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Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions.

These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We

study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and

kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings

without junctions remain largely unchanged, but junctions give rise to additional contributions to the

gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks

passing through a junction.
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I. INTRODUCTION

In string theory models of brane inflation, fundamental
(F) and D-strings are produced at the end of inflation when
the branes collide and annihilate [1–4]. In certain scenarios
the resulting superstring networks are stable and expand to
cosmic size, with predicted string tensions in the range
10�11 � G� � 10�6. This raises the possibility that cos-
mic superstrings could provide an observational signature
of string theory. Indeed it has been argued that the gravi-
tational wave (GW) signals from cusps of oscillating loops
on cosmic strings should be detectable by LIGO and LISA
for string tensions as low as 10�13 [5–7].

However, the GW predictions of [6] may not be directly
applicable to cosmic superstring networks, because F- and
D-strings form an interconnected network in which they
join and separate at Y-junctions. Each junction joins an F-
string, a D-string and their bound state. This means that
closed loops containing junctions in a cosmic superstring
network do not evolve periodically in time. Furthermore,
kinks interact with junctions, which leads to novel contri-
butions to the GW signal as well as a more complicated
network evolution. For these reasons we reexamine here
the gravitational wave signal emanating from cusps and
kinks on cosmic string loops taking in account the presence
of junctions. We note that in a similar spirit, Damour and
Vilenkin have calculated the effect on GW signatures of
cosmic strings of a reduced reconnection probability of
intersecting strings and of a reduced typical length of
newly formed loops. It was found that earlier results ob-
tained for field theory cosmic strings remain largely valid
for a rather wide range of network parameters.

We first set up the formalism for calculating GW bursts
emitted by cusps and kinks on nonperiodic cosmic string
loops. The nonperiodic evolution of loops with junctions

renders the GW calculation somewhat more involved be-
cause one can no longer factorize the Fourier transform of
the GWamplitude. We show one can nevertheless integrate
the stress energy over the string world sheet and obtain an
analytic expression for the high frequency behavior of the
various contributions to the GW bursts. We find that earlier
results on the strength of individual bursts from cusps and
kinks on strings without junctions remain largely un-
changed, but junctions give rise to additional contributions
coming from strings expanding at the speed of light at a
junction and kinks passing through a junction. We analyze
the latter contributions, which provide a possible observa-
tional discriminant between ordinary cosmic strings and
cosmic superstrings.
We concentrate here on the calculation of individual

gravitational bursts. This has the advantage of being a fully
tractable exercise. By contrast, the observable signal of
such bursts at the present time depends also on the details
of the loop evolution as well as on the cosmological
evolution of the network. In particular, junctions tend to
enhance the number of kinks on loops. One might expect
this amplifies the GW signal from cosmic superstring net-
works compared to the signal from cosmic string networks
without junctions. A more detailed analysis of this effect
will appear elsewhere [8].

II. GW EMISSION FROM COSMIC
SUPERSTRINGS WITH JUNCTIONS

In this section we consider the GW emission from a
cosmic superstring loop, and generalize the results of
Damour and Vilenkin [5–7] on the emission of gravita-
tional bursts from standard loops without junctions.
We consider closed loops of cosmic superstrings con-

taining two Y-junctions, as shown in Fig. 1.
(Generalization to loops with 4 or more junctions is
straightforward in principle.) The loop consists of three
local Nambu-Goto cosmic strings of tensions�q (q ¼ 1, 2,

3), which meet at two Y-junctions where the junctions are
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labeled by A and B. The action describing the system has
been set up and analyzed in [9], and is given by

S ¼ � X
q¼1;2;3

�q

Z
dt

Z sBq ðtÞ

sAq ðtÞ
d�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02
q ð1� _x2

qÞ
q

þ X
J¼ðA;BÞ

X
q

Z
dtfJq � ½xqðt; sJqðtÞÞ �XJðtÞ�: (1)

The first term is the Nambu-Goto action for each of the
three strings in the loop, where we have assumed a flat
space-time geometry with signature (�þþþ) and used
the standard conformal-temporal gauge to parametrize
each string’s world sheet. Thus each string is described
by its spatial coordinates xqð�q; tÞ, where t coincides with
background time. [As discussed in [10], cosmic super-
strings should be described by the Dirac-Born-Infeld ac-
tion, but the resulting equations of motion reduce to those
derived from (1).] Since each string is bounded by the two
junctions, the � parameter runs between two time-
dependent bounds

�q 2 ½sA;qðtÞ; sB;qðtÞ�: (2)

The conformal gauge constraints can be written (with 0 and
� standing for derivatives with respect to � and t) as

x 0
q � _xq ¼ 0; (3)

x 02
q þ _x2

q ¼ 1; (4)

and as usual, away from the junctions, the wavelike equa-
tion of motion €xq � x00

q ¼ 0 yields

x qð�; tÞ ¼ 1

2
ðaqð�þ tÞ þ bqð�� tÞÞ; (5)

with a02q ¼ b02
q ¼ 1 in order to satisfy the gauge con-

straints. This resembles the solution for standard closed
loops. However, one must also take in account the second

term of (1), which imposes, via the Lagrange multipliers
fJq, that the three strings meet at the positions of the

junctions XAðtÞ and XBðtÞ. Causality requires j _XJðtÞj �
1, which together with (4) yields [9]

j _sA;qj � 1; j _sB;qj � 1: (6)

The time evolution of sA;qðtÞ and sB;qðtÞ is given by the

equations of motion at the junction, yielding [9]

�1ð1� _sB;1ÞP
q
�q

¼ M1ð1� cB;1ÞP
q
Mqð1� cB;qÞ ; (7)

where

cB;1 � b0
2ðs2 � tÞ � b0

3ðs3 � tÞ;
M1 � �2

1 � ð�2 ��3Þ2 � 0;
(8)

and similarly by circular permutation. As a result of the
presence of the junctions, loops now evolve nonperiodi-
cally in time.
Like field theory cosmic strings, cosmic superstrings can

contain cusps—points moving at the speed of light j _xqj¼1

(and hence x0
q ¼ 0) with x00

q � 0 [11,12]—and kinks,

which correspond to a discontinuity in x0
q. Here, we aim

to study the gravitational wave emission by such localized
sources. We first calculate the GW signal in the local wave
zone of the source, at distances from the source that are
larger than the wavelength of interest but smaller than the
Hubble radius. In this regime we can take the space-time to
be asymptotically flat: g�� ¼ ��� þ h��, where h�� � 1

is the metric perturbation generated by the source. The
subsequent propagation of the gravity waves on cosmo-
logical scales in a Friedmann-Lemaı̂tre space-time is dis-
cussed at the end of this paper.
In a suitable gauge the GW are described by the trans-

verse traceless ðTTÞ part of the linear perturbation hðTTÞij of

the spatial metric. This satisfies the linearized Einstein
equations,

hhðTTÞij ¼ �16�GTðTTÞ
ij : (9)

where TðTTÞ
ij is the ðTTÞ part of the stress-energy tensor of the

source. In the local wave zone, for closed loops of charac-
teristic size L localized around the origin, the solution is
given by [6]

hðTTÞij ðx; !Þ ¼ 4G

r
ei!rTðTTÞ

ij ð!n; !Þ; (10)

where n ¼ x= k x k and r ¼k x k . Note that hðTTÞij is

actually the time Fourier transform of hðTTÞij and TðTTÞ
ij the

space-time Fourier transform of TðTTÞ
ij : we will use these

abusive notations throughout the text. The wave-zone con-
ditions are [13,14]

FIG. 1 (color online). Loop formed by three strings and two
junctions.

BINÉTRUY, BOHÉ, HERTOG, AND STEER PHYSICAL REVIEW D 80, 123510 (2009)

123510-2



r � L; r � L2!; r � 1=!:

Hence, to obtain the GWemission in this regime it suffices

to evaluate TðTTÞ
ij at points ðk; !Þ in the Fourier domain that

satisfy the dispersion relation k ¼ !n, where n is a unit
vector pointing from the source toward the observer.

Let us put aside the ðTTÞ projection. From now on we
concentrate on the calculation of Tij and merely indicate

where the ðTTÞ projection projects out a leading contribu-
tion. From the action (1) one gets [9]

Tijðx0; t0Þ ¼
X

string q

�q

Z
dt

Z sB;qðtÞ

sA;qðtÞ
ð _xiq _xjq � x0iqx

0j
q Þjð�;tÞ

	 �ð3Þðx0 � xqð�; tÞÞ�ðt0 � tÞd�; (11)

namely a sum of contributions of all strings. Each term can
be evaluated independently once the coupled dynamics of
the system has been determined. From now on, we focus on
one of these contributions and drop the q subscript indicat-
ing the string. Moving into Fourier space, we have

Tijðk; !Þ ¼ �
Z

dt
Z sBðtÞ

sAðtÞ
ð _xi _xj � x0ix0jÞjð�;tÞ

	 eið!t�k�xð�;tÞÞd�;
(12)

¼ �

2

Z
dt

Z sBðtÞ

sAðtÞ
a0ðið�þ tÞb0jÞð�� tÞeið!t�k�xð�;tÞÞd�:

(13)

For the periodic loops with no junctions considered in
[6], changing integration variables to

u ¼ �þ t; v ¼ �� t; (14)

and using the periodicity leads to a factorized expression of
the form

Tij /
�Z

a0ðiðuÞeði=2Þð!u�k�aðuÞÞdu
�

	
�Z

b0jÞðvÞe�ði=2Þð!vþk�bðvÞÞdv
�
: (15)

With junctions, the absence of periodicity prevents one
from writing the stress energy in a similar convenient
form. Nevertheless, the same change of variables still
proves useful to study Tij (see Fig. 2). Indeed, after chang-

ing to ðu; vÞ in (13) and evaluating at k ¼ !n we obtain

Tijð!;!nÞ ¼ �

4

Z 1

�1
b0jðvÞe�ði!=2Þðvþn�bðvÞÞ

	
�Z uBðvÞ

uAðvÞ
a0iðuÞeði!=2Þðu�n�aðuÞÞdu

�
dv: (16)

Notice that the u and v integrals are no longer factorized
due to the v dependence of the bounds in the u integral.
Indeed, the bounds uAðvÞ and uBðvÞ are defined as follows:
Since j _sAj, j _sBj< 1, for each v there is a unique tA and a

unique tB that satisfy sAðtAÞ � tA ¼ v, sBðtBÞ � tB ¼ v.
Then, uAðvÞ ¼ sAðtAÞ þ tA and uBðvÞ ¼ sBðtBÞ þ tB.
We note for further use that, for J ¼ A or B,

duJ
dv

¼ _sJ þ 1

_sJ � 1
� 0: (17)

This means that for ‘‘typical’’ values of j _sJj not too close to
1, duJ=dv is negative and of order 1. However, one can
also have the limiting values duJ=dv ¼ �1 when _sJ ¼ 1
and duJ=dv ¼ 0 when _sJ ¼ �1. Since such values corre-
spond to a junction moving at the speed of light, a phe-
nomenon which will turn out to lead to a gravitational
burst, we will consider these more carefully below. Note,
however, that the equations of motion forbid the strings
from shrinking at the speed of light (either at junction A:
_sA ¼ 1 and duA=dv ¼ �1, or at junction B: _sB ¼ �1 and
duB=dv ¼ 0) [15]. Hence, one only needs to consider the
case of a string expanding at the speed of light, again either
at junction A with _sA ¼ �1 and duA=dv ¼ 0, or at
junction B with _sB ¼ 1 and duB=dv ¼ �1).
We are interested in the production of gravitational

bursts, that is in the high frequency ! regime. We can
therefore restrict attention to the ! ! 1 limit of the
integrals in (16), where standard techniques have been
developed [6,16]. We note, however, that an analysis of
this kind does not include the low frequency gravitational
radiation from the slow motion of the string itself, and
therefore the resulting stochastic background of gravita-
tional waves arising from this.

FIG. 2. World sheet of one of the strings.
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III. HIGH FREQUENCY BEHAVIOR OF Tij:
GENERAL DISCUSSION

Let us consider integrals of the form

Ið!Þ ¼
Z b

a
fðtÞe�i!�ðtÞdt (18)

in the ! ! 1 limit. We will use the following standard
result (see, for example, [16]):

If

(i) 8k > 0, fðkÞðaÞ ¼ fðkÞðbÞ and �ðkÞðaÞ ¼ �ðkÞðbÞ
(ii) f and � are C1 on ½a; b�—that is, fðtÞ and �ðtÞ are

smooth in the interval; and
(iii) 8t 2 ½a; b�, _�ðtÞ � 0—that is, there is no stationary

phase or saddle points, then Ið!Þ ! 0 as ! ! 1,
faster than any power of 1=!.

(To see this, change the variable of integration to �
using (iii) and integrate by parts. (i) means the boundary
term vanishes. Repeating this procedure N times shows
that Ið!Þ ¼ Oð!�NÞ.) Thus, integrals of the form (18) are
exponentially small for large values of ! if the conditions
(i)–(iii) hold and the integrand has a rapidly varying phase,

i.e. ! � j _f=ðf _�Þj.
Integrals of this type appear in the expression for the

stress energy, Eq. (15) and (16). In the following, we will
therefore be interested in situations where (at least) one of
the above conditions does not hold, since these might lead
to high frequency contributions to the stress energy pro-
portional to small powers of 1=!. But we first summarize
the results obtained in [6] for the factorized stress-energy
tensor (15) of cusps and kinks on periodic strings. In this
case the above results can be applied independently to each
integral, and since (i) is ensured by the periodicity, the
main contributions to Tij appear when

(i) there is a saddle point in each integral [(iii) violated

in both integrals], leading to a contribution Tij /
1=!4=3 and corresponding to the physical situation
of a cusp emitting around one specific direction;

(ii) there is a discontinuity of a0i and a saddle point in the
integral over v (or vice versa), leading to Tij /
1=!5=3. This is the case of a kink emitting in a
one-dimensional fan-like set of directions through-
out its propagation.

All other cases (discontinuities in higher derivatives of
a0 or b0 for example) give smaller contributions to Tij.

In the case of loops with junctions we consider here, the
stress-energy tensor given in Eq. (16) cannot be factorized.
It can only be written in the form

Tijð!;!nÞ ¼ �

4

Z 1

�1
b0jðvÞe�ði!=2Þðvþn�bðvÞÞIiðvÞdv;

(19)

where

IiðvÞ :¼
Z uBðvÞ

uAðvÞ
a0iðuÞe�i!�ðuÞdu (20)

with

�ðuÞ ¼ �1
2ðu� n � aðuÞÞ: (21)

The previous results can only formally be applied to the
integral in IiðvÞ: indeed, its bound depends on v, so that the
v integral in (19) receives contributions that could prevent
it from being of the same type. However, as we now
discuss, in most situations of interest these additional con-
tributions have a simple dependence on v, allowing us to
generalize the results of [6].

IV. HIGH FREQUENCY BEHAVIOR OF Tij: FIRST
INTEGRATION

Consider first the integral IiðvÞ given in (20). In order to
be in the rapidly varying phase regime, we require ! �k
a00 k . If the loop is not too wiggly, one can assume that
k a00 k 
1=L (recall that k a0 k¼ 1), in which case the
condition becomes ! � 1=L [note that this is an addi-
tional constraint on top of the wave-zone conditions (11)].
We now examine the high frequency contributions to IiðvÞ
resulting from the violation of one of the conditions listed
in the previous section.1

Part A. (i) is violated, i.e. a0ðuAðvÞÞ � a0ðuBðvÞÞ.
This will generically be the case for a string bounded by

junctions. Hence, this is a novel contribution with respect
to [6]. After integrating by parts, the leading order contri-
bution scales as !�1 and is given by

I
boundary
i ðvÞ � 2

i!

�
a0iðuÞ

1� n � a0ðuÞ e
�i!�ðuÞ

�
u¼uBðvÞ

u¼uAðvÞ
: (22)

In most cases of interest j duJdv ðvÞj 
 1, so that
a0iðuJðvÞÞ

1�n�a0ðuJðvÞÞ is
a slowly varying function of v and e�i!�ðuJðvÞÞ is a rapidly
varying phase term that must be taken in account when
performing the integral over v in (19), though the latter
remains of the same type as (18).2

1An analysis of situations in which several conditions are
violated is beyond the scope of this work.

2As mentioned above, when the string expands at the speed of
light at junction B, duBdv diverges. One might expect this leads to a
discontinuity-like contribution in the second integral. However,

both the derivative with respect to v of the amplitude
a0iðuBðvÞÞ

1�n�a0ðuBðvÞÞ
and of the phase in the exponential diverge. The condition
_�! � _f

f still holds since duB
dv cancels on both sides. Therefore,

no discontinuity-like contribution is introduced in the second
integral.
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Part B. (ii) is violated in the following way: There exists
a u� 2�uAðvÞ; uBðvÞ½ where a0

i is discontinuous.

We could also consider non regularities in higher order
derivatives of ai but they would lead to higher order powers
in 1=!.)

To evaluate this term, we first rewrite

IiðvÞ ¼
Z u�

uAðvÞ
a0iðuÞei!�duþ

Z uBðvÞ

u�
a0iðuÞei!�du;

and then integrate once by parts as above to find

Idisci ðvÞ ¼ � 2

i!

�
a0iðuþ� Þ

1� n � a0ðuþ� Þ �
a0iðu�� Þ

1� n � a0ðu�� Þ
�
ei!�ðu�Þ

(23)

As above, we find an !�1 falloff. The only dependence on
v comes from the bound uAðvÞ< u� < uBðvÞ. This means
that when we will perform the integral over v in (19) in
Sec. V below, we will need to restrict the v domain of
integration appropriately.

Part C. (iii) is violated (saddle point)

There exists3 a us 2 ½uAðvÞ; uBðvÞ� where the phase
�ðuÞ has a vanishing derivative �0ðusÞ ¼ �ð1� n �
a0ðusÞÞ=2 ¼ 0, or in other words n ¼ a0ðusÞ.

In this case the leading contribution to IiðvÞ comes from
the vicinity of the saddle point and is obtained by Taylor
expanding �ðuÞ and a0iðuÞ around us.

To do so, notice that the gauge conditions (on the world
sheet) enforce �00ðusÞ ¼ 0. Indeed, �00ðuÞ ¼ 1

2n � a00ðuÞ
and since a0ðuÞ2 ¼ 1, it follows that a0 � a00ðuÞ ¼ 0.
Furthermore, �000ðusÞ < 0 because upon taking the deriva-
tive of a0 � a00ðuÞ ¼ 0, one gets a0 � a000ðuÞ ¼ �jja00jj2 so
that �000ðuÞ ¼ �jja00jj2=2. Regarding the Taylor expansion
of a0iðuÞ, the first term is a0iðusÞ ¼ ni which is suppressed

by the ðTTÞ projection operator (it amounts to a gauge term
[6]). To summarize, we therefore need to Taylor expand the
phase to the third order and a0iðuÞ to the first order:

�ðuÞ ’ �ðusÞ þ�000ðusÞ
6

ðu� usÞ3

a0iðuÞ ’ a0iðusÞ þ ðu� usÞa00i ðusÞ;
(24)

Thus, up to a gauge term proportional to ni,

Ii ’ e�i!�ðusÞ
Z uBðvÞ

uAðvÞ
ðu� usÞa00i ðusÞe�ði!=6Þ�000ðusÞðu�usÞ3du

’ �e�i!�ðusÞa00i ðusÞ
�

6

!j�000ðusÞj
�
2=3 Z wA

wB

we�iw3
dw

’ �e�i!�ðusÞa00i ðusÞ
�

6

!j�000ðusÞj
�
2=3 Z 1

�1
we�iw3

dw

’ 1

!2=3
a00i ðusÞe�i!�ðusÞ

�
6

j�000ðusÞj
�
2=3

�
iffiffiffi
3

p �

�
2

3

��
; (25)

where we have changed variables according to w ¼
�ð!j�000ðusÞj

6 Þ1=3ðu� usÞ and have used
R1
�1 we�iw3

dw ¼
� iffiffi

3
p �ð23Þ. We note that in going from the second to the

third line, we have assumed that the saddle point lies far
from the boundaries:

jus � uJðvÞjj!�000ðusÞj1=3 � 1; (26)

thus allowing the domain of integration to be extended
from �1 to þ1. This will not always be the case, how-
ever, and the general result reads

Isaddlei ðvÞ ¼ gauge termþ
�

1

!2=3
a00i ðusÞeði!=2Þðus�n�aðusÞÞ

	
�

12

jn � a000j
�
2=3

�
iffiffiffi
3

p �

�
2

3

��
CðwA;wBÞ

�
; (27)

with

CðwA;wBÞ ¼
R
wA
wB

we�iw3
dwR1

�1 we�iw3
dw

¼ BðwAÞ � BðwBÞ;

BðwJÞ ¼
RwJ�1 we�iw3

dwR1
�1 we�iw3

dw
;

(28)

and

wAðvÞ ¼
�
!jn � a000j

12

�
1=3ðus � uAðvÞÞ;

wBðvÞ ¼ �
�
!jn � a000j

6

�
1=3ðuBðvÞ � usÞ:

The behavior of the function CðwA;wBÞ is studied in detail
in the Appendix. Its important features are the following:

(a) when the saddle point lies well in between the upper
and lower bounds of the u integral CðwAðvÞ; wBðvÞÞ
obviously reduces to 1, as in (25).

(b) when the saddle point is located far outside the
domain of integration then CðwAðvÞ; wBðvÞÞ reduces
to zero.

(c) when the saddle point is near uAðvÞ (resp uBðvÞ),
wAðvÞ (respwBðvÞ) is of order one. CðwAðvÞ; wBðvÞÞ
then reduces to BðwAðvÞÞ (resp BðwBðvÞÞ) given in
Fig. 3. We note that BðwAÞ ! 1 for large values of

3Strictly speaking, us could lie outside ½uAðvÞ; uBðvÞ�, but
close to uA or uB and still give rise to a non-negligible contri-
bution (cf. the Appendix).
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wA, with the envelope of its oscillations decreasing
as 1=w.

The entire dependence on v in (27) is contained in
CðvÞ ¼ CðwAðvÞ; wBðvÞÞ, which is a smoothed version of
the step function �ðus � uAðvÞÞ�ðuBðvÞ � usÞ (cf. the
Appendix). This enters the integral over v as follows: Let
vA;s (resp. vB;s) be the value of v for which uAðvÞ ¼ us
(resp. uBðvÞ ¼ us). Since uA and uB are decreasing func-
tions of v, CðwAðvÞ; wBðvÞÞ is actually a smoothed version
of the step function �ðv� vA;sÞ�ðvB;s � vÞ. But we ought
to verify whether C is rapidly varying (in the vicinity of
vA;s and vB;s) compared to the phase appearing in

e�i!
2 ðvþn�bðvÞÞ. In typical cases where j duAdv j � 1, j duBdv j �

1, one has dB
dw ðw � wAðvÞÞ 
Oð1Þ in the region of interest

(see Fig. 3). Hence,

dC

dv
ðv � vA;sÞ � dB

dw
ðw � wAðvÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�1

ð!j�000ðusÞjÞ1=3 duAdv

� ð!j�000ðusÞjÞ1=3: (29)

For strings that are not too wiggly we expect j�000j 

jja00jj2 � 1=L2 so that

dC

dv
ðv � vA;sÞ �

�
!

L2

�
1=3 � !; (30)

since we assumed ! � 1=L. Hence, CðvÞ enters as a
multiplicative, slowly varying amplitude in the integral
over v.4 In particular, it does not introduce a boundary
term in the integral over v (unless of course duB=dv
diverges, see below), which implies junctions do not radi-
ate spontaneously.

V. FULL HIGH FREQUENCY BEHAVIOR OF Tij

We are now in a position to perform the remaining
integral in (19) to obtain the high frequency behavior of
the various contributions to the stress-energy source of GW
bursts. The analysis of the previous section shows that, in
all cases, the integral over v is of exactly the same type as
the integral IiðvÞ over u. We can therefore apply the same
methods. Generalizing the definition we used above in the
saddle point case we denote by vAðuÞ the value of v for
which uAðvÞ ¼ u (and the dual definition for B). Since we
are interested in the high frequency regime, we list the
different contributions with increasing powers of 1=!.

A. Contributions in 1=!4=3

(i) saddle point in the u integral at us= saddle point in
the v integral at vs (standard cusp)
The contribution from the integral over u can be
treated as a slowly varying amplitude. Hence, the
integral over v is formally of the same type as the u
integral, with the product CðvÞb0jðvÞ now acting as

the slowly varying amplitude. The derivative of this
evaluated at vs contains a term proportional to
b0jðvsÞ, which is a gauge term for the gravitational

waves, and a term proportional to CðvsÞb00j ðvsÞ. Our
final result reads

Tij � �

!4=3
a00i ðusÞb00j ðvsÞeði!=2Þ½us�vs�n�ðaðusÞþbðvsÞÞ�

	
�

12

jn � a000ðusÞj
�
2=3

�
12

n � b000ðvsÞ
�
2=3

	 1

12
�2

�
2

3

�
CðwA;wBÞ; (31)

with

n ¼ a0ðusÞ ¼ �b0ðvsÞ
and

1,2

0,8

2

0,4

40-2
0

-4

0,1

-0,1

-0,2

-0,3

2-2

0,2

0,3

4
0

0-4

FIG. 3 (color online). Real and imaginary parts of BðwAÞ as a function of wA.

4Strictly speaking, we need to prove that IðvÞb0iðvÞ is slowly
varying in the sense that d

dv ðIðvÞb0jðvÞÞ 1
IðvÞb0jðvÞ � !. After ap-

plying the derivative one is left with two contributions: the first

one is
b00j ðvÞ
b0jðvÞ which, as before for the a0 term, is of order 1

L � !.

The second one is I0
I ¼ C0

C which, according to what we just said,
is � !.
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wA ¼
�
!jn � a000ðusÞj

12

�
1=3ðus � uAðvsÞÞ;

wB ¼ �
�
!jn � a000ðusÞj

12

�
1=3ðuBðvsÞ � usÞ:

This is the case of a cusp that emits in the direction given
by a0ðusÞ. If the cusp occurs away from the junction, C
reduces to 1 and we recover the standard result of Damour
and Vilenkin [6].

B. Contributions in 1=!5=3

This is the first case in which we find novel contributions
specific to strings with junctions.

(i) discontinuity in a0i at some u�=saddle point in the v
integral at vs (standard kink)
This is the standard case of a left-moving kink
propagating on the string and emitting in the fan of
directions n ¼ �b0ðvÞ generated by the right-
moving waves:

Tij � �

!5=3

�
a0iðuþ� Þ

1� n � a0ðuþ� Þ �
a0iðu�� Þ

1� n � a0ðu�� Þ
�
b00j ðvsÞ

	
�

12

n � b000ðvsÞ
�
2=3 1

2
ffiffiffi
3

p �

�
2

3

�
CðwA;wBÞ

	 eði!=2Þ½u��vs�n�ðaðu�ÞþbðvsÞÞ�; (32)

with

n ¼ �b0ðvsÞ
and

wA ¼
�
!n � b000ðvsÞ

12

�
1=3ðvs � vAðu�ÞÞ;

wB ¼ �
�
!n � b000ðvsÞ

12

�
1=3ðvBðu�Þ � vsÞ:

In (32), �C is the complex conjugate of C (induced
from the fact that in the Taylor expansion of the
phase of the v integral, we now have a positive
�000ðvÞ, and hence this is equivalent to changing i
to �i in all integrals).
In order to illustrate how the presence of the function
CðwA;wBÞ modifies the case of a standard loop with
no junction, let us consider a left-moving kink prop-
agating between B and A and ask in which directions
n (described by points on the 3D unit sphere) it
emits. The set of points f�b0ðvÞg draws a curve C
on the Kibble-Turok sphere, as illustrated in Fig. 4.
Away from C, TijðnÞ ’ 0, whereas on the curve the

amplitude is given by (32). The interval between
positions vAðu�Þ and vBðu�Þ on the curve contains
the right-moving waves �b0ðvÞ effectively seen by
the kink while it propagates, so we expect to have an
emission only in or around these directions. On this

interval—and not too close to the endpoints—we
have C ’ 1. Far from this interval5 (in blue on
Fig. 4), C ’ 0. Finally, C smoothly decreases from

1 to 0 in a short interval �v of a few ðL2=!Þ1=3 near
vAðu�Þ and vBðu�Þ. Hence, the overall probability
that a GW burst comes with a value ofC significantly

different from one is of the order ðL!Þ�1=3 � 1. We
conclude therefore that up to small corrections the
predictions of [6] apply to GW bursts from kinks on
cosmic strings with junctions.

(ii) saddle point in the u integral at us=discontinuity of
b0
j at some v� (standard kink)

This is a situation that mirrors the previous one,
namely, a right-moving kink propagating on the
string and emitting in a fan-like set of directions
given by n ¼ a0. The formulae are similar to those
above.

(iii) boundary term (A) in the integral over u=saddle
point in the second integral at vs

Inserting (22) into (19), we obtain

Tijð!;!nÞ ¼ i�

2!

Z 1

�1

b0jðvÞa0iðuAðvÞÞ
1� n � a0ðuAðvÞÞ

	 e�ði!=2Þ½ðvþn�bðvÞÞ�ðuAðvÞ�n�aðuAðvÞÞ�dv;

(33)

where
b0jðvÞa0iðuAðvÞÞ
1�n�a0ðuAðvÞÞ is a slowly varying amplitude

compared to the rapidly varying phase

~�ðvÞ � 1
2½ðvþ n � bðvÞÞ � ðuAðvÞ � n � aðuAðvÞÞ�:

(34)

The saddle point condition is that

FIG. 4 (color online). Directions of emission of a propagating
kink on the Kibble-Turok sphere.

5We note that although this is not taken into account by (32),
Tij smoothly vanishes when n moves away from C.
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~�0ðvsÞ ¼ 1

2

�
1þ n � b0ðvsÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

>0

þ duA
dv

ðvsÞ|fflfflfflffl{zfflfflfflffl}
<0

ðn � a0ðuBðvsÞÞ � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

�

¼ 0: (35)

Since both terms in the sum are positive, they both
need to vanish at vs. Moreover, n � a0ðuAðvsÞÞ � �1,
otherwise we would have a cusp at the junction.
Hence, we are led to the following conditions:

�
n � b0ðvsÞ ¼ �1 ) n ¼ �b0ðvsÞ

duA
dv ðvsÞ ¼ 0:

(36)

The second condition means the string is expanding
at the speed of light at junction A. The other case
where the string expands at the speed of light at

junction B would correspond to duB
dv ¼ �1, and

thus to a discontinuity in the v integral. We will treat
this separately below.
The amplitude of this contribution can be calculated
using the saddle point treatment described previ-
ously (namely, a Taylor expansion of the amplitude
and the phase). We have

~� 00ðvsÞ ¼ 1

2

�
n � b00ðvsÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

þ d2uA
dv2

ðvsÞðn � a0ðuAðvsÞÞ � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ n � a00ðuAðvÞÞ
�
duA
dv

ðvsÞ
�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

�
: (37)

The first term vanishes because of the gauge con-
ditions on the world sheet, and the last term vanishes
due to the second condition in (36). The second term

also vanishes. Indeed, since duA
dv ðvÞ<0 and duA

dv ðvsÞ¼
0, duAdv ðvÞ reaches its maximum at vs. Hence, we need

to Taylor expand the phase to third order:

~�000ðvsÞ ¼ 1

2

�
n � b000ðvsÞ

þ d3uA
dv3

ðvsÞðn � a0ðuAðvsÞÞ � 1Þ
�
: (38)

On the other hand, Taylor expansion of the amplitude
to first order gives

b0jðvÞ
a0iðuAðvÞÞ

1�n �a0ðuAðvÞÞ� gauge termþðv�vsÞ

	b00j ðvsÞ a0iðuAðvsÞÞ
1�n �a0ðuAðvsÞÞ ;

(39)

where the gauge term is proportional to b0jðvsÞ ¼
�nj.

Hence, the leading term of the energy-momentum
tensor is given by

Tijð!;!nÞ � �

!5=3
b00j ðvsÞ a0iðuAðvsÞÞ

1� n � a0ðuAðvsÞÞ

	 ð ~�000ðvsÞÞ2=3 6
2=3

2
ffiffiffi
3

p �

�
2

3

�

	 e�ði!=2Þ½ðvsþn�bðvsÞÞ�ðuAðvsÞ�n�aðuAðvsÞÞ�:

(40)

This contribution corresponds to the situation in
which the string expands at the speed of light at
junction A and emits in a direction corresponding
to n ¼ �b0ðvsÞ, with an amplitude proportional to

1=!5=3. We now turn to the case where the string
expands at the speed of light at junction B.

(iv) saddle point in the u integral at us= string expanding
at the speed of light at junction B
In this case, duB=dv diverges, which gives rise to a
discontinuity-like contribution in the integral over v.
From (19) and (27) we have

Tijð!;!nÞ � �

4

1

!2=3
a00i ðusÞeði!=2Þðus�n�aðusÞÞ

	
�

12

jn � a000ðusÞj
�
2=3 iffiffiffi

3
p �

�
2

3

�

	
Z 1

�1
CðvÞb0jðvÞe�ði!=2Þðvþn�bðvÞÞdv;

(41)

where CðvÞ ¼ CðwAðvÞ; wBðvÞÞ was defined in (28).
We are interested in cases in which a discontinuity in
C (or at least a variation faster than that of the phase
in the exponential, jdC=dvj � !) is induced by the
divergence of duB=dv or equivalently dwB=dv at
some v�. Yet, to achieve such a discontinuity in C,
we need v� to satisfy

jwBðv�Þj & 1: (42)

Indeed, in this region we have @C=@wB � 1,
whereas elsewhere C does not vary with wB at lead-
ing order so that a strong variation of wBðvÞ would
have no effect on CðvÞ. Physically, this requirement
means that the saddle point condition is satisfied near
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the junction at a moment when _sB reaches 1.
From now on we assume that (42) is satisfied. For
jdC=dvj � !, we can treat C as being discontinu-
ous at v�, where dC=dv diverges. In this case, the
leading contribution is the same as that of a discon-
tinuous C with a gap �Cðv�Þ equal to the variation
of the true function C over the interval where
jdC=dvj � !:

Tijð!;!nÞ � �

!5=3
a00i ðusÞ

b0ðv�Þ
1þ n � b0ðv�Þ

	
�

12

jn � a000ðusÞj
�
2=3 	�Cðv�Þ

	
�
� 1

2
ffiffiffi
3

p �

��
2

3

�

	 eði!=2Þðus�v��n�ðaðusÞþbðv�ÞÞÞ: (43)

We therefore need to evaluate the order of magnitude
of �Cðv�Þ. Let us start by determining the interval
around v� over which jdC=dvj � !. As was al-

ready explained in (29) and (30), jdC=dvj �
jduB=dvjð!=L2Þ1=3 so the condition jdC=dvj � !

translates into jduB=dvj � ð!LÞ2=3. Since
jduB=dvj ¼ ð1þ _sBÞ=ð1� _sBÞ � 2=ð1� _sBÞ (be-
cause _sB � 1 in the region of interest), this finally
yields the condition

1� _sB � 1

ð!LÞ2=3 : (44)

We therefore need to determine how _sBðtÞ behaves
around a point t� where _sBðt�Þ ¼ 1. To this end we
investigate the dynamics of a junction using the
equations recalled in Sec. II (we momentarily drop
the B index in Eq. (7), and assume the above dis-
cussion applies to string 1, namely _s1ðt�Þ ¼ 1, while
strings 2 and 3 are assumed not to be expanding at
the speed of light.) For convenience define v2� ¼
s2ðt�Þ � t� and v3� ¼ s3ðt�Þ � t�. Then, from (7),
c1ðt�Þ ¼ 1 so that b0

2ðv2�Þ ¼ b0
3ðv3�Þ � B.

Expansion of b0
2ðv2Þ and b0

3ðv3Þ around v2� and

v3�, respectively, then yields

b 0
2ðv2Þ � Bþ b00

2 ðv2�Þðv2 � v2�Þ þ b000
2 ðv2�Þ

	 ðv2 � v2�Þ2
2

b0
3ðv3Þ � Bþ b00

3 ðv3�Þðv3 � v3�Þ þ b000
3 ðv3�Þ

	 ðv3 � v3�Þ2
2

;

where we have used the fact that b00
2 ðv2�Þ �B ¼

b00
3 ðv3�Þ � B ¼ 0 because of the gauge constraints

on the world sheets. Thus,

c1ðtÞ � 1þ ðs3ðtÞ � t� v3�Þ2
2

b000
3 ðv3�Þ � B

þ ðs2ðtÞ � t� v2�Þ2
2

b000
2 ðv2�Þ �B

þ ðs2ðtÞ � t� v2�Þðs3ðtÞ � t� v3�Þ
	 b00

2 ðv2�Þ � b00
3 ðv3�Þ: (45)

We can also expand s2ðtÞ� t�v2�þð _s2ðt�Þ�1Þ	
ðt� t�Þ and s3ðtÞ � t � v3� þ ð _s3ðt�Þ � 1Þðt� t�Þ,
where generically ( _s2ðt�Þ � 1) and ( _s3ðt�Þ � 1) are
of order 1. Then, using the fact that the three scalar
products involved in (45) are of order 1=L2, we can
write, around t�

c1ðtÞ � 1 � � 1

L2
ðt� t�Þ2; (46)

where the minus sign ensures that c1ðtÞ < 1.
Plugging this into Eq. (7), we finally get the expan-
sion around t�

1� _s1ðtÞ � 1

L2
ðt� t�Þ2: (47)

Therefore, (44) holds over an interval of time around

t� of size�t of order�t � L=ð!LÞ1=3 ¼ L2=3!�1=3.
Since uB ¼ sBðtÞ þ t, the variation of uB during this

interval �t is of the same order as �t, i.e. �uB �
L2=3!�1=3 and so the variation of wB is �wB �
ð!L�2Þ1=3�uB � ð!L�2Þ1=3L2=3!�1=3 � 1.
Finally, since we assumed that wBðv�Þ is in the
region where @C=@wB � 1, this yields

�Cðv�Þ � 1 (48)

To conclude, if n ¼ a0ðusÞ and duB=dv diverges at

some v� such that jwBðv�Þj ¼ ð!jn�a000ðusÞj
12 Þ1=3	

juBðv�Þ � usj & 1, then the integral over v receives
a discontinuity-like contribution leading to

Tijð!;!nÞ � �

!5=3
a00i ðusÞ

b0jðv�Þ
1þ n � b0ðv�Þ

	
�

12

jn � a000ðusÞj
�
2=3

�
� 1

2
ffiffiffi
3

p �

��
2

3

�

	 �Cðv�Þeði!=2Þðus�v��n�ðaðusÞþbðv�ÞÞÞ;
(49)

where with respect to (43) we now write �Cðv�Þ on
the third line to indicate that this is a numerical
factor of order 1. Physically, this emission in a given
direction arises when the string expands at the speed
of light at junction B.

C. Contributions in 1=!2

(i) Discontinuity in a0i at some u�=discontinuity in b0j at
some v� 2 ½vAðu�Þ; vBðu�Þ�
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Tij � �

!2

�
a0iðuþ� Þ

1� n � a0ðuþ� Þ �
a0iðu�� Þ

1� n � a0ðu�� Þ
�

	
� b0jðvþ� Þ
1þ n � b0ðvþ� Þ �

b0jðv�� Þ
1þ n � b0ðv�� Þ

�

	 eði!=2Þ½u��v��n�ðaðu�Þþbðv�ÞÞ�: (50)

This is the situation where a left-moving and a right-
moving kink meet during their propagation on the
string and emit in all directions.

(ii) Discontinuity in a0i at some u�=boundary term in the
integral over v

Tij � � �

!2

�
a0iðuþ� Þ

1� n � a0ðuþ� Þ �
a0iðu�� Þ

1� n � a0ðu�� Þ
�

	
� b0jðvBðu�ÞÞ
1þ n � b0ðvBðu�ÞÞ

�

	 eði!=2Þ½u��vBðu�Þ�n�ðaðu�ÞþbðvBðu�ÞÞ�: (51)

This corresponds to a left-moving kink passing
through a junction and emitting in all directions in
space.

(iii) boundary term (A or B) in the integral over
u=discontinuity of b0j at some v�

Tij � � �

!2

� b0jðvþ� Þ
1þ n � b0ðvþ� Þ �

b0jðv�� Þ
1þ n � b0ðv�� Þ

�

	
�

a0iðuAðv�ÞÞ
1� n � a0ðuAðv�ÞÞ

�

	 eði!=2Þ½uAðv�Þ�v��n�ðaðuAðv�ÞÞþbðv�Þ�: (52)

This describes a right-moving kink passing through
a junction (A here) and emitting in all directions in
space. As one expects, the symmetry with respect to
the case of a left-moving kink passing through B is
recovered despite the explicit breaking of symmetry
made by choosing to integrate on u first.

V. CONCLUSION

The transverse traceless projections of the various con-
tributions to the stress-energy tensor found in Sec. V fully
determine the GW emission from cusps and kinks in the
local wave zone of the source through Eq. (10). The
observed signal is obtained by parallel propagation of the
gravity waves in a cosmological background, along the
null geodesic followed by the GW. This gives rise to the
usual redshifting of time intervals between emission and
reception, which in the Fourier domain corresponds to
fem ¼ ð1þ zÞfrec. One obtains the following order-of-
magnitude estimates for the logarithmic Fourier transform
of the observed amplitude of individual GW bursts ema-
nating from the various high frequency sources discussed

here [6,7,17],

hðfrecÞ 
 G�L

ðð1þ zÞLfrecÞ	
1þ z

t0z
; (53)

where t0 denotes the present age of the Universe. Most
importantly, the exponent 	 in this expression is deter-

mined by the high frequency behavior 
!�ð1þ	Þ of the
stress-energy sources calculated above.
In the time domain (53) corresponds to a signal of the

form
jt� tcj	, where tc is the arrival time of the center of
the burst. The total GW signal of a superstring loop con-
sists of the sum of the various bursts and a slowly varying
component due to the low frequency modes of the strings.
Despite its vanishing at t ¼ tc, bursts are distinguishable
from the slowly varying component because the curvature
associated with (53) diverges as 
jt� tcj	�2, exhibiting
clearly the spiky nature of GW bursts.6

We are now in a position to summarize the modifications
of the GW signal from bursts induced by the presence of
junctions, with respect to the case of standard loops. As
expected, away from the junctions we recover the same
GW signal as Damour and Vilenkin [6,7], both for a kink
propagating on a string—for which 	 ¼ 2=3 and the emis-
sion occurs in a fan-like set of directions—as well as for a
cusp, where 	 ¼ 1=3 and the emission occurs in a small
cone around a particular direction.
However for bursts from sources near junctions we find

the predicted GW amplitude is modified by a smooth
correction factor C. This means that for GW bursts from
cusps and kinks near junctions one effectively measures a
combination of the tension � and C. Since these are rather
improbable events, however, the overall effect of this on
the (statistical) predictions of bursts from cosmic super-
strings is likely to be small. The smoothness of the correc-
tion factor also implies that despite their spiky nature,
junctions do not radiate spontaneously (at least for strings
without structure, as considered here).
Furthermore, the presence of junctions gives rise to

several novel sources of GW bursts, most notably from
(i) a string expanding at the speed of light at the level of

a junction, which emits in a specific direction with an
amplitude (53) with 	 ¼ 2=3.

(ii) a kink passing through a junction, which emits in all
directions with an amplitude (53) with 	 ¼ 1.

Finally, the situation where a left-moving and a right-
moving kink pass through each other during their propa-
gation remains unchanged and has 	 ¼ 1.
To translate our results into observable waveforms one

ought to sum the individual contributions from cusps and
kinks in a cosmological network of string loops. However,

6In practice, the observer will never lie exactly in the direction
of emission. However, the signal is detectable inside a small
cone around this direction. This introduces a high frequency
cutoff on the waveform or, equivalently, a smoothing of the
signal around tc in the time domain.
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the rate of occurrence of events of different types strongly
depends on the dynamics of the loops and on the evolution
of the network, which is currently poorly understood. This
gives rise to significant uncertainties in the resulting GW
signal. Indeed, an increase in the number of events of a
given type lowers the threshold redshift for observation and
hence reduces the expected dilution of the signal. The
individual contribution with the smallest value of 	 there-
fore need not necessarily provide the dominant contribu-
tion to the observed signal.

In particular, concerning the case at hand, one might
expect junctions to enhance the number density of kinks,
whereas it appears unlikely that the rate of occurrence of
cusps is significantly affected by the presence of junctions
[8]. This would mean that even though individual GW
bursts from cusps are stronger, the increased number den-
sity of kinks on loops with junctions might compensate for
the difference in strength. Since we have identified GW
bursts from events involving kinks that are specific to
strings with junctions, this would provide a promising
route to observationally distinguish between gauge theory
cosmic strings with no junctions and superstrings.
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APPENDIX A: DETAILED STUDY OF THE
FUNCTION CðvÞ � CðwA; wBÞ

In (27), we gave the general result for the integral (20)
due to a saddle point:

Isaddlei ðvÞ ¼ gauge termþ
�
a00i ðusÞ
!2=3

eði!=2Þðus�n�aðusÞÞ

	
�

12

jn � a000j
�
2=3

�
iffiffiffi
3

p �

�
2

3

��
CðwA;wBÞ

�
; (A1)

where

CðwA;wBÞ ¼
R
wA
wB

we�iw3
dwR1

�1 we�iw3
dw

¼ BðwAÞ � BðwBÞ;

BðwJÞ ¼
RwJ�1 we�iw3

dwR1
�1 we�iw3

dw
; (A2)

and

wAðvÞ ¼
�
!jn � a000j

12

�
1=3ðus � uAðvÞÞ;

wBðvÞ ¼ �
�
!jn � a000j

6

�
1=3ðuBðvÞ � usÞ:

(A3)

The function C depends on v because the position of the
saddle point relative to the bounds uAðvÞ and uBðvÞ of the
integral does. This Appendix contains a detailed analysis
of CðvÞ, whose behavior needs to be understood in order to
determine the saddle point contributions in the three cases
listed under (28).

1. Envelope of oscillations of B

When the saddle point is far from wB, we can write
CðwA;wBÞ 
 BðwAÞ, where BðwAÞ is displayed in Fig. 3.
We first show that the envelope of the oscillations of B
scales as 1=wA.
Consider, for example, the real part <ðBðwAÞÞ ¼

	
RwA�1 w sinðw3Þdw, where 	 ¼ �i=ðR1

�1 we�iw3
dwÞ,

which oscillates around its asymptotic value of 1 with

decreasing amplitude. Let wk ¼ ð�kÞ1=3 be the values
where its derivative (	w sinðw3Þ) vanishes. These points
correspond to the relative maxima (for odd values of k) and
minima (for even values of k) of<ðBðwAÞÞ. Then, because
wkþ1 � wk is small, the amplitude of the oscillations
around a certain wk (say k even, for example) is given
(for large values of k) by

Bðwkþ1Þ � BðwkÞ
2

¼ 	

2

Z wkþ1

wk

w sinðw3Þdw


 	

2

�� cosðw3Þ
3w

�
wkþ1

wk


 	

3wk

: (A4)

We infer that BðwÞ is of order 1=w in the limitw ! �1.
In particular, if wB is negative and large in absolute value,
we have CðwA;wBÞ � BðwAÞ.

2. Contributions to (27) due to a saddle point inside
½uAðvÞ; uBðvÞ�

Following the discussion in Sec. III, we investigate the
contribution due to a saddle point lying between uAðvÞ and
uBðvÞ. This corresponds to studying CðvÞ between the
points vA;s and vB;s defined at the end of Sec. IV. Since

�000ðusÞ < 0, us 2 ½uAðvÞ; uBðvÞ� translates into wAðvÞ >
0 and wBðvÞ < 0. We need to distinguish between two
regimes:
(a) Saddle point far from both bounds:

jus � uJðvÞjj!�000ðusÞj1=3 � 1
Then we have wAðvÞ � 1 and jwBðvÞj � 1 so ac-
cording to the discussion above, CðvÞ � 1 up to
corrections of the order of 1=wA, 1=wB � 1

(b) Saddle point near one of the boundaries (e.g. A):

jus � uAðvÞjj!�000ðusÞj1=3 & 1
First, note that the saddle point cannot be close to

both bounds at the same time: ð!�000Þ1=3 is of the
order of !L�2 � 1=L so jus � uAðvÞj � L; since
juAðvÞ � uBðvÞj is of the order of L, jus � uBðvÞj
has to be of the order of L too so we still have
jwBðvÞj � 1.
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Therefore, up to a negligible correction of the order of
1=wB, CðwAðvÞ; wBðvÞÞ � BðwAðvÞÞ. This time wA is of
order 1 (and still positive). The behavior of BðwAÞ is
plotted in Fig. 3. The contribution in this case is of the
same order as the one far from the bounds but the result is
multiplied by the complex factor BðwAÞ of order 1.

3. Contributions to (27) due to a saddle point outside
½uAðvÞ; uBðvÞ�

Up to now we calculated the leading contribution from a
saddle point present anywhere inside the interval
½uAðvÞ; uBðvÞ�. Does this mean that for the values of v
for which the saddle point lies outside this interval, IðvÞ
discontinuously drops to zero?

We argued in Sec. III that, if IiðvÞ obeys all conditions
(i)–(iii), then it is negligible because it vanishes exponen-
tially in the infinite ! limit. However, since ! is actually
large but finite, there might also exist non-negligible con-
tributions if IðvÞ is only close to satisfying these condi-
tions. In particular, if some saddle point lies just outside the
interval of integration, the derivative at the nearest bound is
very close to vanishing so we can expect to have some
contribution. Another way to say this is that the contribu-
tion comes from an interval around the saddle point of size

� ðL2=!Þ1=3, which can intersect ½uAðvÞ; uBðvÞ� even if
the saddle point is outside it. Obviously, in the case where
the saddle point is very far from the interval of integration,
the contribution needs to be negligible.
(a) Saddle point outside ½uAðvÞ; uBðvÞ� and near one of

the boundaries (e.g. A):

jus � uAðvÞjj!�000ðusÞj1=3 & 1. Here, wB < 0. For
the same reasons as before, we have jwBj � 1 and
CðwAðvÞ; wBðvÞÞ � BðwAðvÞÞ. The only difference
is that now wA < 0. This is why in Fig. 3 we also
plotted B for negative values of its argument.

(b) Saddle point far from ½uAðvÞ; uBðvÞ�
In this case, both wA and wB have the same sign and
their absolute values are � 1. According to the
discussion in the first section of this Appendix, we
have at leading order CðvÞ � 0 up to corrections in
1=wA, 1=wB � 1.

4. Summary

It should now be clear that CðvÞ is a smoothed version of
�ðv� vA;sÞ�ðvB;s � vÞ. In Fig. 5 we sum up the different

cases and show the typical behavior of the function CðvÞ
provided that the derivatives duJ

dv are of order 1, which is the

generic case.
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