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In a logamediate inflationary universe model we introduce the curvaton field in order to bring this

inflationary model to an end. In this approach we determine the reheating temperature. We also outline

some interesting constraints on the parameters that describe our models. Thus, we give the parameter

space in this scenario.
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I. INTRODUCTION

It is well known that one of the most exciting ideas of
contemporary physics is to explain the origin of the ob-
served structures in our Universe. It is believed that infla-
tion [1] can provide an elegant mechanism to explain the
large-scale structure, as a result of quantum fluctuations in
the early expanding Universe, predicting that small density
perturbations are likely to be generated in the very early
Universe with a nearly scale-free spectrum [2]. This pre-
diction has been supported by early observational data,
specifically in the detection of temperature fluctuations in
the cosmic microwave background (CMB) by the COBE
satellite [3]. In this epoch, the predictions of inflation have
been detected in the specific pattern of anisotropies im-
printed in the full sky map of the CMB, as reported, for
instance, by the WMAP mission [4]. On the other hand, an
inflationary-type expansion also sources a background of
primordial gravitational waves [5], whose effects still re-
main undetectable. Forthcoming observations, such as the
PLANCK [6] or LISA [7] missions, may measure effects of
relic gravitational waves and offer new trends for gravita-
tional physics in the near future.

The condition for inflation to occur is that the inflaton
field slow roll near the top of the potential for sufficiently
long time, so that the vacuum energy drives the inflationary
expansion of the Universe. Many models of inflation have
been proposed [8,9], based on single-field or multifield
potentials. Also, they have been constructed in various
theoretical schemes. We distinguish those solutions intro-
duced by Barrow [10] where the scale factor aðtÞ has the
asymptotic property that ordinary differential equations of
the form €a ¼ Pða; tÞ=Qða; tÞ, as t ! 1 with polynomials
P and Q, bring specific different solutions from which we
singularize those named logamediate inflationary solution.

This solution has the interesting property that the ratio of
tensor to scalar perturbations is small and the power spec-
trum can be either red or blue tilted, according to the values
of the parameters appearing in the model [11].
The main motivation to study logamediate inflationary

universe models comes from the form of the field potential
that appears in this kind of model, i.e., Vð�Þ /
�� exp½�����. This potential includes exponential po-
tential (� ¼ 0) that appears in Kaluza-Klein theories, as
well as in supergravity, and in superstring models (see
Ref. [12]). Also, it includes power-law potentials (� ¼
0), with models based on dynamical supersymmetry break-
ing which motivates potentials of the type Vð�Þ / ���

[13]. We also find this sort of potential in models motivated
by higher-dimensional theories, scalar-tensor theories, and
supergravity corrections [14]. In particular, it was used in
Ref. [15] for studying inflation with a background dilaton
field, and scaling behavior and other attractorlike solutions
were studied in Ref. [16]. On the other hand, this potential
was used in dark energy models, driving the observed
acceleration of the Universe at the present epoch [17].
In Ref. [18] was considered the behavior of the parame-

ters � and � in all regions of the parameter space. When
0 � � � 1, inflation is generic at late times, for all values
of �. For the cases, when � > 1 and � � 0, the models are
noninflationary. When � < 0 and� � 0, inflation comes at
early times. For � < 0 and �< 0, inflation occurs at late
times and the inflationary behavior is regulated by the
specific value of �. For � > 1 and � ¼ 0 the quasi-
de Sitter scenario is manifest at early times, but this is
not a characteristic as t ! 1, where all models are non-
inflationary. For the case � > 1 and � � 0, these models
can never inflate. In particular, if � ¼ 0, the solutions
present polynomial-chaotic or intermediate inflationary
behavior depending upon the sign of �, and for the special
case when � ¼ 0 the de Sitter solution is obtained. The
power-law solutions occur for � ¼ 1 and � ¼ 0, and if
� � 0 the behavior will asymptote to the power-law solu-
tion at large times t. If 0< �< 1 the scale factor is

proportional to expðlnð2��Þ=�Þ as t ! 1.
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One of the drawbacks of this model rests on the impos-
sibility to bring inflation to an end. In fact, at the end of
inflation the energy density of the Universe is locked up in
a combination of kinetic and potential energies of the
scalar field, which drives inflation [8]. One path to defrost
the Universe after inflation is known as reheating [19].
During reheating, most of the matter and radiation of the
Universe are created usually via the decay of the inflaton
field leading to a creation of particles of different kinds,
while the temperature grows in many orders of magnitude.
It is at this point where the Universe matches the big-bang
model. In this process the particular interest is in the
quantity known as the reheating temperature, Trh. The
reheating temperature is related to the temperature of the
Universe when the radiation epoch begins.

The oscillations of the scalar inflaton field are an essen-
tial part for the standard mechanism of reheating. However,
there are some models where the inflaton potential does not
have a minimum and the scalar field does not oscillate.
Here, the standard mechanism of reheating does not work
[20]. These models are known in the literature as non-
oscillating (NO) models [21,22]. The NO models corre-
spond to runaway fields such as module fields in string
theory which are potentially useful for inflation model
building because they present flat directions which survive
the famous � problem of inflation [23]. This problem is
related to the fact that between the inflationary plateau and
the quintessential tail there is a difference of over 100 or-
ders of magnitude.

The first mechanism of reheating in this kind of model
was the gravitational particle production [24], but this
mechanism is quite inefficient, since it may lead to certain
cosmological problems [25,26]. An alternative mechanism
of reheating in NO models is the instant preheating, which
introduce an interaction between the inflaton scalar field an
another scalar field [21]. Another possibility for reheating
in NO models is the introduction of the curvaton field �
[27], which has recently received a lot of attention in the
literature [28,29]. The curvaton approach is an interesting
new proposal for explaining the observed large-scale adia-
batic density perturbations in the context of inflation. Here,
the hypothesis is such that the adiabatic density perturba-
tion originates from the ‘‘curvaton field’’ and not from the
inflaton field. In this scenario, the adiabatic density pertur-
bation is generated only after inflation, from an initial
condition which corresponds to a purely isocurvature per-
turbation [30]. Following, Ref. [31] (see also Ref. [32]) we
adopt the ‘‘curvaton hypothesis,’’ where the inflaton per-
turbation is taken to be less than 1% of the observed value.
Using the COBE normalization at the pivot scale, we can
set an upper bound for the power spectrum of inflation,

where P1=2
��

& 0:01P1=2
� ’ 5� 10�7. Here, P1=2

��
and P1=2

�

are the power spectrum of the inflaton field and curvaton
field, respectively. On the other hand, generally inflation-
ary models suggest that inflation took place at energy

comparable to that of grand unification, where the energy

scale is approximately V1=4
� � 1015–16 GeV, where V� is

the effective potential associated with the inflaton field
evaluated when the cosmological scales exit the horizon
[33]. In the context of string landscape supersymmetry sets
the value of V� at scales typically much less than the grand
unified scale. One way to liberate inflation from the con-

straint given by V1=4
� � 1015–16 GeV is to consider that the

curvature perturbations generated during inflation are due
to quantum fluctuations of the curvaton field, in which case

V1=4
� � 1015–16 GeV turns into an upper bound [31]. It is

assumed that the curvaton field does not influence the
dynamics of the inflaton field, but becomes important after
inflation has ended, when it imprints its curvature pertur-
bation onto the Universe [27]. Under this hypothesis, it is
possible to diminish this constraint substantially [34].
However, we should note that one can have cases in which
the fluctuations generated by both the inflaton and a cur-
vatonlike field are relevant [35,36].
In the framework of logamediate inflationary universe

models we would like to introduce the curvaton field as a
mechanism to bring logamediate inflation to an end.
Therefore, the main aim of this paper is to carry out the
curvaton field into the logamediate inflationary scenario
and see what consequences we may derive. The outline of
the paper is as follow: in Sec. II we give a brief description
of the logamediate inflationary scenario. In Sec. III the
curvaton field is described in the kinetic epoch. Section IV
describes the curvaton decay after its domination.
Section V describes the decay of the curvaton field before
it dominates. Section VI studies the consequences of the
gravitational waves. At the end, Sec. VII includes our
conclusions.

II. LOGAMEDIATE INFLATION MODEL

In order to introduce the logamediate inflationary uni-
verse model we start with the corresponding field equations
that must satisfy the scalar field in a flat Friedmann-
Robertson-Walker (FRW) background

3H2 ¼
_�2

2
þ Vð�Þ; (1)

and

€�þ 3H _� ¼ �@Vð�Þ
@�

; (2)

where H � _a=a is the Hubble factor, a ¼ aðtÞ is the scale
factor. Here, � is the standard inflaton field and Vð�Þ its
associated effective scalar potential, the dots denote de-
rivative with respect to the cosmological time t, and we
shall use units such that 8�G ¼ 8�=m2

p ¼ c ¼ @ ¼ 1, mp

being the Planck mass.
The main assumption in the logamediate inflationary

universe model is that the scale factor aðtÞ expands by
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means of the asymptotic form [10,11]

aðtÞ ¼ exp½AðlntÞ	�; (3)

with t > 1. Here A > 0, and 	 > 1 are constants. The
Hubble parameter as a function of the cosmological times
t becomes

H ¼ _a

a
¼ A	ðlntÞ	�1

t
; (4)

and since A	 > 0 we get expanding universe. Note that
when 	 ¼ 1 this model reduces the well-known power-law
inflation, a / tp, where p ¼ A with A > 1. From Eqs. (1)–

(3), we have _H ¼ � _�2=2 and the scalar field �ðtÞ result
� ¼ �0 þ �ðA	Þ1=2ðlntÞ1=�; (5)

where � ¼ 2
	þ1 .

Assuming the set of slow-roll conditions, i.e., _�2 	
Vð�Þ and €� 	 3H _�, and setting �0 ¼ 0, without loss
of generality, the scalar potential can be written as [11]

Vð�Þ ¼ V0�
� exp½�����: (6)

Here, the parameters � and � are defined by � ¼ 4ð	�1Þ
ð	þ1Þ

and � ¼ 2½ð	þ 1Þ=ð2 ffiffiffi
2

p ðA	Þ1=2Þ�2=ð	þ1Þ, respectively.
Furthermore, we have defined

V0 ¼ 3

2
ðA	Þ2�2ð	�1Þ: (7)

Note that this kind of potential does not present a minimum
for large values of the field�. This potential was originally
studied by Barrow [37] (see also Ref. [18]), where it was
shown that the condition � ¼ 2=ð	þ 1Þ � 1 was needed
for inflation to occur at large values of �.

The Hubble factor as a function of the inflaton field �
becomes

Hð�Þ ¼ H0�
�=2 exp½����=2�; (8)

where H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
.

The slow-roll parameters, " and �, are defined by " ¼
V02
2V2 and � ¼ V 00=V, respectively. Here the prime denotes

derivative with respect to the inflaton field�. In the present
case they read

" ¼ 1

2�2
ð�� ����Þ2 and

� ¼ � 1

�2

�
�þ ��ð�� 1Þ�� � 1

2
ð�� ����Þ2

�
;

(9)

and its ratio results in "
� ¼ ½1� 2 �þ��ð��1Þ��

ð������Þ2 ��1.

Note that the parameters " and� diverge when the scalar
field � ! 0. Also, " is always larger than � since � is
positive (A > 0 and 	 > 1), then " reaches unity before �
does. In this way, we may establish that the end of inflation
is governed by the condition " ¼ 1. From the condition
" ¼ 1 we can distinguish two possible solutions for the

scalar field, at the end of inflation:�e ¼ �ffiffi
2

p for the value of

�> ���� and �e ¼ ð�2�2

2 Þ1=2ð1��Þ for �<����. From

now on, the subscript ewill be used to denote the end of the
inflationary period. The maximum of the potential occurs
when the parameter " ¼ 0 (@V=@� ¼ 0) and the value of

the scalar field in this maximum of the potential is �i ¼
ð�=ð��ÞÞ1=�. In the following, we study our inflationary
scenario and the reheating of the Universe for values of the

scalar field, such that �i � �. Then, we are taking �e ¼
ð�2�2

2 Þ1=2ð1��Þ, because with this choice it is possible to get a
continuous transition from the inflationary age to the ki-
netic phase.

III. THE CURVATON FIELD

When inflation has finished, the model enters to the
‘‘kinetic epoch’’ (or ‘‘kination,’’ for simplicity) [38]. In

this epoch, the term @Vð�Þ
@� is negligible compared to the

friction term 3H _� in the field Eq. (2). Hereafter, with the
subscript (or superscript) ‘‘k’’ we label different quantities
at the beginning of this epoch. The kinetic epoch does not
occur immediately after inflation; there may exist a middle
epoch where the potential force is negligible with respect
to the friction term [39]. During the kination epoch we

have that _�2=2>Vð�Þ which could be seen as a stiff fluid
since the relation between the pressure P� and the energy

density 
� corresponds to the relation P� ’ 
�.

During the kinetic epoch we have 3H2 ¼ 
� ’ _�2

2 and
€�þ 3H _� ¼ 0, where the latter equation could be solved

and gives _� ¼ _�kðaka Þ3. This expression yields


�ðaÞ ¼ 
k
�

�
ak
a

�
6
; (10)

and the Hubble parameter becomes

HðaÞ ¼ H ¼ Hk

�
ak
a

�
3
; (11)

where H2
k ¼ 
k

�=3 ’ _�2
k=6 is the value of the Hubble

parameter at the beginning of the kination.
We now study the dynamics of the curvaton field �

through different stages. We consider that the curvaton
field obeys the Klein-Gordon equation and, for simplicity,
we assume that its scalar potential associated with this field

is given by Uð�Þ ¼ m2�2

2 , where m is the curvaton mass.

This study allows us to find some constraints on the pa-
rameters and thus to have a viable curvaton scenario.
First, we assume that the energy density 
�, associated

with the inflaton field, is the dominant component when it
is compared with the curvaton energy density 
�, i.e.,

� 
 
�. In the next stage, the curvaton field oscillates

around the minimum of the effective potential Uð�Þ. Its
energy density evolves as a nonrelativistic matter and,
during the kinetic epoch, the universe remains inflaton-
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dominated. Finally, the last stage corresponds to the decay
of the curvaton field into radiation and then the standard
big-bang cosmology is recovered.

In the inflationary regime it is supposed that the curvaton
field mass m satisfied the condition m 	 He, and its
dynamics is described in detail in Refs. [40–42]. During
inflation, the curvaton would roll down its potential until its
kinetic energy is depleted by the exponential expansion
and only then, i.e., only after its kinetic energy has almost
vanished, it becomes frozen and assumes roughly a con-
stant value, i.e., �� � �e. The subscript ‘‘�’’ here refers to
the epoch when the cosmological scales exit the horizon.

During the kinetic epoch the Hubble parameter de-
creases so that its value is comparable with the curvaton
mass, and the curvaton mass is of the order of Hubble
parameter, i.e., H ’ m. Then from Eq. (11), we obtain

m

Hk
¼

�
ak
am

�
3
; (12)

where the subscript ‘‘m’’ stands for quantities evaluated at
the time when the curvaton mass m is of the order of H.

In order to prevent a period of curvaton-driven inflation
the Universe must still be dominated by the inflaton field,
i.e., 
�jam ¼ 
m

� 
 
�. Over the inflation period the ef-

fective potential does not change substantially, because it is
reasonable to suppose that 
m

� 
 
� �Uð�eÞ ’ Uð��Þ.
The quoted inequality allows us to find a constraint on
the values of the curvaton field �� at the moment when
H ’ m, since

m2�2�
2
m

�

¼ �2�
6

	 1; (13)

or equivalently �2� 	 6.
Now, at the end of inflation the ratio between the poten-

tial energies results in

Ue

Ve
¼ m2�2�

6H2
e

	 m2

H2
e

; (14)

here, we have used Eq. (13).
Since the curvaton energy becomes subdominant at the

end of inflation, i.e., Ve 
 Ue, then the curvaton mass
should obey the constraint m2 	 H2

e , and using the rela-

tionsH2
e ¼ Ve=3, Eq. (14), and�e ¼ ð�2�2=2Þ1=2ð1��Þ, we

get

m2 	 V0

3

�
2

�2�2

�
�=2ð��1Þ

exp

�
��

�
2

�2�2

�
�=2ð��1Þ�

:

(15)

After the curvaton field becomes effectively massive, its

energy decays as a nonrelativistic matter in the form 
� ¼
m2�2�
2 ðama Þ3. In the following, we will study the decay of the

curvaton field in two possible different scenarios.

IV. CURVATON DECAYAFTER DOMINATION

For the first scenario, when the curvaton field comes to
dominate the cosmic expansion, i.e., 
� > 
�, there must

be a moment in which the inflaton and curvaton energy
densities match. We are going to assume that this happens
when a ¼ aeq. Then, from Eqs. (10) and (11), and bearing

in mind that 
� / a�3, we get


�


�

��������a¼aeq

¼ m2�2�
2

a3ma
3
eq

a6k

k
�

¼ m2�2�a3ma3eq
6H2

ka
6
k

¼ 1; (16)

where we have used the relation 3H2
k ¼ 
k

� together with

Hkð akaeq
Þ3 ¼ m�2�

6 and Eq. (12).

In terms of the curvaton parameters, the Hubble parame-
ter, HðaeqÞ ¼ Heq can be rewritten as

Heq ¼ Hk

�
ak
aeq

�
3 ¼ m�2�

6
; (17)

where we have considered Eqs. (11), (12), and (16).
When the curvaton decays after domination we require

that the following condition is fulfilled, 
� > 
�, in addi-

tion to the decay parameter �� < Heq. Since the decay

parameter �� is constrained by nucleosynthesis, it is re-
quired that the curvaton field decays before nucleosynthe-
sis, which means Hnucl � 10�40 < ��. Hence, the con-
straint upon the decay parameter is

10�40 < �� <
m�2�
6

: (18)

The curvaton approach is potentially valuable in the
search of physical constraints on the parameters appearing
in the logamediate expanding model by studying the scalar
perturbations related to the curvaton field �. During the
time in which the fluctuations are inside the horizon, they
obey the same differential equation of the inflaton fluctua-
tions. We may conclude that they acquire the amplitude
��� ’ H�=2�. On the other hand, outside of the horizon,
the fluctuations obey the same differential equation like the
unperturbed curvaton field, and then we expect that they
remain constant over inflation. The spectrum of the
Bardeen parameter, P� , whose observed value is P� ’
2:4� 10�9 [43], allows us to determine the value of the
curvaton field � evaluated at the epoch when the cosmo-
logical scales exit the horizon. This becomes in terms of
the parameters A and �. At the time when the decay of the
curvaton field occurs, the parameter P� results in [44]

P� ’ H2�
9�2�2�

’ 1

9�2�2�
H2

0½BN� þ�	�
e �2ð	�1Þ=	

� exp½��ðBN� þ�	�
e Þ1=	�; (19)
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where B ¼ A�1ðA	�2Þ	=ð	þ1Þ. Here, the number of e-

folds, N�, is determined by N� ¼
Rte
t� Hðt0Þdt0. After a

rather involved lengthy but straightforward computation,
we get

N� ¼ A

� ð	þ 1Þ
2ðA	Þ1=2

�
2	=ð	þ1Þð�2	=ð	þ1Þ

� ��2	=ð	þ1Þ
e Þ; (20)

which was used in determining Eq. (19).
The constraint given by Eq. (18) becomes

�� <
mH2

0

54�2P�

½BN� þ�	�
e �2ð	�1Þ=	

� exp½��ðBN� þ�	�
e Þ1=	�; (21)

which provides an upper limit on �� when the curvaton
field decays after domination.

We consider the hypothesis that the inflaton field curva-
ture perturbation is taken to be less than 1% of the observed
value, i.e., P�� & 0:0001P� , where P�� is given by P�� ¼
V=ð24�2"Þ [33]. In this way, we can set a new constraint
for the decay parameter �� given by

�� <
2

3
� 10�4�2�2m

�
N�
A

�
2ðA	Þ1=2
	þ 1

�ð	þ1Þ=2	

þ
�
��ffiffiffi
2

p
�ð	�1Þ=	�ð1�	Þ=	

: (22)

Here, we have used Eqs. (18)–(20).
Now we turn to give the constraints on the parameters A

and � by using the big-bang nucleosynthesis (BBN) tem-
perature TBBN. We know that reheating occurs before the
BBN where the temperature is of the order of TBBN �
10�22, and thus the reheating temperature should satisfy

Trh > TBBN. By using that Trh � �1=2
� > TBBN we obtain a

new constraint

H2� ¼ V�
3

¼ V0

3
��� e����

� > ð540�2Þ2=3P2=3
� T4=3

BBN � 10�33;

(23)

where we have taken the scalar spectral index ns ¼ 1þ
ð4m=9H�Þ2 close to 1, and therefore m � 0:1H� (see
Ref. [40]).

We note here that when the curvaton decays at the time
before the electroweak scale (since the baryogenesis is
located below the electroweak scale) we need that the
reheating temperature should satisfy Trh > Tew, where
Tew is the electroweak temperature. This inequality is a
much stronger bound than Trh > TBBN, i.e., Trh > Tew >
TBBN. In this way, we replace TBBN by Tew in Eq. (23), and
thus, we get the constraintH2� > 10�26. Here, we have used
that Tew � 10�17.

Also, we noted that if the decay rate is of gravitational
strength, then �� �m3 (see Refs. [34,35,45,46]) and
Eq. (21) becomes

m2 <
H2

0

54�2P�

½BN� þ�	�
e �2ð	�1Þ=	

� exp½��ðBN� þ�	�
e Þ1=	�: (24)

In the same way, Eq. (22) is now written as

m2 <
2

3
� 10�4�2�2

�
N�
A

�
2ðA	Þ1=2
	þ 1

�ð	þ1Þ=2	

þ
�
��ffiffiffi
2

p
�ð	�1Þ=	�ð1�	Þ=	

: (25)

These expressions give an upper limit on the curvaton mass
m, when the constraints of the gravitational strength are
taken into account.
In Fig. 1 we show the dependence of the curvaton mass

m as a function of the Hubble parameter H�, according to
Eqs. (18), (19), and (23) and m � 0:1H�. We have taken
P� ¼ 2:4� 10�9.

Following the analysis done in Ref. [18], we can obtain
the behavior of the parameters � and � in all regions of the
parameter space. This behavior is given in terms of the
parameters 	, A, and m. In this aspect, we can determine
the parameters in which the logamediate inflation together
with the curvaton scenarios work. It is known that when
0 � � � 1, inflation is generic for late times, and for any
value of �, and, in our case, it reads as follows: 	 � 1 and
� � 0. For the case when � > 1 and� � 0, the models are
noninflationary, because 	 < 1. When � < 0, � � 0, or
�< 0, this model does not work since 	 <�1. For � > 1,
� � 0, or � ¼ 0, these models never can inflate, due to
	 < 1. In particular, if � ¼ 0 (or equivalently 	 ! 1), this
model does not work since from Eq. (22) �� < 0. The case
when � ¼ 0 the de Sitter solution is obtained and � ¼ 1
(	 ¼ 1), and from Eq. (25) and the analysis done in

FIG. 1. This plot shows the dependence of the curvaton mass
m as a function of the Hubble parameter H� according to
Eqs. (18) and (19) (dashed line), m � 0:1H� (solid line), and
the inequality (23). The shadow zone shows the allowed values
of m and H� parameters.
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Ref. [11], we obtain the following constraint 1<A<
10�4=m2 in order to have a working model. For the cases
� > 1 (	 > 1) and �> 0, from Eq. (25) we find that our
model works for m2 < 10�5 and A > 0.

V. CURVATON DECAY BEFORE DOMINATION

On the other hand, considering that the curvaton �
decays before it dominates the expansion (which we called
the second scenario) and, additionally, the mass of the
curvaton is non-negligible when compared with the
Hubble expansion rate H, i.e., m�H, and if the curvaton
field decays at a time when �� ¼ HðadÞ ¼ Hd, where ‘‘d’’
stands for quantities at the time when the curvaton decays,
we get that

�� ¼ Hd ¼ Hk

�
ak
ad

�
3
; (26)

where Eq. (11) is used.
If we allow the decaying of the curvaton after its mass

becomes important, i.e., �� < m, and before that the cur-
vaton dominates the cosmological expansion (i.e., �� >

Heq), we may write the constraint

�2�
6

<
��

m
< 1; (27)

which is similar to that described in Ref. [25].
In this scenario, the curvaton decays at the time when


� < 
�. Denoting the parameter rd as the ratio between

the curvaton and the inflaton energy densities, evaluated at
the time in which the curvaton decay occurs, i.e., at a ¼
ad, the parameter P� becomes, given by [44,47],

P� ’ r2d
16�2

H2�
�2�

: (28)

Since rd ¼ 
�


�
ja¼ad , we get that rd ¼

m2�2�a3ma3d=6H
2
ka

6
k, where we have used 
�ðaÞ ¼ m2�2�

2 �
ðaka Þ3 and 
�ðaÞ ¼ 
k

�ðaka Þ6. Using Eqs. (12) and (26) we

obtain

rd ¼ m�2�
6��

: (29)

The parameter rd is related to two other observables; the
amount of non-Gaussianity, that is conventionally specified
by a number fNL (NL meaning ‘‘nonlinear’’) [48] and the
parameter of the isocurvature amplitude (or the ratio the
isocurvature and adiabatic amplitudes at the pivot scale)
[49]. Following, Ref. [47] the parameter fNL, becomes of
the order of fNL ’ 5

4rd
, where this expression is only valid

for high values of fNL, which dominates over the intrinsic
non-Gaussianity (see Ref. [50] for the second order per-
turbations). From the observational data fNL < 100; there-
fore, the parameter rd satisfies rd > 0:01 [32,47].

From Eqs. (28) and (29) we find that �2� ¼ 576�2 P�

m2
�2
�

H2�
,

and using that

H2� ¼ H2
0½BN� þ ð�2�2=2Þ	=ð	�1Þ�2ð	�1Þ=	

� exp½��ðBN� þ ð�2�2=2Þ	=ð	�1ÞÞ1=	�; (30)

we get

�2� ¼ 576�2
P��

2
�

m2H2
0

½BN� þ ð�2�2=2Þ	=ð	�1Þ�2ð1�	Þ=	

� exp½�ðBN� þ ð�2�2=2Þ	=ð	�1ÞÞ1=	�: (31)

Thus, expressions (27) and (31) become useful for obtain-
ing the following inequality for the decay parameter ��:

�� <
mH2

0

576�P�

½BN� þ ð�2�2=2Þ	=ð	�1Þ�2ð	�1Þ=	

� exp½��ðBN� þ ð�2�2=2Þ	=ð	�1ÞÞ1=	�: (32)

We also derive a new constraint for the parameters A and
	 characteristic of the logamediate inflationary universe
model, by using the BBN temperature TBBN. Since the
reheating temperature satisfies the bound Trh > TBBN,
with �� > T2

BBN we get

H2
0½BN� þ ð�2�2=2Þ	=ð	�1Þ�2ð	�1Þ=	

� exp½��ðBN� þ ð�2�2=2Þ	=ð	�1ÞÞ1=	�
> ð960�2Þ2=3P2=3

� T4=3
BBN � 10�33: (33)

Here, we have used that m ’ H�=10; see Ref. [40] and
Eqs. (27), (29), and (30).
From the hypothesis that P�� & 0:0001P� , we can set a

new constraint for the decay parameter �� given by

�� &
10�2

12
��m�2��

ð1��Þ
� ;

or equivalently,

�� & 8� 10�4��

�
N�
A

�
2ðA	Þ1=2
	þ 1

�ð	þ1Þ=2	

þ
�
��ffiffiffi
2

p
�ð	�1Þ=	�ð	�1Þ=2	

m�2�: (34)

Here, we have used Eqs. (20), (28), and (29).
On the other hand, if the decay rate is of gravitational

strength, then �� �m3 and Eq. (32) is given by

m2 <
H2

0

576�P�

½BN� þ ð�2�2=2Þ	=ð	�1Þ�2ð	�1Þ=	

� exp½��ðBN� þ ð�2�2=2Þ	=ð	�1ÞÞ1=	�; (35)

and also the curvaton mass should obey the constraint
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m2 & 10�2

12 ���2��
ð1��Þ
� , where it was consider that P�� &

0:0001P� as before.

VI. GRAVITATIONALWAVES

Another set of bounds is due to the possible overpro-
duction of the gravitational waves due to inflation. The
corresponding gravitational wave amplitude can be written
as

hGW ’ C1H�; (36)

where the constant C1 � 10�5 [51].
We may write the gravitational wave amplitude as func-

tion of the numbers of e-folds of inflation, i.e.,

h2GW ’ C2
1

�
N�
A

þ B

�
2

�2�2

�
�=�ð2��1Þ�2ð	�1Þ=	

� exp

�
� 2

�

�
N�
A

þ B

�
2

�2�2

�
�=�ð2��1Þ��

; (37)

where we have used Eq. (30).
After inflation the inflaton field follows an equation of

state which is almost stiff and the spectrum of relic grav-
itons presents a characteristic in which the slope grows
with the frequency (spike) for models that reenter the
horizon during this epoch. This means that at high frequen-
cies the spectrum forms a spike instead of being flat, as in
the case of radiation dominated universe [52]. Therefore,
high frequency gravitons reentering the horizon during the
kinetic epoch may disrupt BBN by increasing the Hubble
parameter. This problem can be avoided if the following
constraint on the density fraction of the gravitational wave
is required [53] (see also Ref. [40])

I � h2
Z k�

kBBN

�GWðkÞd lnk ’ 2h2���ðk0Þh2GW
�
H�
~H

�
2=3

� 2� 10�6; (38)

where �GWðkÞ is the density fraction of the gravitational
wave with physical momentum k, kBBN is the physical
momentum corresponding to the horizon at BBN,
��ðk0Þ ¼ 2:6� 10�5h�2 is the density fraction of the

radiation at present on horizon scales. Here, h ¼ 0:73 is
the Hubble constant in which H0 is in units of
100 km= sec =Mpc and �� 10�2. The parameter ~H repre-
sents either ~H ¼ Heq, when the curvaton decays after

domination, or ~H ¼ Hd, if the curvaton decays before
domination.

For the first scenario, the constraint on the density
fraction of the gravitational wave, expressed by Eq. (38),
becomes

m

�2�
*

�
P�

4� 105

�
2 � 10�28; (39)

where we have used expressions (17) and (36) and C1 �

10�5. From Eqs. (18) and (39) we obtained thatm> 10�34

and 10�40=m < �2� & 1028m.
For the second scenario, the constraint on the density

fraction of the gravitational wave given by Eq. (38) be-
comes

m2�2�
�1=4
�

* 6� 10�5P� � 10�13; (40)

where we have used Eqs. (26) and (28). From Eqs. (27) and
(40), we may write the inequality for the parameter given

by �� > 10�19m�4=3.

VII. CONCLUSIONS

We have studied in detail the curvaton mechanism into
the NO inflationary logamediate model. The curvaton sce-
nario is responsible for reheating the Universe as well as
for the curvature perturbations.
In describing the curvaton reheating we have considered

two possible scenarios. In the first one, the curvaton domi-
nates the universe after it decays and thus we have obtained
the upper limit for �� expressed by Eq. (21). In the second
scenario the curvaton decays before domination. Here, we
have also found a constraint for the values of �� which is
represented by Eq. (32).
During the scenario in which the curvaton decays after it

dominates, our computations allow us to get the reheating

temperature Trh / �1=2
� as high as 10�12 (in units of mp).

Here, we have used Eq. (21), with m� 10�8, N� ¼ 60,
P� ¼ 2:4� 10�9, 	 ¼ 5, and A ’ 10�6 (see Ref. [11] for

the values of 	 and A). In particular, for 	 ¼ 10 and A ’
10�15 we get that the reheating temperature is of the order
of 10�16. In the case when 	 ¼ 2 and A ’ 2� 10�2 the
reheating temperature is of the order of Trh � 10�21. If we
consider the constraint from gravitational wave, we find
that the inequalities for the scalar field �� at the moment
when the cosmological scales exit the horizon become

10�16 <�� <
ffiffiffi
6

p
.

In the second scenario, we could estimate the reheating
temperature to be of the order of �10�13 as an upper limit
from Eq. (27). Here, we have used m� 10�8, N� ¼ 60,
P� ¼ 10�10, 	 ¼ 5, and A ’ 10�6. In particular, for 	 ¼
10 and A ’ 10�15 we estimate Trh � 10�17. For the values
	 ¼ 2 and A ’ 2� 10�2 the reheating temperature is of
the order of Trh � 10�22. From the constraint of the gravi-
tational wave we have obtained that Trh > 10�13. Note that
the value of this temperature does not agree with the
previous value; this is due to the fact that its value is
obtained from different cosmological constraints.
However, we have obtained values for the reheating tem-
perature Trh which are in good agreement with those values
reported previously in Refs. [40,42], which seriously chal-
lenges gravitino constraints, where the reheating tempera-
ture becomes of the order of Trh � 10�9 [54].
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