
Exponential gravity

Eric V. Linder

Berkeley Lab and University of California, Berkeley, California 94720, USA
and Institute for the Early Universe, Ewha Womans University, Seoul, South Korea

(Received 28 September 2009; published 23 December 2009)

We investigate a fðRÞ modification of gravity that is exponential in the Ricci scalar R to explain cosmic

acceleration. The steepness of this dependence provides extra freedom to satisfy solar system and other

curvature regime constraints. With a parameter to alleviate the usual fine-tuning of having the modifi-

cation strengthen near the present, the total number of parameters is only one more than �CDM. The

resulting class of solutions asymptotes to w ¼ �1 but has no cosmological constant. We calculate the

dynamics in detail, examine the effect on the matter power spectrum, and provide a simple fitting form

relating the two.
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I. INTRODUCTION

Einstein’s general relativity has proved to be a remark-
ably robust theory of gravity. Large numbers of attempts
have been made to modify it, e.g. for the purpose of
explaining cosmic acceleration without adding a separate
dark energy component. Many of these have been found to
have pathologies such as ghosts, unbounded energies,
tachyons, or other ills [1]. Gravity theories that are sound
may still fail to provide acceleration, an early matter
dominated period, or fall afoul of gravity constraints on
solar system or other scales.

Here wework within the framework of fðRÞ theories that
generalize the linear dependence on the Ricci scalar R in
the Einstein-Hilbert action. Many such viable models exist
but tend to have a restricted range obeying structure con-
straints, and in this regime are effectively identical to
�CDM as far as the expansion history and distances.
Furthermore these often take the characteristic curvature
scale for the modification to the action to be that of the
present matter density, i.e. when R ¼ 8�G�today, so that

the modifications kick in near today.
We explore ways of ameliorating all three issues: easing

the restrictions of solar system tests and structure con-
straints on the curvature evolution, loosening the expansion
history, and relaxing the fine-tuning.

Considerable work has been done on fðRÞ theories; see
[2,3] for overall reviews and references. In this paper we
follow most closely the setup of [4–6]. Our aim is to
investigate the dynamics in more detail than usual, and
relate it to the growth effects more explicitly, keeping close
touch with the cosmological observations of both. In
Sec. II we describe the model, its equations of motion,
and the solutions for the expansion history and effective
equation of state. The effects on systems with high curva-
ture and density gradients, such as the solar system and
galaxies, are discussed in Sec. III along with the growth of
structure.

II. MODEL AND DYNAMICS

The fðRÞ class of extensions to general relativity repre-
sents a simple modification that preserves the maximum
number of derivatives entering at two, and can have a well-
defined limit in which the theory reduces to general rela-
tivity, typically in the high scalar curvature regime. The
gravitational part of the modified Einstein-Hilbert action is

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ�; (1)

where g is the determinant of the metric and R is the Ricci
scalar curvature.
In order to avoid including an implicit cosmological

constant we require the low curvature limit of f to vanish,
i.e. fð0Þ ¼ 0. At high curvature (e.g. in the early universe),
we want the modification term to be negligible compared
to the usual term linear in R, so we require fðR � 1Þ=R !
0. We do not want to put in by hand a specific preference
for dynamics at the present, i.e. a fine-tuning, so we do not
set the characteristic scale of f in terms of R0 ¼
8�G�ða ¼ 1Þ, where a is the cosmic scale factor and �
the matter density. Rather, we give f a transition scale r
and will fit for r given observations. Finally, in order to
satisfy the constraints from locally high curvature systems
such as the solar system or galaxies that gravity must be
very close to general relativity, we take f to have a steep
dependence on scalar curvature, rapidly restoring Einstein
gravity.
This steepness will be a key ingredient in improving

agreement with structure constraints while ameliorating
fine-tuning. Steep potentials have been considered previ-
ously (see, e.g., [5,7–10]), but here we explore in substan-
tial detail the dynamics, from the deviation from matter
domination, to the maximum equation of state variation, to
the long time behavior in the equation of state function
wðaÞ and phase space w-w0. We also give a quantitative
analysis of effects on the matter power spectrum, as well as
an accurate fitting form relating the expansion and growth
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effects. These results are of interest apart from the specific
form adopted. We now seek the simplest form with fewest
parameters yet freedom to fit over a variety of character-
istic curvature scales, not putting in special behavior just at
the present density.

All these conditions are satisfied by the ansatz

fðRÞ ¼ �crð1� e�R=rÞ: (2)

This simple form involves two quantities, and in fact we
will see that the combination cr is equivalent to setting the
dimensionless matter density today �m, so there is only
one parameter besides�m. Thus for this form the complex-
ity is just one step more than the standard �CDM model.
We focus on cosmological gravity from the matter domi-
nation through the accelerating eras, i.e. from high curva-
ture to the asymptotic future; note primordial
nucleosynthesis will not be altered, as discussed in Sec. III.

The Friedmann equation of motion is modified to [4]

H2 þ f

6
� fR

�
1

2
ðH2Þ0 þH2

�
þH2fRRR

0

¼ 8�G

3
�ðaÞ � m2a�3; (3)

where a prime denotes d=d lna, a subscript R denotes a
derivative with respect to R, H is the Hubble parameter,
and � is the matter density, taken to be the only physical
component of energy density. Note R ¼ 12H2 þ 3ðH2Þ0,
and for our exponential gravity model fRR ¼ ðc=rÞe�R=r.
Thus fRR > 0, a critical stability condition (see [2] for a
review).

Following [5] with some modifications we define

xH ¼ H2

m2
� a�3 � c

6

r

m2
; (4)

xR ¼ R

m2
� 3a�3 � 2c

r

m2
� 12xH; (5)

to take out the leading-order terms. The equation of motion
(3) becomes two coupled first-order equations

x0H ¼ xR=3; (6)

x0R ¼ �4xR � 1

m2fRR

xH þ ½d� 9ðcm2=rÞa�6�e�R=r

a�3 þ xH þ d

þ 9
xH þ d

1þ a3ðxH þ dÞ þ
fR

m2fRR

�
R

6H2
� 1

�
; (7)

where d ¼ cr=ð6m2Þ and
R

6H2
¼ 1

2

1þ a3ð4dþ 4xH þ xR=3Þ
1þ a3ðxH þ dÞ : (8)

In this form we have carried out the explicit cancellation of
several terms that nominally appeared dominant, making
the numerical solution more robust.

Treating the terms modifying the Friedmann equation
(3) as an effective dark energy density �deðaÞ, we can
define the effective dark energy equation of state and its
variation,

�deðaÞ ¼ xH þ d

a�3 þ xH þ d
; (9)

w ¼ �1� 1

9

xR
xH þ d

; (10)

w0 ¼ 3ð1þ wÞ2 þ ð1þ wÞ x
0
R

xR
: (11)

In the future, we see that�de ! 1, i.e. the modifications
dominate and the effective dark energy density goes to the
critical density. In the high curvature regime, f goes to a
constant,�cr, and so one expects this to be related to��,
or 1��m in the spatially flat universe we consider. In
general, the exact expression for cr is given by

d � c

6

r

m2
¼ ��1

m � 1� xH; (12)

so there is a defined relation between cr and�m. When the

curvature is large, xH � e�R=r (see below) and can be
neglected and the product cr is explicit in terms of �m.
Since cr corresponds to �m (all plots are for �m ¼ 0:28),
this leaves c as the only other parameter of the theory.
The dynamics can also be understood fairly simply. In

the high curvature limit when both xH and xR are small,
w ! �1, i.e. it starts from a frozen, cosmological constant
state during the matter dominated expansion. Expanding
the equations of motion at high redshift one finds that xH,

xR � e�R=r and are positive. So from Eq. (10) one sees that
the field starts off phantom, i.e. with w<�1, and since
x0R=xR � a�3 then from Eq. (11) the field evolves quite
rapidly, w0 � a�3ð1þ wÞ, much faster than a physical
thawing scalar field which has w0 ¼ 3ð1þ wÞ [11,12].
Solving the equations of motion numerically, we display

the effective phase space dynamics of w0-w in Fig. 1. We
indeed see evolution from a frozen, cosmological constant
state (w ¼ �1, w0 ¼ 0) to the phantom regime, more
swiftly than thawing (‘‘sublimation’’), and then an oscil-
latory behavior where the field reaches a maximum value
of j1þ wj, then crosses back over w ¼ �1, reaches a
secondary maximum and quickly damps around w ¼ �1.
Note the second period of oscillations is highly damped, so
small on the figure it appears as just a short dash around
w ¼ �1.
In fact, there is an asymptotic behavior toward an effec-

tive cosmological constant. The stationary point of the
equation of motion is given by

xR ¼ 0; (13)

xH ¼ �dðcþ 1ÞðeR=r þ cÞ�1; (14)
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with an implicit relation for R of

R

m2
¼ 12d

eR=r � 1

eR=r þ c
: (15)

So R settles asymptotically to a constant value, as does H,
meaning that the future solution possesses w ¼ �1. When

the asymptotic value of eR=r is much greater than 1 then
R=m2 ! 12d, or 30.86 for �m ¼ 0:28. No valid attractor
solution exists for c < 1, because this would require R< 0.

Figure 2 illustrates the numerical solution for RðaÞ for
several values of c. We see that as promised R evolves very
steeply due to the exponential form of fðRÞ and is in the

high curvature limit eR=r � 1 until recently. It then quickly
reaches its asymptotic value given by Eq. (15). As c
increases, r necessarily decreases to preserve cr, i.e. �m,

and so eR=r is always large and asymptotically R=m2 ¼
30:86. Thus, the evolution of RðaÞ is quite similar for all
c * 3 (r=m2 & 5). The influence of the modification rises
near the present for any allowed values of r, without addi-
tional fine-tuning.

To examine the expansion history in more detail, we
consider the effective dark energy equation of state wðaÞ
induced by the gravity modifications. Figure 3 shows this
function for a variety of different values of c. As discussed,
the equation of state goes from w ¼ �1 at high redshift to
w<�1 then crosses back to w>�1. The maximum

departure from w ¼ �1 decreases rapidly as c increases,
going roughly as e�2c for large c. Thus as c gets very large,
any deviations from �CDM are strongly suppressed.

FIG. 2 (color online). The Ricci scalar curvature, normalized
by the present matter density, evolves very rapidly from the high
redshift, high curvature state to a constant asymptotic state (for
c > 1). As c gets larger than unity, R=m2 approaches a constant
given by 12ð��1

m � 1Þ (i.e. 30.86 for�m ¼ 0:28 as here) and the
modification factor eR=r always stays large. The influence of the
modification occurs near the present for any allowed values of r,
without additional fine-tuning.

FIG. 3 (color online). The effective dark energy equation of
state evolution is shown for various values of c. As c gets large,
the expansion history becomes indistinguishable from �CDM.

FIG. 1 (color online). The phase space dynamics of the effec-
tive dark energy parameters w0-w is unlike any standard scalar
field. It crosses between the phantom and normal parts of the
phase space (often a signal of modified gravity), and ‘‘subli-
mates’’ rather than thaws from the initial frozen state. Successive
oscillations about � are barely visible here, showing rapid
damping to the asymptotic cosmological constant. Thick por-
tions of the curves show the evolution for a � 1.
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Figure 4 extends the plot to the future, showing the rapidly
damped oscillation around w ¼ �1.

From the perspective of expansion history measure-
ments, the distance to the cosmic microwave background
last scattering surface agrees with the �CDM model with
the same present matter density to 0.54% (0.2%) for all
valid c (for c > 1:5). Distances to redshifts z < 2, e.g. as
measured by the Type Ia supernovae magnitude-redshift
relation, agree to 2.3% (1%) for all valid c (for c > 1:6).
The parenthetical values for each correspond roughly to
next-generation observational limits. However, we will see
in the next section that cosmic structure and its growth
impose more severe limits on the parameter values
allowed.

III. CURVATURE, STRUCTURE, AND GROWTH

The fðRÞ class of models of most interest acts like
general relativity at high curvatures, so as to preserve
agreements with primordial nucleosynthesis and other
early time physics. However they possess additional scalar
degrees of freedom that can become apparent in lower
curvature or high density gradient regimes [5]. Treating
fR as a scalar field one can define a Compton wavelength
below which the effects on structure formation and bound
structures become significantly different from general rela-
tivity. For example, the first parametrized post-Newtonian
parameter, �, takes the value 1=2 rather than unity as in
general relativity. (In the high curvature regime inside the
structure, general relativity is restored by the chameleon

mechanism [13], under conditions detailed by, e.g., [6],
which the exponential model can satisfy. We address this
further below.)
The key indicators to these effects are the quantities fR

and the effective Compton wavelength with respect to fR,
usually written in terms of [4,5]

B ¼ fRR
1þ fR

R0 2H
2

ðH2Þ0 ; (16)

where B is the square of the wavelength in units of the
Hubble scale. Note that 1þ fR > 0 in the exponential
model for all c giving a finite attractor solution, i.e. c >
1. This even holds during the radiation era since although
we are used to thinking that R ¼ 0 then, the value is in fact
R � �rad—but one still has R� 8�G�m;0a

�3 �
8�G�m;0 � r so R=r � 1 at least back through primordial

nucleosynthesis and so 1þ fR ! 1. The condition B> 0,
together with the vanishing of derivatives of f at high
redshift, delivers a standard radiation era [4]. Given the
scale B, modifications to structure occur for wave numbers

k > aH=B1=2. This will begin to affect linear perturbation
growth, k < 0:1h=Mpc say, for B * 10�5. We will later
calculate a more exact observational constraint.
The exponential form of Eq. (2) ameliorates the issues

involved with deviations from general relativity in struc-

ture constraints, since fR and B� e�R=r. First, the evolu-
tion of the curvature and its effects are much more rapid
than in many fðRÞ theories, so for a given present value of
curvature, or fR, the deviation from general relativity can
be much smaller in the past, when the structure formed, at
a ¼ 0:5 say. To rigorously quantify this argument requires
numerical simulations of nonlinear structure formation in
the specific model of modified gravity to robustly compute
the ‘‘leaking’’ of the non-general relativity influence into
the structure over time, as in [14]. If we can take advantage
of this increased latitude, we can allow the characteristic
curvature scale r to be more relaxed from the present
matter density, giving greater freedom in the model.
Figure 5 shows the steep dependence of fR and B with

scale factor a and how this allows a range for the character-
istic scale r, or equivalently the parameter c (related by
Eq. (12)). For example, in the n ¼ 4model of [5] the value
of B drops by a factor 3 from the present to a ¼ 0:5
(redshift z ¼ 1), while the exponential model achieves a
drop of 300 (30 000) for c ¼ 5 (c ¼ 8). While the charac-
teristic scale often seen in the literature is m2, e.g. fðRÞ
varies as ðR=m2Þn, here the dependence e�R=r permits r to
lie in the range r=m2 < 3:8 and still satisfy fRða ¼ 0:5Þ<
10�6. Since m2 is determined by the matter density today,
this freedom somewhat eases the coincidence between the
characteristic scale and today’s curvature.
This steep dependence also somewhat eases the condi-

tion for bound structures to recover general relativistic
behavior: while the solar system, lying in the high curva-
ture background of the galaxy, satisfies the conditions

FIG. 4 (color online). The long-term history of the effective
dark energy equation of state is evolution from a cosmological
constant state (w ¼ �1), deviation to both the phantom (w<
�1) and normal (w>�1) sides, and rapid damping to a future
cosmological constant state.
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easily, our galaxy halo requires values of fR & 10�6 (see
[5], Sec. IIID for a detailed calculation). The sharp drop in
fR when going to higher redshifts, as mentioned above, is
stronger for the exponential model than most fðRÞ theories.
Still, galaxy constraints will play a significant role and we
should be cautious of values of c < 4 (imposing the con-
dition at a ¼ 0:5, or c < 7 if at a ¼ 1) failing to live up to
the chameleon mechanism.

In fðRÞ models of modified gravity it is extremely
difficult to get an appreciable deviation from �CDM be-
havior on the expansion side of observations while still
obeying constraints from the structure side. Using the very
steep dependence of the modifications on curvature, and
hence a rapid redshift dependence of the key structure
parameter fR (or B), exponential gravity can again do
better than most models to ameliorate the situation. If we
were to impose fR < 10�6, say, from structure constraints,
this would imply a maximum deviation in the equation of
state (occurring at the peak of the first phantom excursion)
j1þ wjmax < 4� 10�6 and c > 7 if evaluated at the
present, but j1þ wjmax < 2� 10�3 and c > 4 if evaluated
at the time the structure forms, say a ¼ 0:5. So even
pushing all values as far as allowed, it is almost impossible
to get an appreciable signal in 1þ w. (Note that assuming

the characteristic curvature modification scale is defined by
the present matter density, i.e. r=m2 ¼ 1, gives c ¼ 15:4.)
Interestingly, we find j1þ wjmax is excellently approxi-
mated by ð1=2ÞBða ¼ 1Þ, relating the expansion and struc-
ture sides.
We can check the magnitude of deviations from �CDM

growth of structure, at least in the linear regime, by solving
for the evolution of linear density perturbations. We take
into account both the change in the gravitational coupling
strength (i.e. Newton’s constant) and the scale-dependent
effect of anisotropic stress in the fðRÞ model (see, e.g.,
[7,15]). Figure 6 shows the fractional deviation in the
matter power spectrum as a function of wave number
today.
The deviations become noticeable on the fR Compton

scale and have a magnitude determined by B. Because of
the steepness of the exponential model, the deviations are
not as severe for a given fRða ¼ 1Þ as for shallower fðRÞ
models. In addition, the enhanced freedom in the charac-
teristic scale allows models to be viable for values of c
much lower than the c ¼ 15:4 given by r=m2 ¼ 1. For c >
5, the power spectrum deviations are less than 5% at k ¼
0:1h=Mpc, beyond which linear treatment must give way
to numerical simulations.
Interestingly, the steepness also quickly reduces the

deviations in the growth as one goes to higher redshift.
The c ¼ 3 model with the largest deviations shown (12%

FIG. 6 (color online). The matter power spectrum in fðRÞ
theory deviates from the �CDM result in a scale-dependent
manner. In the exponential gravity case, a wide range of values
of c have suppressed deviations and can be consistent with
observations. The lowest curve has the same value c ¼ 3 as
the top curve, but plots the power spectrum deviation at a ¼ 0:5,
showing the effect of the steepness of the model.

FIG. 5 (color online). The derivative fR (solid black curves)
and the structure parameter B (dashed red), related to the
Compton wavelength of the scalar part of the gravity modifica-
tion, are plotted vs c. The upper pair is evaluated at the present
and the lower pair is at a ¼ 0:5. Note that fR (and B) has a very
steep dependence on scale factor a, so structures that might
nominally have fR 	 4� 10�4 today may have formed when
fR < 10�6 and so not exhibit observable deviations from general
relativity. The maximum deviation of the effective equation of
state from a cosmological constant (dotted blue) closely follows
Bða ¼ 1Þ=2 (dot-dash magenta).
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at the extreme), has less than 1% deviations in the power
spectrum at a ¼ 0:5. Recall that B can drop by 2 or 3
orders of magnitude in this model between a ¼ 1 and a ¼
0:5. Note that because the expansion histories of c > 3
models are so close to�CDM, one can interpret Fig. 6 also
as showing the deviation in growth from a general relativ-
ity model with the same expansion history as the fðRÞ
models. We have verified this directly by turning off the
gravity modifications in the source term of the perturbation
equation: the maximum change is below 0.2%. Thus this
figure shows the effects of modifying gravity for matched
expansion.

IV. CONCLUSIONS

The idea of explaining cosmic acceleration without add-
ing a separate energy density component is attractive.
Einstein’s general relativity has proved to be highly resist-
ant to modification, however, and in excellent accord with
observations. Theories generalizing the linear factor of the
Ricci scalar curvature to a more general function, fðRÞ
theories, are one of the main survivors for modifying
gravity.

In this paper we explored a simple model exponential in
the curvature. This has several beneficial consequences,
including just one more parameter than �CDM, steep
dependence that enhances solar system and structure
agreements, and amelioration of fine-tuning of the charac-
teristic curvature scale. Most of the quantitative and quali-
tative results we present should be generally applicable to
any sufficiently steep model however.

The dynamics of the effective equation of state has
several interesting properties, including sublimation rather
than thawing from a cosmological constant state.
Unfortunately, even the loosened bounds on fR from struc-
ture constraints do not allow the equation of state to have
detectable deviations from a cosmological constant expan-
sion history—one can view the failure for exponential
models, steeper than any power law, as an indication of
the difficulty in distinguishing viable fðRÞ theories’ expan-
sion from the cosmological constant. We also find an
excellent fitting form for the maximum deviation from
w ¼ �1 in terms of the Compton scale B, a direct relation
between the expansion and structure characteristics.
For structure growth, there exists an enlarged parameter

space that gives observationally allowed deviations from
�CDM in the matter power spectrum. In particular, be-
cause of the steep evolutionary dependence, fR today may
be as large as �10�3 and still agree with structure con-
straints. The sort of model discussed here is of interest in
that we have increased freedom to have a viable fðRÞ
modification of Einstein gravity that is yet distinct from
standard �CDM.
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