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We present posterior likelihoods and Bayesian model selection analysis for generalized cosmological

models where the primordial perturbations include correlated adiabatic and cold dark matter isocurvature

components. We perform nested sampling with flat and, for the first time, curved spatial geometries of the

Universe, using data from the CMB anisotropies, the Union supernovae (SN) sample, and a combined

measurement of the integrated Sachs-Wolfe effect. The CMB alone favors a 3% (positively correlated)

isocurvature contribution in both the flat and curved cases. The nonadiabatic contribution to the observed

CMB temperature variance is 0<�T < 7% at 98% C.L. in the curved case. In the flat case, combining the

CMB with SN data artificially biases the result towards the pure adiabatic �CDM concordance model,

whereas in the curved case the favored level of nonadiabaticity stays at the 3% level with all combinations

of data. However, the ratio of Bayes factors, or � ln (evidence), is more than 5 points in favor of the flat

adiabatic �CDM model, which suggests that the inclusion of the 5 extra parameters of the curved

isocurvature model is not supported by the current data. The results are very sensitive to the second and

third acoustic peak regions in the CMB temperature angular power: therefore a careful calibration of these

data will be required before drawing decisive conclusions on the nature of primordial perturbations.

Finally, we point out that the odds for the flat nonadiabatic model are 1:3 compared to the curved adiabatic

model. This may suggest that it is not much less motivated to extend the concordance model with 4

isocurvature degrees of freedom than it is to study the spatially curved adiabatic model, though at the

moment the model selection disfavors both of these models.
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I. INTRODUCTION

Observations of the CMB [1] and distant supernovae
(SN) [2] have shaped the Lambda cold dark matter
(�CDM) standard model of cosmology. However, being
based on phenomenology, we still need a better under-
standing of some of this model’s phases, in particular, the
origin of the perturbations and the recent-time accelerated
expansion of the Universe.

The paradigm of cosmic inflation is often assumed to
describe the early history of the Universe; however, many
different inflationary theories exist [3] that are still com-
patible with current data from the CMB and the large scale
structure (LSS) of the Universe, and it is therefore interest-
ing to look for ways to distinguish between them.

The primordial perturbations are usually believed to
have formed from quantum fluctuations in the early
Universe, stretched by inflation. There are two possible
types of perturbations that can thus be generated: single-
field inflation can only produce adiabatic (isentropic)
modes of curvature perturbation R, while multifield mod-
els can also generate isocurvature (entropy) perturbations
S [4]. In Ref. [5] four classes of isocurvature perturbations
were identified: the cold dark matter (CDM), baryon,
neutrino density, and neutrino velocity isocurvature modes.

A generic perturbation can be composed as a linear combi-
nation of these ones and an adiabatic mode. However, it
turns out to be difficult to find physical mechanisms to
stimulate, for example, the neutrino velocity isocurvature
mode. In this paper we study a correlated mixture of
adiabatic and CDM isocurvature modes (later called the
mixed model), that is naturally generated in multifield
inflationary models and in curvaton(like) models [6–10].
Other scenarios that may generate observationally compat-
ible isocurvature include axions [11,12], dilaton [13] and
ekpyrotic [14,15] models, brane inflation [16,17], large
scale magnetic fields [18,19], cosmic strings, and other
topological defects [20,21], whereas an isocurvature
mode in interacting dark energy models may grow cata-
strophically [22–24].
Physically the inclusion of a CDM isocurvature mode is

well motivated. It simply means that initially, at a time trad,
deep in the radiation dominated era on super-Hubble
scales, the relative number densities of CDM and photons
are not spatially constant, and therefore the total entropy
perturbation Sðtrad;xÞ does not vanish everywhere. In ad-
dition to the amplitude (or indeed the variance) ofR and S
at trad, other important observables of the primordial per-
turbations are the tilt of their power spectrum, parame-
trized by the spectral index n, and their (non-)Gaussianity.
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At later times and lower energies, the CMB is an almost
perfectly isotropic radiation that has been generated at the
epoch of hydrogen recombination. At even more recent
times, some additional effects can alter the CMB, such as
the integrated Sachs-Wolfe (ISW) effect [25], which is
originated by the decay of the gravitational potentials.
The most recent and complete ISW data have been ob-
tained by [26] combining data from the CMB and six
galaxy catalogs.

It is remarkable that the initial conditions of the CMB
are set by the final conditions of inflation. For this reason,
we can distinguish between different models of the early
Universe if we can show which initial conditions agree best
with the CMB (and ISW) observations. In principle, the
latter should be particularly useful in constraining the
mixed models, and in breaking parameter degeneracies
that remain after using the CMB and SN data. This is
mainly because the SN data consist of purely background
data, and hence the SN data can constrain the isocurvature
contribution only indirectly by constraining certain back-
ground parameters (such as��) which are degenerate with
isocurvature [27]. In addition to constraining the back-
ground, the ISW data probe directly the perturbation power
spectrum. This is affected by the CDM isocurvature mode,
in particular, if its spectral index niso is relatively large as
found, for example, in [28]. Unfortunately, after employing
in this paper for the first time the ISW data for constraining
the mixed model, we will find that the current ISW data are
not accurate enough for this purpose, but still improve the
constraints on the spatial curvature.

Observations from the CMB and LSS indicate that the
primordial perturbations were inflationarylike, almost
Gaussian, and mainly adiabatic with an almost scale-
invariant power spectrum. After the first serious constraints
on an uncorrelated mixed model [29], and after ruling out
pure CDM isocurvature [30], various mixtures of the adia-
batic and isocurvature modes have been tested. In particu-
lar, since the release of the Wilkinson Microwave
Anisotropy Probe (WMAP) data, observational constraints
have been obtained, e.g., by [10,27,31–45] for WMAP1
[46], by [47–52] for WMAP3 [53], and most recently for
WMAP5 [54] by [28], and by [55] in the particular case of
axions (uncorrelated, niso ¼ 1). In [28] it is shown that the
CDM isocurvature mode is not required by a combination
of current data if flatness is assumed. Nevertheless, there
were hints of a positively correlated 4% contribution from
the CDM isocurvature mode [48] in WMAP3 at the 3�
level. The ‘‘isocurvature feature’’ in the 3-yr data was
identified to lie around the second and third acoustic peaks
of the CMB power spectrum, which changed significantly
in the 5-yr data due to new beam calibrations.

The only existing work where a mixture of primordial
adiabatic and isocurvature perturbations has been studied
in the nonflat case is [56]. The focus there was in testing
how much the (possible) presence of isocurvature modes

affects the determination of the geometry (spatial curva-
ture) of the Universe, based on WMAP1 data.
So our first task is to assess what the current CMB data

alone tell us about the nature of primordial perturbations.
Then we add other complementary data, either SN or ISW
or both of them, to see whether they tighten the constraints.
Our approach differs from [28], where all data were di-
rectly combined, the ISW was not used, and flatness was
imposed.
In order to quantify the preference of one model over

another, we perform several computationally costly
Bayesian evidence comparisons [57], taking as a
reference model the spatially flat adiabatic �CDM model.
In line with [28], we employ the recently developed
MULTINEST package [58]. In addition to several advantages,

described in the Appendix, compared to the conventional
Monte Carlo Markov Chain (MCMC) method, MULTINEST

allows us, for the first time, to constrain correlated adia-
batic and CDM isocurvature initial perturbations also in
spatially curved universes, and, in particular, to calculate
Bayesian evidences for these models.
We will test how much spatial curvature is allowed, and

on the other hand, how much allowing for the nonflat case
changes the posterior likelihoods of other parameters, for
both the adiabatic and mixed models. Indeed we will show
that assuming spatial flatness of the Universe in isocurva-
ture studies would strongly bias the results toward pure
adiabaticity.
We perform the full evidence calculation for each com-

bination of data sets. Although this is computationally
demanding, it is an imperative not to blindly combine all
different types of data sets into one big chunk (in our case
CMB&SN&ISW) without testing what the individual in-
formation gained from each of the data sets is and whether
the data are consistent with each other. In particular, the
black-box method of rushing to combine all available data
would be dangerous, if there happened to be ‘‘tension’’
between the data sets. Then artificially tight constraints
would follow, without a real physical meaning. Therefore
we strongly advocate the approach where we add the data
sets to the analysis one by one.
As a side product of our analysis, we obtain a compre-

hensive comparison of flat and curved adiabatic �CDM
models too—in the light of any combination of the CMB
and SN or ISW data. These results are complementary to a
recent work [59] where baryon acoustic oscillation data
were employed along with the CMB shift parameter and
SN data, but the ISW data or the full CMB data were not
used.
The plan of this paper is the following. After describing

our chosen parametrization for the initial conditions of
perturbations in Sec. II, we summarize the method of our
analysis in Sec. III. Then we expose and comment on the
results of the likelihood analysis in Sec. IV, report the
Bayesian evidences in Sec. V, and conclude in Sec. VI.
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II. PRIMORDIAL PERTURBATIONS AND CMB

We parametrize the primordial perturbations the same
way as in [27,48].

The evolution of (scalar) fields during (multiple-field)
inflation generates a trajectory in field space. Perturbations
can be decomposed in modes which are along the trajec-
tory (curvature perturbations) and normal to it (entropy
perturbations) [60,61]. The history of these perturbations at
any scale �� k�1, where k is the wave number (later
referred to simply as ‘‘scale’’), goes as follows: perturba-
tions were generated during inflation (or by an alternative
theory) at a time t?ðkÞ, when they were ‘‘promoted’’ from
the quantum vacuum level to the classical level by horizon
crossing. Then, they were superhorizon (i.e., super-
Hubble), and at some point in the radiation era trad they
acted as seeds of the matter power spectrum PðkÞ and CMB
perturbations.

During the superhorizon evolution, the perturbations
ðR;SÞ are not frozen, but evolve from their original values
ðR?;S?Þ according to

R
S

� �
¼ 1 TRS

0 TSS

� �
R?

S?

� �
: (1)

The transfer functions TXYðt; kÞ describe the evolution of
the perturbations, and are generally model dependent. In
this paper we approximate them by power laws. It is
important to highlight that the form of Eq. (1) means
that, in the absence of primordial isocurvature perturba-
tions, S? ¼ 0 implies that no isocurvature modes will be
created, and the adiabatic perturbations remain constant.

By introducing explicit power laws for the transfer
functions, and defining a pivot scale k0 and a relative scale
�k � k=k0, we can write the autocorrelation and cross-
correlation power spectra for the perturbations at trad,

PRðkÞ ¼ P ad1 þ P ad2 ¼ A2
r
�knad1�1 þ A2

s
�knad2�1;

PSðkÞ ¼ P iso ¼ B2 �kniso�1; CRSðkÞ ¼ AsB �kncor�1:

(2)

The usual adiabatic case is recovered by setting As ¼ B ¼
0. Also note that here the correlated spectral index can be
written in terms of the others: ncor ¼ ðniso þ nad2Þ=2.

The angular power spectra of the CMB temperature
(TT) and polarization (EE) autocorrelation, the
temperature-polarization (TE) cross correlation, the
matter-matter (mm) autocorrelation, and the temperature-
matter (Tm) cross correlation (the ISW-LSS cross correla-
tion), which would follow with Ar ¼ As ¼ B ¼ 1, are
convolutions of the adiabatic and isocurvature transfer

functions �ðXÞ
l;RðkÞ, �ðXÞ

l;S ðkÞ as follows:

Ĉ XYad1
l ¼ 4�

Z dk

k
½�ðXÞ

l;RðkÞ�ðYÞ
l;RðkÞ� �knad1�1; (3)

Ĉ XYad2
l ¼ 4�

Z dk

k
½�ðXÞ

l;RðkÞ�ðYÞ
l;RðkÞ� �knad2�1; (4)

Ĉ XYiso
l ¼ 4�

Z dk

k
½�ðXÞ

l;S ðkÞ�ðYÞ
l;S ðkÞ� �kniso�1; (5)

Ĉ XYcor
l ¼ 4�

Z dk

k
½�ðXÞ

l;RðkÞ�ðYÞ
l;S ðkÞ

þ�ðYÞ
l;RðkÞ�ðXÞ

l;S ðkÞ� �kncor�1; (6)

where X and Y stand for either T, E, or m. Via the above

integrals, the transfer functions �ðXÞ
l;RðkÞ, �ðXÞ

l;S ðkÞ relate the
primordial perturbations at wave number k to the anisot-
ropy at multipole l today. These functions depend on all the
history of the Universe from the primordial time trad up to
today, and they can be calculated by a Boltzmann integra-
tor, such as CAMB/COSMOMC [62,63], publicly available at
[64].
The total angular power spectrum is a sum of the above

contributions weighted with the primordial amplitudes Ar,
As, and B at the pivot scale,

CXY
l ¼ A2

rĈ
XYad1
l þ A2

sĈ
XYad2
l þ B2ĈXYiso

l þ AsBĈ
XYcor
l :

(7)

In order to have a parametrization more suitable to data
analysis, we redefine the amplitude parameters as

A2 � A2
r þ A2

s þ B2; � � B2

A2
2 ½0; 1�;

� � signðAsBÞ A2
s

A2
r þ A2

s

2 ½�1; 1�;

so that the total angular power spectra are composed by
adiabatic, isocurvature, and correlated components as

CXY
l ¼ A2

�
ð1� �Þð1� j�jÞĈXYad1

l þ ð1� �Þj�jĈXYad2
l

þ �ĈXYiso
l þ signð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þj�j

q
ĈXYcor
l

�

� CXYad1
l þ CXYad2

l þ CXYiso
l þ CXYcor

l : (8)

We can now constrain the amount of isocurvature modes
for the primordial perturbations by measuring the likeli-
hood distributions of the parameters � and �. We call the
above parametrization of primordial perturbation spectra
‘‘spectral index parametrization’’ or, as a shorthand nota-
tion, ‘‘n parametrization.’’ It has six parameters which
describe the primordial perturbations: nad1, nad2, niso, A,
�, and �.
Additional derived parameters can be defined. For ex-

ample, a parameter neffad represents the spectral index for

adiabatic modes obtained by expressing the adiabatic con-
tribution as a single power law:
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neffad ð �kÞ � 1 ¼ d lnPRð �kÞ
d ln �k

¼ ðnad1 � 1Þð1� j�jÞ �knad1�1 þ ðnad2 � 1Þj�j �knad2�1

ð1� j�jÞ �knad1�1 þ j�j �knad2�1
: (9)

Our pivot-scale free measure of the nonadiabaticity will be
the total nonadiabatic contribution to the CMB temperature
variance

�T � hð�Tnon-adÞ2i
hð�TtotalÞ2i ¼

P
lð2lþ 1ÞðCTTiso

l þ CTTcor
l ÞP

lð2lþ 1ÞCTT
l

: (10)

When some parameters of a model are not sufficiently
tightly constrained by the data, the posterior likelihood
functions become sensitive to the assumed prior probabil-
ity densities for the parameters. Even when one assumes
flat, i.e., uniform, priors for the primary parameters of the
model, the question remains, which parameters are taken to
be the primary parameters, since the priors for the quanti-
ties derived from the primary parameters (derived parame-
ters) will not be flat. To avoid problems related to spectral
indices becoming unconstrained when the corresponding
amplitude parameters have small values, a parametrization
in terms of amplitudes at two different scales, k1 and k2,
was proposed in [27], and employed in [48,65]. In this
paper we use this ‘‘amplitude parametrization’’ as the basis
of our analysis, but we show the final results in the n
parametrization.

The mapping from the amplitude parametrization to the
spectral index parametrization is easy to find from the
definitions (2) and (8). The spectral indices can be written
in terms of the parameters of amplitude parametrization as

nad1 � 1 ¼ ln½P ad1ðk2Þ=P ad1ðk1Þ�
lnðk2=k1Þ ; (11)

nad2 � 1 ¼ ln½P ad2ðk2Þ=P ad2ðk1Þ�
lnðk2=k1Þ ; (12)

niso � 1 ¼ ln½P isoðk2Þ=P isoðk1Þ�
lnðk2=k1Þ ; (13)

where the first (uncorrelated) adiabatic, the second (corre-
lated) adiabatic, and the isocurvature power at scales ki
(i ¼ 1, 2) are given by

P ad1ðkiÞ ¼ A2
i ð1� �iÞð1� j�ijÞ; (14)

P ad2ðkiÞ ¼ A2
i ð1� �iÞj�ij; (15)

P isoðkiÞ ¼ A2
i �i; (16)

respectively. Then the amplitudes A, �, and � at the pivot
scale k0 are obtained from the amplitude-parametrization
amplitudes A1, �1, and �1 defined at k1 by [27]

A2 ¼ A2
1½ð1� �1Þð1� j�1jÞ~knad1�1 þ ð1� �1Þj�1j~knad2�1

þ �1
~kniso�1�; (17)

� ¼ �1
~kniso�1 � ½ð1� �1Þð1� j�1jÞ~knad1�1

þ ð1� �1Þj�1j~knad2�1 þ �1
~kniso�1��1; (18)

� ¼ �1
~knad2�1

ð1� j�1jÞ~knad1�1 þ j�1j~knad2�1
; (19)

where ~k ¼ k0=k1, and the spectral indices are obtained
from Eqs. (11)–(13). Since we assume that all the compo-
nent spectra can be described by power laws, �1 and �2

must have the same sign. Hence, they are not completely
independent. To obtain independent primary parameters,
we draw �1 from the range ½�1; 1�, but �2 only from the
range [0, 1], and let �1 determine the sign of the
correlation.
Employing the mappings (11)–(13) and (17)–(19), we

obtain the posterior likelihoods of nad1, nad2, niso, A, �, �
for a MULTINEST run in the amplitude parametrization
(corresponding to flat priors for A1, �1, �1, A2, �2, and
�2). However, if we want to convert the results obtained in
the amplitude parametrization to flat priors for the spectral
indices, then the mappings (11)–(13) and (17)–(19) are not
enough: we have to correct for the prior too. This can be
done by weighting the multiplicities in the MCMC chains
(i.e. weighting the posterior likelihood) by the Jacobian of
the transformation (11)–(13) and (17)–(19). If the original
run was made using primary parameters f�ig (and flat
priors for them), but we want to show the results with flat

priors for f ~�ig, the multiplicities must be multiplied by

J ¼
��������det

�
@�i

@ ~�j

���������: (20)

From a purely theoretical point of view one would
naively think that the choice of pivot scales k1 and k2 (or
in the n parametrization k0) is only a matter of taste.
However, when performing the likelihood analysis and
producing 1d or 2d marginalized posterior likelihoods (or
global Bayesian evidences), the integration weight changes
dramatically if we change the pivot scale. This is evident
from Eq. (20) above and in Fig. 21 in Ref. [27]; see niso, in
particular. Indeed, the posterior constraints on all the pa-
rameters depend somewhat on the choice of pivot scales,
but the effect is strongest on poorly constrained
parameters.
One should try to optimize the constraining power of the

data, and in [48] it was shown that in n parametrization the
optimal choice for k0 is in the middle (in the logarithmic
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sense) of the available data. Hence one should avoid
choosing k0 too close to the edges of the data. For example,
a common but unsuitable choice, k0 ¼ 0:05 Mpc�1 (most
recently employed in [28]), leads to very loose constraints
on niso (and hence on the other parameters), since at these
scales the isocurvature has hardly any effect on the CMB
angular power. On the other hand, another common choice,
k0 ¼ 0:002 Mpc�1, is too close to the large scale end of the
data. Our choice, k0 ¼ 0:01 Mpc�1, matches with
Refs. [27,28], and is also supported by [66], where k0 ¼
0:017 Mpc�1 was found to lead to the most stringent
constraints. Reference [66] formulated the issue by quan-
tifying the center of the data to be the statistical center. For
the amplitude parametrization we choose k1 ¼
0:002 Mpc�1 and k2 ¼ 0:05 Mpc�1, which allows an
easy comparison to the other works.

In addition to avoiding problems with the poorly con-
strained spectral index niso, the amplitude parametrization
has a great advantage when performing Bayesian evidence
calculations. The Bayesian evidence is sensitive to the
chosen prior (ranges) of the parameters; see e.g. [49]. In
the case of n parametrization it is completely unclear what
the ranges for spectral indices should be. If one chose very
small ranges for nad2 and niso, then a larger evidence would
follow than when allowing for wide ranges. This ambiguity
and arbitrariness was recently faced in [28]. In the ampli-
tude parametrization we avoid this problem, since the
amplitudes have ranges from �1 or 0 to þ1 by definition.

III. DETAILS OF THE ANALYSIS

We perform nested sampling likelihood analyses using a
modified version of the MULTINEST package [58], which is
publicly available at [67], and which is a significantly more
efficient alternative to the standard MCMC method. Since
this method is fairly new, we will describe its principles in
the Appendix.

A. Parameters

In Sec. II we discussed in detail how we parametrize the
primordial perturbations. In the conventional purely adia-
batic case one needs an amplitude and a spectral index, or
amplitudes at two different scales, i.e. two parameters. In
our correlated adiabatic and isocurvature model we need
these for the uncorrelated adiabatic, for the correlated
adiabatic, and for the isocurvature spectrum. This makes
up six perturbation parameters. In addition to these we
have the conventional background parameters which exist
in both models. Their number is 4 in the case of a flat
universe and 5 in the case of a nonflat universe. Finally,
when comparing the models to the CMB data, we need the
amplitude of the Sunyaev-Zel’dovich template ASZ.

Therefore the adiabatic �CDM reference model has
7 (8) independent primary parameters, while our extended
correlated isocurvature model has 11 (12) parameters in the
case of a flat (nonflat) Universe. We summarize the pa-

rametrization and give the prior ranges, as well as list
useful derived parameters, in Table I.
We assume a flat (uniform) prior over the given ranges

for the primary parameters. The derived parameters will
have nonflat priors unless otherwise stated. Indeed, the top-
hat prior on the Hubble parameterH0 introduces somewhat
nonflat priors for !b, !c, �, and �K, but this is irrelevant
since over the peak of the posterior likelihood their prior is
sufficiently flat. Importantly, also the resulting prior on �T

is rather flat as shown in [48].

B. Data

The data we use are as follows: the publicly available
WMAP 5-yr temperature and polarization data (TT, EE,
TE) [54] plus the smaller scale Arcminute Cosmology
Bolometer Array Receiver (ACBAR) data [68] for the
CMB anisotropies, the supernovae from the Union compi-
lation [2] with the systematic uncertainties flag turned on,
and the ISW data of the cross correlations between the
CMB and six galaxy catalogs by [26].
The ISWeffect is a small secondary anisotropy which is

added at late times onto the primary CMB anisotropies in
case the Universe is undergoing a transition to a curvature
or dark energy phase. It is due to the decay of the gravita-
tional potentials while CMB photons are traveling through
potential wells and, as such, is correlated with the large
scale structure (LSS) of the Universe. Its small magnitude,
about 10% of the primary CMB, hinders a direct detection
of its temperature power spectrum, but the effect can be
detected by cross correlating the CMB with some tracer of
the LSS [69]. This signal has been detected by many
authors by cross correlating the WMAP CMB map with
various galaxy catalogs (see references in [26]) out to a
median redshift of z ¼ 1:5. Most recently, this limit was
extended by [70] using the latest quasars from the Sloan
Digital Sky Survey (SDSS), improving the previous result
of [71]. Detections of this effect have been used to con-
strain various aspects of cosmology [72–76].
The data set we use for the ISW was obtained by [26] by

cross correlating the WMAP maps of the CMB with six
galaxy catalogs [2MASS, SDSS main galaxies, luminous
red galaxies (LRGs) and quasars (QSOs), the NRAO VLA
Sky Survey (NVSS), the High Energy Astronomical
Observatory (HEAO)] in several bands of the electromag-
netic spectrum at median redshifts 0< �z < 1:5. The data
consist of 13 angular bins of the real space cross-
correlation functions (CCFs) between each catalog and
the CMB, at angles 0 deg� # � 12 deg, thus having 78
data points, whose off-diagonal covariance matrix is
important.
For each sampled model, we calculate the theoretical

cross power spectra between temperature and matter per-
turbations, CTm

l , from a full Boltzmann integration within

CAMB, adding the relevant smoothing beams, and then

perform a Legendre transformation to obtain the CCF at
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the same angles as the measurements. Finally we ensure
that the theoretical models are compatible with the ob-
served autocorrelation functions of the catalogs by allow-
ing the galactic bias parameter (the ratio between matter
power and observed galaxy power, which is assumed con-
stant for each catalog), to vary for each model. We can then
calculate the likelihood of each model given the ISW data,
assuming that the errors are Gaussian.

We chose not to use the measurements of the matter
power spectrum because the current data and theories do
not describe accurately the mapping from the redshift
space luminous galaxy observations to the Fourier space
(k-space) galaxy power spectrum, and further to the under-
lying k-space matter power spectrum. Therefore the shape
of the matter power spectrum is still under investigation
[77]. As the isocurvature contribution modifies the shape
and tilt of the matter power spectrum, once the shape of the
observational matter power spectrum becomes well under-
stood, it will improve constraints on niso, in particular. It
should be noted that our model with a free niso differs from
Ref. [78] where the adiabatic and isocurvature components
share the same spectral index. As the CMB data prefer
predominantly adiabatic, nearly scale-invariant perturba-
tions, the common spectral index is forced near to 1, which
in [78] leads to a conclusion that the isocurvature would
not affect the matter power spectrum.

IV. POSTERIOR LIKELIHOODS

We study the likelihoods with various combinations of
data, comparing the results to the adiabatic �CDM model.
First we use the CMB data alone; then we add either SN or
ISW, and finally both of them into the analysis. We present
1d marginalized posterior likelihoods in the mixed model
for the selected primary and derived parameters in Fig. 1
for the flat (left panel) and curved (right panel) cases.

A. The CMB data alone

The CMB alone does favor a small amount of positively
correlated isocurvature mode. This is consistent with what
was previously reported in [48], although the few percent
isocurvature contribution is now slightly less favored (over
a pure adiabatic model, �T ¼ 0) due to the modified shape
of the second and third acoustic peaks in the WMAP5 data.
The key points in Fig. 1 for the CMB data alone (blue

dashed curves) are as follows: mixed models with a small
contribution from a CDM isocurvature mode, a small �m,
a large��, a large Hubble parameterH0, and a large sound
horizon angle are marginally favored over the concordance
adiabatic �CDM model. The CMB favors a positive cor-
relation, �, between the primordial adiabatic and isocurva-
ture perturbations (with the sign convention where a
positive primordial correlation leads to a positive CTTcor

l

TABLE I. Our primary nested sampling parameters and a selection of derived parameters.

Parameter Explanation Range (min, max)

Primary parameters

!b Physical baryon density; !b ¼ h2�b (0.005, 0.100)

!c Physical cold dark matter density; !c ¼ h2�c (0.01, 0.99)

� Sound horizon angle; � ¼ rsðz�Þ=DAðz�Þ (0.5, 5.0)

� Optical depth to reionization (0.01, 0.30)

�K Curvature density; �K ¼ 1��tot ð�0:20; 0:10Þ
lnð1010A2

1Þ A2
1 is the overall primordial perturbation power at k ¼ k1 ¼ 0:002 Mpc�1 (1.0, 7.0)

�1 Correlation amplitude at k ¼ k1 ¼ 0:002 Mpc�1 ð�1:0; 1:0Þ
�1 Primordial isocurvature fraction at k ¼ k1 ¼ 0:002 Mpc�1 (0, 1.0)

lnð1010A2
2Þ A2

2 is the overall primordial perturbation power at k ¼ k2 ¼ 0:05 Mpc�1 (1.0, 7.0)

�2 Correlation amplitude at k ¼ k2 ¼ 0:05 Mpc�1 (0, 1.0)

�2 Primordial isocurvature fraction at k ¼ k2 ¼ 0:05 Mpc�1 (0, 1.0)

ASZ Amplitude of the SZ template for WMAP and ACBAR (0, 2)

Derived parameters

H0 Hubble parameter (km=s=Mpc), calculated from !b, !c, �, and �K Top hat (40, 100)

h h ¼ H0=ð100 km=s=MpcÞ (0.40, 1.00)

�m Matter density parameter; �m ¼ ð!b þ!cÞ=h2
�� Vacuum energy density parameter; �� ¼ 1��K ��m

�8 Root mean square mass fluctuation on 8h�1 Mpc scale

nad1 Spectral index of the primordial uncorrelated adiabatic part; nad1 � 1 ¼ d lnðP ad1Þ=d lnk
nad2 Spectral index of the primordial correlated adiabatic part; nad2 � 1 ¼ d lnðP ad2Þ=d lnk
niso Spectral index of the primordial isocurvature part; niso � 1 ¼ d lnðP isoÞ=d lnk
neffad Effective single adiabatic spectral index, Eq. (9)

� Correlation amplitude at k ¼ k0 ¼ 0:01 Mpc�1 ð�1:0; 1:0Þ
� Primordial isocurvature fraction at k ¼ k0 ¼ 0:01 Mpc�1 (0, 1.0)

�T Total nonadiabatic contribution to the CMB temperature variance, Eq. (10)
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in the Sachs-Wolfe region; see e.g. [27,48]). In the curved
case a positive nonadiabatic contribution to the observed
CMB temperature variance is more clearly favored than in
the flat case. We find that �T > 0 at 98.9% (84.4%) C.L. in
the curved (flat) case, or 0:8%<�T < 6:5% (� 3:1%<
�T < 6:7%) at 95% C.L.; see the bottom right plots in
Fig. 1.

However, it is clear that due to the poorly constrained
Hubble parameter, matter density, and curvature, we can-
not use the current CMB data alone for studying the mixed
model. Nevertheless, as we will discover in the next sub-
sections, for a robust analysis it is crucial to know what are
the favored regions in parameter space with the CMB data
alone.

B. Adding the SN and ISW data

Now we repeat the likelihood analysis with the CMB
and SN data. In the flat case the data now prefer a purely
adiabatic model: the likelihood of �T has a peak close to
zero at a slightly negative value. However, in the curved
case adding the SN data hardly changes any of the like-
lihood distributions of isocurvature parameters (compare
blue dashed and black solid curves in Fig. 1). Importantly,
the constraints of �T remain almost the same as with the
CMB data alone: now 0<�T < 7:0% at 95% C.L.

The SN data do improve the constraints on some back-
ground parameters ð!c;�K;��;�mÞ, but do not signifi-
cantly move the peaks of their likelihoods, in the curved
case. As noticed above, the nonadiabatic contribution �T ,
which is to some extent degenerate with�K and��, stays
untouched. We can understand this by looking at Fig. 2.
The CMB tightly constrains the acoustic peak positions,
and consequently the sound horizon angle � ¼ rs=DA,
where rs is the sound horizon at last scattering and DA is
the angular diameter distance to last scattering. As rs
depends only on !b and !c, and even this dependence is
very mild [79], the CMB constraint on � is directly re-
flected by the favored DA, which depends on �m, �� (or
�K), and H0. The adiabatic model fits the acoustic peak
positions perfectly whenever DA ’ 14 000 Mpc (indicated
by the highlighted cyan DA curve in Fig. 2). However, in
the mixed model there is an additional freedom caused by
the ability of the correlated contribution to the angular
power spectrum, CTTcor

l , to slightly move the acoustic

peak positions of the total CTT
l toward the right, as shown

in Fig. 2 in Ref. [48]. Therefore a slightly larger �, i.e. a
smaller DA, is favored whenever there is a small positively
correlated isocurvature contribution to the CMB. A DA ’
13 000 Mpc (indicated by the highlighted magenta DA

curve in Fig. 2) leads now to the best fits to the CMB. If
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FIG. 1 (color online). Left panels: Posterior likelihood distributions for the model parameters assuming mixed initial conditions and
flat spatial geometry of the Universe. Right panels: The same as the left panels, but for curved spatial geometry. ‘‘ALL’’ refers to the
CMB&SN&ISW data.
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we restrict the analysis to flat models (indicated by the thin
black dashed line), the CMB picks the models (on the flat
line, �m þ�� ¼ 1) which are near the intersection point
of the mentionedDA curve. In the adiabatic case this means
�m � 0:26 (�� � 0:74, H0 � 72), whereas in the mixed
case the intersection of DA ’ 13 000 Mpc and the flat line
is at �m � 0:19 (�� � 0:81, H0 � 87). This explains
why, in light of the CMB alone, the flatness assumption
forces �m, ð��Þ, and H0 to quite unusual values, when
allowing for the mixed initial conditions of perturbations.

If we now combine the CMB with SN (indicated by the
red dashed 95% C.L. curve in Fig. 2), it is clear that the
well-fitting flat mixed models (the blue circle) will be
excluded. However, in the curved case the SN data do
not affect at all the well-fitting mixed models, and the
best-fit region stays unaffected (the red diamond symbol).
Finally, adding the ISW data (indicated by the blue dot-
dashed 95% C.L. curve in Fig. 2) does not affect at all the
well-fitting adiabatic or mixed models. Therefore the re-
sults for the isocurvature parameters with CMB&ISW are
very close to the CMB alone case. The ISW data favor a
slightly smaller matter density and slightly less closed
Universe than the SN data, thus affecting these background
parameters when compared to the CMB&SN analysis.

All the above remarks are confirmed by the 2d posterior
likelihood contours shown in the upper panel of Fig. 3. The
CMB alone leaves a long degeneracy line in the ð�m;��Þ
plane for mixed models withDA ’ 13 000 Mpc. The SN or
ISW data break this degeneracy, the ISW data favoring
slightly lower �m than the SN data. Importantly, in the
curved case, the well-fitting models to the CMB sit in the
middle of the best-fit region of SN or ISW. Combining all
the data (the magenta 68% and 95% C.L. curves) leads to
the tightest constraints on �m and �K, being fully consis-
tent with what we would expect from Fig. 2 and from the
CMB&SN and CMB&ISW cases in Fig. 3.
The lower panel of Fig. 3 shows a tiny offset in the

favored curvature between the SN and ISW data, and
indicates why using all the data leads to looser constraints
on �T , as seen in the bottom right plot of Fig. 1.
The main conclusion after including the SN data is that,

in the flat case, this brings the result in line with the
concordance adiabatic model, as also reported in [28].
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Here we must once more put emphasis on the fact that this
happens only when restricting the analysis to flat models
(thin black dashed lines in Figs. 2 and 3), whereas when
allowing for spatial curvature of the Universe, a significant
nonadiabatic contribution remains allowed. Most impor-
tantly, the well-fitting mixed models lie at the intersection
of all the data (CMB, SN, and ISW) at slightly closed
�tot � 1:03 geometry, though there is a slight competition
(which exists also in the adiabatic case) between the higher
value of �m preferred by the SN data and the lower value
preferred by the ISW data.

C. Robustness of the main cosmological parameters
against the assumed initial conditions

An important question in constraining cosmologies is
how much the assumptions made in the analysis affect the
interpreted values of cosmological parameters from the
given data [80]. Often pure adiabatic initial conditions
are assumed when constraining the parameters of the
�CDMmodel. In this subsection we show how the favored
values (or regions) of the main cosmological parameters
change if one assumes mixed initial conditions. In other
words, we answer the question ‘‘by assuming adiabaticity,
would one find wrong constraints on the main cosmologi-
cal parameters, if the underlying ’true’ initial perturbation

mode happened to be a correlated mixture of adiabatic and
CDM isocurvature perturbations?’’
Obviously, using the CMB data alone leads to rather

large differences between purely adiabatic and mixed mod-
els, in particular, for the posterior likelihoods of!c, �,�K,
��, ð�mÞ, H0, the age of the Universe, and neffad . As it is

unrealistic to assume tight constraints in the mixed model
with CMB data alone, we demonstrate these effects in
Fig. 4 with CMB&SN data.
In the flat case, the pure adiabatic model favors smaller

values of !b, larger �, slightly smaller �� (hence larger
�m), slightly smaller H0, and smaller neffad . The CDM

density !c remains unaffected. Interestingly, the scale-
invariant primordial adiabatic perturbations, neffad ¼ 1, are
within the 95% C.L. region if mixed initial conditions are
assumed, while being far in the tail of the posterior like-
lihood if pure adiabaticity is assumed.
In the curved case similar conclusions apply for�� and

neffad . However, since now the SN data do not exclude a few

percent positively correlated nonadiabatic contribution in
the closed models (with �tot ’ þ1:03) and these models
are actually slightly favored over the flat adiabatic models,
larger values of�tot will be preferred compared to the pure
adiabatic case. As explained in Sec. IVB, the mixed model
prefers a larger sound horizon angle, �. This, together with
the curvature, affects in turn !c and H0.

D. Best fits and 95% C.L. intervals

To complete the discussion about the posterior likeli-
hoods, we report in Table II the best-fit 	2 and selected
best-fit parameters as well as 95% C.L. intervals for some
of these with the CMB&SN data (as seen in Fig. 1, the
CMB&ISW or CMB&SN&ISW data lead to very similar
results). The �	2 between the best-fit flat mixed and flat
adiabatic models is�4:9, while the difference between the
curved models is �5:0. With the CMB alone these would
be �5:3 and �5:2, respectively. Noteworthy, the best-fit
flat ‘‘mixed’’ model is almost adiabatic, whereas the best-
fit curved mixed model clearly has a nonzero isocurvature
contribution—precisely as one would expect from the
marginalized likelihoods.
As stated qualitatively in the previous subsection, the

determination of spatial curvature and the adiabatic spec-
tral index are significantly affected by the assumed initial
conditions: assuming mixed initial conditions, a more
closed geometry is favored than in the adiabatic case,
and the flat geometry is excluded at 95% C.L. On the other
hand, the scale-invariant primordial adiabatic spectrum is
excluded at much more than 95% C.L. if adiabatic initial
conditions are assumed, whereas—not surprisingly, due to
the extra freedom to modify the shape of the total initial
perturbation power spectrum—in the mixed models the
95% C.L. interval accommodates the scale-invariant spec-
trum. This result contradicts the claim in Ref. [28] that the
‘‘detection’’ of a red adiabatic spectrum (neffad < 1) would
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FIG. 4 (color online). Posterior likelihoods with the CMB&SN
data for selected model parameters in the flat and curved cases
assuming either pure adiabatic or mixed initial conditions.
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be robust against the inclusion of the CDM isocurvature
mode.

The 95% C.L. upper bound on the primordial contribu-
tion of the CDM isocurvature mode to the total perturba-
tion power at the scale k0 ¼ 0:01 Mpc�1 is�< 22% in the
flat case and �< 17% in the curved case.

E. Dependence on the pivot scale

We do not report any constraints for niso, since its
posterior likelihood depends drastically on the chosen
parametrization, in particular, on the choice of the pivot
scale, as shown in Fig. 5. While with some choices a scale-
invariant spectrum, niso ¼ 1, is ‘‘allowed,’’ in general,
fairly large values (niso * 1:5) seem to be favored. There
have not been many theoretical models that would predict
such a large isocurvature spectral index, but recently an
explicit axion model, which leads to niso � 2–4, was con-
structed in [81].

The posterior likelihoods obtained assuming flat priors
in the amplitude parametrization (which we use for report-
ing the results in this paper) agree well, in general, with the
more traditional spectral index parametrization, where flat
priors for spectral indices and amplitudes at a pivot scale
k0 ¼ 0:01 Mpc�1 are assumed. However, due to a different
integration measure upon marginalization, the posterior
likelihoods for all parameters differ from these, if we
choose k0 ¼ 0:002 Mpc�1 or k0 ¼ 0:05 Mpc�1, which
are the most common choices in the literature. In particu-
lar, the difference in the poorly constrained niso is large.
This effect was first realized in [27], where it was strongly
recommended that in the isocurvature analysis one should
adopt k0 ’ 0:01 Mpc�1, which leads to the tightest con-
straints and minimizes the ambiguity (caused by poorly
constrained niso) in determining the main cosmological
parameters. As a further improvement, the amplitude pa-
rametrization, which we employ here, was suggested.
Assuming a large pivot scale (small k0) would make a
small niso appear favored, whereas a small pivot scale
(large k0) leads to an apparent peak of the likelihood at
niso > 4. The most recent isocurvature analysis [28] suffers
from this problem, since in [28] k0 ¼ 0:05 Mpc�1 is
adopted. From Fig. 5 it is clear why [28] reports very loose
constraints on niso, and claims that very large spectral tilts
seem to be favored.
Apart from the issues with the spectral indices, our

findings for the flat case agree well with [28], where the
recent CMB (WMAP5 and ACBAR), SN (SNLS), and LSS
(SDSS DR5 LRGs) data, and a Gaussian prior !b ¼
0:022	 0:006 were employed in flat models, without test-
ing the results with individual combinations of the data,
such as CMB&SN or CMB&LSS. Interestingly, based on
comparing our results with those of [28], the LSS data do
not seem to improve the constraints on the isocurvature.
Moreover, the inclusion of LSS data is not enough to
overcome the unsuitable choice of pivot scale made in
[28], although one would have expected the LSS to im-
prove the constraints on niso.

V. BAYESIAN EVIDENCES

The main results of this paper, the Bayesian evidences
(see e.g. the Appendix and Ref. [82]), are presented in
Table III. There we compare other models to the flat

TABLE II. The best-fit 	2 and the best-fit values of selected parameters for the adiabatic and mixed models with the CMB&SN data.
In parentheses, we indicate the minimal 95% C.L. interval about the maximum of the corresponding 1d marginalized likelihood.

Model 	2 �T !c 100� �K �m H0 �8 neffad niso

Flat adi 3003.9 — 0.116 1.042 — 0.285 69.8 0.83 (0.76, 0.87) 0.956 (0.932, 0.984) —

Flat mixed 2999.0 0.002 ð�0:03; 0:05Þ 0.111 1.037 — 0.263 71.7 0.83 (0.72, 0.94) 0.954 (0.930, 1.000) 3.5

Curved adi 3002.4 — 0.107 1.042 �0:03 ð�0:04; 0:01Þ 0.370 59.2 0.76 (0.73, 0.86) 0.948 (0.934, 0.984) —

Curved mixed 2997.4 0.02 (0.00, 0.07) 0.108 1.051 �0:04 ð�0:07; 0:00Þ 0.380 58.5 0.84 (0.71, 0.94) 0.967 (0.934, 1.009) 2.9
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FIG. 5 (color online). Posterior likelihoods with the CMB&SN
data for selected model parameters in the curved mixed model.
‘‘Amp. par. k0 ¼ 0:01’’ indicates the results reported in this
paper, obtained assuming flat priors for the amplitudes �1;2

and �1;2 at scales k1 ¼ 0:002 Mpc�1 and k2 ¼ 0:05 Mpc�1,

and converted to spectral indices and amplitudes at the pivot
scale k0 ¼ 0:01 Mpc�1. ‘‘n-par. k0 ¼ 0:002’’ indicates what the
results would be if we assumed flat priors in the spectral index
parametrization and chose the pivot scale k0 ¼ 0:002 Mpc�1.
‘‘n-par. k0 ¼ 0:01’’ and ‘‘n-par. k0 ¼ 0:05’’ are the same as
above, but choosing k0 ¼ 0:01 Mpc�1 or k0 ¼ 0:05 Mpc�1,
respectively. The raggedness of the k0 ¼ 0:05 curves is due to
a small amount of well-fitting samples, after reweighting by the
Jacobian, Eq. (20).
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adiabatic �CDM model, giving � lnðevÞ ¼ lnðevÞ �
lnðevflat;adiÞ. Clearly the flat adiabatic �CDM model is

favored over the curved adiabatic model and over both
flat and curved mixed models. In light of the current
data, the Bayesian model selection decisively [� lnðevÞ<
�5] disfavors the curved correlated isocurvature model.
This is because the model selection punishes strongly for
the 5 extra parameters (compared to the adiabatic �CDM
model) whose inclusion does not improve the fit to the data
considerably: see, e.g., the best-fit 	2 values for CMB&SN
in Table II. However, one should keep in mind that in the
mixed models with niso * 2, the main effect on the CMB is
a modified second and third acoustic peak region.
Therefore the determination of the isocurvature contribu-
tion is very sensitive to the calibration of the CMB tem-
perature angular power spectrum in this region.

Evidences in an alternative parametrization

So far we have considered the primordial isocurvature
perturbations in mixed models parametrized by the ampli-
tudes �1 and �2 (�1 and �2) of the primordial isocurvature
(correlation) power spectrum at two different scales. It
should be kept in mind that in Bayesian model selection,
‘‘the model’’ means the theoretical setup including the
chosen parametrization and the priors of these parameters.
Therefore, by the very first principles of model selection,
the evidences are inevitably sensitive to the chosen pa-
rametrization. To account for this, we reproduce a couple
of our results for another mixed model, which is otherwise
the same as the previous model, but where the primordial
nonadiabatic components are described by amplitudes ~�i

(~�i) of the primordial perturbations, instead of the ampli-
tudes of the power spectra. These two parametrizations are
related by

�i ¼ ~�2
i ; �1 ¼ signð~�1Þ~�2

1; �2 ¼ ~�2
2: (21)

While the posterior likelihoods of the other cosmologi-
cal parameters remain almost unchanged, and �T is af-
fected by much less than 1�, the different integration
measure affects considerably the global Bayesian evi-

dence. We show the evidences for our new mixed model,
which we call ‘‘sqrt parametrization’’ or ‘‘sqrt model,’’ in
Table III for the CMB&SN data. In light of the CMB&SN
data, the flat (curved) mixed sqrt model is within 2.9 (3.5)
from the flat adiabatic �CDM model, corresponding to
odds of 1:18 (1:33). Therefore, there is strong—but not
decisive—evidence against the sqrt model. In particular,
taking into account the error estimates of � lnðevÞ, the flat
mixed sqrt model is not significantly disfavored when
compared to the curved adiabatic �CDM model. As their
evidence difference,�1:1, corresponds to odds of 1:3, this
suggests that in future studies, isocurvature should be
treated on a similar footing as checking for curved adia-
batic models.

VI. CONCLUSIONS

In this paper we have presented a new likelihood and
model selection analysis allowing for a correlated cold
dark matter isocurvature mode of primordial perturbations,
for the first time including spatial curvature.
Taking first a frequentist’s point of view, we have shown

in the light of posterior likelihoods that models with a
small fraction of isocurvature ( ’ 3%) are still favored by
a CMB-only analysis, and including the type Ia supernovae
or the integrated Sachs-Wolfe effect data does not change
this result in the spatially curved Universe. A positively
correlated nonadiabatic contribution of up to 7% is allowed
at 95% C.L., whereas the pure adiabatic model lies near the
boundary of the 95% C.L. region. In the flat case, we
discover the previously known result that the SN data cut
out the best-fit isocurvature models. Interestingly, this does
not happen in the curved case as indicated in Fig. 3. The
ISW data constrain the vacuum energy density and curva-
ture of the Universe in a complementary way to CMB or
SN. Therefore the inclusion of the ISW data in the analysis
sets more stringent constraints on the curvature, but does
not seem to tighten the constraints on isocurvature.
We recommend including the spatial curvature in the

isocurvature analysis of future CMB data (combined with
some other probes of curvature, dark energy density, or

TABLE III. Bayesian evidences for the flat and nonflat adiabatic and mixed (correlated adiabatic and isocurvature) models with
various combinations of data. Columns ln(ev) stand for the natural logarithm of the evidence (total likelihood). Columns � lnðevÞ give
the difference of ln(ev) of the considered model compared to the flat adiabatic model with the same combination of data; � lnðevÞ ¼
lnðev=evflat;adiÞ. Note that a negative � lnðevÞ means that the model is disfavored compared to the flat adiabatic �CDM model. ‘‘Sqrt

param.’’ refers to an alternative mixed model described in the end of Sec. V.

Data Model

Flat: adiabatic Nonflat: adiabatic Flat: mixed Nonflat: mixed

ln(ev) ln(ev) � lnðevÞ ln(ev) � lnðevÞ ln(ev) � lnðevÞ
CMB �1370:3	 0:3 �1372:9	 0:3 �2:6	 0:5 �1375:5	 0:4 �5:2	 0:5 �1376:5	 0:4 �6:2	 0:5

CMB&SN �1525:7	 0:2 �1527:5	 0:2 �1:8	 0:3 �1531:3	 0:3 �5:6	 0:4 �1531:9	 0:3 �6:2	 0:4
—Sqrt param. Same as above Same as above Same as above �1528:6	 0:2 �2:9	 0:3 �1529:2	 0:3 �3:5	 0:3
CMB&ISW �1393:7	 0:3 �1396:7	 0:3 �3:1	 0:4 �1397:2	 0:3 �3:6	 0:4 �1399:8	 0:3 �6:1	 0:4

CMB&SN&ISW �1548:2	 0:3 �1551:6	 0:3 �3:3	 0:5 �1553:7	 0:4 �5:5	 0:5 �1555:6	 0:3 �7:4	 0:4
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Hubble parameter), since assuming flatness of the Universe
considerably—and misleadingly—biases the results to-
ward pure adiabaticity.

The Bayesian model selection, which heavily penalizes
for any ‘‘unnecessary’’ extra degrees of freedom, disfavors
strongly or decisively—depending on the parametrization
of primordial perturbations—the mixture of correlated
adiabatic and isocurvature primordial perturbations, in
light of the current data. However, one should keep in
mind that this result is very sensitive to the calibration of
the CMB data around the second and third acoustic peaks,
and therefore future data, e.g. from the Planck satellite,
may either weaken or strengthen the constraints.

From a theoretical point of view, other scenarios that
modify the second and third acoustic peak region typically
involve other types of isocurvature, such as a dynamical
contribution from cosmic strings [83]. In addition, the
kinematic Sunyaev-Zel’dovich effect modifies the same
region [84]. However, Planck should be able to distinguish
between these and the mixed adiabatic and CDM isocur-
vature models, since the former produce just a single
‘‘bump’’ of extra angular power, whereas the latter modi-
fies the angular power spectrum in a more complex way at
a few percent level, as shown in Fig. 2 in Ref. [48].

Although we have focused on isocurvature, we have also
constrained the geometry of the Universe in the pure
adiabatic model, finding that with the CMB&SN data the
Bayesian model selection significantly (with odds of 1:6)
disfavors the spatially curved adiabatic model compared to
the flat model. This constraint is tightened from ‘‘signifi-
cant’’ to ‘‘strong’’ (with odds of 1:27) when we add the
ISW data into the analysis.

It seems likely that the Bayesian model selection, with
near-future data, could decisively rule out both the spa-
tially curved geometry of the Universe and the mixed
model, irrespectively of the parametrization issues, while
the frequentist’s approach may continue to slightly ‘‘fa-
vor’’ these models over the flat �CDM model.

However, it should be noticed that even the future CMB
temperature anisotropy data alone are unlikely to constrain
the mixed models with niso & 2–3 better than the current
WMAP data, as first pointed out in [85] (compare also
Figs. 2c and 13 in [27], and see Fig. 1 in [55]). The reason
is that on subhorizon (sub-Hubble) scales before last scat-
tering, the CDM density perturbations resulting from the
primordial CDM isocurvature mode are damped by k
compared to the ones resulting from the adiabatic primor-
dial mode. (Note that in the power spectrum this damping
is / k2, and in the angular power / l2). Therefore in order
to significantly modify the predominantly adiabatic angu-
lar power spectrum above the multipole l * 200, one needs
a large isocurvature spectral index. Consequently, models
with niso & 2 would modify the anisotropy spectrum only
at low multipoles, say l & 200, but here the temperature
data are already cosmic-variance limited. In particular, the

future CMB temperature data cannot significantly improve
the constraints on a model where all the components share
the same spectral index (niso ¼ nad1 ¼ nad2 ¼ ncor ¼ n �
1), such as in [78]. Nevertheless, new accurate polarization
data will help in reducing the uncertainty caused by the
cosmic variance and in breaking the parameter degenera-
cies. Polarization data together with more accurate data on
high multipoles also fix the background parameters better,
leading indirectly to tighter constraints on isocurvature. As
shown in [55], one can thus expect a moderate improve-
ment on the constraints even for models with a nearly
scale-invariant isocurvature spectrum. Our main forecast,
e.g., for Planck, is that having more accurate data on high
multipoles, in particular, helps to constrain the isocurvature
spectral index in models where it could be niso * 2 (in this
paper more than 50% of the well-fitting mixed models; see
Fig. 1). In addition, Planck, as well as future supernovae
data, will constrain the background parameters better and
thus indirectly improve the constraints on the isocurvature
contribution by breaking the degeneracies.
The prospects of the ISW data are more pessimistic. We

have checked with our best-fit models that about 10 times
more accurate ISW data would be needed if one was to
directly discern between the perturbation spectra of the
pure adiabatic model and the mixed model, even with a
large niso. Since the required accuracy is more than the
theoretical bound for the signal to noise [69], the role of
the ISW data will remain limited to constraining the
background, and thus only indirectly the isocurvature
contribution.
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APPENDIX A: ON THE SAMPLING TECHNIQUE

1. Bayesian inference

Bayesian statistics provides a good method to approach
the two common problems of parameter estimation and
model comparison. It is based on Bayes’ theorem which
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states that for a set of parameters �, in a model M, with
dataD, the posterior probability distribution of the parame-
ters is

P ð�Þ ¼ Lð�Þ�ð�Þ
ZðMÞ ; (A1)

where P ð�Þ ¼ Pð�jD;MÞ, the likelihood is Lð�Þ ¼
PðDj�;MÞ, the prior is �ð�Þ ¼ Pð�jMÞ, and the evi-
dence is ZðMÞ ¼ PðDjMÞ.

When estimating parameters for a given model, the
standard practice is to ignore the evidence factor, and to
estimate the posteriors using the standard MCMC method.

For model selection the evidence is instead crucial, since
the ratio of evidences reflects the relative probabilities of
the models. The evidence can be computed by the integra-
tion over all the dimensions D of the parameter space,

Z ðMÞ ¼
Z

Lð�Þ�ð�ÞdD�: (A2)

This expression incorporates automatically Occam’s prin-
ciple of simplicity by penalizing models with extra pa-
rameters. When comparing two models A and B, the
important quantity is the logarithmic difference in the
evidences, also known as Bayes factor:� lnZ ¼ lnZðAÞ �
lnZðBÞ. Then the model selection is qualitatively achieved
using Jeffreys scale, which states that � lnZ< 1 is not
significant, 1< � lnZ< 2:5 is significant, 2:5< � lnZ<
5 is strong, and � lnZ> 5 is decisive. In the main text we
refer to lnZ as lnðevÞ for clarity.

The standard method of thermodynamic integration,
which is generally used to calculate the evidence, is very
intensive and expensive, typically requiring the evaluation
of the likelihoods for 106–107 models, and has been hin-
dering the widespread use of Bayesian model comparison.

2. Nested sampling

The aforementioned problems are conveniently solved
by the nested sampling method [86]. In this technique, the
integral of Eq. (A2) is replaced by a simpler 1d integral

Z ðMÞ ¼
Z 1

0
LðXÞdX; (A3)

where the new variable X represents the prior volume,
identical to the parameter space volume in the case of
uniform priors, and is defined by dX ¼ �ð�ÞdD�, i.e.

Xð�Þ ¼
Z
Lð�Þ>�

�ð�ÞdD�; (A4)

where the integration is over the region contained in the
isolikelihood contour defined by �. Thus the problem of
calculating the evidence is reduced to the evaluation of the
likelihoods Lj at a series of points of decreasing value Xj,

so that the 1d integration of Eq. (A3) can be performed by
summation as

Z ðMÞ ¼ XNmax

i¼1

Liwi; (A5)

where the weights wi can be given e.g. by a simple tra-
pezoidal rule.
In more detail, the sampling of the Xj can start with a

uniform sampling of N points (often called ‘‘live points’’)
within the priors, and can then work its way up the like-
lihood surface by discarding at each iteration the lowest
likelihood point and replacing it with a higher one. The
process is terminated when some accuracy criterion is
satisfied.
Once the evidence is known, the posteriors can be easily

evaluated as a by-product by using the set of points dis-
carded at each iteration, giving each point a weight

pi ¼ Liwi

Z
: (A6)

3. MULTINEST

After the conceptual introduction by [86], this method
was first applied to cosmology in a simple case by [87]. Its
most sensitive part, the sampling technique, has been sub-
sequently greatly refined by [88,89] to minimize the re-
quired number of likelihood evaluations and to deal
efficiently with a series of possible pathologies, such as
multimodal posterior distributions and strongly curved
parameter degeneracies.
Finally, an even more robust and efficient development

has been released by [58] for applications in cosmology,
astronomy, and particle physics. The package, available for
public use from [90] contains an easily usable interface for
the CAMB/COSMOMC cosmology code [62,63]. The user
simply has to tune three parameters: the tolerance (accu-
racy), the number of live points N, and the maximum
efficiency e, which sets how aggressively (or conserva-
tively) we want to reduce the parameter space at each
iteration. Another very attractive feature of this method is
that any need of a proposal matrix for the parameters’
covariance, a well-known hassle for MCMC users, is
now completely superseded.
The analysis presented in this paper would have been

impossible with the conventional MCMC method. With
MULTINEST, the curved cases, which were the toughest,

took 30 000–70 000 CPUh each. The extensive compari-
sons presented in this paper took a total of
�500 000 CPUh, but this was doable in large supercom-
puters, since the MULTINEST algorithm scaled linearly
(with message passing interface parallelization) up to
* 100 CPUs in our case and CAMB, which produces the
theoretical predictions, scaled well up to 4–8 CPUs with
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openMP. An efficient configuration turned out to be
�100 MPI� 6 openMP threads in the main runs.

In most of the cases reported in this paper we set the
efficiency parameter in MULTINEST to 0.3, the tolerance

(accuracy) parameter to 0.5, and the number of live points
to N ¼ 400.
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