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New mechanism for bubble nucleation: Classical transitions
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Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles
collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy
can facilitate the classical nucleation of new bubbles in minima that lie below those of the “parent”
bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble
formation in models with multiple vacua, relative to that derived from quantum tunneling.
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L. INTRODUCTION

Consider a potential V(¢) with many metastable min-
ima with positive vacuum energy. A typical region in the
Universe undergoes de Sitter expansion, with Hubble pa-
rameter H ~ /V(¢,)/M ,, where M, is the usual reduced
Planck mass and ¢ labels the vacuum. Small regions may
tunnel to another minimum, ¢,, V(¢,) < V(¢,) [1], form-
ing an expanding “‘bubble.” Some of these bubbles inevi-
tably collide. In this paper we show that these collisions
can give the field sufficient energy to climb over potential
barrier(s) and form new bubbles at minima where V() is
less than that of either of the original bubbles. Bubble
collisions can thus yield new bubble universes—the prog-
eny become the protagonists. In a universe with many
metastable vacua this new classical mechanism populates
the de Sitter sea with additional bubbles, beyond those
provided by tunneling.

Such classical transitions should not be surprising.
Hawking, Moss, and Stewart [2] numerically analyzed
collisions in a potential with two minima. When cosmo-
logical bubbles of the lower vacuum collide, they can form
a new bubble of the higher, metastable vacuum. This new
bubble is surrounded by regions in the lower vacuum state
and thus quickly collapses. Similar features are seen in
numerical simulations by [3,4]. The key new result here is
that, given a third, lower energy, minimum, the field can
“slosh” into that vacuum after a collision between bubbles
in higher energy minima. This yields a new bubble that is
stable and expanding, since its interior energy density is
lower than that of the surrounding region.

Physically, this process is easy to understand, even
though the detailed dynamics require numerical simula-
tions. A bubble collects energy as it expands into a region
of higher potential energy, storing it as the gradient energy
of its walls. When two bubbles collide, this energy must go
somewhere. The bubble wall may lose coherence and
radiate the energy into the space in which the two bubbles
have merged [5]. Alternatively, the energy in the walls can
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be deposited into kinetic energy (in field space), allowing
the field to climb potential barriers and thus slosh into
adjacent minima. If one of these minima has a lower
potential energy than the parent bubbles, we find that this
process is efficient, provided the parent bubbles have had a
(sm.all) amount of time to expand since they were
nucleated, allowing them to store sufficient energy in their
walls. Clearly, the transition condition depends on the size
of the barriers in the model, relative to the energy stored in
the walls. After nucleation, the collision energy is depos-
ited into the new bubble wall, hence the new bubble is
formed with nonstationary walls

II. TRANSITION CONDITION

Assume a setup illustrated in Fig. 1, with three local
minima ¢, ¢,, ¢3. Two bubbles of ¢, are quantum
mechanically nucleated within the false vacuum of ¢;.
Subsequently, the two ¢,-bubbles collide, and the question
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FIG. 1. Schematic diagram of a 3-minima potential. The false
vacuum at ¢, quantum mechanically nucleates bubbles into
regions of ¢,. Sufficiently energetic collisions of two ¢, bub-
bles can classically nucleate a bubble of ¢5. The two barrier
heights are defined with respect to V(¢,). Superscript “b”
means barrier.
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is under what condition would the collision trigger the
classical nucleation of a third bubble of ¢;? For an analytic
estimate, we will work in the flat space limit. The hyper-
bolic foliation is convenient for studying collisions [6-8]:

ds®> = —dt* + dx* + ?(dy? + sinhp2dh?). (1)

The two ¢, bubbles are nucleated at t = 0, x = *£b (and
¢ = 0). The precollision evolution is well- described by
the solution of [1]. We make the thin-wall approximation,
where each bubble wall moves according to R} = (x =
b)> — 1?, with R, being the initial bubble radius. The wall
thickness at a given ¢ follows Ax = y~'Ax,, where Ax is
the initial thickness, and vy is the Lorentz factor

y = = J1+= )

The collision occurs at x = 0, where the Lorentz boost is
v = b/R, (hereafter y takes this value). The initial wall
thickness can be estimated from the Compton wavelength,

ie. Axg~ Ado/4/AVD,, where Ad, = ¢ — ¢, and

AV?, is the barrier in between.
The post-collision evolution follows from [l¢ = 9,V
which in the coordinates of Eq. (1) is
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Let us focus on the time evolution of ¢ at x = 0 (Fig. 2
corresponds to the ¢y = 0 slice). Precollision, ¢ is stuck at
the false vacuum of ¢,, where dV/d¢ = 0, and both
spatial and time derivatives of ¢ vanish. As the collision
begins, ¢ is still at ¢, hence the potential force 9V /9 ¢
remains at zero, but the presence of the two bubble walls
means 9°¢/dx? is nonzero and gives rise to a kick toward
@, (i.e. negative in the convention of Fig. 1):

Pd —y? AVY,
dx2 Appy’

where we have used the 1-bubble results mentioned earlier.
This kick initiates a field motion from ¢, tending toward
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¢,. Whether this motion can be completed depends on
whether the kick wins over the counteracting potential
force (~ AV?/A¢y,) that inevitably develops. Absent
dissipation, to which we will return below, Eq. (4) suggests
the kick always wins since we expect y = 1 in general.

Once the field makes it over the first barrier between
vacua | and 2, it would appear the field can also overcome
the second barrier between vacua 2 and 3, if the second
barrier is smaller than the first (absent dissipation). If not,
Eq. (3) and simple energy conservation suggest that the
required condition for overcoming the second barrier is
y? = AVE/AVE,  (see Fig. 1 for definitions).
Summarizing, the condition for a collision induced classi-
cal transition from vacuum 1 to vacuum 3 is

1 %
2=z 1, 13). 5
Y -3 max( NG 5)

Here, we have introduced a factor of 1/(1 — ) to approxi-
mate the effect of dissipation, where 3 can be thought of as
the fractional energy dissipation. There could be many
sources of dissipation: the second term on the left of
Eq. (3) is one example; other examples include radiation
into fields ¢ is coupled to (including itself), gravitational
waves (if there are significant deviations from spherical
symmetry), and Hubble friction. The last item is simple to
estimate: Hubble friction becomes important if A¢ 3 =
H™'9¢ /ot~ H 'yAdr/Axy, where A3 = ¢y — 3.
Since the initial bubble wall thickness Ax, is generally a
small fraction of H™!, we expect Hubble friction to be
unimportant unless A3 > yA¢,,. Finally, it is clear
that in de Sitter space vy is bounded from above as bubbles
that nucleate too far apart do not collide in the first place.

If Eq. (5) is satisfied, the (model-dependent) dissipation
likely causes the field at x = 0 to eventually settle in ¢5,
that is, unless there are additional lower minima to the left,
in which case further field excursions are possible. It is
interesting to note that Eq. (5) can always be satisfied if the
collision is sufficiently relativistic, i.e. if enough time
elapses between nucleation and collision. If B is not too
close to unity, and if AV}, ~ AVY,, classical transitions
over potential barriers are generic even if the collision is
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FIG. 2. Conformal diagram showing the values of ¢ on the X — 7 plane (left) and the Y — 7 plane (right). Our conformal
coordinates, (7, X, Y, Z), are chosen such that X is the axis through the centers of the bubbles and 7 is defined in the caption of Fig. 3.
The collision occurs at X = 0 (analogous to x = 0 in the text). Regions of ¢ appear off-white, regions of ¢, appear grey and regions
of ¢5 appear black. In this simulation, the centers of the two bubbles are ~0.45H, I apart at nucleation. When these bubbles collide (at
7 = 17.5) the walls have a Lorentz factor y = 1.5. The slight ripples in the middle of each bubble are numerical artifacts.
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barely relativistic. On the other hand, if Eq. (5) is not
satisfied, the two bubbles merge and the energy stored in
the walls dissipate via one or more of the dissipation
mechanisms outlined above.

We numerically test these ideas using a toy model:

V) =5 2B~ G+ eAd(d + bo) + aAdy
(6)

We assume € is small enough so that we have three
classically stable points, ¢; = ¢, ¢, =0, and ¢3 =
— . The barriers are parametrized by ¢ and A, while
« sets the overall vacuum energy scale, which we assume
is much larger than the difference in energy between the
minima.

These minima are perturbatively nondegenerate, and we
can use the analytic solution of [1] as an approximate
solution to tunneling events. Two bubbles of ¢ = ¢,
nucleate within a sea of highest metastable vacuum ¢ =
¢y, with an initial radius Ry = (v/32Ae#3/3)"!. These
bubbles have an approximate initial profile,

¢(r) = ¢o(1 + 2e*m¢§(r*Ro))—1/2’ 7

where r is the distance from the center of the bubble. The
approximate height of the barrier between the top two
minima is

A

27"
which is also roughly the barrier between the middle and
lower minima AV?, =~ AVY,. We explore the transition
condition numerically in three spatial dimensions, using
a modified version of LATTICEEASY [9] and 10247 lattices.
We take the overall vacuum energy to be grand unified
theory scale, aApf§ = (107%m,)* and € = 1/30. We in-
clude a homogeneous expanding background.

We begin with a case where the transition does not occur.
The two bubbles nucleate close together, at a separation
2.4R,. In a static Universe, the bubbles would collide when
r = 1.2R,, but expansion of the background delays the
collision until r = 1.3R; and y = 1.3. Figure 3 shows
the time evolution of this scenario. The field does not

AV?, ~ ®)

=9.0
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have sufficient kinetic energy after the collision to climb
over the potential barrier, and hence the bubbles merge into
a single region with ¢ = ¢, = 0.

Now consider two bubbles that nucleate at a separation
of 3R, see Fig. 4. The bubble walls achieve y = 1.8 before
collision, and then successfully traverse the potential bar-
rier. Figure 2 shows a conformal diagram of the resulting
field profile, showing the classical nucleation of a bubble
with vacuum energy V(¢3). We ran several simulations,
varying the distance between nucleation points.
Generically, we find that the critical Lorentz factor at
which a transition occurs is y = 1.4, or 8 = 0.5 via Eq.
(5). There are several interesting features. First, classical
transitions occur even when the bubbles are only mildly
relativistic. Second, if transitions do not occur, most of the
energy is then released as debris (radiation) after the col-
lision. Third, the collision induced bubble has a very small
initial size (of the order of wall thickness) and is nucleated
with a nonstationary wall. The bubble is homogeneous
inside, since the new minimum is an attractor, and initially
nonspherically symmetric, though later expansion tends to
make it more spherical. Fourth, our 3D simulations confirm
the robustness of the hyperbolic symmetry: grossly un-
stable symmetry violating perturbations are not seen.

II1. DISCUSSION

We have shown that, for a single scalar field model with
several minima, bubble collisions generically lead to the
formation of new, lower vacuum bubble unless the original
bubbles nucleate very close to one another. This mecha-
nism creates a new set of possibilities for old problems.

(1) Are classical transitions the dominant bubble for-
mation process? Consider again the setup in Fig. 1.
Let the nucleation rate from 1 to 2 be I'},, and that
from 2 to 3 be I'55. If 'y, is too high, ¢, bubbles will
form too close to each other, and hence their wall
energies will be too small for them to classically
transition to ¢5 bubbles during collisions. In this
case the Universe percolates rapidly into the ¢,
vacuum, which eventually quantum nucleates ¢5
bubbles. For this not to happen, the ¢, bubbles

T=18.0 T=27.0

FIG. 3. Time evolution of two bubbles whose centers are ~.36H; ! apart at nucleation. When these bubbles collide (at 7 = 9.0) the
walls have a Lorentz factor y = 1.3. We use a conformal time a(f)dr = /A ¢3dt, where a(0) = 1 at the beginning of the simulation
and dt is the usual proper time of an Friedmann-Robertson-Walker spacetime. Notice the Lorentz contraction of the wall thickness as

the bubble expands.
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FIG. 4. Time evolution of two bubbles whose centers are ~.45H ! apart at nucleation. When these bubbles collide (at 7 = 17.5) the
walls have a Lorentz factor v = 1.8. We use a conformal time a(t)dt = VA ¢(2)dt, where a(0) = 1 at the beginning of the simulation
and dt is the usual proper time of an Friedmann-Robertson-Walker spacetime.

2

3)

need to be nucleated at a typical separation, ~F;21/ 4

that is larger than the initial bubble radius R, by a
minimum Lorentz factor of 7y, [y, is defined by
the right-hand side of Eq. (5)]. Therefore, a neces-
sary condition for classical transitions to be impor-
tant is

Ty < (YminRo) ™% 9

Whether classical transitions dominate over quan-
tum tunneling into ¢3 depends further on I'y3. The
question involves complex measure issues: given a
random point in the ¢; vacuum, what is the proba-
bility that it arose from quantum tunneling or clas-
sical collisions? We will address this question
elsewhere.

Implications for the eternally inflating stringy land-
scape. Collisions, if they are sufficiently relativistic,
provide a new way of scanning an eternally inflating
landscape. A collision could allow classical transi-
tions not just over one or two barriers but multiple
barriers. It is thus necessary to revisit predictions for
bubble counting measures based on quantum tun-
neling alone [10-12]. We caution however that
multidimensional potentials generically possess
complicated intrafield couplings, and such cou-
plings can change the dynamics of the collision.
For example, consider our toy model with an addi-
tional coupling to a light field y. This light field can
be excited in a collision, and carry away energy thus
increasing 3, making the collision less elastic.
Observational signatures? It is conceivable the bub-
ble which is our own Universe is formed via a
classical transition of the type discussed here. Our
simulations suggest the bubble is quite homogene-
ous but is initially highly anisotropic. Is the subse-
quent expansion sufficient to make it acceptably

isotropic? Or do we need some period of slow-roll
inflation to make it both isotropic and flat? Is the
residual anisotropy observable? The observational
signatures are likely different from those considered
by [6,7,13].

(4) Implications for the small cosmological constant
problem. Abbott [14] (see also [15]) proposed a
model for relaxing the cosmological constant using
a stepwise potential via a series of tunneling events.
Collisions introduce new, and perhaps faster, excur-
sions through the multiple descending vacua.
Tapping the collision energy might even help alle-
viate the well-known empty universe problem.

To summarize, we presented a new mechanism of bub-
ble nucleation where a potential barrier (or even multiple
barriers) can be transitioned classically via energy released
during collisions of two or more bubbles. This new mecha-
nism possesses a rich phenomenology, which we will ex-
plore, along with improved analytic descriptions of the
bubble formation criteria, in forthcoming publications.
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