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We show that the initial field values required to produce inflation in the two fields original hybrid

model, and its supergravity F-term extension, do not suffer from any fine-tuning problem, even when the

fields are restricted to be sub-Planckian and for almost all potential parameter values. This is due to the

existence of an initial slow-roll violating evolution which has been overlooked so far. Because of the

attractor nature of the inflationary valley, these trajectories end up producing enough accelerated

expansion of the Universe. By numerically solving the full nonlinear dynamics, we show that the set

of such successful initial field values is connected, of dimension 2 and possesses a fractal boundary of

infinite length exploring the whole field space. We then perform a Monte-Carlo–Markov-Chain analysis of

the whole parameter space consisting of the initial field values, field velocities, and potential parameters.

We give the marginalized posterior probability distributions for each of these quantities such that the

Universe inflates long enough to solve the usual cosmological problems. Inflation in the original hybrid

model and its supergravity version appears to be generic and more probable by starting outside of the

inflationary valley. Finally, the implication of our findings in the context of the eternal inflationary

scenario are discussed.
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I. INTRODUCTION

The paradigm of inflation [1–4] is currently the simplest
way to solve the standard cosmological problems and
explain the cosmic microwave background (CMB) anisot-
ropies observed so far, though other alternative mecha-
nisms have been proposed (for a review see [5] and
references therein). Many models of inflation have been
proposed [6,7], based on single field or multifield poten-
tials. If single field models are efficient effective models,
hybrid models explore the possibility that the inflaton is
coupled to other scalar fields, as first proposed by Linde
[8]. When coupled to a Higgs-type field, inflation is real-
ized in the so-called ‘‘inflationary valley’’ when the Higgs
vacuum expectation value (VEV) vanishes and the inflation
end is triggered when the Higgs becomes tachyonic and
develops and nonvanishing VEV. Similar models have
rapidly been constructed in various theoretical frameworks
[9–11], the most popular of them being the supersymmet-
ric/supergravity versions of F-term or D-term inflation
[12–15].

In the limit of sub-Planckian field values, all hybrid
inflation models were however thought to require ex-

tremely fine-tuned initial field values to produce enough
e-folds of acceleration, from the original model proposed
by Linde to most supersymmetric versions [16–18], with
the exception of hilltop potentials which assume that in-
flation takes place near a maximum of the potential
[19,20]. The successful initial field values were found
located only in an extremely narrow band around the infla-
tionary valley, or on a few scattered points away from it
[21]. This was considered as a fine-tuning problem for
these models since any preinflationary era would have to
be fine-tuned to allow inflation to last long enough to solve
the standard cosmological problems. This fine-tuning has
recently been revisited in Ref. [22] for the original hybrid
model as well as for the supersymmetric ‘‘smooth’’ and
‘‘shifted’’ models. Using higher precision, it was shown
that the successful initial field values are rather organized
in intricate dense regions outside of the inflationary valley
(see for instance Fig. 7 of Ref. [22]). The area occupied by
these regions was found to represent up to 15% of the sub-
Planckian field regime for the original hybrid model and up
to 80% for smooth hybrid inflation. The physical explana-
tion of these new successful regions comes from the ex-
istence of an initial fast-roll phase during which the fields
roll down the potential in a chaotic way followed by a
climbing up of the valley and a slow-rolling phase back
down.
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However, as discussed in Ref. [22], these new successful
regions appeared to depend on the shape of the potential,
and therefore on the potential parameters. One may wonder
whether these features are a new solution of the fine-tuning
problem, i.e., if they are robust with respect to the potential
parameters. Moreover, Ref. [22] did not discuss the statis-
tical properties of this space and the effect of the initial
field velocities which were assumed vanishing. Finally, the
popular supersymmetric extensions, F- or D-term hybrid
models, were not studied. The purpose of the present paper
is to quantify how these new successful inflationary regions
are widespread in the higher dimensional space of all the
model parameters, i.e., by considering not only the initial
field values but also their initial velocities and the potential
parameters. We also extend our analysis to the F-term
hybrid model, studied in supergravity (SUGRA) [12,13].

In order to deal with a multidimensional parameter
space, after having discussed the fractal nature of the
successful inflationary regions, we introduce a probability
measure and perform their exploration by using Monte-
Carlo–Markov-Chains (MCMC) methods. The outcome of
our approach is a posterior probability distribution on the
model parameters, initial velocities, and field values such
that inflation lasts more than 60 e-folds.1 As will be shown
in the following, thanks to inflation starting ‘‘out of the
valley,’’ a high number of e-folding appears to be generic,
and favored, in the original hybrid model for parameter
ranges covering several orders of magnitude. We have also
checked that such a result is not peculiar to a given poten-
tial by applying the same analysis to the more realistic two-
field F-term inflation potential. This treatment allows us to
establish natural bounds on the parameters (or combination
of parameters) for each of these scenarios.

At this point, we would like to emphasize that our aim is
not (yet) to constrain these models with the current CMB
and astrophysical data but rather to discuss in details their
ability to generate an inflationary phase. In particular, in
the small field limit, original hybrid models are known to
generate a blue spectrum of scalar initial perturbations,2

which is disfavored by recent CMB experiments [24]. Our
use of this model here is motivated by its simplicity and its
representativity of the nonlinear two-field dynamics. The
more realistic F-term SUGRA model is in agreement with
the current CMB data: it predicts an almost scale invariant
spectrum and the generic formation of cosmic strings [25],
a combination which was shown to be favored by obser-
vations in Ref. [26].

The paper is organized as follows. In the following
section, we discuss the fractal nature of the successful

regions of inflation in the original hybrid model and define
a probability measure over the full parameter space. In
Sec. III, the MCMC method is introduced and we study
step by step the effect of the initial field velocities and the
potential parameters on the probability of obtaining 60 e-
folds of inflation. We then present the full posterior proba-
bility distributions of these parameters for the original
hybrid scenario. In Sec. IV, we perform the same analysis
of the F-SUGRA hybrid potential. Some conclusions and
perspectives are finally presented in the last section.

II. FRACTAL INITIAL FIELD VALUES

A. The model

The original hybrid model of inflation was proposed in
Refs. [8,13]; its potential reads

Vð�; c Þ ¼ 1

2
m2�2 þ �

4
ðc 2 �M2Þ2 þ �0

2
�2c 2: (1)

The field� is the inflaton and c is the auxiliary Higgs-type
field while �, �0 are two positive coupling constants andm,
M are the two mass parameters. Inflation is assumed to be
realized in the false vacuum along the valley3 hc i ¼ 0 and
ends due to a tachyonic instability of c when the inflaton

reaches a critical value �c ¼ M
ffiffiffiffiffiffiffiffiffiffi
�=�0p

. The classical sys-
tem evolves toward its true minimum h�i ¼ 0, and hc i ¼
�M whereas in a realistic scenario one expects the ta-
chyonic instability to trigger a preheating era [27–32].
To observe the effects of varying the free parameters in

the dynamics of inflation, it is more convenient to rewrite
the potential into

Vð�; c Þ ¼ �4

��
1� c 2

M2

�
2 þ�2

�2
þ�2c 2

�4

�
; (2)

under which M, �, � are three mass parameters. With this
expression, the critical point of instability now reads

�c ¼
ffiffiffi
2

p
�2

M
: (3)

It is common usage to consider the effective one-field
potential by restricting the field dynamics to the inflation-
ary valley and one gets

Veffð�Þ ¼ �4

�
1þ

�
�

�

�
2
�
: (4)

B. Equations of motion

In a flat Friedmann-Lemaı̂tre–Robertson-Walker metric,
the equations governing the two-field dynamics are the
Friedmann-Lemaı̂tre equations,4

1Such probability distributions are almost independent of the
chosen number of e-folds: once the field rolls down in a flat
enough region of the potential, the total number of e-folds
generated is always very large.

2This conclusion can be altered when additional couplings are
assumed for the inflaton [23].

3Throughout the paper h:i denotes the VEV of a field.
4Throughout the paper, mpl denotes the physical Planck mass,

and Mpl stands for the reduced Planck mass Mpl ’ 0:2mpl ’
2:4� 1018 GeV.
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H2 ¼ 8�

3m2
pl

�
1

2
ð _�2 þ _c 2Þ þ Vð�; c Þ

�
;

€a

a
¼ 8�

3m2
pl

½� _�2 � _c 2 þ Vð�; c Þ�;
(5)

as well as the Klein-Gordon equations

€�þ 3H _�þ @Vð�; c Þ
@�

¼ 0;

€c þ 3H _c þ @Vð�; c Þ
@c

¼ 0;

(6)

where H � _a=a is the Hubble parameter, a is the scale
factor, and a dot denotes the derivative with respect to
cosmic time.

In order to study the two-fields’ dynamics of the hybrid
model, without assuming slow roll, one has to integrate
these equations numerically from a given set of initial
conditions (IC) for the field values. Throughout the paper
we will define a successful IC as a point in field space that
leads to a sufficiently long phase of inflation to solve the
horizon and flatness problem. We will assume that N ¼
lnða=ainiÞ ’ 60 e-folds is the critical value required, though
this value can change by a factor of 2 depending on the
reheating temperature and the Hubble parameter at the end
of inflation [33,34]. However, generically, once inflation
starts it lasts for much more than 60 e-folds and our results
are not sensitive to the peculiar value chosen.

C. The set of successful initial field values

As already mentioned in the Introduction, the space of
successful IC for the field values alone has been discussed
in Ref. [22] and found to be composed of a intricate
ensemble of points organized into continuous patterns. In
Fig. 1, we have represented the mean number of e-folds
generated at each sub-Planckian initial field value, for a set
of fixed potential parameters and assuming vanishing ini-
tial velocities. We have computed the trajectories obtained
from 20482 initial field values and stopped the integration
when the fields are trapped in one of the minimum of the
potential, i.e., forH2 � V=ð3M2

plÞ, or when the accelerated
expansion exceeds 102 e-folds. The resulting grid has a
small intricate structure of successful regions spread over
the whole plane which ends up being difficult to represent
in a figure. As a result, we have chosen to present in Fig. 1 a
downgraded 5122 pixel image in which each pixel has been
given a color according to the average number of e-folds
obtained in our original 20482 grid. A given pixel may
therefore hide both successful and unsuccessful initial field
values and the color measures their relative density. An
higher resolution image would be self-similar to Fig. 1,
with more thinner successful domains visible.

Notice that we recover the inflationary valley as the
white vertical narrow strip located along c i ¼ 0 whereas
the minima of the potential are along the horizontal axis at

c ¼ �0:15Mpl (forM ¼ 0:03mpl as chosen in the figure).

The black region in Fig. 1 precisely corresponds to the
trajectories ‘‘below’’ the critical point �<�c which are
fast rolling inside the minima. In analogy with the anamor-
phosis of light produced by a distorted mirror, each point
outside the inflationary valley is connected by a trajectory
to a point inside the inflationary valley. The trajectory first
fast rolls towards the bottom of the potential, and after a
few rebounds becomes oriented along the valley, climbs it,
and then produces inflation when slow rolling back down.
There is thus a one-to-one correspondence between the IC
and the point in the valley for which the trajectory stops to
climb and starts to slow roll.
It was shown in Ref. [22] that such ‘‘anamorphosis

points’’ can cover up to 15% of the total area when re-
stricting the IC to sub-Planckian values. Moreover, as can
be checked in Fig. 1, these regions exhibit a fractal looking
aspect. Before studying the influence of the potential pa-
rameters and initial field velocities, one may wonder if the
area of this two-dimensional set of points is indeed well
defined. Equivalently, do new successful regions appear
inside unsuccessful domains, and conversely? In order to
quantify how much the anamorphosis points are a probable
way to have inflation in the whole parameter space, we first
address the question of defining a measure on the initial

M
pl

M
pl

ψ

φ

0 1

1

/
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i

FIG. 1 (color online). Mean number of e-folds obtained from
5122 initial field values in the plane ðc i=Mpl; �i=MplÞ. This
figure has been obtained by averaging the number of e-folds
(truncated at 100) produced by 20482 trajectories down to 5122

pixels. The potential parameters have been set to M ¼ 0:03mpl,

� ¼ 636mpl, �
2 ¼ 3� 10�4m2

pl.
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field values space. In particular, this requires to determine
the dimension of the set

S � fð�i; c iÞ=N > 60g: (7)

D. Chaotic dynamical system

1. Phase space analysis

As suggested by Fig. 1, at fixed potential parameter
values, the dynamical system defined by Eqs. (5) and (6)
seems to exhibit a chaotic behavior. In particular, the
sensitivity of the trajectories to the initial field values
comes from the presence of three attractors. Two of them
are the global minima of the potential, M�, respectively,
at (� ¼ 0, c ¼ �M), in which all classical trajectories
will end, whereas the less obvious is a quasiattractor I
defined by the inflationary valley itself (c ¼ 0, �>�c).
Indeed, whatever the initial field values, as soon as the
system enters slow roll one has (in Planck units) [35],

v2 �
�
d�

dN

�
2 þ

�
dc

dN

�
2 ¼ 2�1 � 1; (8)

where �1 is the first Hubble flow function [36]. The system
therefore spends an exponentially long amount of cosmic
time in the valley. The sensitivity to the initial conditions
comes from the presence of these three attractors: either
the trajectory ends rapidly into one of the two minima, or it
lands on the valley where it freezes.

A phase space plot is represented in Fig. 2 in which we
have computed 25 trajectories from a grid of initial field
values. The inflationary valley clearly appears as the at-
tractor with quasinull velocity vector (�1 � 1), while
around the two global minima, two ‘‘towers’’ appear due
to the field oscillations around them.

2. Basins of attraction

From the definition of S in Eq. (7), one has

S ¼ F�1ðIÞ; (9)

where Fð�; c Þ stands for the mapping induced by the
differential system of Eqs. (5) and (6). The set of successful
initial field values S is therefore the basin of attraction of
the attractor I [37,38]. Since the attractor I is a dense set
of dimension 2 and F is continuous, one expects S to
contain a dense set of dimension 2 [38]. As can be intui-
tively guessed, the boundary of S can however be of
intricate structure because of the sensitivity to the initial
conditions: two trajectories infinitely close initially can
evolve completely differently. As we show in the follow-
ing, S is actually a set of dimension 2 having a fractal
boundary of dimension greater than 1.
Finally, by the definition of a continuous mapping, all

parts of S, boundary included, must be connected together
and to the inflationary valley I . The fractal looking aspect
of Fig. 1 is only induced by the intricate boundary structure
of S which is exploring all the initial field values space.
The fractality of the boundaries of the space of initial field
values was first mentioned in Ref. [39], but the study was
restricted to a small region of the field space and the model
included dissipative coefficients. As an aside remark, let us
notice that the existence of a fractal boundary may have
strong implications in the context of eternal chaotic infla-
tion: there would exist an inflationary solution close to any
initial field values.
In order to quantify the chaotic properties of the dy-

namical system defined by the mapping Fð�; c Þ, we turn
to the calculation of the Lyapunov exponents.

3. Lyapunov exponents

The Lyapunov exponents at an initial point �i ¼
ð�; c ; �;N; c ;NÞji measures how fast two infinitely close

trajectories mutually diverge or converge. They give a
mean to characterize the stretching and contracting char-
acteristics of sets under the mapping induced by the dif-
ferential system. A small perturbation �� around the
trajectory �ðNÞ will evolve according to

d��

dN
¼ dF � ��; (10)

where dF stands for the Jacobian of the differential system
F. The Lyapunov exponents at the initial point �i and
along the direction ��0 are the numbers defined by [37]

hð�i;��0Þ ¼ lim
N!1

1

N
ln
j��ðNÞj
j��0j ; (11)

where ��ðNÞ is the solution of Eq. (10) with ��ð0Þ ¼ ��0

and �ð0Þ ¼ �i. If the considered set is an attractor or an
invariant set of the differential system having a natural

FIG. 2 (color online). Phase space v2ð�; c Þ for 25 trajectories
and vanishing initial velocities. The potential parameters are
fixed to the values M ¼ 0:03mpl, � ¼ 636mpl, � ¼
6:36� 10�4. All trajectories end on the three attractor of the
dynamical system: the two global minima of the potential, and
the inflationary valley with almost vanishing slow-roll velocity.
These three attractors induce the chaotic behavior.
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measure, one can show that the exponents do not depend on
the initial point �i. At fixed potential parameters, there are
four Lyapunov exponents associated with the differential
system of Eqs. (5) and (6). If the largest exponent is
positive, then the invariant set is chaotic.

In Fig. 3, we have computed the largest Lyapunov ex-
ponent at each point of the plane ð�i; c iÞ. The numerical
method we used is based on Refs. [40,41] and uses the
public code LESNLS. Let us notice that since I is only a
quasiattractor, we have stopped the evolution at most when
H2

end ¼ V=ð3M2
plÞ, i.e., just before the fields would classi-

cally enter either Mþ or M�. As can be seen, all points
belonging to S exhibit the same and small negative
Lyapunov exponent: the invariant set S is therefore non-
chaotic. On the other hand, all of the other initial field
values associated with the basins of attraction ofM� have
a positive Lyapunov exponent. For those, the field evolu-
tion is chaotic and exhibits a sensitivity to the initial
conditions. Notice that these exponents may slightly vary
from point to point due to our choice to stop the integration
at Hend instead of the classical attractors M�. This is
particularly visible for the trajectories starting close to
Hend (light shading around the bottom left black region):
there is not enough evolution to get rid of the transient
evolution associated with the initial conditions.

E. Fractal dimensions of S and its boundary

1. Hausdorff and box-counting dimension

Since we suspect a set with fractal properties, the natural
measure over S, extending the usual Lebesgue measure, is
the Hausdorff measure. The s-dimensional Hausdorff mea-
sure of S is defined by [38]

H sðSÞ ¼ lim
�!0

inf

�X1
i¼1

jUijs=S 	 [1
i¼1

Ui; jUij � �

�
:

(12)

In this definition, the setsUi form a � covering of S and the
diameter function has been defined by jUj � supfjx�
yj=x; y 2 Ug. As a result, H sðSÞ is the smallest sum of
the sth powers of all of the possible diameters � of all sets
covering S, when � ! 0. Having such a measure, the
fractal dimension of S is defined to be the minimal value
of s such that the Hausdorff measure remains null (or
equivalently the maximal value of s such that the measure
is infinite). In practice, measuring the Hausdorff dimension
using this definition is not trivial, due to the necessity of
exploring all � coverings. However, in our case, we are
interested in the fractal properties of a basin of attraction
associated with a continuous dynamical system and one
can instead consider the so-called box-counting dimension
[38]. This method simply restricts the class of the Ui to a
peculiar one, all having the same diameter �. When the
mapping F is self-similar, one can show that box-counting
and Hausdorff dimensions are equal. In general, the
Hausdorff dimension is less or equal than the box-counting
one. Here, F being a contracting continuous flow, we
expect the equality to also hold.
To define the box-counting dimension, we cover the set

S with grids of step size �, and count the minimal number
of boxes Nð�Þ necessary for the covering. The box-
counting dimension is then given by

DB ¼ lim
�!0

logNð�Þ
logð1=�Þ : (13)

This method has the advantage to be easily implemented
numerically and, in the following, we will apply it to
calculate the dimension of S and its boundary.

2. Fractal boundary of S

For each randomly chosen point of the plane ð�i; c iÞ,
we compute three trajectories. The first one starts from the
point under consideration while the two others have initial
conditions modified by þ� and �� along one direction
(for example along �, but the chosen direction does not
affect the result). For each of these trajectories, we deter-
mine in which attractor (M� or I) the flow ends. Since we
are interested in the boundary of S, we calculate the
proportion fð�Þ of points for which at least one trajectory
ends in I , and another in Mþ or M�. The process is
iterated for increasingly smaller values of � and we evalu-
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FIG. 3 (color online). Highest Lyapunov exponent as a func-
tion of the initial field values in the original hybrid model. The
potential parameters are the same as in Fig. 1. The field evolution
is therefore stable on the set S of successful initial field values
(black) but exhibits chaotic behavior elsewhere.
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ate how the area of the �-grid covering of S scales with �.
So strictly speaking, our evaluation of the box-counting
dimension is made through the determination of the
Minkowski dimension of the boundary of S [38]. From
Eq. (13), assuming that, at small �,

fð�Þ / ��; (14)

the box-counting dimension of the S boundary is then
given by [37]

DB ¼ 2� �: (15)

In Fig. 4, we have plotted fð�Þ as a function of � at fixed
potential parameters. We recover the expected power law
behavior, the slope of which is approximately � ’ 0:80. As
a result, the boundary of S is indeed a fractal of the box-
counting dimension

DB ’ 1:20: (16)

Notice that this value depends on the chosen set of poten-
tial parameters, as one may expect since they affect the
shape of S and the typical size of the structures.

3. Dimension of S

In order to determine the box-counting dimension of S
itself one can apply a similar method than the one used for
its boundary. Now fð�Þ denotes the proportion of points for
which at least one of the three trajectories end in the
attractor I (this condition therefore also includes the points
belonging to the boundaries). The resulting power law is
represented in Fig. 5.

For small enough values of �, the �-sized boxes are
small enough to be fully contained in S and the function
fð�Þ appears to be constant in that case. As a result, the

box-counting dimension of S is 2. We therefore conclude
that, like for the well-known Mandelbrot set [42], the
boundary of S is fractal but the set of successful infla-
tionary points is not and has the dimension of a surface.
Consequently, although the boundary of S has an infinite
length (DB ¼ 1:2), it has a vanishing area: the Hausdorff
dimension of S (boundary included) is therefore also 2. As
a result, the two-dimensional Hausdorff measure on S
reduces to the usual two-dimensional Lebesgue measure
and this will be our choice for defining a probability
measure in the rest of the paper.
As previously emphasized, the potential parameters and

initial field velocities have been fixed in this section and the
set S is actually the two-dimensional section of a higher
dimensional set, whose boundary is also certainly fractal
(and therefore of null measure). Since one can no longer
use the grid method to explore such a high dimensional
space, we move on in the next section to a MCMC explo-
ration of the full parameter space to assess the overall
probability of getting inflation in the hybrid model.

III. PROBABILITY DISTRIBUTIONS IN HYBRID
INFLATION

The aim of this section is to use MCMC techniques in
order to explore the whole parameter space, including the
initial field velocities and all of the potential parameters.
With unlimited computing resources, we could have used a
grid method to localize the hypervolumes in which infla-
tion occurs, as we have done for the two-dimensional plane
ð�i; c iÞ in the previous section. For the original hybrid
model, we have in total seven parameters that determine a
unique trajectory: two initial field values, initial field ve-
locities, and the three potential parametersM,�, and �. To
probe this seven-dimensional space, more than just mea-

7 6 5 4 3 2
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1
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log
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g
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FIG. 4 (color online). Fraction of initial field values in a
�-sized box intercepting the set S, as a function of �. The field
has been restricted to sub-Planckian values and the potential
parameters are fixed to � ¼ �0 ¼ 1, m ¼ 10�6mpl, and M ¼
0:03mpl. The exponent � of the power law dependency gives the

box-counting dimension DB ¼ 2� � ’ 1:2 showing that S pos-
sesses a fractal boundary.

10 7 10 6 10 5 10 4 0.001 0.01

0.20

0.30

f

FIG. 5 (color online). Fraction of initial field values leading to
inflation in a �-sized box as a function of �. The potential
parameters are the same as in Fig. 4. Once the box is small
enough to be fully contained in S, fð�Þ remains constant. As a
result, the box-counting dimension of S is DB ¼ 2 and the
interior of S is not fractal.
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suring the hypervolume of the successful inflationary re-
gions, we define a probability measure over the full pa-
rameter space. Using Bayesian inference, one can assess
the posterior probability distribution of all of the parame-
ters to get enough e-folds of inflation. The MCMC method
is a widespread technique to estimate these probabilities,
its main power being that it numerically scales linearly
with the number of dimensions, instead of exponentially.

Several algorithms exist in order to construct the points
of a Markov chain, the Metropolis-Hastings algorithm
being probably the simplest [43,44]. Each point xiþ1,
obtained from a Gaussian random distribution (the so-
called proposal density) around the previous point xi, is
accepted to be the next element of the chain with the
probability

Pðxiþ1Þ ¼ min

�
1;
�ðxiþ1Þ
�ðxiÞ

�
; (17)

where �ðxÞ is the function that has to be sampled via the
Markov chain. MCMCmethods have been intensively used
in the context of CMB data analysis [45–49] where the
function �ð	jdÞ / Lðdj	ÞPð	Þ is the posterior probability
distribution of the model parameters given the data. In the
context of Bayesian inference, this one is evaluated from
the prior distributions Pð	Þ and the likelihood of the ex-
periment Lðdj	Þ. After a relaxation period, one can show
that Eq. (17) ensures that � is the asymptotic stationary
distribution of the chain [50]. The MCMC elements di-
rectly sample the posterior probability distribution �ð	jdÞ
of the model given the data.

In our case, we can similarly define a likelihood L as a
binary function of the potential parameters, initial field
values, and velocities. Either the trajectory ends up on I
and produces more than 60 e-folds of inflation, or it does
not. In the former case we setL ¼ 1whereasL ¼ 0 for no
inflation. The function�we sample is then defined by� ¼
LPð	Þ where 	 stands for field values, velocities, and
potential parameters and P is our prior probability distri-
bution that we will discuss in the next section.

A. Prior choices

MCMC methods require a prior assumption on the
probability distributions of the fields, velocities, and po-
tential parameters. As we only consider in this work the
initial conditions and parameters space leading to at least
60 e-folds of inflation, the prior choices are only based on
theoretical arguments. These arguments can be linked to
the framework from which the potential is deducted. If one
considers the hybrid model to be embedded in supergrav-
ity, the fields have to be restricted to values less than the
reduced Planck mass. We adopt here this restriction for
initial field values, not only because of this argument, but
also because it has been shown in Ref. [22] that if super-
Plankian fields are allowed, trajectories become generi-

cally successful. On the other hand, the model was con-
sidered to suffer some fine-tuning when one of the fields
has to be order of magnitudes smaller than the other. As
inflation is not possible for very small initial values of both
fields (because of the Higgs instability), we have consid-
ered a flat prior for initial field values in ½�Mpl;Mpl� as
opposed to a flat prior for the logarithm of the fields. Note
that one has to include negative values of the fields in order
to take into account the orientation of the initial velocity
vector.
Concerning the initial field velocities, from the equa-

tions of motion, one can easily show that there exists a
natural limit5

v2 ¼
�
d�

dN

�
2 þ

�
dc

dN

�
2
< 6: (18)

Similarly, our prior choices are flat distributions inside
such a circle in the plane ð�;N; c ;NÞ, where ‘‘; N’’ denotes

a partial derivative with respect to the number of e-folds.
In the absence of a precise theoretical setup determining

the potential there are no a priori theoretical constraint on
its parameters M, �, and �. Let us just mention that for
�< 0:3, the dynamics of inflation in the valley is possibly
strongly affected by slow-roll violations [22]. As a result,
with the concern to not support a particular mass scale, we
have chosen the following flat priors on the logarithm of
the parameters:

� 1< log
�

mpl

< 4; �3< log
M

mpl

<�0:7;

� 6< log
�2

m2
pl

< 2;

(19)

in which the upper and lower limits have been set for
numerical convenience, and M � Mpl.

Notice that the � dependencies are not important here
because this parameter only rescales the potential and thus
does not change the dynamics.
In the next sections, we perform the MCMC exploration

of the parameter space from these priors: first by reproduc-
ing the results of Sec. II in the two-dimensional section
ð�i; c iÞ, then by including the initial field velocities, and
finally by considering all the model parameters. Unless
otherwise mentioned, the chains contain 106 points, which
corresponds to 1% error on the marginalized probability
distributions. In the figures, the overall values of the pos-
terior probability density distributions have not been rep-
resented since they are determined by imposing the
integral over the parameters to be equal to one.

5This is just the limit �1 < 3 in Planck units [35].
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B. MCMC on initial field values

In order to test our MCMC, we have first explored the
space of initial field values leading or not to more than 60
e-folds of inflation. The potential parameters have been
fixed to various values already explored by grid methods in
Sec. II and Ref. [22], while the initial velocities are still
assumed to vanish. The MCMC chain samples have been
plotted in Fig. 6. Notice that to recover the fractal structure
of the boundary of S, one has to adjust the choice of the
Gaussian widths of the proposal density distribution. If
those are too large, the acceptance rate will be small
because the algorithm tends to test points far away from
the last successful point, and if they are too small the
chains remain stuck in the fractal structures without ex-
ploring the entire space. Nevertheless, with an intermediate
choice, Fig. 6 shows that the intricate structure of the
boundary of S can be probed with the MCMC. More
than being just an efficient exploration method compared
to the grid, the MCMC also provides the marginalized
probability distributions of �i and c i such that one gets
inflation. They have been plotted in Fig. 10 (top two plots),
the normalization being such that their integral is unity. As
one can guess from Fig. 6, with vanishing initial velocities
and a fixed set of potential parameters, inflation starting in
the valley is not the preferred case since the area under the
distribution of c i outside of the valley is larger than inside.

Moreover, these distributions take nonvanishing values
everywhere and there is therefore no fine-tuning problem.
Of course, one still has to consider the other parameters
and this is the topic of the next sections.

C. MCMC on initial field values and velocities

The initial values of the field velocity are inside a disk of

radius
ffiffiffi
6

p
in the plane ð�;N; c ;NÞ (in Planck units). The

marginalized two-dimensional posteriors for the initial
field values are plotted in Fig. 7 whereas the marginalized
posterior for each field are represented in Fig. 10 (middle
line). Even if nonvanishing velocities are considered, the
successful inflationary patterns remain. Notice that they
appear to be blurred simply because of the weighting
induced by marginalizing the full probability distribution
over the initial velocities.
In Fig. 8, we have also represented the marginalized

posterior probability distribution for the modulus and di-
rection of the initial velocity vector. Their flatness implies
that there are no preferred values. This is an important
result because one could think that large initial velocities
could provide a way to kick trajectories in or out of the
successful regions. This actually never happens because of
the Hubble damping term in the Friedmann equations,

0.2 0.1 0 0.1 0.2

0.2

0.1

0

0.1

0.2

i
mpl

i

m
pl

FIG. 6 (color online). Two-dimensional posterior probability
distribution in the plane ð�i; c iÞ leading to more than 60 e-fold
of inflation in the hybrid model. Notice that its integral over the
plane is normalized to unity. The dark blue regions corresponds
to a maximal probability density, whereas it vanishes elsewhere.
The potential parameters are set to M ¼ 0:03mpl, �

2 ¼ 6:36�
10�4m2

pl, � ¼ 636mpl. As expected, the MCMC exploration

matches with the grid methods (see Fig. 1).
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FIG. 7 (color online). Two-dimensional marginalized posterior
probability distribution for the initial fields values. The margin-
alization is over the initial field velocities, whereas the potential
parameters are still fixed. The shading is proportional to the
probability density value while the two-dimensional integral
over the plane is equal to one. Although the inflationary valley
has the highest probability density, its area remains restricted
such that the most probable initial field values to get inflation are
still out of the valley (see Fig. 10).
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allowing only a generation of a small number of e-folds
before the trajectory falls in one of the three attractors.

D. MCMC on initial field values, velocities,
and potential parameters

The most interesting part of the exploration by MCMC
technique concerns the study of the full parameter space.
The only restriction being associated to the necessity of
M<Mpl as discussed in Sec. III A. The chains contain

200 000 elements and the estimated error on the posteriors
is about a few percents.
We have plotted in Fig. 9 the marginalized two-

dimensional posterior for the initial field values. In com-
parison with Figs. 6 and 7, the most probable initial field
values are now widespread all over the accessible values;
the intricate patterns that were associated with the success-
ful field values (at fixed potential parameters) are now
diluted over the full parameter space. The resulting one-
dimensional probability distributions for each field are
plotted in Fig. 10 (bottom panels). One can observe that
the c distribution is nearly flat outside the valley but
remains peaked around a extremely small region around
c ¼ 0. Integrating over the field values, initial conditions
outside the valley are still the preferred case.
Concerning the probability distributions of the modulus

v and the angular direction 	 of the initial velocity vector,
results integrated over the whole parameter space do not
present qualitative differences compared to the posteriors
with fixed potential parameters, as one may expect since
the Hubble damping prevents the initial velocities to influ-
ence the dynamics (see Fig. 8).
The marginalized probability distributions for the po-

tential parameters are represented in Fig. 11. These poste-
riors seem to indicate that the three parameters are
bounded but one should pay attention to the influence of
our prior choices over the posterior [51]. In fact, the
posteriors for M and � are found to depend on our prior
choice: changing the upper or lower limit on the � prior (or
M prior) affects the values at which theM and � posteriors
fall off. Such a situation is typical of the existence of
correlations between these two parameters. We have there-
fore computed the two-dimensional posterior distribution
in the plane ð�2;MÞ and found out that this probability
distribution clearly exhibits a correlation between these
two parameters: the lower bound on M depends on the
minimal allowed value of � in the prior. Such a correlation
comes from the fact that, to realize enough inflation for a

0.0 0.2 0.4 0.6 0.8 1.0

v

6

2
0

2
3

2

FIG. 8 (color online). Marginalized posterior probability distributions for the modulus (top) and angle (bottom) of initial field
velocity. The thin superimposed blue (lighter) curves are obtained at fixed potential parameters, while the thick red are after a full
marginalization over all the model parameters. As expected from Hubble damping, all values are equiprobable since the fields do not
keep memory of the initial velocity.
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FIG. 9 (color online). Two-dimensional marginalized posterior
probability distribution for the initial fields values. The margin-
alization is over the initial field velocities and all the potential
parameters. The shading is proportional to the probability den-
sity value. The inflationary valley is still visible around c i ¼ 0
and the posterior takes nonvanishing values everywhere in the
ð�i; c iÞ plane.
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given IC, the critical/instability point �c should not be
larger than the anamorphosis image of the IC (the point
in the valley where slow-roll starts). Restricting initial
fields to sub-Planckian values leads to an upper bound on
the largest image, and thus an upper bound on the insta-
bility point. From Eq. (3), the relevant quantity that is

constrained is the combination
ffiffiffi
2

p
�2=M ¼ �c.

We have plotted in Fig. 12 the marginal posterior distri-

bution associated with the parameter logð ffiffiffi
2

p
�2=MÞ, and at

95% of confidence level, we find

ffiffiffi
2

p
�2

M
< 4� 10�3: (20)

The parameter � is the other constraint that the MCMC
exhibits. It is explained by the possible apparition of slow-

roll violations in the valley, when � becomes too small.
These slow-roll violations prevent the generation of an
inflationary phase if the trajectory climbs too high in the
valley. At a two-sigma level, one has

�

mpl
> 1:7: (21)

This lower limit is equivalent to the upper limit on m
observed in [22]: a large inflaton mass induces a fast-roll
evolution and requires super-Planckian initial conditions to
realize inflation in a chaotic way. Let us stress that these
constraints come only from requiring enough inflation in
the hybrid model whatever the initial field values, veloc-
ities, and other potential parameters. In this respect, the
limits of Eqs. (20) and (21) can be considered as ‘‘natural.’’

0.2 0.1 0.0 0.1 0.2

i
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0.2 0.1 0.0 0.1 0.2
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FIG. 10 (color online). Marginalized posterior probability distributions for the initial field values �i and c i. The top panels
correspond to vanishing initial velocities and fixed potential parameters, the middle ones are marginalized over velocities at fixed
potential parameters, while the lower panels are marginalized over velocities and all the potential parameters.
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To conclude this section, we have shown that inflation is
generic in the context of the hybrid model and we have
derived the marginalized posterior probability distributions
of all the parameters such that 60 e-folds of inflation occur.
As discussed in the introduction, the original hybrid model
under scrutiny is however a toy model known to be dis-
favored by the current CMB data. In this respect, one may
wonder whether our results are peculiar to this model or

can be generalized to other more realistic two-field infla-
tionary models. This point is addressed in the next section
in which we have performed a complete study of the
SUGRA F-term hybrid inflation. In that model, the dynam-
ics depends on only one potential parameter, also con-
strained by cosmic strings formation. The challenge will
thus be to confront this constraint to the natural bounds that
can be deducted from MCMC methods by requiring
enough e-folds of inflation.

IV. PROBABILITY DISTRIBUTIONS IN F-SUGRA
INFLATION

The minimal supersymmetric versions of hybrid infla-
tion are known as the F-term and D-term inflationary
models [12,14,15], where the slope of the valley is gen-
erated by radiative corrections. The F-term model is com-
patible with the current CMB data since a red spectrum of
the cosmological perturbations is generic [12,52,53]. In
addition, this model is more predictive and testable than
its non-supersymmetric (SUSY) version since it contains
only one coupling constant and one mass scale.

A. The model

In the following, we are analyzing the space of initial
conditions and model parameters leading to enough infla-
tion for the so-called F-term model based on the super-
potential [12]

WF
infl ¼ 
Sð�þ�� �M2Þ: (22)

3.0 2.5 2.0 1.5 1.0

log M mpl

1 0 1 2 3 4

log mpl

6 4 2 0 2

log 2 mpl
2

FIG. 11 (color online). Marginalized probability distribution for the potential parameters of the hybrid model. Notice that some of
the bounds are set by the prior choices.

4 3 2 1 0 1

log
2 2

M mpl

FIG. 12 (color online). Prior independent marginalized poste-
rior probability distribution for the parameter �2=ðMMplÞ. This
parameter fixes the position of the instability point and a too
large value may prevent inflation from occurring in the sub-
Planckian field regime [see Eq. (20)].
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The inflaton is contained in the superfield S. The Higgs pair
�þ, �� is charged under a gauge group G, that is broken
at the end of inflation when the Higgs pair develop a
nonvanishing-VEV M. The superpotential leads in global
SUSY to a tree-level potential

VSUSY
tree ðs; c Þ ¼ 
2

�
M2 � c 2

4

�
2 þ 1

8

2s2c 2; (23)

where the effective inflaton s and Higgs field � can be

made real and canonically normalized [s � ffiffiffi
2

p <ðSÞ, � ¼
2<ð�þÞ ¼ 2<ð��Þ]. The local minima of the potential at
large S provide a flat direction for the inflaton s: V0 ¼

2M4.

This tree-level flat direction is lifted by two effects. First,
radiative corrections are induced by the SUSY breaking
that supports inflation. In addition, if the field values are
close to the reduced Planck mass Mpl, one should expect

supergravity corrections S=Mpl to the tree-level potential.

The radiative corrections along the inflationary valley can
be derived using the Coleman-Weinberg formula [54].
They reduce to [12]

Vcw
1�loopðsÞ ¼


4M4N
32�2

�
2 ln

s2
2

�2
þ ðzþ 1Þ2 lnð1þ z�1Þ

þ ðz� 1Þ2 lnð1� z�1Þ
�
; (24)

where z ¼ s2=M2, N stands for the dimensionality of the
representations to which �� belong and � represents a
nonphysical energy scale of renormalization. Realistic val-
ues ofN can be derived from the embedding of the model
in realistic SUSY grand unified theories as shown in
Ref. [25]. For example, in the case of an embedding of
the model in SUSY SO(10), �� belong to the representa-

tion 16, 16 or 126, 126. However, as pointed out in
Ref. [55], it is possible that only some components of
�� take a mass correction of order M so that effectively6

N ¼ 2, 3. For the sake of generality, we will assume that
N can take values in the range [2, 126]. This model is also
known to generically produce cosmic strings at the end of
inflation [25] and this imposes an upper limit on the infla-
tionary mass scale [53,55,56]

M & 2� 15 GeV; 
 & 7� 10�7 126

N
: (25)

Second, SUGRA corrections also contribute to lifting
the tree-level flat direction and will be taken into account
since the field values we are probing are not always neg-
ligible compared to the Planck mass. It has been noticed in
Ref. [13] that the F-term hybrid inflation model does not

suffer from the � problem only when the Kähler potential
is (close to) minimal7

K ’ jSj2 þ j�þj2 þ j��j2; (26)

which is what we assume in the following. In terms of the
canonically normalized effective inflaton s and waterfall
fields c , the SUGRA corrected potential now reads

Vsugra
tree ðs; c Þ ¼ 
2 exp

�
s2 þ c 2

2M2
pl

�

�
��
c 2

4
�M2

�
2
�
1� s2

2M2
pl

þ s4

4M4
pl

�

þ s2c 2

4

�
1þ 1

M2
pl

�
1

4
c 2 �M2

��
2
�
: (27)

The dynamics along the inflationary valley is driven by
the radiative corrections and by the SUGRA corrections.
The radiative corrections play a major role in the last e-
folds of inflation (thereby generating the observable spec-
tral index), whereas most of the dynamics actually takes
place for field values dominated by the SUGRA correc-
tions. We have calculated the amplitudes for both correc-
tions and found that only at the end of the inflationary
potential (for s 2 ½M; 8M� if N ¼ 3 and s 2 ½M; 3:5M�
ifN ¼ 126), the radiative corrections may dominate over
the SUGRA corrections. In the present work, the regions of
the parameter space leading to inflation do not depend on
the very last part of the field evolution: as soon as 60 e-
folds are obtained, the initial conditions are considered
successful and this generically occurs in the valley at larger
field values. Outside the inflationary valley, we therefore
expect the tree-level dynamics to dominate over the radia-
tive corrections, especially for small coupling 
. There
also, in addition to the tree level at large fields, SUGRA
corrections are expected to be important.
Resulting from these considerations, we have neglected

radiative corrections and used for our study below the
potential of Eq. (27).

B. Fractal initial field values

The analysis of the SUGRA F-term model of inflation
has been conducted along the lines described in Secs. II
and III. We have first verified that, at fixed potential
parameter M and vanishing initial velocities, the set of
initial field values S defined by Eq. (7) is two-dimensional
with a fractal boundary. In Fig. 13, we have represented the
set S of successful initial field values for the mass scale
M ¼ 10�2mpl. Notice that the coupling constant 
 being

an overall factor, it does not impact the dynamics of the

6This depends on the mass spectrum of the assumed grand
unified theory model.

7We will restrict ourselves to minimal SUGRA corrections,
neglecting SUSY breaking soft terms and the nonrenormalizable
corrections to the superpotential (see [52,53,55] for an analysis
of their effects).
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fields. Our study is therefore valid for any value of 
 and of
the dimensionality of the Higgs field N , since the rela-
tionship Mð
Þ depends only on N .

As for the original hybrid model, the highest Lyapunov
exponent for the successful initial field values is negative
and the set S is nonchaotic. Outside of S, trajectories have
positive Lyapunov exponents and exhibit chaos.

For vanishing initial velocities, we have reported in
Table I the area occupied by the set S in the plane
ðsi; c iÞ for various sections along the potential parameter
M. Like for the original hybrid model, we recover a
significant proportion of successful initial field values out-
side the valley. This result holds even forM � 1 though at
smallM, the potential becomes very flat and the number of
oscillations of the system before being trapped in the infla-
tionary valley can exceed 103. Simulations become there-
fore more time consuming and error bars in Table I
increase. Reducing M also reduces the typical size of
structures in the plane ðsi; c iÞ, which evolves from
Fig. 13 to a more intricated space of thinner successful
IC. As suggested by the Table I, we will see below that this
does not affect the probability of getting inflation by start-
ing the field evolution outside the valley.

Concerning the fractal properties of S, we have applied
the same method as in Sec. II E 1 to compute the box-
counting dimensions of S and its boundary. As expected,
we recover that S is of box-counting dimension 2, whereas
the function fð�Þ for its boundary is represented in Fig. 14.
We obtain that, as in the non-SUSY case, the boundaries
are fractal with dimension

DB ’ 1:5: (28)

These results allow us to use the usual Lebesgue measure
to define the probability distribution over the whole pa-
rameter space.

C. MCMC on the initial field values, velocities, and the
potential parameter

As already mentioned, there is only one potential pa-
rameterM in the F-term SUGRAmodel that may influence
the two-field dynamics. The goal of this section is to
evaluate the probability distributions of the initial field
values, velocities, and of M such that inflation lasts more
than 60 e-folds. As for the original hybrid model, we have
performed an MCMC analysis on the five-dimensional

Mpl

Mpl
0 1

1

/

i

i

s

FIG. 13 (color online). Mean number of e-folds (truncated at
100) obtained from 5122 initial field values ðc i=Mpl; si=MplÞ for
the SUGRA F-term model. The initial field velocities are
assumed to vanish and the potential parameter is fixed at M ¼
10�2mpl. As for the original hybrid model, the mean is computed

from 20482 trajectories (see Fig. 1). The set of initial field values
producing enough inflation is again of dimension 2 with a fractal
boundary.

TABLE I. Percentage of successful initial field values, at van-
ishing initial velocities, for various values of the potential
parameter M. The error bars come from the finite numerical
precision, which decreases with M.

Values of M Area of S (%)

M ¼ 10�1mpl 0 (exact)

M ¼ 10�2mpl 12:9� 0:1
M ¼ 10�3mpl 12:0� 0:3
M ¼ 10�4mpl 10:3� 0:5

7 6 5 4 3 2
2.0

1.5

1.0

0.5

0.0

log

lo
g

f

FIG. 14 (color online). Fraction of initial field values in a
�-sized box intercepting the set S as a function of � for the
SUGRA F-term model. The potential parameter has been fixed
to M ¼ 10�2mpl. The box-counting dimension of the boundary

of S is given by the power law behavior for small � and found to
be DB ’ 1:5.
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parameter space defined by si, c i, v, 	, and M where

ds

dN

��������i
¼ v cos	;

dc

dN

��������i
¼ v sin	: (29)

We have chosen the same sub-Planckian priors for the
initial field values and initial velocities than in Sec. III.
Since the order of magnitude of M is not known, we have
chosen a flat prior on

� 2< log
M

Mpl

< 0: (30)

The lower limit onM is motivated by computational rather
than physical considerations. The resulting marginalized
posterior probability distributions for each of the parame-
ters are represented in Fig. 15. The chains contain 400 000
samples producing an estimated error on the posteriors
around a few percent (from the variance of the mean values
between different chains).

The posteriors for the field velocities are flat showing
that all values are equiprobable to produce inflation. The
initial field values are also flat, up to a sharp peak of higher
probability density around c ¼ 0 corresponding to the
inflationary valley. As for the hybrid model of Sec. II, after
integration of these curves over the field values, inflation is
clearly more probable by starting out of the valley. Finally,
only the posterior probability distribution of logM is
strongly suppressed at large values (see Fig. 16). We find,

at 95% of confidence level

logðMÞ<�1:33: (31)

As for the original hybrid model, this limit comes from the
condition of existence of a sub-Planckian inflationary val-
ley which is related to the position of the instability point.
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FIG. 15. Marginalized posterior probability distributions for the initial field values (upper panels) and the initial velocities, modulus
v and angle 	. The F-SUGRA inflationary valley has a slightly higher probability density around c ¼ 0 but is extremely localized: as
a result, inflation is more probable by starting out of the valley.
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FIG. 16. Marginalized posterior probability distribution of the
mass scale M of F-SUGRA inflation.
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Indeed, from Eq. (27), one finds

dVSUGRA
tree

dc

��������c¼0
¼ 0 ) s ¼ sc

¼ � M

Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

M4

M4
pl

vuut
vuuut ; (32)

where we have kept only the sub-Planckian solutions. This
expression shows that there is an inflationary valley at c ¼
0 only for M=Mpl < 1=

ffiffiffi
2

p
, and for field values such that

s > sc. As a result of the two-field dynamics, we find that a
valley supporting at least 60 e-folds of inflation require the
more stringent bound of Eq. (31). Let us finally notice that
the most probable values we obtain onM to get inflation in
Eq. (31) are compatible with the existing upper bound
coming from cosmic strings constraint: M & 10�3mpl

(see Refs. [53,56]).

V. CONCLUSION

In this paper, by numerically solving the two-field dy-
namics of the original hybrid model and its SUGRA F-term
version, we have shown that 60 e-folds of inflation is a
generic outcome. Contrary to what is usually assumed, one
does not need to fine-tune the initial field values around
c ¼ 0 to get inflation. In fact, the inflationary valley,
indeed of small extension in field space, is one of the three
dynamical attractors of the differential system given by the
Einstein and Klein-Gordon equations in a Friedmann-
Lemaitre-Robertson-Walker universe (the others being
the minima of the potential). As a result, any trajectory
will end in one of these three attractors and the set S of
successful initial conditions therefore belongs to the basin
of attraction of the inflationary valley. We have shown that
such a set is connected and of dimension 2 while exhibiting
a fractal boundary of dimension greater than 1. Moreover,
it occupies a significant fraction of the sub-Planckian field
regime. In order to quantify what are the natural field and

parameter values to get inflation for both of these models,
we have introduced a probability measure and performed a
MCMC exploration of the full parameter space. It appears
that the inflationary outcome is independent of the initial
field velocities, is more probable when starting out of the
inflationary valley, and favors some ‘‘natural’’ ranges for
the potential parameter values that cover many orders of
magnitude. The only constraints being that the inflationary
valley should at least exist.
Let us notice that the posterior probability distributions

we have derived are not sensitive on the fractal property of
the boundary of S. This is expected since, even fractal, the
boundary remains of null measure compared to S.
However, its existence may have implications in the con-
text of chaotic eternal inflation [57,58]. Indeed, the bound-
ary itself leads to inflation and spawns the whole field
space such that its mere existence implies that inflationary
bubbles starting from almost all sub-Planckian field values
should be produced. Here, we have been focused on the
classical evolution only and our prior probability distribu-
tions have been motivated by theoretical prejudice (flat
sub-Planckian prior). In the context of chaotic eternal
inflation, our results are however still applicable provided
one uses the adequate prior probabilities which are the
outcome of the super-Hubble chaotic structure of the
Universe [59]. Provided the eternal scenario does not
correlate with the classical dynamics, one should simply
factorize the new priors with the posteriors presented here
to obtain the relevant posterior probability distributions in
this context.
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