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A rigorous demonstration that given appropriate data on our past light cone leads to the determination

of the metric functions and all their time derivatives on our past light cone is presented, thus showing how

to evolve the solution we obtain from data on the light cone off it in a well-defined and straightforward

way. It also automatically gives a procedure for constructing the solution for all spherically symmetric,

inhomogeneous cosmological Lemaı̂tre-Tolman-Bondi models in observational coordinates as a Taylor

series in time of however many terms we need. Our procedure takes into account the essential data giving

the maximum of the observer area (angular-diameter) distance, and the redshift zmax at which that occurs.

This enables the determination of the vacuum-energy density ��, which would otherwise remain

undetermined.
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I. INTRODUCTION

Since the pioneer work of Hubble in the twenties, it has
been well known that the time span of cosmological ob-
servations is very small compared to the age of our
Universe. Consequently, all we can aim to obtain on a
cosmological time scale is data on one single light cone
(our past light cone), which, for all practical purposes, can
be considered the same as Hubble’s. That means that we do
not have the time variation of any cosmological data to
start with. For this reason, observational cosmological
modeling in which one wants to find the metric based
only on observed quantities has been very much restricted
to modeling our past light cone. That has been a handicap
researchers in this field have been trying to overcome for
some time—with very limited success—and a key issue for
the future development of observational cosmology.

Given this lack of knowledge of the time variations of
cosmological data and assuming that the Universe is
spherically symmetric around us, the only way of finding
the time variation of a cosmological quantity is to derive a
Taylor series. But that demands knowledge of the quantity
itself and all its time derivatives on our past light cone, if
we use observational coordinates.

In this paper, we present a rigorous demonstration that,
given appropriate data on our past light cone, we can find
the metric functions and all their time derivatives on our
past light cone, thus showing how to evolve the solution off
it into the past or into the future. Besides being important in
its own right, it also automatically gives us a procedure for
constructing the solution as a Taylor series in time of
however many terms we need. Moreover, our procedure
fully takes into account an important piece of data, the
maximum of the observer area distance, and the redshift at
which it occurs. Without these extra observables, we do not

have enough independent data to determine the model—in
particular to determine the cosmological constant �. An
intermediate and necessary step for doing that is to show
how an important result originally obtained by Hellaby [1]
in the Lemaı̂te-Tolman-Bondi (LTB) 3þ 1 formalism also
follows from the observational cosmology field equations.
In several papers Araújo and Stoeger [2], Araújo et al.

[3], and Araújo, Roveda, and Stoeger [4] demonstrated
how to solve exactly the spherically symmetric (SS)
Einstein field equations for dust in observational coordi-
nates without assuming Friedmann-Lemaı̂tre-Rebertson-
Walker (FLRW) and with cosmological data representing
galaxy redshifts, observer area distances and galaxy num-
ber counts as functions of redshift. All these papers as-
sumed that � ¼ 0. In a recent paper, Araújo et al. [5] we
demonstrated how this program may be carried out when
� � 0. These data are given, not on a spacelike surface of
constant time, but rather on our past light cone C�ðp0Þ,
which is centered at our observational position p0 ‘‘here
and now’’ on our world line C. These results demonstrate
how cosmologically relevant astronomical data can be used
to determine the space-time structure of the universe—the
cosmological model which best fits it. This has been the
aim of a series of papers going back to the Physics Reports
paper by Ellis et al. [6]. The motivation and history of this
‘‘observational cosmology (OC) program’’ is summarized
in Araújo and Stoeger [2].
In all these papers, we have shown that if the redshift,

observer area-distance, and number-count data can be fit to
FLRW functional forms (these are very special forms the
data must take, if the universe is FLRW) then such data
determines a bona fide FLRW universe—which is not
a priori obvious.
For that purpose, we have used an integration scheme

that has been improved over the years, but still has had an
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element of uncertainty about it, in the sense that we did not
have a precise mathematical way of determining the time
evolution of one of the metric functions Aðw; yÞ (see be-
low) which is fundamental for the solution of the problem.
That was due to the fact that apparently we have the gauge
freedom of choosing Aðw; 0Þ in any way we like. However,
our experience, acquired in treating all these cases, has
shown that, unless Aðw; 0Þ has a very specific functional
dependency on w, the solution thus obtained would not
satisfy the central conditions. Unless the central conditions
are satisfied, we are not guaranteed that the null surface on
which we assume we have the data is a past light cone of
our world line. More specifically, we found that using the
apparent gauge freedom of choosing Aðw; 0Þ at will leads
to a formal solution of the field equations which does not
necessarily satisfy the necessary boundary conditions,
namely, the central conditions.

Thus, it has become clear that in fact we do not have a
choice of choosing Aðw; 0Þ since, in order to find a solution
that also satisfies the central conditions we have, in a sense,
to work backwards from the central conditions trying to
figure out among all ‘‘possible‘‘ choices of Aðw; 0Þ the one
that leads to a solution satisfying the central conditions. We
were successful in applying this procedure to various
FLRW models but it was not satisfactory, because it is
not an algorithmic procedure and depends on one’s ability
to spot the correct functional dependency that leads to the
desired solution.

Our next step was to try to understand what causes this
loss of gauge freedom of choosing Aðw; 0Þ and in Araújo,
Roveda, and Stoeger [4] and Araújo et al. [5] we argued
that the fulfillment of the following conditions:

(1) Aðw0; yÞ is determined by the data and the central
conditions;

(2) The coordinate y is chosen to be a comoving radial
coordinate;

(3) The central conditions (5)
removes the freedom of rescaling the time coordinate w

and completely determines Aðw; yÞ. That is indeed a cor-
rect set of assumptions for proving that conjecture, but we
were not able then to present a rigorous mathematical proof
of the result. Here, as we shall demonstrate, we have been
successful in proving that the more restricted set of as-
sumptions, namely, (1) and (3), leads to the desired result
for all inhomogeneous spherically symmetric LTB models,
thus filling this important gap in observational cosmology
modeling.

Recently, Hellaby and Alfadeel [7], after rederiving the
key OC equations in a somewhat different way and em-
phasizing the free functions which must be determined for
their solution, developed an integration scheme for deter-
mining the time evolution of Aðw; yÞ—as well as the other
metric functions Bðw; yÞ and Cðw; yÞ—but only indirectly,
by first determining the time function tðw; yÞ along all the
matter world lines, and then finding Aðw; yÞ from that A ¼

tw [see Eq. (21) below]. This is because they could not find
an evolution equation for Aw, as they themselves empha-
size. Here we demonstrate how to do that, which leads to a
much more direct and streamlined integration scheme—
without having to resort to integrating over the 3þ 1, ðt; yÞ
domain first.
Furthermore, as mentioned earlier, we show how the

data (especially the redshift and the observer-area—or
angular-diameter—distance data) in conjunction with the
central conditions eliminate the apparent gauge freedom
and completely determine the solution both on our past
light cone, and off it into the past.
The primary aim of OC program is to strengthen the

connections between astronomical observations and cos-
mological theory. We do this by allowing observational
data to determine the geometry of space-time as much as
possible, without relying on a priori assumptions more
than is necessary or justified. Basically, we want to find
out not only how far our observable universe is from being
isotropic and spatially homogeneous (that, is describable
by an FLRW cosmological model) on various length
scales, but also to give a dynamic account of those devia-
tions (Stoeger et al [8]).
By using observational coordinates, we can thus formu-

late Einstein’s equations in a way which reflects both the
geodesic flow of the cosmological fluid and the null ge-
ometry of C�ðp0Þ, along which practically all of our
information about the distant reaches of our universe
comes to us—in photons. In this formulation the field
equations split naturally into two sets, as can be easily
seen: a set of equations which can be solved on C�ðp0Þ,
that is on our past light cone, specified by w ¼ w0, where
w is the observational time coordinate; and a second set
which evolves these solutions off C�ðp0Þ to other light
cones into the past or into the future. Solutions to the first
set are directly determined from the data, and those solu-
tions constitute the ‘‘initial conditions’’ for the solution of
the second set.
In this paper, for completeness, we review some aspects

of the problem of determining the solution of the exact
spherically symmetric Einstein equations for dust in ob-
servational coordinates. We refer the reader to Ellis et al
[6], Kristian and Sachs [9], Araújo and Stoeger [2] and
references therein for a complete account of the philosophy
and the foundations of the OC approach leading to the
integration of Einstein field equations in observational
coordinates.
In the next section we define observational coordinates,

write the general spherically symmetric metric using them
and present the very important central conditions for the
metric variables. Section III summarizes the basic obser-
vational parameters we shall be using and presents several
key relationships among the metric variables. Section IV
presents the full set of field equations for the spherically
symmetric case, with dust and with � � 0. In Sec. V, we
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present a general integration scheme for all inhomogene-
ous spherically symmetric LTB models and in Sec. VI we
briefly discuss our conclusions.

II. THE SPHERICALLY SYMMETRIC METRIC IN
OBSERVATIONAL COORDINATES

We are using observational coordinates (which were first
suggested by Temple [10]). As described by Ellis et al [6]
the observational coordinates xi ¼ fw; y; �;�g are cen-
tered on the observer’s world line C and defined in the
following way:

(i) w is constant on each past light cone along C, with
ua@aw > 0 along C, where ua is the 4-velocity of
matter (uaua ¼ �1). In other words, each w ¼
const specifies a past light cone along C. Our past
light cone is designated as w ¼ w0.

(ii) y is the null radial coordinate. It measures distance
down the null geodesics—with affine parameter �—
generating each past light cone centered on C. y ¼ 0
on C and dy=d� > 0 on each null cone—so that y
increases as one moves down a past light cone away
from C.

(iii) � and� are the latitude and longitude of observation,
respectively—spherical coordinates based on a par-
allelly propagated orthonormal tetrad along C, and
defined away from C by ka@a� ¼ ka@a� ¼ 0, where
ka is the past-directed wave vector of photons
(kaka ¼ 0).

There are certain freedoms in the specification of these
observational coordinates. In w there is the remaining
freedom to specify w along our world line C. Once speci-
fied there it is fixed for all other world lines. There is
considerable freedom in the choice of y—there are a large
variety of possible choices for this coordinate—the affine
parameter, z, the area distance Cðw; yÞ itself. We normally
choose y to be comoving with the fluid, that is ua@ay ¼ 0.
Once we have made this choice, there is still a little bit of
freedom left in y, which we shall use below. The remaining
freedom in the � and� coordinates is a rigid rotation at one
point on C.

In observational coordinates the spherically symmetric
metric takes the general form:

ds2 ¼ �Aðw; yÞ2dw2 þ 2Aðw; yÞBðw; yÞdwdy
þ Cðw; yÞ2d�2; (1)

where we assume that y is comoving with the fluid, so that
the fluid 4-velocity is ua ¼ A�1�a

w.
The remaining coordinate freedoms which preserves the

observational form of the metric is a scaling of w and of y:

w ! ~w ¼ ~wðwÞ; y ! ~y ¼ ~yðyÞ
�
d ~w

dw
� 0 �

d~y

dy

�
:

(2)

The first, as we mentioned above, corresponds to a
freedom to choose w as any time parameter we wish along
C, along our world line at y ¼ 0. This is usually effected by
choosing Aðw; 0Þ. As we have briefly indicated already, this
freedom disappears when we apply the central conditions
(see below). The second corresponds to the freedom to
choose y as any null distance parameter on an initial light
cone—typically our light cone at w ¼ w0. Then that
choice is effectively dragged onto other light cones by
the fluid flow. y is comoving with the fluid 4-velocity, as
we have already indicated. We shall use this freedom to
choose y by setting:

Aðw0; yÞ ¼ Bðw0; yÞ: (3)

We should carefully note here that setting Aðw; yÞ ¼
Bðw; yÞ off our past light cone w ¼ w0 is too restrictive.
In general, these freedoms in w and y imply the metric

scalings:

A ! ~A ¼ dw

d ~w
A; B ! ~B ¼ dy

d~y
B: (4)

It is important to specify the central conditions for the
metric variables Aðw; yÞ, Bðw; yÞ, and Cðw; yÞ in Eq. (1)—
that is, their proper behavior as they approach y ¼ 0. These
are

as y ! 0: Aðw; yÞ ! Aðw; 0Þ � 0;

Bðw; yÞ ! Bðw; 0Þ � 0;

Cðw; yÞ ! Bðw; 0Þy ¼ 0;

Cyðw; yÞ ! Bðw; 0Þ: (5)

These important conditions insure that C, our world line, is
regular—so that all functions on it our bounded, and that
the spheres (w, y ¼ const) go smoothly to C as y ! 0.
They also insure that the null surfaces w ¼ const are past
light cones of observers on C (See Ref. [6], especially
section 3.2, p. 326, and Appendix A for details).

III. THE BASIC OBSERVATIONAL QUANTITIES

The basic observable quantities on C are the following:
(i) Redshift. The redshift z at time w0 on C for a comov-

ing source a null radial distance y down C�ðp0Þ is
given by

1þ z ¼ Aðw0; 0Þ
Aðw0; yÞ : (6)

This is just the observed redshift, which is directly
determined by source spectra, once they are cor-
rected for the Doppler shift due to local motions. It
is consistent with and complements the first of cen-
tral conditions in Eq. (5).

(ii) Observer area distance. The observer area distance,
often written as r0, measured at time w0 on C for a
source at a null radial distance y is simply given by
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r0 ¼ Cðw0; yÞ; (7)

provided the central condition (5), determining the
relation between Cðw; yÞ and Bðw; yÞ for small val-
ues of y, holds. This quantity is also measurable as
the luminosity distance dL because of the reciprocity
theorem of Etherington [11] (see also Ellis [12]),

dL ¼ ð1þ zÞ2Cðw0; yÞ: (8)

(iii) The maximum of observer area distance. Generally
speaking, Cðw0; yÞ reaches a maximum Cmax for a
relatively small redshift zmax (Hellaby [1]; see also
Ellis and Tivon [13] and Araújo and Stoeger [14]).
At Cmax, of course, we have

dCðw0; zÞ
dz

¼ dCðw0; yÞ
dy

¼ 0; (9)

further conditioned by

d2Cðw0; zÞ
dz2

< 0: (10)

Furthermore, of course, as we shall review below,
with the solution of the null Raychaudhuri equation
[Eq. (27) below], the data set will give us y ¼ yðzÞ,
from which we shall be able to find ymax ¼
ymaxðzmaxÞ. These Cmax and zmax data provide addi-
tional independent information about the cosmology.
Without Cmax and zmax we cannot constrain the value
of �.

(iv) Galaxy number counts. The number of galaxies
counted by a central observer out to a null radial
distance y is given by

NðyÞ ¼ 4�
Z y

0
�ðw0; ~yÞm�1Bðw0; ~yÞCðw0; ~yÞ2d~y;

(11)

where � is the mass-energy density and m is the
average galaxy mass. Then the total energy density
can be written as

�ðw0; yÞ ¼ mnðw0; yÞ ¼ M0ðzÞ dzdy
1

Bðw0; yÞ ; (12)

where nðw0; yÞ is the number density of sources at
ðw0; yÞ, and where

M0 � m

J

1

d�

1

r20

dN

dz
: (13)

Here d� is the solid angle over which sources are counted,
and J is the completeness of the galaxy count, that is, the
fraction of sources in the volume that are counted is J. The
effects of dark matter in biasing the galactic distribution
may be incorporated via m and/or J. In particular, strong
biasing is needed if the number counts have a fractal

behavior on local scales (Humphreys et al [15]). In order
to effectively use number counts to constrain our cosmol-
ogy, we shall also need an adequate model of galaxy
evolution. We shall not discuss this important issue in
this paper. But, fundamentally, it would give us an expres-
sion for m ¼ mðzÞ in Eqs. (12) and (13) above.
There are a number of other important quantities which

we catalogue here for completeness and for later reference.
First, there are the two fundamental four-vectors in the

problem, the fluid four-velocity ua and the null vector ka,
which points down the generators of past light cones.
These are given in terms of the metric variables as

ua ¼ A�1�a
w; ka ¼ ðABÞ�1�a

y: (14)

Then, the rate of expansion of the dust fluid is 3H ¼
rau

a, so that, from the metric (1) we have:

H ¼ 1

3A

� _B

B
þ 2

_C

C

�
; (15)

where a ‘‘dot’’ indicates @=@w and a ‘‘prime’’ indicates
@=@y, which will be used later. For the central observer H
is precisely the Hubble expansion rate. In the homogene-
ous (FLRW) case, H is constant at each instant of time t.
But in the general inhomogeneous case, H varies with
radial distance from y ¼ 0 on t ¼ t0. From our central
conditions above (3), we find that the central behavior of
H is given by

as y ! 0: Hðw; yÞ ! 1

Aðw; 0Þ
_Bðw; 0Þ
Bðw; 0Þ ¼ Hðw; 0Þ: (16)

At any given instant w ¼ w0 along y ¼ 0, this expression
is just the Hubble constant H0 � Hðw0; 0Þ ¼ A�1

0 B�1
0 ð _BÞ0

as measured by the central observer. In the above we have
also written A0 � Aðw0; 0Þ and B0 � Bðw0; 0Þ.
Finally, from the normalization condition for the fluid

four-velocity, we can immediately see that it can be given
(in covariant vector form) as the gradient of the proper time
t along the matter world lines: ua ¼ �t;a . It is also given
by (1) and (14) as

ua ¼ gabu
b ¼ �Aw;a þ By;a: (17)

Comparing these two forms implies

dt ¼ Adw� Bdy , A ¼ tw; B ¼ �ty; (18)

which shows that the surfaces of simultaneity for the
observer are given in observational coordinates by Adw ¼
Bdy. The integrability condition of Eq. (18) is simply then

A0 þ _B ¼ 0: (19)

This turns out precisely to be the momentum conserva-
tion equation, which is a key equation in the system and
essential to finding a solution.
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IV. THE SPHERICALLY SYMMETRIC FIELD
EQUATIONS IN OBSERVATIONAL COORDINATES

Using the fluid-ray tetrad formulation of the Einstein’s
equations developed by Maartens [16] and Stoeger et al
[17], one obtains the spherically symmetric field equations
in observational coordinates with � � 0 (see Stoeger et al
[8] for a detailed derivation). Besides the momentum con-
servation Eq. (19), they are as follows: A set of two very
simple fluid-ray tetrad time-derivative equations:

_�m ¼ �2�m

� _B

2B
þ

_C

C

�
; (20)

_! ¼ �3
_C

C

�
!þ��

6

�
; (21)

where �m again is the relativistic mass-energy density of
the dust, including dark matter, and

!ðw; yÞ � � 1

2C2
þ

_C

AC

C0

BC
þ 1

2

�
C0

BC

�
2
;

is a quantity closely related to �m0
ðyÞ � �mðw0; yÞ [see

Eq. (30) below].
Equations (20) and (21) can be quickly integrated to give

�mðw; yÞ ¼ �m0
ðyÞBðw0; yÞ

Bðw; yÞ
C2ðw0; yÞ
C2ðw; yÞ ; (22)

!ðw; yÞ ¼
�
!0ðyÞ þ��

6

�
C3ðw0; yÞ
C3ðw; yÞ ���

6

¼ � 1

2C2
þ

_C

AC

C0

BC
þ 1

2

�
C0

BC

�
2
; (23)

where !0ðyÞ � !ðw0; yÞ and the last equality in (23) fol-
lows from the definition of ! given above. In deriving and
solving these equations, and those below, we have used the
typical � equation of state, p� ¼ ���; where p� and

�� � �
8�G are the pressure and the energy density due to

the cosmological constant. Both !0 and �0 are specified
by data on our past light cone, as we shall show. �� will
eventually be determined from the measurement of Cmax

and zmax.
The fluid-ray tetrad radial equations are

C00

C
¼ C0

C

�
A0

A
þ B0

B

�
� 1

2
B2�m; (24)

��
!0ðyÞ þ��

6

�
C3ðw0; yÞ

�0 ¼ � 1

2
�m0

Bðw0; yÞC2ðw0; yÞ

�
� _C

A
þ C0

B

�
; (25)

_C0

C
¼ _B

B

C0

C
�

�
!þ��

2

�
AB: (26)

The remaining ‘‘independent’’ time-derivative equations
given by the fluid-ray tetrad formulation are

€C

C
¼

_C

C

_A

A
þ

�
!þ��

2

�
A2; (27)

€B

B
¼ _B

B

_A

A
� 2!A2 � 1

2
�mA

2: (28)

From Eq. (25) we see that there is a naturally defined
‘‘potential’’ (see Stoeger et al [8]) depending only on the
radial null coordinate y—since the left-hand-side depends
only on y, the right-hand-side can only depend on y:

FðyÞ �
_C

A
þ C0

B
; (29)

Thus, from Eq. (25) itself

!0ðyÞ ¼ ���

6
� 1

2C3ðw0; yÞ
�

Z
�m0

ðyÞBðw0; yÞC2ðw0; yÞFðyÞdy: (30)

Connected with this relationship is Eq. (23), which we
rewrite as

_C

C

C0

C
þ A

2B

C02

C2
� AB

2C2
¼ AB

C3

�
C3
0

�
!0 þ��

6

�
���

6
C3

�
;

(31)

where C0 � Cðw0; yÞ.
We can now proceed to recover a simple but very

important observational relationship which will enable us
to determine��. We begin by differentiating Eq. (29) with
respect to w. This gives

_C 0 ¼ _B

�
F�

_C

A

�
� B

A2
ðA €C� _A _CÞ: (32)

Substituting for ! in Eq. (26) from Eq. (23) gives, using
Eq. (29)

_C 0 ¼ _B

B
C0 �

�
� 1

2C2
þ

_C

AC

C0

BC
þ 1

2

�
C0

BC

�
2 þ��

2

�
ABC:

(33)

From Eqs. (32) and (33) we obtain

_C3

A2
þ 2C _C €C

A2
� 2C _C2 _A

A3
� _CðF2 � 1Þ ���C

2 _C ¼ 0:

(34)

Equation (37) can be rewritten as

@

@w

�
C _C2

A2
� CðF2 � 1Þ ���C

3

3

�
¼ 0: (35)

Hence, the expression within the square brackets depends
only on the radial null coordinate y and we define
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2MðyÞ � C _C2

A2
� CðF2 � 1Þ ���C

3

3
: (36)

From Eq. (36) we find that

_C

A
¼ �

�
2MðyÞ
C

þ ðF2 � 1Þ þ��C
2

3

�
1=2

: (37)

Substitution of Eq. (37) into Eq. (29) gives

C0

B
¼ F�

_C

A
¼ F�

�
2MðyÞ
C

þ ðF2 � 1Þ þ��C
2

3

�
1=2

:

(38)

Now, for y ¼ ymax, C
0 ¼ 0. Therefore,

6Mmax þ��C
3
max � 3Cmax ¼ 0: (39)

Equation (39) originally obtained by Hellaby [1] in the 3þ
1 framework has to be considered a fundamental relation in
observational cosmology, since it enables, from
Cðw0; zmaxÞ and zmax measurements, the determination of
the unknown constant �� (see below).

Returning now to the main thread of our solution
scheme, we substitute for C0=B in Eq. (23) from Eq. (29)
and use of Eqs. (30) and (36) gives

MðyÞ ¼ �
�
!0ðyÞ þ��

6

�
C3
0ðyÞ

¼ 1

2

Z y

0
�m0

ð~yÞBðw0; ~yÞC2ðw0; ~yÞFð~yÞd~y: (40)

From Eqs. (11) and (40) we find that the mass parameter
MðyÞ is related to number counts NðyÞ as follows:

MðyÞ ¼ 1

8�

Z y

0
mN0ð~yÞFð~yÞd~y ¼ 1

8�

Z y

0

�M0ð~yÞFð~yÞd~y:
(41)

where, �MðyÞ ¼ mNðyÞ is the total mass summed over the
whole sky by a central observer out to a null radial distance
y.

Stoeger et al [8] and Maartens et al [18] have shown that
Eqs. (29) and (31) can be transformed into equations for A
and B, thus reducing the problem to determining C:

A ¼
_C

½F2 � 1þ 2M=Cþ ð��=3ÞC2�1=2 (42)

B ¼ C0

F� ½F2 � 1þ 2M=Cþ ð��=3ÞC2�1=2 : (43)

The LTB form of the exact solution (Lemaı̂tre [19], Tolman
[20], Bondi [21]; and cf. Humphreys [22] and references
therein) is obtained by integration of (42) along the matter
flow y ¼ const using (18)

t� TðyÞ ¼
Z dC

½F2 � 1þ 2M=Cþ ð��=3ÞC2�1=2 ; (44)

where TðyÞ is arbitrary, and we identify

F2 ¼ 1� kf2; k ¼ 0;�1: (45)

Here f ¼ fðyÞ is a function commonly used in describing
LTB models in the 3þ 1 coordinates [23]. Hellaby and
Alfadeel [7] have made clear in their paper that they were
unable to find a time evolution equation for Aðw; yÞwithout
resort to integrating over the 3þ 1, ðt; yÞ domain first. It is
precisely Eq. (44) above that is used to initiate their indi-
rect procedure to find Aðw; yÞ. In the next section we find a
time evolution equation for ðAðw; yÞ and a path towards full
integration off our past light cone which avoids this detour.

V. THE GENERAL SOLUTION—TIME
EVOLUTION OFF OUR LIGHT CONE

In this section we describe in detail the general integra-
tion procedure that is applicable to all inhomogeneous
spherically symmetric universe models—that is the only
constraint. We do not know whether the universe is homo-
geneous or not. But the data gives us redshifts z, observer
area distances (angular-diameter distances) r0ðzÞ, ‘‘mass
source densities’’ M0ðzÞ, and the angular-distance maxi-
mum Cmaxðw0; zÞ at zmax. It is important to specify the
latter, because, as we have already emphasized, without
them, we do not have enough information to determine all
the parameters of the space-time in the � � 0 case. For
instance, although we can determine Cðw0; zÞ with good
precision (by obtaining luminosity distances dL and em-
ploying the reciprocity theorem, Eq. (8)) out to relatively
high redshifts, at present we do not yet have reliable data
deep enough to determine Cmax and zmax. But this has just
recently become possible with precise space-telescope dis-
tance measurements for supernovae Ia.
Mustapha, et al [24] have shown that a � ¼ 0 LTB

model can fit any reasonable set of redshifts, observer-
area-distance and galaxy-number-counts (or equivalently
our M0ðzÞ) data. However, as Hellaby [1] first recognized,
and as we have been insisting here (see also Krasiński, et al
[25], and references therein), Cmaxðw0; zmaxÞ data place an
additional constraint on solutions, which may require a
nonzero �. This is very important to determine. Even
allowing for large-scale inhomogeneities, is there definite
evidence for nonzero vacuum energy, or some other form
of dark energy?
In pursuing the general integration with these data, we

use the framework and the intermediate results we have
presented in Sec. IV. Obviously, one of the key steps we
must take now is the determination of the potential FðyÞ,
given by Eq. (29). This was done in a similar way for � ¼
0 by Araújo and Stoeger [2], as indicated above. This
means we need to determine C0ðw0; yÞ and _Cðw0; yÞ, which
we now write as C0

0 and _C0, respectively. We also need

Aðw0; yÞ. We remember, too, that at on w ¼ w0 we have
chosen Bðw0; yÞ ¼ Aðw0; yÞ, which we have the freedom to
do.
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Clearly, C0
0 can be determined from the r0ðzÞ � Cðw0; zÞ

data, through fitting, along with the solution of the null
Raychaudhuri Eq. (24) to obtain z ¼ zðyÞ (Stoeger et al
[8]). Aðw0; yÞ, too, is obtained from redshift data along with
this same zðyÞ result. We pause here to mention that this
latter result together with Eq. (6) allows us to determine
Aðw0; yÞ and its value on C, Aðw0; 0Þ. The unknown con-
stant Aðw0; 0Þ in Eq. (6) and in the solution of Eq. (24)
cancel when we equate the two results, allowing us obtain
an explicit expression for Aðw0; yÞ. Setting y ¼ 0, we then
find Aðw0; 0Þ precisely. In a way Eq. (6) provides us with a
central condition at w ¼ w0.

_C0 is somewhat more difficult to determine. But the
procedure is straightforward.

We determine _C0 by solving Eq. (26) for it on w ¼ w0.
Using Eqs. (3) and (19), we can write this now as

_C0
0ðyÞ

C0ðyÞ
¼ �A0

0ðyÞC0
0ðyÞ

A0ðyÞC0ðyÞ � A2
0ðyÞð!0ðyÞ þ��=2Þ: (46)

But, from Eq. (23) we can write !0ðyÞ in terms of C0ðyÞ,
C0
0ðyÞ, and _C0ðyÞ. So Eq. (46) becomes

_C0
0ðyÞ þ

C0
0ðyÞ _C0ðyÞ
C0ðyÞ ¼ A2

0ðyÞ
2C0ðyÞ �

A0
0ðyÞ

A0ðyÞC
0
0ðyÞ �

ðC0
0ðyÞÞ2

2C0ðyÞ
� A2

0ðyÞC0ðyÞ
2

��: (47)

This is a linear differential equation for _C0ðyÞ, where from
data we know everything on our past light cone, w ¼ w0,
[once the null Raychaudhuri Eq. (24) has been solved]
except _C0ðyÞ itself and ��, which is a constant that can
be carried along and determined subsequently from
Cðw0; zmaxÞ and zmax measurements (see below). Thus,
we can easily solve Eq. (47) for _C0ðyÞ, which will also
depend on the unknown constant��. Its general solution is
given by

_C0ðyÞ ¼ K

C0ðyÞ þ
1

2C0ðyÞ
Z y

0

�
A2
0ð~yÞ �

2A0
0ð~yÞC0

0ð~yÞC0ð~yÞ
A0

� ðC0
0ð~yÞÞ2 � A2

0ð~yÞC2
0ð~yÞ��

�
d~y: (48)

where K is an integration constant to be determined by a
boundary condition that, in our case, is a central condition
for _Cðw; yÞ. From Eq. (5) we can easily find that

as y ! 0: _Cðw; yÞ ! _Bðw; 0Þy ¼ 0: (49)

Since from Eq. (5) C0ðyÞ ! 0 as y ! 0 we find that the
constant K has to be set to zero if Eq. (49) is to be satisfied.
This procedure enables us to determine FðyÞ, that obvi-
ously also depends on ��. Our next step is to insert this
result along with N0ðyÞ into Eq. (41) to determine the mass
functionMðyÞ. Next we evaluate the mass functionMðyÞ at
ymax and plug the result into Eq. (39) which becomes an
algebraic equation for ��. With this determination of ��,
we know _C0ðyÞ completely, and can now determine FðyÞ

from Eq. (29). From here on, we can now follow the
solution off w ¼ w0 for all w as we demonstrate in detail
below.
We now turn to deriving an equation for _Aðw0; yÞ, which

leads to finding subsequent equations for all higher deriva-
tives of the metric variable on our past light cone. This
leads to our key result.
Equation (28) can be rewritten as

A

B

@

@w

� _B

A

�
¼ �2!A2 � 1

2
�mA

2: (50)

Substitution of Eq. (19) into (50) yields

@

@w

�
A0

A

�
¼ @

@w

�
@

@y
ðlnAÞ

�
¼ @

@y

�
@

@w
ðlnAÞ

�
¼ @

@y

� _A

A

�

¼ 2!ABþ 1

2
�mAB (51)

where we used the fact that w and y are independent
coordinates.
On our past light cone (w ¼ w0) the above equation

reads

@

@y

� _Aðw0; yÞ
Aðw0; yÞ

�
¼

�
2!0ðyÞ þ 1

2
�m0

ðyÞ
�
A2ðw0; yÞ: (52)

Therefore, its general solution is

_A 0ðyÞ ¼ A0ðyÞ
�Z y

0

�
2!0ð~yÞ þ 1

2
�m0

ð~yÞ
�
A2
0ð~yÞd~yþ C1

�
:

(53)

where we have written _A0ðyÞ and A0ðyÞ for _Aðw0; yÞ and
Aðw0; yÞ, respectively. C1 is an integration constant that
one would expect, in principle, to be determined by a
central condition for _A0ðyÞ, namely, _A0ð0Þ. [As mentioned
above, we have already determined A0ð0Þ, the first term of
our Taylor series for Aðw; yÞ.] However, this procedure
does not fix C1, since the central condition for Aðw; yÞ
only specifies that it must not go to zero as y goes to
zero. Therefore, we have to investigate if use of the other
central conditions provides a way of fixing C1.
It is important to note that it is this equation which

enables us to stay within the OC formalism during the
integration, providing a much more direct and streamlined
alternative to the Hellaby and Alfadeel [7] scheme.
We observe that !0ðyÞ is fully determined at this stage

since it can be obtained from the first equality in Eq. (40) as

!0ðyÞ ¼ �MðyÞ
C3
0

���

6
(54)

Hence, we have shown that the data on our past light
cone determines _A0ðyÞ, except for the constant C1 which
still remains undetermined at this stage. Since we know
_A0ðyÞ from the data, Eqs. (27) and (28) evaluated on our
past light cone become algebraic equations for €C0ðyÞ and
€B0ðyÞ, respectively
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€C 0ðyÞ ¼
_C0ðyÞ _A0ðyÞ
A0ðyÞ þ

�
!0ðyÞ þ 1

2
�m0

ðyÞ
�
A2
0ðyÞC0ðyÞ

(55)

€B 0ðyÞ ¼ �A0
0ðyÞ _A0ðyÞ
A0ðyÞ �

�
2!0ðyÞ

þ 1

2
�m0

ðyÞ
�
A2
0ðyÞB0ðyÞ (56)

where in the latter we have used Eq. (19). Note that €C0ðyÞ is
completely determined at this stage except for its depen-
dency on _A0ðyÞwhich carries its C1 dependency as we have
explained above. However, €C0ðyÞ must satisfy the central
condition for €C0ðw; yÞ, that from Eq. (5) is

as y ! 0: €Cðw; yÞ ! €Bðw; 0Þy ¼ 0; (57)

which, applied on w ¼ w0, fixes the constant C1, and we
are assured that €C0ðyÞ is completely determined by the data
on our past light cone.

Our next step is to differentiate Eq. (28) with respect to
w, that is,

@3B

@w3
�

€A _B

A
¼ €B _A

A
� _B _A2

A2
� @

@w

��
2!þ 1

2
�m

�
BA2

�

(58)

Substitution of Eq. (19) and its second time derivative
into the left-hand side of Eq. (58) gives

€AA0

A
� €A0 ¼ €B _A

A
� _B _A2

A2
� @

@w

��
2!þ 1

2
�m

�
BA2

�

@

@y

� €A
A

�
¼ � €B _A

A2
þ _B _A2

A3
þ 1

A

@

@w

��
2!þ 1

2
�m

�
BA2

�

(59)

Evaluating Eq. (59) on our past light cone gives

@

@y

� €A0ðyÞ
A0ðyÞ

�
¼ � €B0ðyÞ _A0ðyÞ

A2
0ðyÞ

þ _B0ðyÞ _A2
0ðyÞ

A3
0ðyÞ

þ 1

A0ðyÞ
�
@

@w

��
2!þ 1

2
�m

�
BA2

��
0

(60)

Therefore, its general solution is

€A0ðyÞ ¼ �A0ðyÞ
�Z y

0

€B0ð~yÞ _A0ð~yÞ
A2
0ð~yÞ

� _B0ð~yÞ _A2
0ð~yÞ

A3
0ð~yÞ

� 1

A0ð~yÞ
�

�
@

@w

��
2!þ 1

2
�m

�
BA2

��
0
d~yþ C2

�
; (64)

where, using the same reasoning as above, C2 is an inte-
gration constant to be determined by the central condition
for @3wCðw0; yÞ, similar to Eq. (57), which is found as the
solution of an algebraic equation once we differentiate
Eq. (27) with respect to w and substitute for the previously
determined quantities.

It is important to note that all quantities on the right-
hand sideof the above equation are obtainable either di-
rectly from the data or from the algorithmic steps in the
procedure we are describing here (Appendix). Therefore,
we have shown that we can obtain €A0ðyÞ from the data. It is
clear now that repetition of this procedure will give us all
time derivatives of A, B, and C on our past light cone,
which means that Aðw; yÞ, Bðw; yÞ, and Cðw; yÞ are com-
pletely determined by data on our past light cone, and
calculable as Taylor series.
It is clear from the above procedure that each step begins

by finding the successive time derivatives of the metric
function Aðw; yÞ on our past light cone, @nwAðw0; yÞ. For its
complete determination one must apply the corresponding
central condition, that is, one must specify @nwAðw0; 0Þ,
which is done through other higher-derivative central con-
ditions of the form given in Eq. (57). Hence, it is shown
that Aðw; 0Þ is completely determined by the central con-
ditions, thus proving the conjecture discussed in the intro-
duction that the fulfillment of assumptions (1) and (3)
removes the freedom of rescaling the time coordinate w
and completely determines Aðw; yÞ.

VI. CONCLUSION

We have summarized the essential details of previous
work showing how to construct all spherically symmetric,
inhomogeneous cosmological (LTB) models in observatio-
nal coordinates from cosmological data on our past light
cone, allowing for a nonzero cosmological constant (vac-
uum energy). In doing so we provide a new rigorous
demonstration of how such data fully determines the time
evolution of all the metric components, and a Taylor series
algorithm for determining those solutions. This enables us
to move the solution we obtain from data on the light cone
off it in a well-defined and straightforward way. It is
essential for these to have data giving the maximum of
the observer area (angular-diameter) distance,
C0ðw0; zmaxÞ, and the redshift zmax at which that occurs.
This enables the determination of the vacuum-energy den-
sity ��, which would otherwise remain undetermined.
That is, do we need � � 0 to adequately fit observational
data, if we do not assume that the Universe is FLRW?
Using this broader theoretical framework will enable us
eventually to answer this important question, as well as to
determine more securely how close or far the universe on
large scales is from being FLRW.

APPENDIX

The algorithm:
(i) Solve the null Raychaudhuri Eq. (24) to obtain z ¼

zðyÞ.
(ii) Determine C0

0 from the r0ðzÞ � Cðw0; zÞ data,
through fitting, along with the solution of the null
Raychaudhuri equation.
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(iii) Determine _C0 by solving Eq. (26) for it on w ¼ w0.
Note that at this stage _C0 depends on ��.

(iv) Determine FðyÞ from Eq. (29) which also depends on
��.

(v) Determine the mass function MðyÞ from Eq. (41)
using FðyÞ along with N0ðyÞ that is given from data.

(vi) Evaluate the mass function MðyÞ at ymax.
(vii) Determine �� from Eq. (39).
(viii) Knowing ��, we determine both _C0ðyÞ and FðyÞ

completely.

(ix) Determine !0ðyÞ from Eq. (54). From there on, we
can follow the solution off w ¼ w0 for all w.

(x) Determine _A0ðyÞ using the procedure described be-
tween Eqs. (50) and (53) applied to Eq. (28).

(xi) Determine both €C0ðyÞ and €B0ðyÞ algebraically from
Eqs. (27) and (28), evaluated on our past light cone,
respectively.

(xii) Differentiate Eqs. (27) and (28) with respect to w.
(xiii) Go back through steps (x) to (xii) to find at each run

@nwAðw0; yÞ, @nwBðw0; yÞ, and @nwCðw0; yÞ,
respectively.
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