminate

either of the functions in the expression for hij. For ex-

ample, let us choose the gauge in which

hij ¼ ’ðrÞ�ij: (64)

The general NR MOND metric is thus diagonal for this
choice of gauge with

g00 ¼ �1� 2
; gij ¼ �ij½1� 2ð
þ ’Þ�: (65)

For the form (64) of hij, we have

Hij � 1
2H�ij ¼ �ð’00 þ r�1’0Þ�ij þ ð’00 � r�1’0Þninj

� a�ij þ bninj: (66)

Note that a0 ¼ �r�2ðr2bÞ0, from the fact that the expres-

15This follows from the asymmetry of C�
b� to interchange of the

matrices, and from the fact that to first order we can put every-
where else ĝ�� � g�� � 
��.

16This equation has to read in the spherical case P½qðrÞ�r ¼ 0,
where P is a differential operator acting on qðrÞ, and we get one
equation P½qðrÞ� ¼ 0.

BIMETRIC MOND GRAVITY PHYSICAL REVIEW D 80, 123536 (2009)

123536-9



sion is divergence free. We now use

Hij � 1
2H�ij ¼ �2ðM0 �Sk

ijÞ;k; (67)

obtained from Eq. (50), to solve for’. Since the right-hand
side of this equation is already known to be divergence
free, from Eq. (51), we get only one independent equation
of the form

rðr�1’0Þ0 ¼ pðrÞ; (68)

where pðrÞ is a known function. This we finally solve for
’, which we permit to behave asymptotically as lnðrÞ.

Here, we note already an interesting difference from the
theories that have � as scalar argument, which have
Eqs. (2) and (3) as their NR limit (even with general �,
�–see the next subsection). In such theories, in the spheri-
cal case the MOND acceleration is an algebraic function of
the Newtonian one, with the relation being unique for the
theory. In the general case this is not so: To get the MOND
acceleration in the spherical case, we apply the Gauss
theorem to Eq. (48). The expression we then get is some
functional of qðrÞ that cannot be written as a function of the
Newtonian acceleration �d
�=dr. This can lead to differ-
ent predictions even for massive-particle motions.

The spherical problem can be solved analytically for the
case where 
� ¼ Ar�–for example, when we are outside
the mass where � ¼ �1, and we are in a region where
M0ðzÞ / z��, for example, in the deep-MOND regime
where we will have to have � ¼ 1=4. Then, the solution
can be shown to be of the form q ¼ 	r2
�, with 	 deter-
mined from Eq. (51) depending on � and �. With this

ansatz, M0 / ðjAj=a0Þ�2�ðaþ b	þ c	2Þ��r�2�ð��1Þ,
and Eq. (51) then gives ðA=a0Þ�2�ðaþb	þc	2Þ��Að �aþ
�b	Þr�n¼0, with � ¼ ð1� 2�Þð�� 1Þ � 2 (¼�3 for the
above examples), and �a, �b depending on �, � and the
choice of scalar argument of M for the specific theory

( �a comes from the terms in �Sk
ij linear in the gradient of


�,
and �b from those linear in the gradient of h�ij). So 	 ¼
� �a= �b gives us the solution (for the choice of � as argu-
ment �a ¼ 0). Equation (68) then gives ’ ¼
�ðA=a0Þ�2�Ar�þ3 for � � �3, and ’¼�ðA=a0Þ�2��
A lnðrÞ for � ¼ �3, with the dimensionless � determined.

Take, for instance the interesting case where we are
asymptotically outside matter and in the deep-MOND

regime, where A ¼ �MG and � ¼ �3. We then get ’ ¼
�ðMGa0Þ1=2 lnðrÞ, asymptotically. In this case, we also

have 
 ¼ ðMGa0Þ1=2 lnðrÞ, by definition; so, ’ ¼ �
.
For example, for the choice of argument
�g��C�

�	C
	
��=2a

2
0, I find, following the above procedure

for the deep-MOND (� ¼ 1=4), asymptotic (� ¼ �1)
case: � ¼ 4=3.

In summary, the asymptotic form of theMONDmetric is
diagonal, with

g00 ¼ �1� 2
; gij ¼ �ij½1� 2
ð1þ �Þ�: (69)

Remember that while ’ ¼ �
 in the MOND regime, in
the Newtonian regime
 becomes the Newtonian potential,
while’ vanishes as fast as dictated by the vanishing ofM0
at high values of its argument.

B. General �� values

The NR limit of the field equation in a theory governed
by the action (13) for general � and � values is

�ðR�� � 1
2
��RÞ þ ðM0 �Si

��Þ;i ¼ �8�G���0��0; (70)

�ðR̂�� � 1
2
��R̂Þ � ðM0 �Si

��Þ;i ¼ 0; (71)

with all quantities taken to first order in the potentials
, 
̂,

hij, ĥij. �S
i
�� is linear in the first-order expression for C�

��,

as given in Eq. (40), and M0 is a function of a quadratic
scalar built from these. Multiply the second equation by
��=� and add to the first to get

�

�
R�
�� � 1

2

��R

�
�
þ �þ �

�
ðM0 �Si

��Þ;i
¼ �8�G���0��0: (72)

The (0j) components of this equation hold identically, as
before. Equations (41)–(43) are then used to write the (00)
and (ij) components of this equation as

�

�
�
� � 1

8
H�

�
� �þ �

2�
ðM0 �Si

00Þ;i ¼ 4�G�;

H�
ij �

1

2
H��ij þ 2ð�þ �Þ

��
ðM0 �Sk

ijÞ;k ¼ 0:

(73)

Taking the trace of the second and substituting for H� in
the first, we get

��
� � �þ �

2�
½M0ð �Si

00 þ �Si
mmÞ�;i ¼ 4�G�: (74)

Equation (73) comprises seven independent equations that
can be solved for
� and the h�ij. Once these are known, we
can get 
 and hij from Eq. (70), or equivalently from

�R�� þ ½M0ð �Si
�� � 1

2
�Si
��Þ� ¼ �4�G����: (75)

Its (00) component gives

�
 ¼ 4�G��1�þ ��1½12M0ð �Si
00 þ �Si

kkÞ�;i; (76)

from which 
 can be obtained (since the right-hand side is
now known). The (ij) component gives [after making use
of Eq. (76)]

Hij � 1
2H�ij ¼ �2��1ðM0 �Sk

ijÞ;k: (77)

From these, hij can be obtained. Note that the divergence

of Eq. (77) is identically the same as that of the second
Eq. (73), so we only have here three independent equations
for the six hij. However, again we have the gauge freedom

to eliminate this indeterminacy.
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Specializing to our preferred choice of scalar � ¼
��=2, the NR limit of the theory again greatly simplifies

since from Eq. (53), �Sk
ij does not contain the derivatives of


�. This implies that the second term in the second
Eq. (73) is linear in the derivatives of h�ij, and so the

solution of this equation is easy to get: h�ij ¼ 0 (again,

with the asymptotic boundary conditions h�ij ! 0). This

means that the argument of M0 is now a function of

ð ~r
�=a0Þ2, and that, in fact, �Si
jk ¼ 0. As a result, the first

of Eq. (73) becomes identical with the first of Eq. (2), while
Eq. (76) becomes identical with the second of Eq. (2). In
addition, from Eq. (77), we get hij ¼ 0 as before.

We thus end up with an NR limit in which g�� ¼ 
�� �
2
��� and ĝ�� ¼ 
�� � 2
̂��� as in Eq. (57), with the

MOND potential 
 determined now from the NR MOND
theory described by Eq. (2). This theory has been discussed
at length in [12]. The relation between the first-order
MOND metric and the MOND potential is thus, again,
the same as that between the first-order GR metric and
the Newtonian potential.

Note in this context as well, that using a scalar argument

that is a combination of� and �� ¼ g��
�C� �C�, leads to the

same first-order metric and NR limit.

C. Other backgrounds

So far, I assumed that the two metrics have the same
cosmological background and so, for systems small on the
cosmological scale, both can be taken as nearly
Minkowski.

Here, I consider some possible departures from this
assumption. One possibility, for example, is that for to-
day’s cosmology the two metrics are conformally related
ĝ�� ¼ 	g�� with constant 	; this still gives C�

�� ¼ 0 for

the cosmological background. In this case, we can take
locally the background metrics to be gB�� ¼ 
��, ĝ

B
�� ¼

	
�� and expand around these:

g�� ¼ 
�� � 2
��� þ h��;

ĝ�� ¼ 	ð
�� � 2
̂��� þ ĥ��Þ;
(78)

instead of Eq. (38). The expressions of �̂�
��, C

�
��, and R̂��

in terms of the potentials remain the same as before. Also,
small coordinate transformations of the type shown in
Eq. (52) still do not affect the potential differences only
the hij. Work with the general theory for arbitrary �, �.

The NR limit of the field equations is now

�ðR�� � 1
2
��RÞ þ 	fð	�1ÞðM0 �Si

��Þ;i ¼ �8�GT ��;

(79)

�ðR̂�� � 1
2
��R̂Þ � fð	�1ÞðM0 �Si

��Þ;i ¼ 0; (80)

with the 	 powers coming from factors such as �	, etc.
Defining ~� ¼ 	�, and ~M0 ¼ 	fð	�1ÞM0, we get back

the 	 ¼ 1 case, but with � replaced by ~�, andM0 by ~M0.
As before, with our favorite choice of scalar argument� ¼
��=2a0, we have hij ¼ 0 in the appropriate gauge; so we

get the relation between the MONDmetric and the MOND
potential as before.
For a more general background, we can write the back-

ground metrics, locally for a small system,

g�� ¼ 
��; ĝ�� ¼ 	ð
�� � u��0��0Þ: (81)

This leads to more complex NR limits, which I do not
discuss here.
We see then that the NR limit of the theory as applied to

system that are small on cosmic scale depends on the
background metrics. If the relation between the back-
ground metrics vary with cosmological time (I assume
that it does not–see Sec. VI) the application of BIMOND
to local inhomogeneities also varies with cosmic time. But
I will not discuss this possibility further here.

IV. GENERAL RELATIVITY LIMIT

I showed in [12] that the NR theories with � ¼ 1, but
arbitrary �, have a Newtonian limit if M0ðzÞ ! 0 for z !
1. This carries over to the relativistic theories. The same
property ofM causes the relativistic theory to go to GR in
the same limit a0 ! 0, because M0 ! 0 implies ~T��,

T̂�� ! 0, and since in this case MðzÞ=z must also vanish

in the limit, we also have �m, �̂m ! 0. This gives GR,
with g�� satisfying the Einstein equation with the standard

matter EMT as source. In this limit, ĝ�� satisfies its own

Einstein equation. It decouples from g�� anyway, so it

affects matter neither directly nor indirectly.
We do not have tight phenomenological constraints on

how fast MOND approaches Newtonian dynamics for high
accelerations. There are indications from solar system
constraints [1,21,22] that M0ðzÞ decreases at least as fast
as z�1, but it might turn out to do so much more precip-
itously. If so, any departure from GR might be practically
wiped out in a very high-acceleration system, such as a
laboratory on Earth, the inner solar system, or a close
binary pulsar.17,18

In the limit a0 ! 0, the vanishing of ~T�� and T̂�� might

occur much faster than that of �m and �̂m. For example, if
Mð1Þ is finite, the latter vanishes as a20, while the former

might vanish much faster. We can thus, as an intermediate

approximation, keep the �m and �̂m terms in the theory,

17The presence of the galactic field still induces the departures
discussed in [21].
18A theory like TeVeS also has a surrogate for a0 that appears in
its NR limit, which is constructed out of the constants character-
izing the theory. However, TeVeS does not become GR in the
limit a0 ! 0, and this leaves possibly detected effects even in an
isolated solar system, the binary pulsar, etc., even with the very
high accelerations characterizing them [3,8,23–25].
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and write the limiting field Eqs. (16) and (17) as

R�� � 1
2Rg�� ��mð1Þg�� ¼ �8�GT ��; (82)

R̂ �� � 1
2R̂ĝ�� � �̂mð1Þĝ�� ¼ �8�GT̂ ��: (83)

For general � values, it remains to be checked whether
the requirement onM0 from the NR limit, deduced in [12],
suffices to guarantee a GR limit for a0 ! 0.

V. GRAVITATIONAL LENSING

One of the two main phenomenological duties we expect
from a relativistic MOND theory is to predict gravitational
lensing correctly. In particular, we know that lensing analy-
sis of galactic systems indicate mass discrepancies that are
not very different to those derived from massive-particle
motions (e.g., rotation curves). In other words, lensing in
the MOND regime is found observationally to be greatly
enhanced over the GR prediction without DM.
Reproducing this fact has been a pressing desideratum in
constructing relativistic MOND theories, achieved finally
in TeVeS through the efforts of Sanders [4] and Bekenstein
[3].

In the present BIMOND class such enhanced, MOND-
like lensing is predicted naturally by all the theories in the
class. For a choice of the scalar argument that is a combi-

nations of �, ��, and �� (and with any �, �), relation (57)
between the first-order MOND metric and the MOND
potential holds. So, to this order the MOND connection
�	
�� is expressed in terms of the MOND potential 
 in the

sameway as the GR connection is expressed in terms of the
Newtonian potential. This means, in turn, that the MOND
potential describes the dynamics of both massive and
massless particles in the same way as the Newtonian
potential does in GR. In other words, such theories predict
that analyzing lensing and massive-particle dynamics by a
NR system assuming GR, should give the same effective
potential (or the same distribution of ‘‘phantom matter’’).
This is consistent with observations.

We also saw that there are other choices of the scalar
argument of M for which the NR MOND metric is char-
acterized by additional potentials hij. However, these van-

ish quickly for accelerations much above a0, while in the
MOND regime they are of the same order as the MOND
potential 
. We then expect these theories to yield some-
what different lensing to that expected with the GR relation
between metric and potential, albeit still with the MOND
characteristics.

For example, we saw that far from a central massM, and
in the deep-MOND regime, the form of the MOND metric
is given by Eq. (69), and this leads to lensing that is
multiplied by a factor 1þ �=2 over that expected from
the MOND potential with the GR prescription.

Eventually, by comparing lensing and massive-particle
dynamics in the low-acceleration fields of galaxies or other

galactic systems, we may be able to differentiate observa-
tionally between theories with different scalar arguments.

VI. COSMOLOGY

I cannot at present offer a specific BIMOND cosmology.
There are two obstacles to doing this. In the first place, we
cannot even pinpoint the exact BIMOND theory out of the
various versions possible. NR phenomenology can assist
somewhat in pinpointing the NR limit. However, even for a
given NR MOND theory, there are different relativistic
versions having this limit, which differ greatly in the
relativistic regime, and specifically in their application to
cosmology.
Second, as we well know from a century of experience

with GR, having the underlying theory is one thing; pin-
pointing the cosmology is another: In dealing with stan-
dard GR cosmology, the cosmological evolution and the
present state of the Universe does not emerge uniquely
from first principles. There are major observational con-
straints, assumptions about symmetries, initial conditions,
and matter content, that are put in by hand into cosmologi-
cal theory. We do not know, for instance, the initial con-
ditions for our Universe from first principles, so an initial
singularity (as opposed say to a steady state universe with
continuous matter creation, or to a static universe as
Einstein would have it initially) is imposed by hand.
Early inflation (the mechanism for which is still moot) is
put in by hand to account for various observational facts.
Cosmic acceleration, whose cause remains unknown, is
imposed by hand by invoking dark energy, modified grav-
ity, or other mechanisms. The material content of the
Universe (e.g. the very existence of baryon asymmetry–
mechanism still unknown) is an input in cosmology. A
priori, we could have had a cosmos with a space that is
inhomogeneous or anisotropic on cosmological scales; but,
the cosmological principle is imposed based on what our
eyes tell us about our Universe. All of this is even more
acute in light of recent developments in quantum
cosmology.
In the case of BIMOND, we are on even shakier ground

when coming to construct a cosmology. Here, we are
dealing with two space-times, only one of which we can
sense directly. We have no direct knowledge of many of the
global properties of the other space-time. Did it have a big
bang? Did it undergo inflation? Is it spatially flat (in
Rosen’s theory the auxiliary metric is constrained to be
flat)? Is it spatially homogeneous and isotropic? What is
the nature of the twin matter? Is it there at all? Is it always
homogeneously distributed, or does it clump? Is it charac-
terized by the same baryon asymmetry, etc.?
MOND phenomenology in systems that are small on

cosmological scales is particularly simple and clear cut in a
doubleMinkowski background. Such a background applies
if in cosmology ĝ�� ¼ g��. BIMOND cosmology that has

disparate metrics, so that the cosmological values of C�
��
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are appreciable, does not seem to make phenomenological
sense in small systems.

I thus assume, as an additional cosmological assumption
to the many above, that on cosmological scales we have
ĝ�� ¼ g��. This could emerge, as an external constraint

on BIMOND, from the world picture that underlies it. Or,
more appealingly, it could, at least, correspond to a solu-
tion of BIMOND itself in some version.

I thus consider here briefly only cosmologies with
ĝ�� ¼ g��, or with the somewhat relaxed assumption

ĝ�� ¼ 	g��, with a constant 	. In either case, we have

C�
�� ¼ 0 in cosmology; so, finite values of C�

�� are pro-

duced only due to local inhomogeneities. This greatly
simplifies the equations of motion, since the only contri-
butions of the interaction term that survive are the �m

terms. With this ansatz, the equations of motion for the
more general action (13) are then

�G�� þ qa20Mð0Þg�� ¼ �8�GT ��ðg��; c iÞ;
�G�� þ q̂a20Mð0Þg�� ¼ �8�GT̂ ��ð	g��; �iÞ;

(84)

where

q ¼ ð	=2Þ½�fð�Þ�0
�¼	�1 ;

q̂ ¼ �ð	�2=2Þ½��1fð�Þ�0
�¼	�1 ;

(85)

and I used the fact that with the above ansatz, Ĝ�� ¼ G��.

For the two equalities in Eq. (84) to hold simultaneously,
we need to start with a BIMOND theory with some sym-
metry with respect to the two metrics. As an example,
consider a special, more symmetric, case of the gravita-
tional Lagrangian in Eq. (13) written as

�g1=2ðR� 2a20
�MÞ þ �ĝ1=2ðR̂� 2a20

�MÞ: (86)

This choice corresponds to fð�Þ ¼ ð��þ ���1Þ=ð�þ
�Þ, and M ¼ ð�þ �Þ �M. It gives q ¼ �=ð�þ �Þ, q̂ ¼
	�=ð�þ �Þ. So the field equations are now

G�� þ a20
�Mð0Þg�� ¼ �8�G��1T ��ðg��; c iÞ;

G�� þ 	a20
�Mð0Þg�� ¼ �8�G��1T̂ ��ð	g��; �iÞ:

(87)

Clearly, ĝ�� ¼ g�� (	 ¼ 1) always corresponds to a vac-

uum solution of this theory, with both space-times being a
de Sitter or anti-de Sitter, with a cosmological constant

� ¼ �a20
�Mð0Þ. Furthermore, if we also have from sym-

metry, for two identical configurations in the two sectors,

T̂ �� ¼ ð�=�ÞT ��,
19 the two equations are the same even

with matter. The cosmology we then get is, quite interest-
ingly, standard GR cosmology (taking � ¼ 1) with � as
cosmological constant. This would be reassuring, since it
would automatically ensure that we are not bereft of the

successes of standard cosmology regarding inflation, nu-
cleosynthesis, etc.20

This picture would also force us to consider more seri-
ously the nature of the twin matter, and its possible visible
effects in our space-time. If it is homogeneously distrib-
uted, it will be difficult to detect any direct effects of it. If it
clumps, it could have various effects; for example, it may
produce some effects that are otherwise attributed to cos-
mological dark matter.
It is also possible that BIMOND can replace cosmologi-

cal DM by the distribution and fluctuations in ~T��, which

is constructed from the two metrics alone, not directly from
matter. This would be similar in vein to what has been
discussed in connection with such a possible role of aux-
iliary fields in other theories [8,18,23,26].
The above is only one example of a BIMOND theory

that has a cosmology with ĝ�� ¼ g��. This particular

version should not be assumed for the special case �þ
� ¼ 0, since then �M drops from the theory in the NR
limit. However, there are other versions of BIMOND that
can accommodate our cosmological ansatz for this case.
For example, we can take as the gravitational Lagrangian
density (say with � ¼ 1)

g1=2ðR� 2pa20Þ � ĝ1=2ðR̂� 2p̂a20Þ � 2ðgĝÞ1=4fð�Þa20M
¼ g1=2R� ĝ1=2R̂� 2a20ðgĝÞ1=4

� ½p�� p̂��1 þ fð�ÞM�: (88)

This theory also has the NR limit we discussed above, and
has a cosmological solution with ĝ�� ¼ g�� if a certain

relation between p, p̂, and Mð0Þ holds. For example, if
Mð0Þ ¼ 0 we have the symmetric theory with p ¼ p̂, in
which case �pa20 is the cosmological constant. More gen-

erally, we can take the gravitational Lagrangian density
(keeping the symmetry)

g1=2ðR� 2 �Ma20Þ � ĝ1=2ðR̂� 2 �Ma20Þ � 2ðgĝÞ1=4fð�Þa20M
¼ g1=2R� ĝ1=2R̂� 2a20ðgĝÞ1=4

� ½ð����1Þ �Mþ fð�ÞM� (89)

(with �M also a function of the scalar argument �=a20).

Then, �M does not appear in the NR limit on a double
Minkowski background, which is governed by M, and a

cosmology with our ansatz is a solution, with�a20
�Mð0Þ as

the cosmological constant [for Mð0Þ ¼ 0].
We saw that in the GR limit, a20M1 plays the role of a

cosmological constant [M1 ¼ Mð1Þ], while in the
present context it is a20Mð0Þ. More generally, the �m /
a20M term, which is variable, and possibly other terms in
~T��, may give rise to dark energy effects. MðzÞ need not

change much for the full range of z, since for small values

19This ensures that without the interaction, physics is the same
in the two sectors.

20This line of thinking seems to indicate that the theories with
� ¼ � ¼ 1are preferable.
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it also has to go to some constant, as MðzÞ � M0 þ
ð4=3Þz3=4 for z � 1. In fact, changes in MðzÞ over the
full z range are, generically, of order unity, since M1 �
MðzÞ ¼ R1

z M0ðzÞdz is of order unity if M0 decreases
beyond z ¼ 1 faster than z�1 (unlike M, which is known
only up to an additive constant, M0 is determined by
MOND phenomenology).M1 is a dimensionless constant
characterizing the theory. If jM1j 
 1, then jMj is always
of order unity. We then automatically get the well-known,
but otherwise mysterious, proximity between a20, as deter-
mined from the dynamics of small systems, and �, the
density of dark energy, as deduced from cosmology.21

Note that irrespective of the relevance to MOND, bi-
metric theories of the type presented here provide a frame
for discussing dark energy as modified gravity, which
could be an alternative to schemes such as fðRÞ theories.

Deep-MOND relativistic systems?

In principle, BIMOND theories enable one to study the
structure of deep-MOND, relativistic systems such as
deep-MOND black holes. As has been stressed many times
in the past, such a deep-MOND system would have to have
its typical curvature radius much larger than the MOND
length ‘ ¼ c2=a0. This length is, however, of the order of
the Hubble radius today, and certainly in the past. In
practice then, the Universe seems to be the only such
low-acceleration (rather, intermediate-acceleration) rela-
tivistic system, at present.

VII. DISCUSSION

I have described a class of BIMOND theories. Matter
lives in the space-time described by one of the metrics,
which, in turn, couples to another through the interaction
M term. If we heuristically view gravity as reflecting an
effective elasticity of space-time, we can view the double-
metric nature of our theory as representing two coexisting
elastic bodies, each with its own elasticity as encapsuled in

the respective R, R̂ terms in the action. Thus MOND

departure from GR is introduced not through a modifica-
tion of the elasticity properties of space-time, but rather
through the interaction of the space-time that is the arena
for matter with the auxiliary one. The strength of the
interaction between these two space-time ‘‘membranes’’
depends on the gradient difference. The response of our
home space-time to matter is affected by its interaction
with the other space-time, which modifies its effective
elasticity. However, once its shape is determined, this
home space-time affects matter in the standard way. With
our assumption that on cosmological scales ĝ�� ¼ g��,

the two membranes are, in a sense, stuck together on these
scales, and ‘‘separate’’ only locally due to inhomogene-
ities. Such heuristics may help pinpoint the fundamental
concept underpinning the MOND paradigm. For example,
it may give meaning to the length ‘ ¼ c2=a0 that appears
in the NR limit as a0.
The BIMOND theories have the (yet unproven) potential

to account for all the components of the dark sector (galac-
tic DM, cosmological DM, and dark energy) from one term
in the action, all controlled by a0.
My main objective has been to point out that there exists

such a class of relativistic theories that have MOND-like
theories as their NR limit, and, which produce enhanced,
MOND-like gravitational lensing. We are, however, still
far from pinpointing the exact version of the theory that is
the most suitable. This is particularly true in the context of
cosmology, which depends crucially on the choice of ver-
sion. Hopefully, theoretical and phenomenological con-
straints will be brought to bear on this by future studies.
It remains to be seen whether a version of BIMOND can be
found that pass muster given all such requirements. Recent
discussions of matter-of-principle questions, such as the
causal structure of bimetric theories of a different type
(where the interaction term is a function of the metrics
themselves, not their derivatives) can be found, e.g., in
[16,17].
Finally, it has to be realized that however useful such

theories may turn out to be, they must be only effective,
approximate theories, as evinced by the appearance of the
a priori unspecified function M and the length ‘ (or the
MOND acceleration a0). These will, hopefully, be calcu-
lated from a theory at a deeper stratum.
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21The possible proximity of � and a20, thus hinges on the
dimensionless M being of order unity. Because of the way the
normalization of M is defined, this means that the scale over
whichM varies as a function of�, and the scale that determines
the magnitude of the M term in the Lagrangian, which have the
same dimensions of length�2, are also of the same magnitude.
This need not be the case, just as not all mass parameters that
appear in the standard model of particle physics are of similar
values. So, the apparent proximity �
 a20 that we get here is
only a plausibility not a corollary.
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