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Thermally relativistic flows in the early Universe can be characterized by the emergence of flows

induced by gravitational-force-free particle motion in curved spacetime as well as induced by the

gravitational force. In this paper, thermally relativistic flows induced by gravitational-force-free particle

motion in curved spacetime are discussed on the basis of the general relativistic Boltzmann equation. As

an object of analysis, we consider the flow from the static state inside the Schwarzschild radius of a

thermally relativistic stuffed black hole induced by such motion. Analytical results obtained using the

collisionless, nongravitational general relativistic Boltzmann equation reveal that the initial cluster is

induced by gravitational-force-free particle motion. Numerical results obtained using the nongravitational

general relativistic Anderson-Witting model confirm the presence of an initial cluster inside the thermally

relativistic stuffed black hole, which is induced by gravitational-force-free particle motion.

DOI: 10.1103/PhysRevD.80.123506 PACS numbers: 98.80.Jk

I. INTRODUCTION

In the early Universe, space was filled with high-energy,
high-density fluctuating matter [1]. In such a fluctuating
field [2], strongly curved spacetime can be formed as a
result of a local solution of Einstein’s equation [3].
Consequently, primordial black holes are often considered
[4] to have existed in the early Universe. In discussions on
the dynamics of matter in strongly curved spacetime, the
flow of matter is considered to be induced exclusively by
the gravitational force, which is represented by the equa-
tion of the particle motion via Christoffel symbols [3].
However, when the curved spacetime is filled with ther-
mally relativistic matter, this flow of matter can be induced
not only by the gravitational force but also by the free
motion of the particle, because the local equilibrium dis-
tribution function depends on the local metric of the curved
spacetime [5]. On the basis of the relativistic kinetic theory,
the flow of matter is considered to be induced by the local
gradient of the distribution function due to the local gra-
dient of the metric of the spacetime as well as induced by
the gravitational force. When the thermal energy of matter
increases, this dependency of the equilibrium distribution
function on the metric of the spacetime becomes stronger.
Consequently, when the thermal energy of the matter in
curved spacetime increases, the flow induced by such

gravitational-force-free particle motion becomes less neg-
ligible compared with the flow induced by the gravitational
force. As an initial attempt to clarify such thermally rela-
tivistic flows in the early Universe, we analyzed the flow
induced by the gravitational-force-free particle motion in
curved spacetime by using the general relativistic kinetic
theory.
In this paper, we assumed an isotropic field filled with

matter whose thermal energy is relativistic. To avoid the
difficulties involved with the excision of the characteristic
point [3] in the Schwarzschild metric, we used the
Friedmann-Robertson-Walker (FRW) metric [3] as the
initial gauge condition in the early Universe. As the pri-
mordial black hole generated by thermally relativistic mat-
ter in the early Universe, a stuffed black hole [6] is
considered here on the basis of no-hair theorem [7] of a
black hole, although the stuffing process involves a region
that does not satisfy Einstein’s equation [6]. To solve
Einstein’s equation, we used the Z4 formalism [8] by
Bona et al., since previous results [6,9] on the evolution
of a stuffed black hole have been reported. The free pa-
rameters used in the Z4 formalism (see Appendix B) usu-
ally determine the slice condition and stability of the
scheme [8]. In our numerical analysis, such free parame-
ters must be carefully selected to avoid the numerical
formation of tachyons. Throughout this numerical analy-
sis, a hard-sphere particle [5] is assumed to be the basic
component of matter. The effects due to inflation [10] and
quantum mechanics [11] are not considered. In particular,
the decrease in the temperature caused by Hawking’s
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radiation [12] is excluded. Under such an assumption, the
thermally relativistic field holds. Analytical results ob-
tained using the collisionless, nongravitational general
relativistic Boltzmann equation suggest the incipient flow
into the center of a black hole inside the Schwarzschild
radius, namely, ‘‘initial cluster’’ induced by gravitational-
force-free particle motion. In the presence of particle col-
lisions, such an initial cluster has been numerically con-
firmed by solving the nongravitational general relativistic
Anderson-Witting model [13].

In Sec. II of this paper, the general relativistic
Boltzmann equation is rewritten for a (3þ 1) Arnowitt-
Deser-Misner (ADM) system [14] by changing its momen-
tum space into velocity space. In Sec. III A, the initial
cluster induced by gravitational-force-free particle motion
in curved spacetime inside the Schwarzschild radius of a
thermally relativistic stuffed black hole is analytically
considered on the basis of the strict solution of the colli-
sionless, nongravitational general relativistic Boltzmann
equation. In Sec. III B, the numerical results confirm the
existence of such an initial cluster from the static state by
solving the nongravitational general relativistic Anderson-
Witting model coupled to Einstein’s equation.

II. GENERAL RELATIVISTIC BOLTZMANN
EQUATION IN (3þ 1) ADM SYSTEM

The general relativistic Boltzmann equation with the
distribution function based on four-momentum p� is writ-
ten as

p� @f

@x�
� �i

��p
�p� @f

@pi ¼ L½f�; (1)

where f is the distribution function defined by f �
fðx�; piÞ, (i ¼ 1, 2, 3), �i

�� is the Christoffel symbol,

and L½f� is the collision term [13]. In numerical analysis,
the treatment of momentum space is difficult, because p�

approaches infinity as the velocity of particles approaches
the speed of light. As a result, the accurate numerical
integration of the distribution function in momentum space
becomes difficult when the number of particles with ve-
locity near the speed of light is non-negligible. The use of
velocity space instead of momentum space as the phase
space of the distribution function is therefore expected to
yield a more accurate integration of the distribution func-
tion, because the velocity space is bounded by the metric
[5]. For accurate integration, we must therefore derive the
general relativistic Boltzmann equation on the basis of the
velocity space instead of the momentum space, namely,
fðx�; piÞ ! fðx�; viÞ.

The Liouville law gives the following relation for the
distribution function:

dfðx�ð��Þ; við��ÞÞ
d��

¼ @f

@x�
dx�

d��
þ @f

@vi

dvi

d��
; (2)

Here, �� ¼ �=m, where � is the proper time and m is the

mass of a particle. To derive dvi=d��, we use the equation
of motion of a particle under a gravitational field

dpi

d��
¼ ��i

��p
�p�;

�
where p� � dx�

d��

�
¼ �ðvÞ d�ðvÞv

�

dt

¼ ��i
���ðvÞ2v�v�; (3)

where �ðvÞ is defined as follows by using a (3þ 1) ADM
system [14] with the lapse �, intrinsic curvature �ij, and

zero shift �i ¼ 0 [14]:

�ðvÞ � dt

d�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � v̂2
p ;

where vi ¼ dxi

dt
; v̂2 � �ijv

ivj=c2: (4)

From Eq. (4), v̂ < �, and thus c i ¼ dvi=dt is defined as
QCR

c i ¼ dvi

dt
¼ Qvi � Ci þ vi

�2
RjCj; Ci ¼ �i

��v
�v�;

Rj ¼ �jkv
k; Q ¼ S þ X3

i;j¼1

�ijSij; (5)

where S and Sij in Eq. (5) are defined as

S � @t� (6)

S ij � @t�ij: (7)

Substituting Eq. (5) into Eq. (2) yields the general relativ-
istic Boltzmann equation based on the velocity space

@f

@t
þ vi @f

@xi
þ c i @f

@vi ¼
1

�ðvÞL½f�: (8)

The first and second moments, N� and T��, are obtained
by evaluating [5]

N� ¼ c
Z
R3

p�f
ffiffiffi
g

p d3p

p0

; (9)

T�� ¼ c
Z
R3

p�p�f
ffiffiffi
g

p d3p

p0

; (10)

where c is the speed of light in the Minkowski metric and
g � detðg��Þ, in which g�� is the metric tensor.

Rewriting Eqs. (9) and (10)with momentum space R3

replaced by velocity space V 3 yields the following:

N� ¼ m3c
Z
V 3

�ðvÞ5v�f
ffiffiffi
g

p
d3v; (11)

T�� ¼ m4c
Z
V 3

�ðvÞ6v�v�f
ffiffiffi
g

p
d3v: (12)

The Eckart decomposition [15] yields the projected mo-
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ments, number density n, pressure deviator ph��i, static
pressure p, dynamic pressure $, and energy per particle e
as follows:

n ¼ 1

c2
N�U�; (13)

ph��i ¼ ð��
���

� � 1
3�

�����ÞT�� (14)

pþ$ ¼ �1
3���T

��; (15)

q� ¼ �
�
�U�T

��; (16)

e ¼ 1

nc2
U�T

��U�; (17)

where U� ¼ �ðuÞu�, in which u� ¼ ðc; uiÞ, ui is the flow
velocity of the i-th component and �ðuÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �iju

iuj=c2
q

, and where U� ¼ �ðuÞu�, in which

u� ¼ ð�2c;�uj�ijÞ is the covariant four-velocity of the

flow [15]. The projector ��� is defined as [15]

��� ¼ g�� �
U�U�

c2
: (18)

III. THERMALLY RELATIVISTIC FLOW
INDUCED BY GRAVITATIONAL-FORCE-FREE
PARTICLE MOTION IN CURVED SPACETIME

The flow in curved spacetime is induced exclusively by
the gravitational force, which is revealed by the term
c i@f=@vi in Eq. (8), when particles are thermally non-
relativistic (i.e., 102 � � ¼ mc2=ðk	Þ, where 	 is tem-
perature and k is Boltzmann’s constant).

When particles are thermally relativistic (i.e., 1< � <
102) or thermally ultrarelativistic (i.e., (� � 1)), however,
the flow in curved spacetime is also induced by
gravitational-force-free particle motion, which is revealed
by the term vi@f=@xi in Eq. (8).

This nongravitational thermally relativistic flow is
caused by the dependence of the equilibrium function, or
the so-called Maxwell-Jüttner function [5], on the local
lapse and intrinsic curvature. The Maxwell-Jüttner func-
tion is written as

fð0Þðx�;vÞ ¼ n

4
m2ck	K2ð�Þ
e�ððU�p�Þ=k	Þ; (19)

where p� is p� ¼ m�ðvÞð�2c;�vj�ijÞ and K2ð�Þ is the

modified Bessel function of the second kind. To focus on
flows induced by gravitational-force-free particle motion,
we consider the following nongravitational [i.e., c i ¼ 0 in
Eq. (8)] and collisionless [i.e., L½f� ¼ 0 in Eq. (8)] general
relativistic Boltzmann equation

@f

@t
þ vi @f

@xi
¼ 0: (20)

The solution of Eq. (20) is given by

fðt; xi; viÞ ¼ fð0; xi � vit; viÞ: (21)

From Eq. (21), flow is not induced when fð0; xi �
vit; viÞ ¼ fð0; xi; viÞ. Assuming the initial conditions
under which nð0; xiÞ ¼ n1, �ð0; xiÞ ¼ �1, uið0; xiÞ ¼ ui1
and assuming that the distribution function follows the
Maxwell-Jüttner function, the initial form of the distribu-
tion function depends on the lapse �ð0; xiÞ and the intrinsic
curvature �ijð0; xiÞ. As a result of these assumptions, the

solution of Eq. (20) is fðt; xi; viÞ � fð0; xi; viÞ when
�ð0; xiÞ and �ijð0; xiÞ are not spatially uniform. The spatial

difference in fð0Þ due to the spatial variability of � and �ij

increases when �1 decreases. In other words, the spatial

difference in fð0Þ due to curved spacetime becomes the
most significant factor in the thermally ultrarelativistic
limit (�1 ! 0), whereas the difference is the most negli-
gible factor in the nonrelativistic limit (�1 ! 1). Finally,
the distribution function, fðt; xi; viÞ (t > 0), is at nonequi-
librium state due to the initially curved spacetime. As an
example of the nongravitational flow induced by
gravitational-force-free particle motion in curved space-
time, we next analytically consider an initial nongravita-
tional cluster inside the Schwarzschild radius of a
thermally relativistic stuffed black hole.

A. Analytical consideration of an initial cluster inside a
thermally relativistic stuffed black hole

A stuffed black hole [6] is a black hole whose inward
spacetime of the Schwarzschild radius, Rs, is described
using the FRW metric in the closed case and whose out-
ward spacetime is described using the Schwarzschild met-
ric. The particles insideRs are uniformly distributed. When
all the particles in a stuffed black hole are static (i.e.,
motionless and collisionless), the energy density of the
stuffed black hole is defined using the mass energy density,
nmc2. If the relativistic motion of particles inside Rs is
non-negligible, however, the thermal energy density must
be added to the mass energy density to define the energy
density of the stuffed black hole. On the other hand, the
thermal energy density is added to the mass energy density
to also define the mass of the black hole.
Here, we consider a stuffed black hole that has relativ-

istic thermal energy. For simplification, Hawking’s radia-
tion at Rs [7] is not considered here.
The initial gauge condition of a thermally relativistic

stuffed black hole in isotropic coordinates [6] is

�0 ¼ 1; �ij;0 ¼ �ij�
4
0; if r < Rs;

�4
0 ¼ 64

�
1þ

�
2rc2

MG

�
2
��2

; if r > Rs;

�4
0 ¼

�
1þ MG

2rc2

��4
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
;

(22)

where the subscript ‘‘0’’ indicates the initial state,M is the
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mass of the black hole, G is the gravitational constant, �ij

is Kronecker’s delta function, and Rs is given by

Rs ¼ MG

2c2
¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c4

2
�0G

s
; �0 ¼ T00jt¼0; (23)

where � is the energy density.
For simplicity, we use a spherically symmetric distribu-

tion function, fðt; r; vrÞ ¼ fðt; r; vr; #; ’Þ, because
fðt; r; vr; #; ’Þ is spherically symmetric owing to the
spherical symmetry of the FRW metric and is uniform in
the directions of # and ’, where the Cartesian coordinates
ðx1; x2; x3Þ are converted into spherical coordinates
ðr; #; ’Þ via the relations ðx1; x2; x3Þ ¼ ðr sin# cos’;
r sin# sin’; r cos’Þ and ðv1; v2; v3Þ ¼ ðvr sin# cos’;
vr sin# sin’; vr cos#Þ, in which 0 � # < 
=2 and 0 �
’< 
. Assuming that the number density is uniform
(i.e., n ¼ n1), that the flow velocity is zero, and that the
temperature is uniform (i.e., 	 ¼ 	1), then from Eqs. (19)
and (22), the initial equilibrium distribution function is

fð0Þ ¼ n1=ð4
m2ck	1K2Þe��1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��4

0ðvrÞ2=c2
p

, where �1 ¼
mc2=ðk	1Þ.

Figure 1 shows the initial state of the distribution func-
tion for three points, i� 1, i, and iþ 1, along the radial
axis r, where ri�1, ri, riþ1 <Rs. This figure reveals that the
shape of the distribution function for each of these three

points, fð0Þð0; ri�1; vrÞ, fð0Þð0; ri; vrÞ, and fð0Þð0; riþ1; vrÞ,
depends on �ij given by Eq. (22) from Eq. (19). Here, we

consider fð�t; ri; vrÞ, where �t � 1. For this case, the

negative velocity tail of fð0Þð0; riþ1; vrÞ, which inflows

into the negative tail of fð0Þð�t; ri; vrÞ, is higher than that

of fð0Þð0; ri; vrÞ, whereas the positive velocity tail of

fð0Þð0; ri�1; vrÞ, which inflows into the positive tail of

fð0Þð�t; ri; vrÞ, is lower than that of fð0Þð0; ri; vrÞ. During
�t, the number of particles inflowing from riþ1 into ri with
the negative vr is higher than that inflowing from ri�1 into
ri with the positive vr. Consequently, fð�t; ri;�jvrjÞ>
fð�t; ri; jvrjÞ [16], thus leading to a negative flow velocity,
which is equivalent to the cluster of a particle into the

origin, namely, the center of the black hole. Slicing pa-
rameters are determined to yield the constant local maxi-
mum speed c=�2

0 to avoid the numerical formation of

tachyons, which is indicated by the inflow of particles in

the shaded domain of fð0Þð0; ri; vrÞ into ri�1 in Fig. 1. Such
a set of slicing parameters in the Z4 formalism is described
in Appendix B.
In the presence of particle collisions, such a cluster is

confirmed numerically by simultaneously solving the non-
gravitational general relativistic Anderson-Witting model
and Einstein’s equation based on the Z4 formalism. (The
Z4 formalism is described in detail in Appendix B.)
The nongravitational general relativistic Anderson-

Witting model indicated by c i ¼ 0 in Eq. (8) is written
as follows [13]:

@f

@t
þ vi @f

@xi
¼ U�

Lv�

c2T
ðfð0Þ � fÞ; (24)

where v� ¼ ð�2c;�vj�ijÞ and T is the relaxation rate

given by [17]

T ¼ 1

4n
�vs

; (25)

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 5G� � G2�2

Gð�2 þ 5G� � G2�2 � 1Þ
k	

m

s
; (26)

where G � K3ð�Þ=K2ð�Þ, in which K3ð�Þ is the modified
Bessel function of the third kind, and � is the total cross
section of the collision [13]. U�

L in Eq. (24) is the four-
velocity of the flow defined by Landau-Lifshitz as [18]

U�
L ¼ U� þ q�

neþ p
; (27)

where p is the static pressure defined as p ¼ nk	.
The kinetic approach to the mesoscopic nonequilibrium

induced by gravitational-force-free particle motion in
curved spacetime is described in Appendix A.

Friedmann-Robertson-Walker metric
                      (r<Rs)

O
f
(0)

O

Particles in this filled area are tachyons at ri-1

r

Schwarzschild metric
        ( r>Rs)

f
(0)

f
(0)

f(vr)

ri-1ri ri+1

1/
0

2
(ri-1) 1/

0

2
(ri)

1/
0

2
(ri+1)

vr

(ri-1)

(ri)

(ri+1)
/c

FIG. 1 (color online). Schematic of initial states of distribution functions of three points on radial axis.
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B. Numerical analysis of initial nongravitational cluster
inside a thermally relativistic stuffed black hole

For numerical analysis, we consider only the cubic
domain jxj, jyj, jzj � Rs=10. The number density, velocity,
temperature and gauge variables of the Z4 formalism at the
boundary are fixed at their initial values. Once particles and
gauge variables move from the calculated cubic domain to
the outer boundary, they never return to the calculated
cubic-domain. Namely, the nonreflecting boundary condi-
tion [19] is used. Consequently, the small jump in the
variables at the boundary appears. The left-hand side of
Eq. (23) is solved using the second-order total variation
diminishing scheme [20]. The Z4 formalism for Einstein’s
equation is solved using the flux vector splitting scheme
[21]. (The free parameters in the Z4 formalism are de-
scribed in Appendix B.) For the numerical grid, we use the
Cartesian grid, ðx; y; z; vx; vy; vzÞ ¼ ð39; 39; 39; 48;
48; 48Þ, which provides sufficiently accurate numerical
results as discussed later in this section.

First, we nondimensionalize the macroscopic physical
quantities and set G=c2 ¼ 1=ðn1mL21Þ, where L1 is a
representative length. Then, we set the normalized initial
macroscopic quantities as n=n1 ¼ 1, �1 ¼ mc2=ðk	1Þ ¼
45 [22], and ui=c ¼ 0, and define the initial energy density
� in Eq. (B21) as �1=ðn1mc2Þ ¼ 1:032, which yields
Rs=L1 ¼ 0:085 from Eq. (23), and J =t1 ¼ 4
�=L21 ¼
10 in Eq. (25). The initial conditions of the lapse � and
intrinsic curvature �ij are given by Eq. (22). Einstein’s

equation is then modified using the results estimated using
the nongravitational general relativistic Anderson-Witting
model as indicated in Eqs. (B21)–(B23). Figure 2 shows
the flow vectors at t=t1 ¼ 0:09 and numerically confirms
the cluster at the origin. Figure 3 shows the profile of the

flow velocity of the x component, ux=c, along the x axis at
t=t1 ¼ 0:06 and 0.09. To confirm the numerical accuracy
using the grid ðx; y; zÞ ¼ ð39; 39; 39Þ, the profile obtained
using the numerical grid ðx; y; zÞ ¼ ð43; 43; 43Þ at t=t1 ¼
0:06 and profiles obtained using grids ðx; y; zÞ ¼
ð31; 31; 31Þ and (35, 35, 35) at t=t1 ¼ 0:09 are compared
with those obtained using the grid ðx; y; zÞ ¼ ð39; 39; 39Þ at
t=t1 ¼ 0:06 and 0.09. Figure 3 shows this comparison,
which confirms that the grid ðx; y; zÞ ¼ ð39; 39; 39Þ is suf-
ficiently fine to achieve acceptable accuracy in the ob-
tained numerical results. Figure 4 shows

fð0ÞðvxÞ=fðvxÞ � 1 at x=Rs ¼ �0:052 on the x axis at
~t=t1 ¼ 0:09, where fðvxÞ � R

V 2 fdvydvz and fð0ÞðvxÞ �R
V 2 fð0Þdvydvz. As shown in Fig. 4, nonequilibrium at

-0.05

0

0.05

Z
/R

s

-0.05

0

0.05 X/R s

-0.05

0

0.05

Y/R
s

Flow vector at t/t =0.09∞

FIG. 2. Flow vectors in flowfield at t=t1 ¼ 0:09.

X/Rs

ux /c

-0.05 0 0.05

-0.00015

-0.0001

-5E-05

0

5E-05

0.0001

0.00015

Velocity profiles along x-axis at t/t =0.06 and 0.09

t/t =0.06

t/t =0.09

43 43 43

31 31 31
39 39 39

35 35 35

FIG. 3. Profiles of flow velocity ux along x axis at t=t1 ¼ 0:06
and 0.09.

vx/c

f
(0

) /f
-1

-0.1 -0.05 0 0.05 0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075 x/Rs=-0.052

x/Rs=0.052

f(0)/f-1 at x/Rs= 0.052 along x-axis at t/t =0.09

FIG. 4. Profiles of fð0Þ=f� 1 at x=Rs ¼ �0:052 along x axis
at t=t1 ¼ 0:09.
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both the negative and positive tails is significant for
x=Rs ¼ �0:052. Figures 5–7 show the profiles of the
number density (n), temperature (	), heat flux in the x
component (qx), and dynamic pressure ($), revealing
that 	 and $ exhibit peaks at the origin (x=Rs ¼ 0) attrib-
utable to the compression. As shown in Fig. 6, qx is
proportional to the gradient of 	 at x=Rs � 0:052, but is
not proportional at 0:052< jx=Rsj due to the relativistic
effects. In addition to the gradient of temperature, other
contributions to the heat flux include the contributions
from the negative gradient of the pressure [24], from the
gradient of the metric of the spacetime (described in
Appendix A) and from terms above the Burnett order
[25] are considered.

As shown in Fig. 7,$ is negative in all regimes, which is
a trend opposite that of the positive $ introduced by the

14-moment Navier-Stokes-Fourier law for the contracting
Universe [13]. Yano et al. [24] showed that the approxi-
mation of $ in the framework of the 14-moment Navier-
Stokes-Fourier law must be confirmed by considering the
contributions of the Burnett order terms to $. In curved
spacetime, the gradient of the metric of the spacetime
(described in Appendix A) also affects $.
Figure 8 shows profiles of the lapse � and local maxi-

mum speed vm [ ¼ vm;0 as defined in (B24)] along the x
axis at t=t1 ¼ 0:09. The profile of vm is constant during
the calculation (0 � t=t1 � 0:09), whereas � reaches its
minimum at the origin and then increases with increasing
jxj. The similar tendency of � to collapse has also been
obtained [21] by solving only Einstein’s equation without
coupling to the kinetic equation, when the same slice
condition is used.

X/Rs

qx /(
n

m
c3 )

-0.05 0 0.05

1.004

1.005

1.006

1.007

1.008

-3E-06

-2E-06

-1E-06

0

1E-06

2E-06

3E-06

qx/(n mc )

Temperature

Temperature and profiles along x-axis at t/t =0.09qx/(n mc3)

( )

FIG. 6. Profiles of temperature (	) (y1 axis) and heat flux (qx)
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IV. CONCLUDING REMARKS

The thermally relativistic flow induced by gravitational-
force-free particle motion in curved spacetime is analyzed
to investigate the specific property of thermally relativistic
flows in the early Universe. As an object of analysis, the
initial nongravitational cluster inside a thermally relativis-
tic black hole is analyzed on the basis of the assumption
that Hawking’s radiation is negligible. When the equilib-
rium distribution function inside the Schwarzschild radius
of a thermally relativistic stuffed black hole is known as
initial data, the strict solution of the collisionless, non-
gravitational general relativistic Boltzmann equation im-
plies the incipient flow into the center of a black hole, a so-
called initial cluster, inside the Schwarzschild radius. Such
a cluster inside the Schwarzschild radius is confirmed in
the presence of particle collisions by estimation using the
nongravitational general relativistic Anderson-Witting
model coupled to Einstein’s equation, which is solved
using the Z4 formalism. The obtained numerical results
clearly confirm the presence of the initial cluster inside the
Schwarzschild radius.

ACKNOWLEDGMENTS

We gratefully acknowledge C. Bona (Departament de
Fisica, Universitat de les Illes Balears, Palma de Mallorca,
Spain) for helpful comments on the numerics of the Z4
formalism. All calculations were executed using the super-
computer HITACHI SR11000 at the University of Tokyo
through collaborative research with the Information
Technology Center at the University of Tokyo.

APPENDIX A: EVALUATION OF
NONGRAVITATIONAL NONEQUILIBRIUM

CAUSED BY CURVED SPACETIME

The Chapman-Enskog expansion [26] is a useful tool for
evaluating nonequilibrium caused by gradients in macro-
scopic quantities such as the number density, velocity and
temperature. Because the form of the local equilibrium
function depends on the metric of the curved spacetime
(see Sec. III), the nonequilibrium caused by the gradient in
this metric can be evaluated using conventional techniques,
such as the Chapman-Enskog expansion.

Another form of the nongravitational general relativistic
Anderson-Witting model is derived from Eq. (24) as fol-
lows:

p� @f

@x�
¼ U�

Lp�

c2J
ðfð0Þ � fÞ: (A1)

As the first step in the Chapman-Enskog expansion, the

equilibrium distribution function f ¼ fð0Þ is substituted

into the left-hand side of (A1) and f ¼ fð0Þ þ fð1Þ is sub-
stituted into the right-hand side. To focus only on the
nonequilibrium caused by the gradient of the metric, we
assume that the number density, flow velocity, and tem-

perature are uniform, and thus Eq. (A1) can be rewritten as

p� @g�

@x�

@fð0Þ

@g�

¼ U�

Lp�

c2J
ffð0Þ � ðfð0Þ þ fð1ÞÞg

¼ �U
�
Lp�

c2J
fð1Þ: (A2)

From the (3þ 1) ADM formalism with a zero shift and
from the symmetric gauge condition as a result of Eq. (22)
at 0 � t, Eq. (A2) can be rewritten as

p�

�
@�2

@x�
@fð0Þ

@�2
þ @�4

@x�
@fð0Þ

@�4

�
¼ �U�

Lp�

c2J
fð1Þ; (A3)

where �ii ¼ �4.

Then, using Eq. (19), @fð0Þ=@�2 and @fð0Þ=@�4 in
Eq. (A3) can be rewritten as

@fð0Þ

@�2
¼ fð0Þ�

�
�ðuÞ2 þ �ðvÞ2

2
~p�

~U� � �ðuÞ�ðvÞ
�
; (A4)

@fð0Þ

@�4
¼ �fð0Þ�

~p�
~U�

2
j~pi � ~Uij2; ði ¼ 1; 2; 3Þ (A5)

where ~p� ¼ p�=ðmcÞ and ~U� ¼ U�=c.

From Eqs. (A3)–(A5), fð1Þ is obtained as

fð1Þ ¼ � c2J �

U
�
Lp�

fð0Þ
�
p�ð�2Þ�

�
�ðuÞ2 þ �ðvÞ2

2
~p�

~U�

� �ðuÞ�ðvÞ
�
� p�ð�4Þ� ~p�

~U�

2
j~pi � ~Uij2

�
;

(A6)

where ð�2Þ� � @�2=@x� and ð�4Þ� � @�4=@x�.

From Eq. (A6), the distribution function approximated

using the Chapman-Enskog expansion is f ¼ fð0Þ þ fð1Þ.
This procedure for fð1Þ from fð0Þ is repeated by substitutingPN�1

k¼0 fðkÞ into the left-hand side of Eq. (A1) and
PN

i¼0 f
ðkÞ

into the right-hand side and assuming N ! 1.

Nonequilibrium terms, namely, ph��i, $, and q�, in the
Navier-Stokes-Fourier order (N ¼ 1) [5] are derived by

first substituting f ¼ fð0Þ þ fð1Þ into Eqs. (9) and (10) and
then decomposing the obtained moments, N� and T��,
using Eqs. (14)–(16). Owing to the terms ð�2Þ� and ð�4Þ�
in Eq. (A6), these three quantities (ph��i, $, and q�)
depend on the gradient of the metric.
Concrete formulations of ð�2Þ� and ð�4Þ� in the Z4

formalism are readily introduced from Eqs. (B10), (B12),
(B16), and (B17) in Appendix B.

APPENDIX B: Z4 FORMALISM

The first-order version of the Z4 formalism is written as
[27]
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@tAi þ @l½��lAi þ �l
ið�Qþ �mAmÞ� ¼ Bi

lAl � Bl
lAi;

(B1)

@tBk
i þ @l½��lBk

i þ �l
kð�Qi þ �mBm

iÞ�
¼ Bl

iBk
l � Bl

lBk
i; (B2)

@tDkij þ @l½��lDkij þ �l
kð�Qij þ �mDmijÞ�

¼ Bk
lDlij � Bl

lDkij; (B3)

@tKij þ @k½��kKij þ ��k
ij� ¼ SðKijÞ; (B4)

@t�þ @k½��k�þ �ðDk � Ek � ZkÞ� ¼ Sð�Þ; (B5)

@tZi þ @k½��kZi þ �f�Kk
i þ �k

iðtrK ��Þg� ¼ SðZiÞ;
(B6)

where �k
ijis defined with ordering parameter � as

�k
ij ¼ Dk

ij �
1

2
ð1þ �ÞðDij

k þDji
kÞ

þ 1

2
�k

i½Aj þDj � ð1� �ÞEj � 2Zj�

þ 1

2
�k

j½Ai þDi � ð1� �ÞEi � 2Zi�; (B7)

with the following definitions

Di � Dik
k; (B8)

Ei � Dk
ki: (B9)

In Eqs. (B1)–(B3), Ai,Bk
i and Dkij are defined as

Ai � @i ln�; (B10)

Bk
i � @k�

i; (B11)

Dkij � 1
2@k�ij; (B12)

where �i is the shift vector. Source terms in Eqs. (B4)–
(B6) are [27]

SðKijÞ ¼ �KijBk
k þ KikBj

k þ KjkBi
k þ �

�
1

2
ð1þ �Þ

�
�Ak�

k
ij þ

1

2
ðAiDj þ AjDiÞ

�

þ 1

2
ð1� �Þ

�
AkD

k
ij �

1

2
fAjð2Ei �DiÞ þ Aið2Ej �DjÞg þ 2ðDir

mDr
mj þDjr

mDr
miÞ � 2EkðDij

k þDji
kÞ
�

þ ðDk þ Ak � 2ZkÞ�k
ij � �k

mj�
m
ki � ðAiZj þ AjZiÞ � 2Kk

iKkj þ ðtrK � 2�ÞKij

�

� 8
�

�
Sij � 1

2
�ijð��þ SkkÞ

�
; (B13)

SðZiÞ ¼ �ZiBk
k þ ZkBi

k þ �½AiðtrK � 2�Þ � AkK
k
i

� Kk
r�

r
ki þ Kk

iðDk � 2ZkÞ� � 8
�Si; (B14)

Sð�Þ ¼ ��Bk
k þ �

2
½2AkðDk � Ek � 2ZkÞ þDk

rs

þ �k
rs �DkðDk � 2ZkÞ � Kk

rK
r
k

þ trKðtrK � 2�Þ� � 8
��: (B15)

In Eq. (B12), the intrinsic curvature �ij is then given by

@t�ij þ @l½��l�ij� ¼ �2�Kij; (B16)

where Kij is the extrinsic curvature.
In Eq. (B1), Q is the rate of temporal variation of � as

@t� ¼ ��2Q; (B17)

and is expressed in harmonic coordinates as [27]

Q ¼ �a
�k

�
@k ln�þ Fð�ÞðtrK � ��Þ: (B18)

In Eq. (B18), F ¼ 0 corresponds to geodesic slicing, F ¼
1 corresponds to harmonic slicing, and F ¼ 2=� corre-
sponds to ‘‘1þ log’’ slicing. In Eq. (B2), Qi is the rate of
the temporal variation of �i as

@t�
i ¼ ��Qi; (B19)

and Qi is expressed in harmonic coordinates as [27]

Qi ¼ ��k

�
@k�

i � ��kið@j�jk � @k ln
ffiffiffiffi
�

p � @k ln�Þ:
(B20)

In our numerical analysis, the shift �i, the free parameter �
in Eq. (B7), and � in Eq. (B18) are all set to zero, and the
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initial values of Ai, B
i
k, Kij, �, and Zi are also all set to

zero.
When �i ¼ 0, the energy density �, momentum density

Si, and stress tensor Sij are given by [8]

� � �2T00; (B21)

Si � �T0
i ; (B22)

Sij � Tij: (B23)

The propagation of gauge variables via the Z4 formalism
occurs at its characteristic speed [21] regardless of the
hydrodynamic propagations of particles as indicated by
the left-hand side of Eq. (24). Consequently, the constraint
0<�2 � v̂2 in Eq. (4) is violated, if the gauge evolves
freely from such a constraint. Here, we describe a set of
slicing parameters that does not violate the constraint 0<
�2 � v̂2 reasonably.

The initial local maximum speed vm;0 is defined from

Eqs. (4) and (22) as

vm;0 � �0c

�2
0

: (B24)

Assuming that vm;0 during the calculation is equal to its

initial value, F in Eq. (B15) is fixed at F ¼ 1=3, which
gives the following relation from Eqs. (B16)–(B18):

�

�0
¼

�
�

�0

�ð1=6Þ
; (B25)

where the subscript ‘‘0’’ indicates an initial state and � �
detð�ijÞ. In our analysis, �xx ¼ �yy ¼ �zz ¼ �4, and the

other elements of �ij are zero because the spherically

symmetric field is conserved during the calculation.
Consequently, from Eq. (B25), � ¼ �xx�yy�zz ¼ �12

yields the relation vm � �c=�2 ¼ vm;0. The assumption

of constant vm is based on the conjecture that the number
of particles that inflow from other spatial points at which
the particles have velocity higher than vm, is negligible.
Particles whose velocity exceeds vm, such as tachyons, are
excluded. Such particles are present inside the shaded
domain shown in Fig. 1.
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