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We show that, by adding a gauge singlet scalar S to the standard model which is nonminimally coupled

to gravity, S can act both as the inflaton and as thermal relic dark matter. We obtain the allowed region of

the ðms;mhÞ parameter space which gives a spectral index in agreement with observational bounds and

also produces the observed dark matter density while not violating vacuum stability or nonperturbativity

constraints. We show that, in contrast to the case of Higgs inflation, once quantum corrections are included

the spectral index is significantly larger than the classical value (n ¼ 0:966 for N ¼ 60) for all allowed

values of the Higgs mass mh. The range of Higgs mass compatible with the constraints is 145 GeV &

mh & 170 GeV. The S mass lies in the range 45 GeV & ms & 1 TeV for the case of a real S scalar with

large quartic self-coupling �s, with a smaller upper bound for smaller �s. A region of the parameter space

is accessible to direct searches at the LHC via h ! SS, while future direct dark matter searches should be

able to significantly constrain the model.
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I. INTRODUCTION

Although the standard model (SM) of particle physics
reproduces experimental results well, it does not provide a
mechanism for inflation, dark matter, baryogenesis, or
neutrino masses. There are many beyond the standard
model (BSM) theories which attempt to do this. Such
BSM theories usually involve a new scale between the
SM scale and the Planck scale and many additional parti-
cles, with the SM then viewed as the low energy remnant of
some more complete theory, which is only valid up to some
cutoff �<Mp.

An alternative philosophy is to add to the SM the mini-
mal number of new fields that are needed to address these
issues. One example is the �MSM [1], which is the SM
extended by three singlet fermions to account for neutrino
masses. In this case dark matter can be explained by a keV-
scale sterile neutrino, while baryogenesis occurs via lepto-
genesis due to sterile neutrino oscillations [2]. Therefore
neutrino masses, dark matter, and baryogenesis can all be
explained within a very minimal extension of the SM,
although this imposes nontrivial conditions on the sterile
neutrino masses and couplings [3]. A scale-invariant but
very weakly coupled scalar may also be added to serve as
the inflaton [4]. Other minimal extensions of the SM
include the ‘‘new minimal standard model’’ [5] and the
‘‘minimal nonminimal standard model’’ [6]. One motiva-
tion for considering weak-scale extensions of the SM is the
idea that the hierarchy problems of nonsupersymmetric
particle theories can be avoided if there is only one mass

scale in the effective field theory below the Planck scale
[7].
Recently it has been suggested that inflation might be

explained purely within the framework of the SM, with the
Higgs field itself serving as the inflaton [8]. This has been
extensively investigated in a number of papers [8–16]. This
is possible if the Higgs has a large nonminimal coupling to
gravity. However, in order to account for dark matter,
baryogenesis, and neutrino masses, it is still necessary to
extend the SM. This might be achieved by combining
Higgs inflation with the �MSM, but other extensions which
are consistent with entirely weak-scale particle physics
could also be considered. In particular, it is well known
that stable particles with weak-scale masses and electro-
weak strength interactions (WIMPs) produce a thermal
relic density of dark matter which is naturally of the correct
order of magnitude. Therefore there is a strong motivation
to extend the SM by the addition of a particle with these
properties.
The aim of this paper is to propose an alternative mini-

mally extended version of the SM which is able to explain
both the mechanism for inflation and the presence of
thermal relic dark matter. To this end, we add a stable
gauge singlet scalar S to the SM. This is the simplest
extension which obeys gauge symmetry and can account
for dark matter [17–21]. A discrete Z2 or a global symme-
try Uð1Þ must be imposed to ensure stability of the scalars;
in the former case it is natural to consider real scalars, in
the latter case complex scalars. We then consider whether S
can serve simultaneously as a thermal relic dark matter
particle and as the inflaton, producing the correct density of
dark matter while at the same time obeying the observa-
tional constraints on the spectral index n and other inflation
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observables. Effectively we are replacing the Higgs scalar
of Higgs inflation by the dark matter scalar S. As we will
show, the model has the potential to relate particle physics,
dark matter detection experiments, and inflation observ-
ables, a connection that will be brought into focus in the
near future by the LHC, the Planck satellite, and future
dark matter detectors.

During the development of this paper a closely related
model was proposed in [22]. This considers the same gauge
singlet scalar extension of the SM to account for dark
matter, but focuses on the case of Higgs inflation. As we
will discuss, there are some differences in the results for
pure Higgs inflation, the model of [22], and our model,
such that it may be within the reach of imminent experi-
ments (Planck, LHC) to rule out or distinguish between
Higgs inflation models and S inflation.

Our paper is organized as follows. In Sec. II we intro-
duce our model. In Sec. III we review the approach to
calculating radiative corrections in this class of models and
derive the renormalization group (RG) equations. In
Sec. IV we discuss constraints coming from stability and
perturbativity of the potential and slow-roll inflation ob-
servables. In Sec. V we discuss S as dark matter, relating
�hs and ms. In Sec. VI we present our results, and in
Sec. VII we discuss our conclusions. Details of the deriva-
tion of the RG equations and the calculation of the dark
matter density are given in the appendixes.

II. THE S-INFLATION MODEL

A. Jordan and Einstein frames

The Jordan frame is the ‘‘real world’’ frame, where we
make measurements in a standard manner. The Einstein
frame is related to this by a conformal transformation
which transforms the metric (and hence all other quanti-
ties) in a field-dependent way. The usefulness of trans-
forming to the Einstein frame is that it transforms away
the nonminimal coupling to gravity, leaving the
Lagrangian in a familiar form, where methods for calcu-
lating physical quantities are well known.What we think of
as a conformal transformation to the Einstein frame is
actually composed of two separate parts. The first is a
change of conformal frame, warping the metric, and the
second redefines the fields in a convenient form. Useful
discussions of conformal transformations are given in
[23,24].

Our procedure is to define the theory, including all
radiative corrections, in the Jordan frame. We then trans-
form to the Einstein frame in order to calculate the spectral
index n, tensor-to-scalar ratio r, and running of the spectral
index �. The two frames are equivalent at low values of the
fields. Since the inflation observables are calculated when
perturbations reenter the horizon, i.e. at late times when the
fields are small, the results calculated in the Einstein frame
are the same as if we had calculated them with the non-
minimally coupled scalar field in the Jordan frame.

B. Nonminimally coupled gauge singlet scalar extension
of the SM

We define the action in the Jordan frame to be

SJ ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
LSM þ ð@�HÞyð@�HÞ þ ð@�SÞyð@�SÞ

�M2R

2
� �hH

yHR� �sS
ySR� VðSyS;HyHÞ

�
;

(1)

where VðSyS;HyHÞ ¼ Vð0Þ þ Vð1Þ þ � � � . Here

Vð0ÞðSyS;HyHÞ ¼ �h

�
ðHyHÞ � v2

2

�
2 þ �hsS

ySHyH

þ �sðSySÞ2 þm2
soS

yS (2)

is the tree-level potential and Vð1Þ; Vð2Þ; . . . are the one-loop
and higher-order quantum corrections.LSM is the standard

model Lagrangian density minus the purely Higgs doublet
terms. m2

so is the constant contribution to the total S mass

squared, m2
s , which also gains a contribution from the

coupling to the Higgs. For now we consider only the
physical Higgs field h, where

H ¼ 1ffiffiffi
2

p 0
hþ v

� �

and h is real. We choose the direction of inflation such that
S ¼ sffiffi

2
p , where s is real.

Our aim is to calculate the inflation observables n, r, and
�. This is best done using the slow-roll approximation,
which cannot easily be formulated in the Jordan frame. We
will therefore make a transformation of the whole action,
including radiative corrections, to the Einstein frame, re-
defining the fields (s ! �s, h ! �h) to ensure canonical
normalization. We then compute the slow-roll parameters
in the Einstein frame, using the coupling constants which
we have run (in the Jordan frame) to the appropriate scale.
Quantities in the Einstein frame will be denoted by a tilde
(e.g. ~g��). From here on we set M ¼ Mp (reduced Planck

mass), since the correction to M due to the Higgs expec-
tation value is tiny compared with MP.
For general h and s, the transformation to the Einstein

frame is defined by

~g �� ¼ �2g�� (3)

with

�2 ¼ 1þ �ss
2

M2
P

þ �hh
2

M2
P

: (4)

The fields are redefined by

d�s

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 6�2

ss
2=M2

P

�4

s
(5)

and
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d�h

dh
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 6�2

hh
2=M2

P

�4

s
; (6)

resulting in the Einstein frame action

SE ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
~LSM �M2

P
~R

2
þ 1

2
~@��h

~@��h

þ 1

2
~@��s

~@��s þAð�s;�hÞ~@��h
~@��s �Uð�s;�hÞ

�
;

(7)

where

Að�s; �hÞ ¼ 6�s�h

M2
P�

4

ds

d�s

dh

d�h

hs (8)

and

Uð�s; �hÞ ¼ 1

�4
Vðs; hÞ

with

Uð0Þð�s; �hÞ ¼ 1

�4

�
�h

4
ðh2 � v2Þ2 þ �s

4
s4 þ 1

2
m2

sos
2

þ �hs

4
s2h2

�
: (9)

We will be interested in inflation purely along the s
direction. (Inflation in the h direction for real S was con-
sidered in [22].) In this case, h ¼ 0, Að�s; �hÞ ¼ 0, and

�2 ¼ 1þ �ss
2

M2
P

. For s � MP=
ffiffiffi
�

p
, which is relevant for

inflation, the classical potential in the Einstein frame be-
comes [8]

Uð0Þð�s; 0Þ � �sM
4
P

4�2
s

�
1þ exp

�
� 2�sffiffiffi

6
p

MP

���2
: (10)

This is shown in Fig. 1. Thus Uð�s; 0Þ / 1=�2
s . Similarly,

along the h direction with s ¼ 0, Uð0; �hÞ / 1=�2
h.

Therefore if �s � �h, the minimum of the potential at
large s and h will be very close to the h ¼ 0 direction,
and so inflation will naturally occur along the s direction.
In the following we will consider the limit where the Higgs
boson is minimally coupled to the Ricci scalar at the weak
scale, �h ¼ 0, but we allow for its running by including the
RG equation for �h.

III. RADIATIVE CORRECTIONS

Our strategy is to calculate quantum corrections to the
tree-level potential in the Jordan frame. To do this we use
the RG equations to run the couplings from the SM scale to
the inflation scale. We then use those values of the coupling
constants to calculate the Coleman-Weinberg correction to

the potential, V ¼ Vð0Þ þ Vð1Þ [25,26], where Vð0Þ is given
by Eq. (2). This is then transformed to the Einstein frame to
study slow-roll inflation.

A. Coleman-Weinberg potential

Constraints on the scalar couplings will come from the
stability of the electroweak vacuum and the requirement
that the potential remains perturbative for field values less
than MP. We therefore impose the conditions for vacuum
stability and perturbativity along both the h ¼ 0 and s ¼ 0
directions. To do this we derive the Coleman-Weinberg
potential for each direction (s or h). The s-direction po-
tential is used in the slow-roll inflation calculations, while
both s-direction and h-direction potentials are used to
calculate the stability of the potential and to check pertur-

bativity. We use the MS renormalization scheme through-

out. The one-loop potential for the s direction in the MS
scheme is [26]

16�2Vð1ÞðsÞ ¼ 1

4
H2

s

�
ln
Hs

�2
� 3

2

�
þ 3

4
G2

s

�
ln
Gs

�2
� 3

2

�

þ 1

4
P2
s

�
ln
Ps

�2
� 3

2

�
þ 1

4
Q2

s

�
ln
Qs

�2
� 3

2

�
;

(11)

where

Hs ¼ m2
h þ

1

2
ch�hss

2;

Gs ¼ m2
h þ

1

2
�hss

2;

Ps ¼ m2
so þ 3cs�ss

2 and

Qs ¼
(
0 ðreal SÞ
m2

so þ �ss
2 ðcomplex SÞ:

(12)

FIG. 1. Classical potential in the Einstein frame, in the limit
s � MP=

ffiffiffi
�

p
. This figure is plotted for real S with mh ¼

160 GeV and �s ¼ 0:2. Inflation occurs along the exponentially
flat plateau.
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The one-loop correction for the h direction is

16�2Vð1ÞðhÞ ¼ 1

4
H2

h

�
ln
Hh

�2
� 3

2

�
þ 3

4
G2

h

�
ln
Gh

�2
� 3

2

�

þ 1

4
P2
h

�
ln
Ph

�2
� 3

2

�
þ 1

4
Q2

h

�
ln
Qh

�2
� 3

2

�

þ 3

2
W2

�
ln
W

�2
� 5

6

�
þ 3

4
Z2

�
ln

Z

�2
� 5

6

�

� 3T2

�
ln

T

�2
� 3

2

�
; (13)

where

W ¼ g2h2

4
; Z ¼ ðg2 þ g02Þh2

4
; T ¼ y2t h

2

2
;

Hh ¼ m2
h þ 3ch�hh

2; Gh ¼ m2
h þ �hh

2;

Ph ¼ m2
so þ

1

2
cs�hsh

2 and

Qh ¼
(
0 ðreal SÞ
m2

so þ 1
2�hsh

2 ðcomplex SÞ:

(14)

In these equations cs and ch are suppression factors to be
discussed below.

B. Suppression of scalar propagators

As the fields appearing in the RG equations are quan-
tized in the Jordan frame, the commutation relation for an
arbitrary scalar �,

½�ð ~xÞ; �ð ~yÞ� ¼ i@	3ð ~x� ~yÞ; (15)

is satisfied, where [14]

� ¼ @L

@ _�
¼ ffiffiffiffiffiffiffi�~g

p �
d�

d�

�
2

�~g

�� ~@�� (16)

and 
� ¼ ð1; 0; 0; 0Þ. This is obtained by transforming the

action to the Einstein frame but not redefining the scalar
fields [14]. Inserting Eq. (16) into Eq. (15) and writing in
terms of the Jordan frame metric gives

½�ð ~xÞ; �ð ~yÞ� � �2

�
d�

d�

�
2 ffiffiffiffiffiffiffi�g
p ½�; _�� ¼ i@	3ð ~x� ~yÞ;

(17)

and so

½�; _�� ¼ i@cð�Þ	3ð ~x� ~yÞ;
where cð�Þ ¼ 1

�2ðd�=d�Þ2 . Therefore the commutator and

hence the scalar propagator will be suppressed by a factor

cð�Þ. In the case of minimally coupled scalars, ðd�d�Þ2 ¼ 1
�2 ,

so cð�Þ ¼ 1. In our case, both s and h are, in principle,
suppressed by cðsÞ and cðhÞ, respectively. In practice, we

set either chð� cðhÞÞ ¼ 1 or csð� cðsÞÞ ¼ 1, depending on
the direction of the potential being considered. The sup-
pression factor c� (where � is s or h) is then

c� ¼
1þ ���

2

M2
p

1þ ð6�� þ 1Þ ���
2

M2
p

: (18)

When calculating the RG equations or Coleman-Weinberg
potential, one suppression factor is inserted for each h or s
propagator in a loop but not for the scalars corresponding
to the imaginary part of S or the unphysical degrees of
freedom of H. The suppression factors will have a signifi-
cant effect on the running of the scalar couplings.
In the context of Higgs inflation, it was shown in [27,28]

that unitarity breaks down in tree-level Higgs-graviton
scattering processes at energies E�MP=�h, due to the
large nonminimal coupling to gravity. There are two pos-
sible ways to interpret this. In [11,13], it is suggested that
the apparent breakdown of unitarity should be interpreted
as a change in the nature of the Higgs degree of freedom,
rather than as a cutoff for new physics. In [13] it was
observed that at field strengths hh2i * M2

P=�
2
h, the Higgs

scalar h no longer behaves as a canonically normalized
scalar, resulting in suppression of the Higgs propagator as
discussed above. The results for Higgs scattering cross
sections at the corresponding energies are therefore ex-
pected to be modified, which may justify the extension of
the theory to energies greater than MP=�h. In [11], it is
proposed that the onset of unitarity violation could indicate
a change in the dynamics of the standard model to a
strongly coupled regime. This is described by the ‘‘chiral
electroweak theory,’’ which is equivalent to the standard
model with the radial Higgs degree of freedom frozen.1

A more conservative point of view is to restrict the
model to the regime where the semiclassical and adiabatic
approximations are both valid [27]. These approximations
are valid when 1 � H=M � ffiffiffiffiffi

�s

p
, whereH � ffiffiffiffiffi

�s

p
MP=�s

and M & MP=�s is the scale where new physics becomes
important. As �s in our model is not constrained by phe-
nomenology (unlike the case of Higgs inflation where �h is
fixed by the Higgs mass), it would be possible to have
�s � 1.

C. Initial conditions

We take the initial values of the coupling constants to be
defined at the renormalization scale � ¼ mt, with mt ¼
171:0 GeV and v ¼ 246:22 GeV. The gauge couplings are
given by

1Since the chiral electroweak theory has the radial Higgs mode
frozen, it explicitly breaks SUð2ÞL 	Uð1ÞY symmetry, making it
nonrenormalizable [11,22]. We note that explicit gauge symme-
try breaking is avoided when a gauge singlet scalar plays the role
of the inflaton.
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g2ðmtÞ
4�

¼ 0:033 44;

g02ðmtÞ
4�

¼ 0:010 27;

and
g23ðmtÞ
4�

¼ 0:1071:

(19)

g and g0 are obtained by a RG flow from their values at
� ¼ MZ, which are given in [29], while g3 is calculated
numerically. (See [13] and references within for details.)

We use the pole mass matching scheme for �hðmtÞ and
ytðmtÞ as detailed in the Appendix of [30]. This relates the

physical pole masses to the couplings in theMS renormal-
ization scheme. The remaining coupling constants are not
fixed by observation and we are free to choose them. We
take �hðmtÞ ¼ 0 and choose �sðmtÞ such that the model is
correctly normalized to the COBE results at the inflation
scale [31,32]:

U

~"
¼ ð0:002 71MpÞ4:

�sðmtÞ is not directly measurable and so we take two
reasonable values: 0.2 and 0.025. The higher of these
corresponds to �sðmtÞ close to the perturbativity limit.
�hsðmtÞ is treated as a free parameter although it is, in
principle, measurable through the thermal relic S dark
matter density and scattering rate in dark matter detectors,
as well as through the Higgs decay width to S pairs should
it be kinematically possible.

D. Renormalization group equations

In our analysis we use the two-loop RG equations for the
SM and modify these to include the leading order contri-
butions of S. We also include the propagator suppression
factors for the s and h directions. We refer the reader to
[14,30] for the SM one- and two-loop equations (including
only the t-quark Yukawa coupling), reproducing here only
those which are modified by the addition of the S particle.
Using the technique detailed in [33] and further discussed
in Appendix A, we find for the one-loop � functions of the
scalar couplings,

16�2�ð1Þ
�h

¼ ð18c2h þ 6Þ�2
h � 6y4t þ 3

8
ð2g4 þ ðg2 þ g02Þ2Þ

þ ð�9g2 � 3g02 þ 12y2t Þ�h

þ 1

2

(
c2s�

2
hs ðreal SÞ

ð1þ c2sÞ�2
hs ðcomplex SÞ; (20)

16�2�ð1Þ
�hs

¼ 4chcs�
2
hs þ 6ðc2h þ 1Þ�h�hs

� 3

2
ð3g2 þ g02Þ�hs þ 6y2t �hs

þ
(
6c2s�s�hs ðreal SÞ
ð6c2s þ 2Þ�s�hs ðcomplex SÞ (21)

and

16�2�ð1Þ
�s

¼ 1

2
ðc2h þ 3Þ�2

hs

þ
�
18c2s�

2
s ðreal SÞ

ð18c2s þ 2Þ�2
s ðcomplex SÞ; (22)

where �� ¼ d�
dt , t ¼ ln�

mt
, and � is the renormalization

scale. We choose the value of � in order to keep the log
terms in the Coleman-Weinberg potential small, setting
� ¼ s60, where s60 is the field value 60 e-foldings before
the end of inflation. In Appendix A we relate the gauge
singlet model to the matrices defined in [33] which are
used to compute the RG equations.
We also obtained the RG equations for the nonminimal

couplings to one loop. The details of this calculation are
given in Appendix A. The resulting equations are

16�2 d�s

dt
¼ ð3þ chÞ�hs

�
�h þ 1

6

�

þ
�
�s þ 1

6

��
6cs�s ðreal SÞ
ð6cs þ 2Þ�s ðcomplex SÞ (23)

and

16�2 d�h

dt
¼

�
ð6þ 6chÞ�h þ 6y2t � 3

2
ð3g2 þ g02Þ

��
�h þ 1

6

�

þ
�
�s þ 1

6

��
cs�hs ðreal SÞ
ð1þ csÞ�hs ðcomplex SÞ: (24)

We show in Fig. 2 the running of the scalar coupling
constants �h, �s, and �hs in the s direction for the case of a

FIG. 2. Running of scalar couplings showing the effect of
suppressing the s propagator. The dashed line shows the corre-
sponding value of cs when � ¼ s. This figure is plotted for real
S with mh ¼ 160 GeV, �sðmtÞ ¼ 0:2, and �hsðmtÞ ¼ 0:1.
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real S dark matter particle, assuming a small value of
�sðmtÞ ¼ 0:025. The figures are plotted in terms of t ¼
ln�=mt, from � ¼ mt to � ¼ Mp. We also show the

suppression factor cs, Eq. (18), to demonstrate its effect
on the running of the couplings. In Fig. 3 we plot the
running of �s and �h for the same initial conditions as in
Fig. 2. We observe �h increasing from its initial value of 0
at t ¼ 0, but always remaining much smaller than �s. This
is important for the consistency of our model since infla-
tion will occur along the s direction only if �s � �h.
Otherwise, inflation would be expected to occur along a
more general flat direction in the ðs; hÞ plane.

IV. CONSTRAINTS

We calculate the bounds on mh and �hsðmtÞ by applying
three constraints: (i) stability of the electroweak vacuum,
(ii) perturbativity of the potential, and (iii) consistency
with the observed spectral index n and with limits on the
tensor-to-scalar ratio r and running spectral index �. A
possible fourth constraint, ‘‘wrong-way-roll’’ ( dU

d�S
> 0),

which plays a role in Higgs inflation [22], is generally
not violated in our model.

A. Vacuum stability and perturbativity

We require stability of the electroweak vacuum for s and
h up to Mp. (We do not consider the possibility of a

metastable vacuum, which depends on the cosmological
evolution of the vacuum state.) This imposes the con-
straints �s > 0, �h > 0 and either �hs > 0 or �2

hs <
4�h�s. We will check the stability of the vacuum in both
the s and the h directions. In practice, this means that we
run the RG equations with cs ¼ 1 and varying ch, and
again with ch ¼ 1 and varying cs.

We also require the coupling constants to lie within the
perturbative regime up to the Planck scale in both the s
direction and the h direction. We apply the perturbativity
condition �0

i < 4� to the coupling constants �0
i defined

through the potential

Vðs; hÞ ¼ 1

4!
�0
hh

4 þ 1

4!
�0
ss

4 þ 1

4
�0
hss

2h2: (25)

The couplings in this potential appear in the Feynman
vertices without additional numerical factors. �0

i < 4�
then ensures that loop corrections are smaller than tree-
level processes. (Above 4�, the coupling constants quickly
grow towards a Landau pole. Therefore altering the defi-
nition of perturbativity will not significantly change our
results.) This leads to the conditions on the couplings as
defined in our potential �h, �s < 2�=3 and �hs < 4�.

B. Constraints from slow-roll inflation

The present observational constraints on inflation are
n ¼ 0:960
 0:013 (1�), r < 0:22, and �0:068<�<
0:012 [34]. Inflation occurs through the standard slow-
roll mechanism, which we formulate in the Einstein frame.
The potential in the �s direction is

Uð�sÞ ¼ 1

�4

�
�s

4
s4ð�sÞ þUð1Þðsð�sÞÞ

�
;

where Uð1ÞðsÞ is given by Eq. (11). The slow-roll parame-
ters are2

~" ¼ M2
p

2

�
1
~U

d ~U

d�S

�
2
; ~
 ¼ M2

p

~U

d2 ~U

d�2
S

;

and

~
 2 ¼ M4
p

~U2

d ~U

d�s

d3 ~U

d�3
s

: (26)

From these we can calculate the observable quantities

n ¼ 1� 6~"þ 2~
; r ¼ 16~";

and

� ¼ dn

d lnk
¼ �16~
 ~"þ24~"2 þ 2~
2: (27)

The number of e-foldings of inflation is given by the
standard expression [31]

~N ¼
Z � ~N

�end

1

M2
p

~U
d ~U
d�S

d�S; (28)

where the end of inflation is defined by ~
 ¼ 1. Although
this is calculated in the Einstein frame, it is straightforward

FIG. 3. Running of the nonminimal couplings of s and h to the
Ricci scalar. Here, �h is set to zero at � ¼ mt. It can be seen that
�h � �s throughout. The figure is plotted for real S with mh ¼
160 GeV, �sðmtÞ ¼ 0:2, and �hsðmtÞ ¼ 0:1.

2We use ~
 rather than ~� to avoid confusion.
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to show that ~N is equal to the number of e-foldings in the

Jordan frame N up to a small correction,3 ~N �
N þ lnð1= ffiffiffiffi

N
p Þ. We will use ~N ¼ 60 when calculating in-

flation observables. This is a reasonable assumption given
that the reheating temperature in this model will be high.4

Using the tree-level potential and the approximation
�ss

2

M2
p
� 1, we estimate the tree-level slow-roll parameters

to be ~" ’ 4
3

M4
p

�2
ss

4 , ~
 ’ � 4
3

M2
p

�ss
2 , and ~
2 ’ 16

9

M4
p

�2
s s

4 , where s
2
~N
�

4M2
P
~N=3�s. A calculation of the tree-level spectral index,

tensor-to-scalar ratio, and running spectral index gives

nð0Þ � 1� 2
~N
� 3

2 ~N2
þO

�
1
~N3

�
¼ 0:966;

r ¼ 3:3	 10�3; � ¼ 6:2	 10�4:

Thus r and � are negligibly small when compared with the
observational limits.

Radiative corrections have a significant effect on the
slow-roll parameters. This is not surprising, as the tree-
level potential is exponentially flat and the radiative cor-
rections add a small but significant slope. Including radia-
tive corrections we find

~" ¼ M2
p

2

�
ds

d�s

�
2
�

4

s�2
þ FX

s

�
2

(29)

and

~
 ’ 1

�4

�
ds

d�s

�
2
�
48�2

s � 48�3
ss

2

M2
p

þ 36�3
ss

2

M2
p

FX

�
; (30)

where

X ¼ ð1þ F lnsþDÞ�1; (31)

F ¼ 1

8�2�s

�
1

4
ðc2h þ 3Þ�2

hs

þ
�
9c2s�

2
s ðreal SÞ

ð9c2s þ 1Þ�2
s ðcomplex SÞ

�
(32)

and

D ¼ � 3

2
Fþ 1

16�2�s

0
@c2h�2

hs

4
ln
ch�hs

2�2
þ 3�2

hs

4
ln
�hs

2�2

þ
8<
: 9c2s�

2
s ln

3cs�s

�2 ðreal SÞ
9c2s�

2
s ln

3cs�s

�2 þ �2
s ln

�s

�2 ðcomplex SÞ

1
A:

(33)

The terms originating from Uð1Þ are subdominant in ~
, but
for a range of values of �hs and �s, they can become more
important than the tree-level result in ~".
We calculate the field value at 60 e-foldings before the

end of inflation as follows. First we calculate send using
j~
j ¼ 1. This gives (at tree level)

s2end ’
4

3

M2
p

�s

: (34)

Then the standard expression Eq. (28) is integrated using
Eq. (29) and the approximation X ¼ constant to give

~N ¼ � ln

�
4þ FX�2ðsNÞ
4þ FX�2ðsendÞ

�
� 3

4
ln

�
�2ðsNÞ
�2ðsendÞ

�
; (35)

with �2 as defined in Eq. (4) and

� ¼ 1

2FX�s

þ 6

2FX
þ 3

4
: (36)

V. THERMAL RELIC DARK MATTER

We assume that dark matter is due to thermal relic gauge
singlet scalars. The nonminimal coupling to gravity will
not affect the S dark matter density as the field is at very
low values compared to Mp. If we assume that a gauge

singlet scalar is responsible for the observed dark matter
density (�DMh

2 ¼ �DM=�c ¼ 0:1131
 0:0034 [34]) then
we obtain a relationship between ms and �hsðmtÞ. We use
the Lee-Weinberg approximation [35] to calculate the relic
density of S. This is discussed in Appendix B, where we
also review the annihilation cross sections. For a given �hs

andmh there are up to four corresponding values ofms. An
example is shown in Fig. 4 for the case where mh ¼
160 GeV. The cusplike feature is due to S annihilations

FIG. 4. The value of ms as a function of �hsðmtÞ necessary to
produce the correct density of thermal relic dark matter. In this
example mh ¼ 160:0 GeV. The solid line indicates real S and
the dashed line complex S scalars.

3 ~N is defined as lnð~aend=~aNÞ, where ~a is the scale factor of the
Friedmann-Robertson-Walker metric in the Einstein frame,
which is related to the conventional scale factor by ~a ¼ �a.

4We note that ~N ¼ 55 gives n ¼ 0:963; therefore n is not
particularly sensitive to the value of ~N. We plan to compute the
reheating temperature precisely in a future paper, which will fix
~N.
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toWW and ZZ pairs close to the Higgs pole. In this region
the S mass is relatively insensitive to �hs. Note also that
large values of �hs are possible for ms slightly below the
Higgs pole.

VI. RESULTS

In Fig. 5(a) we show the case of real S with ‘‘small’’
�sðmtÞ ¼ 0:025. The range of allowed Higgs mass is
145 GeV & mh & 170 GeV, where the lower bound is
from vacuum stability in the h direction combined with
the 5-yr WMAP 1� upper bound n < 0:973, and the upper
bound is from perturbativity of �h in the s direction. The
corresponding range of �hsðmtÞ is j�hsðmtÞj & 0:15. Larger
values of n allow larger j�hsðmtÞj, up to an upper bound
j�hsðmtÞj � 0:55 (at n * 0:980), which comes from the
perturbativity bound on �s in the h direction. In this case

the lower bound on the allowed Higgs masses is shifted
downwards to 130 GeV & mh & 170 GeV. In Fig. 5(b)
we show the corresponding results for complex S. The
allowed parameter space is very similar to the case of
real S.
In Fig. 5(c) we show the results for the case of ‘‘large’’

�sðmtÞ ¼ 0:2. In this case the range of Higgs mass is
similar to the small �sðmtÞ case, but now the origin of
the bound is perturbativity of �s in the h direction rather
than the WMAP upper bound on n. As �sðmtÞ increases
from 0.2, the allowed parameter space will rapidly dimin-
ish due to the decrease of the �s perturbativity upper bound
on �hsðmtÞ. As seen in Fig. 5(d), the allowed parameter
space vanishes for the corresponding case with complex S.
As discussed in Sec. III B, when �s � 1 we can avoid

potential problems due to unitarity violation. Choosing

(a) Real S, λs(mt ) = 0.025 (b) Complex S, λs(mt ) = 0.025

(c) Real S, λs(mt ) = 0.2 (d) Complex S, λs(mt ) = 0.2

FIG. 5. Allowed region for inflation in the s direction. Excluded regions are shown in grey. Limits from couplings in the s direction
are shown with dashed lines, those from the couplings running in the h direction have solid lines, and the 1� upper limit on n is shown
by dot-dashed lines. In (a) we show the line n ¼ 0:981 (dot-dot-dash) demonstrating the variation of n.
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a small value of �s at the scale of inflation to satisfy
this bound should not be a problem. Comparing
Figs. 5(a) and 5(c) we see the bound on �hs due to n
decreases with �s; therefore we would expect the allowed
range to decrease further with even smaller �s. A smaller
range of �hs will tend to drive ms closer to the Higgs pole
(Fig. 4), increasing the chances that it could be detected in
the near future.

An important point is that the value of n can be signifi-
cantly larger than the classical value n ¼ 0:966 over the
whole range of allowed Higgs mass. In Fig. 6 we show an
example of the variation of n with mh for fixed �hs and �s.
This contrasts with the case of Higgs inflation without
additional scalars, where a significant increase of n relative
to the classical value is possible only for a small range of
Higgs mass close to the vacuum stability lower bound; in
[14] a significant increase of n from the classical value is
obtained only for mh & 132 GeV. Therefore if Planck,
which will measure n to a 2� accuracy of 
0:005, should
find n significantly larger than 0:966þ 0:005 while LHC
finds a Higgs with mass larger than 135 GeV, then S
inflation will be compatible with the observations but
Higgs inflation will be ruled out. We may also compare
the range of Higgs mass allowed by S inflation with that
allowed by vacuum stability and perturbativity in the stan-
dard model. In [36] the range is given as 128:6 GeV &
mh & 175 GeV, where the lower bound is from vacuum
stability and the upper bound is from perturbativity of the
Higgs self-coupling up to MP. We see that the allowed
range in S inflation is somewhat narrower. Therefore S
inflation may be ruled out relative to the conventional SM
if mh is observed close to the SM lower or upper bound.

Figure 7 shows the range of ms and mh which is con-
sistent with S inflation and thermal relic S dark matter
when n � 0:973 and all vacuum stability and perturbativ-

ity constraints are satisfied. We also show the line ms ¼
mh=2, which is the limit at which it is possible to pair
produce S scalars via Higgs decay at the LHC [37]. For the
case of real S and ‘‘small’’ �sðmtÞ ¼ 0:025, Fig. 7(a), we
see that ms is mostly in the range 50 GeV & ms &
500 GeV, reaching 750 GeV close to its lower bound.
For complex S, ms is more constrained, with values in
the range 50–500 GeV. This can be easily understood since
the dark matter density for a complex S is twice that for a
real S of the same mass; therefore a smaller mass is
required to produce the same density. From Fig. 7(c) we
see that a larger value of �sðmtÞ, �sðmtÞ ¼ 0:2, permits a
wider range of S mass, with ms in the range 45 GeV to
1 TeV. If we instead considered the 2� WMAP bound, the
parameter space in Figs. 7(a) and 7(b) would increase,
while Fig. 7(c) would be unchanged.
We note that while a large region of the allowed parame-

ter space is at values of the S mass which are large
compared with the weak scale, there is no reason to expect
the S mass to be so large. The S mass squared is m2

s ¼
m2

so þ �hsv
2=2. Therefore ifmso is of the order of the weak

scale, which is the most natural possibility in a theory
based on a single mass scale, we would expect ms to be
no larger than a few hundred GeV.
There is a small region of the parameter space which

satisfies ms < mh=2, with the lower bound on ms in the
allowed region being slightly belowmh=2. This means that
it is possible for the S inflaton to be produced at the LHC
via Higgs decay [37]. Thermal relic S dark matter would
then originate from freeze-out of near resonant S annihi-
lation to WW and ZZ close to the Higgs pole. ms slightly
below the Higgs pole also implies that �hsðmtÞ can be
large, as can be seen from Fig. 4. Therefore, if ms <
mh=2 then the S-nucleon scattering cross section due to
Higgs exchange is likely to be large, enhancing the possi-
bility of observing S dark matter in direct detection
experiments.
Collider and direct dark matter detection experiments

should be able to constrain the allowed parameter space.5

Combined data from the D0 and CDF collaborations show
that a Higgs boson mass in the range 160 GeV<mh <
170 GeV is excluded at 95% confidence level [39]. This
exclusion reduces the available parameter space of the
model by a little less than half; however it does not make
a large difference in the range ofms, as this is largest at low
values of mh. Present bounds on direct detection of S dark
matter from XENON10 and CDMSII rule out Smass in the
range 10 GeV to (50, 70, 75) GeV for Higgs masses (120,
200, 350) GeV [37,40]. Comparing with Fig. 7, we see that
the upper bound from direct detection is already close to
the lower bound on the range of ms allowed by the
S-inflation model. Thus although most of the parameter

FIG. 6. The variation of n with mh for �sðmtÞ ¼ 0:025 and
�hsðmtÞ ¼ 0:16. The WMAP central value and the 1� upper
bound are shown with short dashed lines; classical n for S
inflation is shown with a dashed line.

5�-ray and antimatter signals can also constrain the model
[38].
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space is allowed at present, a substantial part of the
ðms;mhÞ parameter space will be accessible to future
dark matter detectors.

VII. CONCLUSIONS

We have shown that a gauge singlet scalar can serve
simultaneously as the inflaton and as a thermal relic dark
matter particle. As in the case of Higgs inflation, this
requires a specific large nonminimal coupling of S to
gravity. Consistency of the model with (i) stability of the
electroweak vacuum, (ii) perturbativity of the scalar po-
tential as a function of s and h up to the Planck scale, and
(iii) the observed spectral index, constrains the
ð�hsðmtÞ; mhÞ parameter space. (The tensor-to-scalar ratio
r and the running of the spectral index � are both negli-

gibly small compared with the observational limits.)
Imposing the 5-yr WMAP 1� bound n < 0:973 implies
that the range of the coupling of S to the Higgs is
j�hsðmtÞj & 0:15, which can increase up to j�hsðmtÞj &
0:55 for small S self-coupling and larger n. The range of
Higgs masses is similar to but not identical to that of the
standard model, with 145 GeV & mh & 170 GeV for n <
0:973 and small �sðmtÞ, shifting to 130 GeV & mh &
170 GeV for n * 0:980. Demanding that the S annihila-
tion rate through �hsðmtÞ produces the correct thermal relic
S dark matter density translates each �hsðmtÞ into a discrete
set of possible values of ms. Combined with the above
constraints, this determines a range of ms and mh which is
simultaneously consistent with thermal relic dark matter
and a stable, perturbative scalar potential which can ac-
count for the observed spectral index. The range of ms is

(a) Real S, λs(mt ) = 0.025 (b) Complex S, λs(mt ) = 0.025

(c) Real S, λs(mt ) = 0.2 (d) Complex S, λs(mt ) = 0.2

FIG. 7. Allowed region for inflation in the s direction, with a 1� upper limit on n. Excluded regions are shown in grey and all masses
are in GeV. The dashed line shows mh ¼ 2ms. Below this line, production of S particles at the LHC (via h ! SSy decay) is possible.
There is no allowed region in (d).
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sensitive to �sðmtÞ and to whether S is real or complex; for
�sðmtÞ ¼ 0:025 and real S the range is 50 GeV & ms &
750 GeV, with the upper limit increasing to 1 TeV for
�sðmtÞ ¼ 0:2. For complex S the range of ms is narrower,
50 GeV & ms & 500 GeV for �sðmtÞ ¼ 0:025.

Comparing with Higgs inflation in the unextended SM, a
key difference is the range of possible n versus mh. In the
Higgs inflation case this is expected to be very close to the
classical value n ¼ 0:966 except for mh close to the vac-
uum stability limit, mh & 130 GeV. In S inflation a sig-
nificant deviation from the classical value is expected over
the whole range of mh. Planck is expected to be able to
observe n to an accuracy of
0:005 (2�). Therefore Planck
could provide evidence in favor of S inflation relative to
Higgs inflation, depending on what value ofmh is observed
at the LHC.

Comparing with the model of [22], which is based on the
same gauge singlet dark matter model but considers in-
flation along the Higgs direction, a notable difference is
that in our model n is strictly larger than the classical value
n ¼ 0:966, whereas in [22] it is possible for the spectral
index to become smaller than the classical value. In addi-
tion, the results of [22] indicate that the spectral index
becomes close to or smaller than the classical value at
mh * 160 GeV (see Figs. 6 and 7 of [22]), whereas in
our model the deviation from the classical value becomes
larger as mh increases. Therefore it may be possible to
distinguish between S inflation and inflation along the
Higgs direction, depending on the Higgs mass and the
spectral index.

There is a small region of the ðms;mhÞ parameter space
with ms close to mh=2 which is consistent with production
of S particles at the LHC via Higgs decay, h ! SS.
Therefore if S is observed at the LHC, then thermal S
dark matter must originate from freeze-out of near resonant
S annihilations toWW and ZZ at the Higgs pole. This also
allows �hsðmtÞ to be large, and so a significantly large
Higgs decay branching ratio may be expected. A large
S-nucleon scattering cross section via Higgs exchange is
also expected in this case, which should allow the parame-
ter space of the model to be probed by future dark matter
detection experiments. The lower bound on ms is close to
the present upper bound on ms from direct dark matter
detectors (XENON10, CDMSII). Therefore significant
constraints on the parameter space (or possibly direct
detection of S dark matter) may be expected in the future
as dark matter detectors improve in sensitivity.

It is natural to ask how predictive the S-inflation model
can be. The barrier to a precisely predictive model is the
dependence on the S self-coupling �sðmtÞ, which is not
directly observable. In principle, there are four observable
quantities: n,mh,ms, and �hsðmtÞ. The input parameters of
the S-inflation model are mh, ms, �hsðmtÞ, and �sðmtÞ.
Therefore n cannot be predicted exactly as there will al-
ways be a dependence on �sðmtÞ, even if the other parame-

ters of the model are fixed by experiment. Nevertheless, as
we have shown, the possible range of n can be constrained
by vacuum stability and perturbativity constraints which
constrain �sðmtÞ. In addition, in the limit of small �sðmtÞ
the model could become effectively independent of �sðmtÞ.
In this case we can predict n if mh, ms, and �hsðmtÞ are
fixed by the LHC and direct dark matter experiments. If we
are fortunate enough that S inflation occurs in this limit,
then the model can be predictive and testable.
We have focused on the case of inflation along the s

direction. In general, inflation could occur along a more
general flat direction in the ðs; hÞ plane, depending on the
value of �s, �h and the Vðs; hÞ scalar potential couplings. S
inflation may be expected to be a good approximation in
the limit �s � �h, assuming that the couplings �s, �h, and
�hs are of a similar order of magnitude. The opposite limit
of inflation along the h direction was studied in [22]. This
may be expected if �h � �s. The case of inflation along a
general trajectory in the s, h plane, which would be ex-
pected if �s and �h are the same order of magnitude,
remains to be investigated.
The S-inflation model provides a model for inflation and

dark matter which is based purely on weak-scale particles
and interactions. In order to have a complete model of
cosmology, we also need to address the issues of reheating
and the origin of the baryon asymmetry. Reheating will be
very similar to the case of Higgs inflation. In Higgs in-
flation reheating occurs via parametric resonance of the
oscillating Higgs field to W bosons via the jHj2jWj2 inter-
action [9,15]. In a similar way, in S inflation reheating will
occur via parametric resonance of S oscillations to Higgs
bosons via the jSj2jHj2 interaction. Baryogenesis could
occur via the oscillating leptogenesis mechanism [2] or
low-scale resonant leptogenesis [41] once the SM is ex-
tended by sterile neutrinos in order to account for neutrino
masses. Alternatively, baryogenesis could occur via elec-
troweak baryogenesis, which may be possible in scalar
extensions of the SM. Additional scalars interacting with
the Higgs can produce a sufficiently strong first order
electroweak phase transition. This usually requires that
the gauge singlet scalar gains a vacuum expectation value
after the transition [42]; therefore a more complicated
model with two or more additional scalars would be
required.6

In contrast to many inflation models, S inflation is
notable for the close relationship it implies between the
observables of inflation (in particular, the spectral index),
particle physics (in particular, the Higgs mass and Higgs
decay width), and the direct detection of dark matter. It can
therefore be directly tested by the experimental and obser-
vational advances which are anticipated in the near future

6We note that it may be possible to evade this if the scalar has
an expectation value prior to and during the electroweak phase
transition but its vacuum expectation value vanishes in the
vacuum after the transition [18].
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as the LHC, Planck satellite, and future direct dark matter
detection experiments come to fruition.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS

In this appendix we relate the gauge singlet model to the
notation of [33] used to compute the RG equations. We
also briefly review the computation of the RG equations for
�s and �h.

1. RG equations for scalar couplings

In [33] the general RG equations are given to two loops

in the MS scheme. The anomalous dimensions and �
functions are expressed in terms of real (reducible) repre-
sentations of the scalar fields and Majorana spinors. To
obtain the modification of the RG equations due to the S
field, we express the Higgs doublet and gauge singlet
scalars as a set of six real scalar fields, �iði ¼ 1 . . . 6Þ,
where

H ¼ 1ffiffiffi
2

p �1 þ i�2

�3 þ i�4

� �
(A1)

and

S ¼ 1ffiffiffi
2

p ð�5 þ i�6Þ: (A2)

(For the case of real S, �6 ¼ 0.)
Writing the Higgs doublet as a real representation in the

form ð�1; �2; �3; �4ÞT , the SUð2ÞL generators (�Aab in the

notation of [33]) are

�1 ¼ 1

2

0 0 0 i
0 0 �i 0
0 i 0 0
�i 0 0 0

0
BBB@

1
CCCA; (A3)

�2 ¼ 1

2

0 0 �i 0
0 0 0 �i
i 0 0 0
0 i 0 0

0
BBB@

1
CCCA; (A4)

and

�3 ¼ 1

2

0 i 0 0
�i 0 0 0
0 0 0 �i
0 0 i 0

0
BBB@

1
CCCA: (A5)

The Uð1ÞY generator is

�Y ¼ i

0 Y 0 0
�Y 0 0 0
0 0 0 Y
0 0 �Y 0

0
BBB@

1
CCCA; (A6)

where Y ¼ 1=2 is the hypercharge of the complex fields in
the Higgs doublet.
The only Yukawa coupling we consider is the top quark

Yukawa coupling. In four-component spinor notation this
is (in the notation of [33])

�qH�ycqþ H:c:; (A7)

where H is the Yukawa coupling matrix, q ¼ ðuL; dLÞT is
the SUð2ÞL quark doublet, and � is the Higgs doublet. In
our case

�qH�ycq � �tRyttL�
0 � �tRytbL�

þ: (A8)

(Here we have suppressed color indices.) We define a
reducible representation c i (in the notation of [33]) by
ðc 1; c 2; c 3Þ ¼ ðtcR; tL; bLÞ, where tL, bL, and tcR are the
two-component spinors which form the Dirac spinors in
the chiral representation [t � ðtL; tRÞT etc.], with tcR ¼
�i�2t

�
R. The Yukawa coupling can then be written as

Ya
ijc i�c j�a þ H:c: ða ¼ 1; 2; 3; 4Þ; (A9)

where

Y1 ¼ 1ffiffiffi
2

p
0 yt 0
yt 0 0
0 0 0

0
@

1
A; (10)

Y2 ¼ iffiffiffi
2

p
0 yt 0
yt 0 0
0 0 0

0
@

1
A; (A11)

Y3 ¼ 1ffiffiffi
2

p
0 0 �yt
0 0 0

�yt 0 0

0
@

1
A; (A12)

and

Y4 ¼ iffiffiffi
2

p
0 0 �yt
0 0 0

�yt 0 0

0
@

1
A: (A13)

The corresponding SUð2ÞL generators tA acting on c are

t1 ¼ 1

2

0 0 0
0 0 1
0 1 0

0
@

1
A; (A14)

t2 ¼ 1

2

0 0 0
0 0 �i
0 i 0

0
@

1
A; (A15)

and
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t3 ¼ 1

2

0 0 0
0 1 0
0 0 �1

0
@

1
A: (A16)

The Uð1ÞY generator is

tY ¼
� 2

3 0 0
0 1

6 0
0 0 1

6

0
B@

1
CA: (A17)

(Suppressed color indices should be summed over when
taking traces in the formulas of [33].) Finally, � ¼ 1=2
should be used in [33] since c i are two-component spin-
ors. With these definitions of �A, Ya, and tA, the formulas in
[33] can be used to compute the RG equations to two-loop
order as a function of the t-quark Yukawa coupling, gauge
couplings, and scalar couplings.

2. RG equations for �s and �h

The one-loop RG equations for the nonminimal gravity
couplings �h and �s are obtained as follows. For a general
theory of scalars �i with mass terms and nonminimal
couplings in the Lagrangian,

L 
 1
2mij�i�j þ 1

2�ij�i�j; (A18)

the one-loop bare and renormalized �ij are related by [43]

�oij ¼ ð�kl � 1
6	klÞZkl

2ij þ 1
6	ij; (A19)

where Zkl
2ij is the mass renormalization,

m2
oij ¼ Zkl

2ijm
2
kl: (A20)

Therefore the RG equations for �ij are related to the mass

anomalous dimensions �kl
mij by

�
d�ij

d�
¼

�
�mn � 1

6
	mn

�
�kl
mij: (A21)

�kl
mij can be easily derived by applying the scalar potential

RG equations to the one-loop effective potential in order to
obtain the � function of the mass term [26], �m2ij �
�ab
mijm

2
ab.

Finally, the RG equations must be modified at large s or
h by suppressing the propagator for the corresponding real
scalar field. Note that one does not suppress all the com-
ponents of the Higgs doublet for the h direction, nor the
complex component of S in the s direction.

APPENDIX B: GAUGE SINGLET SCALAR DARK
MATTER DENSITY

In this appendix we give the S annihilation cross section
times relative velocity, h�vreli, and the resulting dark
matter density. We will approximate h�vreli by the

center-of-mass cross section for nonrelativistic S annihila-
tion. The cross sections for real and complex S are the
same; we will present results for the real case. The tree-
level processes contributing to S annihilation are
(i) SS ! hh, (ii) SS ! WW, (iii) SS ! ZZ, and
(iv) SS ! �ff (where f is a standard model fermion).
Process (i) proceeds via a four-point contact interaction,
an s-channel Higgs exchange interaction, and a t- and
u-channel S exchange interaction. The resulting h�vreli is

h�vrelihh ¼ �2
hs

64�m2
s

�
1þ 3m2

h

ð4m2
s �m2

hÞ
þ 2�hsv

2

ðm2
h � 2m2

sÞ
�
2

	
�
1�m2

h

m2
s

�
1=2

: (B1)

SS ! WW, ZZ, �ff all proceed via s-channel Higgs ex-
change. The corresponding h�vreli are

h�vreliWW ¼ 2

�
1þ 1

2

�
1� 2m2

s

m2
W

�
2
��
1�m2

W

m2
s

�
1=2

	 �2
hsm

4
W

8�m2
sðð4m2

s �m2
hÞ2 þm2

h�
2
hÞ
; (B2)

h�vreliZZ ¼ 2

�
1þ 1

2

�
1� 2m2

s

m2
Z

�
2
��
1�m2

Z

m2
s

�
1=2

	 �2
hsm

4
Z

16�m2
sðð4m2

s �m2
hÞ2 þm2

h�
2
hÞ
; (B3)

and

h�vreli �ff ¼
m2

W

�g2
�2
f�

2
hs

ðð4m2
s �m2

hÞ2 þm2
h�

2
hÞ
�
1�m2

f

m2
s

�
3=2

:

(B4)

Here the fermion Yukawa coupling is �f ¼ mf=v, where

v ¼ 246:22 GeV and mf is the fermion mass. �h is the

Higgs decay width. (Fermions should be summed over
colors.)
The dark matter density is calculated using the Lee-

Weinberg approximation. For real S the present total
mass density in S scalars is [19]

�S � �S

�c

¼ gðT�Þ
gðTfSÞ

K

T�xfSh�annvreli
�
T4
�

�c

� ð1� 3xfS=2Þ
ð1� xfS=2Þ ;

(B5)

where TfS is the S freeze-out temperature, xfS ¼ TfS=ms,

and K ¼ ð4�3gðTfSÞ=45M2
PlÞ1=2, where gðTfSÞ is the effec-

tive number of relativistic degrees of freedom. The density
for complex S is twice that for real S, due to the additional
degree of freedom.
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