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When using distance measurements to probe spatial curvature, the geometric degeneracy between

curvature and dark energy in the distance-redshift relation typically requires either making strong

assumptions about the dark energy evolution or sacrificing precision in a more model-independent

approach. Measurements of the redshift evolution of the linear growth of perturbations can break the

geometric degeneracy, providing curvature constraints that are both precise and model independent.

Future supernova, CMB, and cluster data have the potential to measure the curvature with an accuracy of

�ð�KÞ ¼ 0:002, without specifying a particular dark energy phenomenology. In combination with

distance measurements, the evolution of the growth function at low redshifts provides the strongest

curvature constraint if the high-redshift universe is well approximated as being purely matter dominated.

However, in the presence of early dark energy or massive neutrinos, the precision in curvature is reduced

due to additional degeneracies, and precise normalization of the growth function relative to recombination

is important for obtaining accurate constraints. Curvature limits from distances and growth compare

favorably to other approaches to curvature estimation proposed in the literature, providing either greater

accuracy or greater freedom from dark energy modeling assumptions, and are complementary due to the

use of independent data sets. Model-independent estimates of curvature are critical both for testing

inflation and for obtaining unbiased constraints on dark energy parameters.
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I. INTRODUCTION

Cosmological measurements of the average spatial cur-
vature of the spacetime metric are one of only a handful of
methods available for testing the inflationary paradigm for
the early universe. Current observations are consistent with
the inflationary prediction of a nearly flat universe.
However, the precision of curvature measurements is
only at the percent level at best (e.g., [1,2]), whereas the
expected level of curvature in standard inflationary scenar-
ios is generally much smaller. Moreover, obtaining the
most precise limits on curvature requires assuming a par-
ticular simple form for the dark energy evolution due to the
well-known ‘‘geometric degeneracy’’ between curvature
and dark energy [3–21]. Inferences about inflation based
on such curvature constraints are only valid if the assumed
dark energy behavior is an adequate description of the true
evolution.

Just as uncertainty about the dark energy evolution
affects estimates of curvature, uncertainty about curvature
limits our ability to constrain parameters of dark energy
models with cosmic distances. One often assumes spatial
flatness motivated by the predictions of inflation when
constraining dark energy models, but the resulting parame-
ter estimates may be biased if the true spatial curvature
deviates even slightly from zero [9,15,16,20,21].

A few methods for using measured distances to obtain
curvature estimates that are independent of the dark energy

evolution have been proposed for use with future data sets.
For example, Bernstein [12] proposed a technique using
weak lensing galaxy-shear correlations to measure tri-
angles of distances between the lensing and source galaxy
planes and the observer, resulting in a curvature estimate
that depends only on the assumed form of the spacetime
metric. An alternate method by Knox [13] uses precisely
measured distances at high redshift (z * 3) combined with
the distance to recombination from CMB data to infer the
curvature without dependence on the low-redshift dark
energy evolution.
In this work, we describe a different approach to model-

independent curvature estimates that uses combinations of
data sets that probe the distance-redshift relation and the
growth of linear perturbations. The geometric degeneracy
in distance data arises because distances depend on both
the expansion rate (and therefore the dark energy evolu-
tion) and the spatial curvature. The growth of structure, on
the other hand, depends only on the expansion rate. If one
can measure both distances and growth over a similar range
of redshifts, then constraints on the expansion rate from
growth data can be used to break the degeneracy in dis-
tance data, providing a model-independent determination
of the curvature. The only assumptions required are that
general relativity (GR) is the correct theory of gravity
governing the growth of structure and that dark energy
does not cluster significantly on the scales of interest.
In Sec. II, we review the basic distance and growth

relations and observables. Section III describes the geo-
metric degeneracy in distances and how this degeneracy is*mjmort@uchicago.edu
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broken by growth information. We then present forecasts
for curvature constraints from future distance and growth
data, beginning with descriptions of two methods of relat-
ing growth evolution on linear scales to an observed
distance-redshift relation. The first, in Sec. IV, is based
on a numerical exploration of general dark energy models
carried out in Ref. [22] by Mortonson, Hu, and Huterer
(hereafter, MHH09). The second method involves rewrit-
ing the equations for distances and growth so that the
common dependence on the expansion rate drops out.
The basis of this method of reconstructing the growth
history from observed distances comes from Alam,
Sahni, and Starobinsky [23], and in Sec. V, we summarize
this work and extend it in several ways to allow the method
to be applied to curvature forecasts. These two methods are
complementary in several ways; the Markov Chain Monte
Carlo (MCMC) approach is more straightforward in terms
of error propagation and the solution for the growth evo-
lution, but it can be quite time-consuming and depends
more on one’s priors on the dark energy evolution com-
pared with the analytic growth reconstruction approach.
The growth reconstruction method is therefore a useful tool
for exploring the curvature-dependent relation between
distances and growth for a variety of different cosmologies
and assumed data sets, while the MCMC results help in
testing and calibrating the analytic method and in provid-
ing accurate error estimates. Using both of these methods,
forecasts for curvature from a combination of future su-
pernova (SN), CMB, and x-ray cluster data are presented in
Sec. VI. Finally, Sec. VII contains a summary and discus-
sion of the results of this work.

II. PRELIMINARIES

A. Spatial curvature

Given that the universe appears to be spatially homoge-
neous and isotropic on large scales, the background metric
can be written in the Friedmann-Robertson-Walker (FRW)
form:

ds2 ¼ �dt2 þ a2
�

dD2

1þ�KH
2
0D

2

þD2ðd�2 þ sin2�d�2Þ
�
; (1)

which describes an expanding (or contracting) universe
with scale factor aðtÞ, where D is the comoving radial
coordinate andH0 is the Hubble constant. The FRWmetric
has constant spatial curvature parametrized by �K, where
a flat universe has �K ¼ 0, an open universe �K > 0, and
a closed universe �K < 0. The curvature parameter is
related to the total density of the components of the uni-
verse in units of the critical density for flatness, �tot ¼
�tot=�cr;0, by �K ¼ 1��tot, where all densities are eval-

uated at the present time.

Theories of inflation predict that the universe is nearly
flat (�K � 0), and the fact that current observations are
consistent with flatness is viewed as supporting evidence
for inflation. The expected deviations from flatness are
typically at or below the level of the initial curvature
perturbations at the end of inflation, j�Kj & 10�5 (e.g.,
[24,25]). The ultimate precision with which the curvature
may be determined from observations is limited by cosmic
variance and model selection considerations to �ð�KÞ �
10�5–10�4 [26,27]. While there are some theories of in-
flation in which the present value of the curvature is large
enough to be potentially observable without excessive fine-
tuning of the initial conditions of inflation [25,28–37], a
detection of nonzero curvature would challenge at least the
simplest inflationary theories.
The strongest observational bounds on curvature are

presently at the percent level, i.e. �ð�KÞ � 0:01. The
main limits on curvature come from measurements of
angular diameter distances in the CMB at z� 1000 and
baryon acoustic oscillations (BAO) at z < 1. However,
these constraints rely on assuming a simple model for the
dark energy such as a cosmological constant. More precise
and more model-independent measurements of the spatial
curvature would provide valuable tests of theories of
inflation.

B. Distances

In a flat universe, the comoving distance Df to an object

at redshift z obtained by integrating over the comoving
radial coordinate in the FRW metric is

DfðzÞ ¼
Z z

0

dz0

Hðz0Þ : (2)

More generally, for universes with nonzero spatial curva-
ture the comoving distance is

DðzÞ ¼ 1

�
SK½�DfðzÞ�; (3)

where � � ðj�KjH2
0Þ1=2 is the inverse of the curvature

radius of the universe, and SKðxÞ ¼ x for a flat universe,
sinhx for an open universe, and sinx for a closed universe.
Distances therefore depend on both the expansion rate,
HðzÞ, and geometry, �K. The distances at low redshifts
for three models with varying spatial curvature are plotted
in Fig. 1. Note that the curvature dependence is very weak
at low redshifts, but high-redshift distances, e.g. the dis-
tance to recombination, are more sensitive to the geometry
of the universe.
The main probes of distances we will consider here are

type Ia supernovae (SNe), standardizable candles whose
average magnitudes are related to distances as

mðzÞ ¼ 5 log½H0dLðzÞ� þM; (4)

where M ¼ M� 5 logðH0=Mpc�1Þ þ 25 combines the
unknown absolute magnitude of the supernovae M and
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Hubble constant H0, both of which only affect the overall
normalization of the SN distance-redshift relation. Since it
involves unknown parameters that do not affect the mea-
sured evolution of distances with redshift, M is a ‘‘nui-
sance’’ parameter that is generally marginalized in a
cosmological analysis of SN data.

Because the distance normalization is unknown, SN data
determine relative distances, but not the absolute scale of
the distance-redshift relation. However, SNe at low z can
constrain the normalization since limz!0H0DðzÞ ¼ z under
reasonable assumptions about the evolution of HðzÞ in the
recent past.1 Then for low-redshift SNe, the average mag-
nitude from Eq. (4) ismðzÞ � 5 logzþM, which provides
an estimate of M.

We will also consider the angular diameter distance
constraint from the acoustic scale of the CMB. The main
effects of dark energy and curvature on the CMB enter
through the distance to recombination at z� � 1089 [38]
and the matter density �mh

2, which affect the angular
scale and amplitude of the acoustic peaks [10]. Dark
energy and curvature also affect the large-scale CMB
anisotropies through the integrated Sachs-Wolfe effect,
but the information available is limited due to cosmic
variance on those scales, and the resulting constraints are
relatively weak. We will therefore neglect this information
in the curvature forecasts.

Angular diameter distances can also be determined by
measuring baryon acoustic oscillations in the matter power
spectrum in the plane transverse to the line of sight. BAO
can be a powerful probe of absolute distances, but incom-
plete redshift coverage and the need for wide redshift bins
make the technique less suitable than type Ia SNe as a
primary source of the distance information for predictions
of the growth evolution. However, BAO data can provide
complementary constraints on curvature through other
means (e.g., [13]).

C. Growth of linear perturbations

The growth of linear matter perturbations obeys

€�þ 2H _�� 4�GN�m� ¼ 0; (5)

where � � ��m=�m and overdots are derivatives with
respect to time t. We assume here and throughout this
work that general relativity is valid and that the dark energy
is smooth on the relevant scales so that additional terms in
the growth equation describing the clustering of dark en-
ergy can be neglected.
Equation (5) can be written in terms of G / ð1þ zÞ� as

d2G

d lna
þ
�
4þdlnH

dlna

�
dG

dlna
þ
�
3þdlnH

dlna
�3

2
�mðzÞ

�
G¼0;

(6)

where �mðzÞ ¼ �mH
2
0ð1þ zÞ3=H2ðzÞ. The growth vari-

able G is constant in a universe that contains only matter,
so it is nearly constant at high redshifts during matter
domination. We normalize the growth functions to �ðz ¼
0Þ ¼ 1 and Gðz ! 1Þ ¼ 1 so that

ð1þ zÞ�ðzÞ ¼ GðzÞ
Gðz ¼ 0Þ � G0ðzÞ: (7)

Figure 1 shows G0ðzÞ and GðzÞ for three models with
different values of the spatial curvature.
From Eqs. (3) and (6) one can see that distances depend

on both the expansion rate and geometry, while growth
depends only on the expansion rate (and �mH

2
0 which is

well determined by CMB data). Combinations of distance
and growth information with similar redshift coverage
therefore determine the geometry of the universe with
reduced dependence on the expansion rate.
Measurements of cluster abundances in a range of red-

shift bins can probe the growth evolution at low redshifts,
determining G0ðzÞ. Clusters can also constrain Gðz ¼ 0Þ to
probe high-redshift changes in the growth evolution due to
massive neutrinos or early dark energy by comparing the
growth determined by low-z clusters with the predicted
growth extrapolated to low redshifts from measurements of
the CMB power spectrum amplitude at z� 1000 (e.g., see
[39]). Reference [40] contains current examples of both
types of measurements using an x-ray cluster sample.
Assuming that dark matter halos of mass M host galaxy

clusters with the same mass, the cluster abundance depends

FIG. 1 (color online). Comoving distance (top panel), growth
relative to z ¼ 0 (middle panel), and growth relative to recom-
bination (bottom panel) vs redshift for flat, open, and closed
models. For all three models, �m ¼ 0:24 and h ¼ 0:73. In the
top panel, the three curves are indistinguishable in H0DðzÞ.

1For example, assuming that there was not a sudden large
transition in the dark energy equation of state at z & 0:01 (e.g.,
see MHH09).
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on cosmology primarily through the halo mass function
dn=dM and the comoving volume element in a solid
element d� and redshift slice dz,

dV

d�dz
¼ D2ðzÞ

HðzÞ : (8)

The mass function describing the comoving density of dark
matter halos of mass M at redshift z can be written as

dn

dM
¼ �m�cr;0

M

d ln��1ðM; zÞ
dM

fð�ðM; zÞÞ: (9)

Here �2ðM; zÞ is the variance of linear matter density
perturbations,

�2ðM; zÞ ¼
�
G0ðzÞ
1þ z

�
2 Z

d lnk�2ðkÞW2ðkRðMÞÞ; (10)

where RðMÞ ¼ ½3M=ð4��m�cr;0Þ�1=3, �2ðkÞ is the dimen-

sionless power spectrum of linear matter perturbations at
z ¼ 0 with comoving wave number k, and WðkRÞ ¼
3j1ðkRÞ=kR is the Fourier transform of a spherical top-
hat window function with radius R.

The function fð�Þ in Eq. (9) parametrizes the mass
function in a way that is relatively independent of redshift
and cosmological parameters. The dependence on � is
exponential as � ! 0, and since �ðM; zÞ / G0ðzÞ, the
abundance of massive clusters is exponentially sensitive
to the growth function.

Additional details about the cluster abundance can be
found in Sec. VID, where we describe the dependence of
curvature estimates from SN, CMB, and cluster data on the
modeling of the cluster growth information.

D. Expansion rate

The Friedmann equation gives the expansion rate as
determined by the evolution of the density of various
components:

HðzÞ ¼ H0

�
�mð1þ zÞ3 þ�rð1þ zÞ4

þ �DEðzÞ
�cr;0

þ�Kð1þ zÞ2
�
1=2

; (11)

where �DE is the dark energy density and�m,�r, and�K

are the present matter density, radiation density, and effec-
tive curvature density, respectively, in units of the critical
density. Here we generalize the dark energy phenomenol-
ogy to allow arbitrary evolution of the dark energy density.
For a general time-dependent dark energy equation of state
wðzÞ, the dark energy density evolves as

�DEðzÞ ¼ �cr;0�DE exp

�
3
Z z

0
dz0

1þ wðz0Þ
1þ z0

�
; (12)

where �DE ¼ 1��m ��r ��K is the present fraction
of dark energy.

The data we consider for curvature forecasts only have
the ability to constrain the detailed dark energy evolution at
low redshifts (z < zmax where zmax � 1:5), so we only
allow complete freedom in �DEðzÞ at late times. In models
withwðzÞ � �1, the dark energy fraction decreases rapidly
with increasing redshift and therefore the exact form of the
high-redshift dark energy evolution is unimportant; for
example, for flat�CDM,�DEðz�Þ � 10�9. However, mod-
els have been proposed in which the dark energy remains a
significant fraction of the total density even at high z, such
as scalar field models that track the density of the dominant
matter and radiation components at early times [41–43]. To
account for such possibilities, we parametrize early dark
energy using an effective constant equation of state

wðz > zmaxÞ ¼ w1; (13)

as in MHH09. At z > zmax, the dark energy density is

�DEðzÞ ¼ �DEðzmaxÞ
�

1þ z

1þ zmax

�
3ð1þw1Þ

: (14)

Although this may not be a realistic model for early dark
energy, it should be sufficient to absorb at least small
effects of early dark energy on curvature estimates. Dark
energy that behaves like a cosmological constant at z >
zmax would have w1 ¼ �1 and tracking models have
w1 ¼ 0. Other values of w1 may provide an effective
description of other types of models; e.g. tracking models
that transition to w< 0 at z � zmax can be approximated
by a constant equation of state in the range �1<w1 < 0.
We examine how well this approach works in the context
of different early dark energy models (as well as models
with massive neutrinos, which have effects that are indis-
tinguishable below the neutrino free-streaming scale from
early dark energy in the observables considered here) in
Sec. VI B.
Since w1 only specifies the redshift evolution of the

dark energy density at z > zmax but not its normalization,
the density at some redshift is required to completely
describe the early dark energy model. It is convenient to
use the fraction of dark energy at zmax, �DEðzmaxÞ, for this
purpose. One way to estimate this quantity from SN data is
to differentiate DfðzÞ at zmax, since from Eqs. (2) and (11)

we can obtain

�DEðzmaxÞ
�cr;0

¼ E2
max �

X
i�DE

�ið1þ zmaxÞ3ð1þwiÞ; (15)

where Emax ¼ HðzmaxÞ=H0 ¼ H�1
0 ð@z=@DfÞjz¼zmax

.

E. Data for forecasts

In this section, we summarize the main data assumptions
we use for the curvature forecasts presented in Sec. VI.
These data include future type Ia supernova and CMB
observations as probes of distances, and x-ray cluster
abundances as a probe of the linear growth history. The
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characteristics of the former set of distance data match
those assumed in MHH09.

The supernova sample is taken to match the planned
redshift distribution for the SuperNova/Acceleration Probe
(SNAP) [44], which covers redshifts 0:1< z < 1:7. In
addition, we assume a sample of 300 low-redshift SNe at
0:03< z < 0:1. The intrinsic SN magnitude dispersion is
taken to be �stat ¼ 0:15, and the systematic error is mod-
eled as �sys ¼ 0:02½ð1þ zÞ=2:7� in redshift bins of width

�z ¼ 0:1. Then the uncertainty in relative distances from
SNe in a �z ¼ 0:1 bin with N SNe is

�lnH0D ¼ 0:2 ln10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1�2

stat þ �2
sys

q
: (16)

The CMB distance priors we use are modeled on the
specifications for the recently launched Planck satellite
[45]. As in MHH09, we describe the CMB data with a
2D Fisher matrix FCMB, including the distance to recom-
bination,Dðz�Þ, and the physical matter density�mh

2. The
elements of the covariance matrix CCMB ¼ ðFCMBÞ�1 are
CCMB
xx ¼ ð0:0018Þ2, CCMB

yy ¼ ð0:0011Þ2, and CCMB
xy ¼

�ð0:0014Þ2, where x ¼ ln½Dðz�Þ=Mpc� and y ¼ �mh
2.

In addition to the distance constraints from SN and CMB
data, in some cases we will consider the effect of additional
priors. For the MCMC analysis, we use the priors of
MHH09 which correspond to constraints from currently
available data, including an 11% H0 prior from Hubble
Space Telescope (HST) Key Project data [46], a 3.7% BAO
measurement of Dðz ¼ 0:35Þ from the Sloan Digital Sky
Survey (SDSS) [1], and a 2.5% upper limit on the fraction
of early dark energy at recombination from the Wilkinson
Microwave Anisotropy Probe (WMAP) temperature angu-
lar power spectrum [47]. For the growth reconstruction
forecasts, we also consider future priors, including a 1%
measurement of H0 [48] and a 1% upper limit on the dark
energy fraction at recombination from CMB data,�DEðz�Þ.
A stronger limit of �0:2% on the early dark energy frac-
tion may be obtainable with future observations of CMB
lensing in the context of specific parametrizations of early
dark energy [49,50], but here we adopt a more conservative
prior to allow for the possibility that the limit may weaken
upon including more general early dark energy behavior.

Each of these constraints supplementing the SNAP and
Planck data is implemented as a Gaussian prior with mean
equal to the value in the fiducial cosmology. We will see in
Sec. VI that for a variety of cosmological models, particu-
larly those in which the deviations in the high-redshift
density evolution from the concordance model are mild,
these additional priors are unnecessary for curvature esti-
mates from future distance and growth data sets.

For growth forecasts, we consider constraints on the
amplitude and redshift evolution of galaxy cluster abun-
dances using observations from the proposed International
X-ray Observatory (IXO) [51]. The IXO is projected to
obtain 1%–2% measurements of the growth functionG0ðzÞ
in �z ¼ 0:1 bins over 0< z < 2, assuming that distances

and the expansion rate are effectively fixed by other data
sets such as SNe. When combined with the expected 1%
measurement by Planck of the amplitude of scalar fluctua-
tions from the CMB power spectra, the x-ray cluster data
should also provide a �1%–2% measurement of GðzÞ at
z < 2.
We approximate the growth information from IXO clus-

ters (and from Planck for comparison of the cluster abun-
dance and CMB power spectrum amplitudes) by a
Gaussian likelihood with uniform uncertainties in G0ðzÞ
at z � zmax in�z ¼ 0:1 bins andGðzmaxÞ, using zmax ¼ 1:5
corresponding to the maximum redshift at which distances
are well constrained by SNe. Our forecasts in Sec. VI
assume optimistic 1% growth uncertainties from IXO as
the default assumption, but in Sec. VID we also examine
how curvature constraints weaken for more pessimistic
assumptions and consider how degeneracies between dis-
tances and growth in the cluster observables may affect the
predicted curvature constraints.

III. THE GEOMETRIC DEGENERACY

In this section, we present examples of the degeneracy
between curvature and dark energy evolution in the
distance-redshift relation, and show how growth informa-
tion can break this degeneracy.
The geometric degeneracy can take a variety of forms,

depending on the dark energy modeling and the available
data. For example, even for a cosmological constant �
there is a degeneracy between�� and�K if the only input
is the distance to recombination from the CMB (e.g., [4–
6]). Adding more data breaks the degeneracy for the cos-
mological constant model, but the degeneracy persists for
more complex dark energy models. Taken to an extreme,
even if one has exact measurements of the distance-redshift
relation over the entire history of the universe, there is still
a degeneracy if we allow arbitrary evolution of the dark
energy density with redshift. This general form of the
geometric degeneracy is what we focus on here.
The degeneracy in distance data is apparent if we differ-

entiate Eq. (3) and use Eq. (11) to solve for the dark energy
density:

�DEðzÞ
�cr;0

¼ 1þ�K½Hfid
0 DfidðzÞ�2SN

ð@½Hfid
0 DfidðzÞ�SN=@zÞ2

� X
i�DE

�ið1þ zÞ3ð1þwiÞ;

(17)

assuming that SN data provide relative distance measures
½Hfid

0 DfidðzÞ�SN for some fiducial cosmology. [Note that this

generalizes Eq. (15).] Thus for any value of the spatial
curvature, there exists some dark energy evolution that
matches a given set of distance measurements.
The ability of dark energy to match distances for any

value of �K is weakened if we introduce some mild
restrictions on the dark energy evolution, for example,
requiring that the dark energy density be nonnegative.
Observational constraints beyond the distance-redshift re-
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lation can also limit the possible dark energy behavior; for
example, a dark energy fraction of a few percent or more at
recombination would distort the CMB temperature power
spectrum in ways that are not observed in WMAP data
[18,47,52].

In practice, however, the redshift coverage of data is
limited, so degenerate cosmological models only need to
match distances at the redshifts where we can actually
measure distances. Within the redshift ‘‘gaps’’ in our ob-
servations, the dark energy evolution can deviate from
Eq. (17) and still satisfy all available observational
constraints.

Figure 2 shows the dark energy fraction, distance, and
growth of four example models chosen to illustrate these
points. These models all have nonzero curvature (two open
and two closed), but �m, h, and w1 are adjusted so that
they all match relative SN distances H0DðzÞ at z < zmax

with zmax ¼ 1:7 (see middle panel of Fig. 2) and CMB
constraints on Dðz�Þ and �mh

2 for a flat �CDM model
with �m ¼ 0:24 and h ¼ 0:73.

For each model, a dotted line shows how the dark energy
evolution would extend to z > zmax if we required the
models to match H0DðzÞ at all distances in the range 0<
z < z� (but not the CMB absolute distance); for the closed
models this would require a negative dark energy density,
�DEðzÞ< 0, at high z, and for the open models�DEðz�Þ �
10%–20%, which violates current CMB constraints.
However, due to the lack of observational constraints at
zmax < z < z�, not only can we find models with nonzero
curvature that match the SN and CMB data of the fiducial
flat �CDM model, but there is in fact a set of degenerate
models for each value of �K with different combinations
of the matter density and early dark energy parameters.
Specifically, to match an observed distance to recombi-

nation ½Dfidðz�Þ�CMB as well as SN distances, the constraint
that these models must satisfy [in addition to Eq. (17) at
z < zmax] is

�
Z z�

zmax

dz

HðzÞ ¼ S�1
K f�½DfidðzmaxÞ�CMBg

� S�1
K f�H�1

0 ½Hfid
0 Dfidðz�Þ�SNg: (18)

The bottom panel of Fig. 2 shows that despite being
degenerate in the SN and CMB distance data, these models
are distinct in their growth evolution for different values of
the spatial curvature. This separation based on curvature is
mostly independent of the f�m; w1g values. This indicates
that growth observations can break the degeneracy be-
tween �K, �m, and w1 that is present in SN and CMB
data and provide model-independent information about the
curvature.
Note that a precise independent measurement of H0 (or,

equivalently, combinations of SN relative distances with
absolute distances, e.g. from BAO) determines the value of
�m since the CMB precisely constrains �mh

2. This re-
moves one parameter from the degeneracy described
above, so the remaining degeneracy is between curvature
and dark energy only, with the matter density fixed. In
principle, there is still a perfect degeneracy in this case
such that there would be no constraint on curvature in the
absence of any restrictions on the dark energy evolution.
However, even weak assumptions about dark energy can
limit the allowed values of �K. In particular, the assump-
tion that the dark energy density is neither negative nor
large relative to the matter density at high redshift con-
strains the range of possible distances to recombination for
a given choice of �K: Dminðz�;�KÞ � Dðz�Þ �
Dmaxðz�;�KÞ, where the upper limit corresponds to having
no dark energy at z > zmax (where zmax is the maximum
redshift at which low-z distances are measured by SN and/
or BAO data) and the lower limit corresponds to the
maximal amount of dark energy allowed (w1 � 0).
Values of �K for which the measured value of Dðz�Þ is
outside this range can therefore be excluded by such data
sets. For example, if we suppose that the true cosmology is
flat �CDM with �m ¼ 0:24 and h ¼ 0:73 and we have

FIG. 2 (color online). Geometric distance degeneracy between
curvature and dark energy dynamics. Curves show the dark
energy fraction (top panel), relative distances (middle panel),
and growth relative to z ¼ 0 (bottom panel) for models with
distance-redshift relations that are degenerate with a fiducial flat
�CDM model with �m ¼ 0:24 and h ¼ 0:73. Thick red curves
correspond to open models with �K ¼ 0:01, and thin blue
curves are closed models with �K ¼ �0:01. The solid and
dashed curves only match the relative distances at z < 1:7
(shaded region) and the CMB distance at z� 1000, but not
distances at intermediate redshifts where the dark energy equa-
tion of state is assumed to be constant, wð1:7< z < z�Þ ¼ w1.
Dotted curves in the top panel show the dark energy evolution
that would be required to match relative distances of the fiducial
model at all redshifts. Parameters of each model are given in the
top panel legend; for each model, h is set so that �mh

2 is the
same as in the fiducial model.
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perfect measurements of the matter and radiation densities,
the Hubble constant, the distance-redshift relation at z <
1:7, and the distance to recombination, then the curvature
is restricted to the range �0:005 & �K & 0:025.
Uncertainties in these measurements weaken this con-
straint on curvature, and the posterior probability for �K

depends strongly on the dark energy priors. We compare
such constraints with curvature estimates from distances
and growth in Sec. VI.

IV. MCMC METHOD

For both the MCMC analysis presented in this section
and the growth reconstruction method (Sec. V), it is con-
venient to view the constraints on curvature from distances
and growth in the following way. First, we assume that the
distance-redshift relation is precisely measured at low z by
SNe and at high z by the CMB. Given this distance data and
assuming the validity of GR, we can use either the MCMC
likelihood analysis or the analytic growth reconstruction
technique to compute a predicted growth history that is
consistent with the measured distances. The main sources
of uncertainty in the relation between measured distances
and predicted growth are curvature and early dark energy
(or massive neutrinos), with curvature primarily affecting
the growth relative to z ¼ 0 [G0ðzÞ] and early dark energy
affecting the growth relative to high z [GðzÞ] (MHH09).
Because of this dependence, measurements of G0ðzÞ yield
constraints on curvature when they are compared with the
predicted growth history, and measurements of GðzÞ help
constrain deviations from matter domination at high z.

Computing the distances and growth functions for each
MCMC sample of the cosmological parameter space is
straightforward as it only requires using Eqs. (2) and (3)
to obtain the distance-redshift relation and solving Eq. (6)
for the growth. We will see in Sec. V that the growth
reconstruction scheme is somewhat more complicated to
implement.

One of the main advantages of using the MCMC ap-
proach is that the estimation of parameter uncertainties is
also straightforward: as long as the MCMC samples have
converged to a stationary distribution approximating the
joint posterior probability of the parameters (Sec. IVA),
the marginalized probability for curvature can be obtained
by binning the samples based on the value of �K.
However, the parameter chains sometimes converge quite
slowly, especially for very general parametrizations of dark
energy combined with curvature. External priors like those
described in Sec. II E can improve MCMC convergence in
some cases.

A drawback of the MCMC analysis is that although we
are trying to obtain model-independent results, we must
still specify some model for the dark energy evolution. To
provide a general parametrization at low z, we use several
principal components of the dark energy equation of state
as described in the following section. However, there is still

some degree of unavoidable dependence on dark energy
priors. In the absence of strong growth constraints, the
choice of priors can influence the curvature constraints as
we will see in Sec. VI. The growth reconstruction method
of Sec. V does not require specifying a parametrization for
the dark energy equation of state and therefore suffers less
from such effects.

A. Growth predictions from distances

The MCMC method of predicting the linear growth of
perturbations is based on computing the growth functions
of a large sample of cosmological models that fit observed
distances well. The range of growth functions spanned by
these models constitutes a prediction for the growth evo-
lution based on distances. This procedure is described in
detail by MHH09, and here we present a summary.
Two main ingredients are required: a parametrization of

cosmological models and a description of how well these
models fit the observed distances. Since we are concerned
about possible degeneracies between dark energy and cur-
vature, we want to allow a wide variety of dark energy
behavior. This is accomplished using a basis of principal
components (PCs) for the dark energy equation of state
wðzÞ to parametrize general dark energy evolution below a
redshift zmax:

wðzÞ � wfidðzÞ ¼
X
i

�ieiðzÞ; (19)

where the PCs are ordered according to how well they are
measured by a particular combination of data. The PCs are
eigenvectors of the Fisher matrix for the distance data,
taken here and in MHH09 to be the SNAP SN sample,
CMB distance data from Planck, and current priors on H0,
Dðz ¼ 0:35Þ, and �DEðz�Þ as described in Sec. II E.
Figure 3 shows the redshift dependence of the 15 lowest-
variance PCs.
The Fisher matrix for the PCs is computed at some

fiducial dark energy model specified by the equation of
state wfidðzÞ, usually taken to be a cosmological constant.
The redshift range of the PCs is the same as the range of the
SN data, with maximum redshift zmax ¼ 1:7. The PCs are
normalized as

XNz;PC

i¼1

½eiðzjÞ�2 ¼
XNz;PC

j¼1

½eiðzjÞ�2 ¼ Nz;PC; (20)

where Nz;PC is the number of redshift bins, so that the

shapes of the PCs are roughly independent of the chosen
bin width.
The highest-variance principal components have a neg-

ligible effect on observable distances and growth due to
their rapid oscillation in redshift. We therefore truncate the
sum in Eq. (19) at 15 PCs, found by MHH09 to be a
sufficient number for a complete representation of the
effects of dark energy variation at z < zmax on the distance
and growth observables. The dark energy description is
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completed by specifying the high-redshift evolution
through the constant effective equation of state wðz >
zmaxÞ ¼ w1. Besides varying w1 and the wðzÞ PC ampli-
tudes in the MCMC analysis, we also include �m, H0

(parametrized through the combination �mh
2), and �K

as MCMC parameters, so there are 19 parameters in all.
Using top-hat priors on the PC amplitudes, one can

restrict the value of wðzÞ to a particular range, conserva-
tively erring on the side of allowing too many models
rather than too few. The priors corresponding to the range

wmin <w<wmax are �
ð�Þ
i � �i � �ðþÞ

i , where

�ð	Þ
i � 1

2Nz;PC

XNz;PC

j¼1

½ðwmin þ wmax � 2wfidÞeiðzjÞ

	 ðwmax � wminÞjeiðzjÞj�; (21)

assuming constant wfidðzÞ (MHH09).2 For example, requir-
ing �1 � w � 1 for quintessence models places strong
limits on the allowed PC amplitudes. In the interest of
keeping the dark energy evolution as general as possible,
here we will only consider the weakest priors on w used in
MHH09 corresponding to �5 � w � 3.

By varying the cosmological parameters, computing the
likelihood of each model for the assumed distance data
sets, and using the Metropolis-Hastings criterion for decid-

ing whether or not to accept a proposed step in the pa-
rameter space, the resulting set of parameter combinations
traces out the joint posterior probability of the parameters
(e.g., [54–56]). To determine when the number of MCMC
samples is large enough that the parameter chains have
converged to the posterior distribution, we run four inde-
pendent chains and require that the Gelman-Rubin statistic
satisfies R� 1 & 0:01, indicating that the variance of the
mean value of a parameter between different chains is
much smaller than the variance within a single chain [57].
This MCMC procedure produces a variety of cosmo-

logical models that fit the fiducial distance data reasonably
well. For each of these models, we compute the growth
history using Eq. (6). The distribution of the resulting
growth functions then forms the prediction for growth
from distances.
Plotting sets of predicted growth functions from MCMC

analyses with different degrees of freedom in the cosmo-
logical models reveals how distance-matched growth func-
tions depend on curvature and early dark energy. Figure 4
shows the growth evolution of selected MCMC samples in
chains with early dark energy varying and curvature fixed
to �K ¼ 0, curvature varying and early dark energy fixed
to w1 ¼ �1, or variation in both curvature and early dark
energy (in addition to variation in the low-z dark energy
equation of state via principal components). Early dark
energy mainly affects the growth amplitude relative to
high redshift, GðzÞ, with very little effect on the shape of
the growth evolution at low z characterized by G0ðzÞ. On
the other hand, curvature strongly influences G0ðzÞ but has
less of an effect on GðzÞ: for a fixed distance-redshift
relation, open (closed) models have larger (smaller)
G0ðzÞ than a flat universe. This is the same effect that we
see in the geometric degeneracy examples in Fig. 2.
This difference between the effects of curvature and

early dark energy supports the claim that measurements
of G0ðzÞ, combined with distance measurements, can con-
strain curvature with little dependence on early dark energy
or other high-redshift phenomena. Measurements of GðzÞ
can be used to place limits on any residual effects that early
dark energy might have on these curvature estimates.
One interesting feature of the spread of the distance-

matched G0ðzÞ evolution due to curvature is that it tells us
how precise growth measurements must be to improve on
model-independent curvature constraints. In particular, for
the forecasts shown here, the uncertainty in the predicted
growth at z� 1 (at 68% C.L.) is about 5%–10%
(MHH09),3 so any direct measurements of the growth
evolution that are less precise than this will not appreciably
reduce the uncertainty in �K. For example, current cluster
measurements of growth are not yet precise enough to

FIG. 3 (color online). The first 15 principal components of
wðzÞ for SNAP and Planck (increasing variance from bottom to
top), with 500 redshift bins between z ¼ 0 and zmax ¼ 1:7 and
wfid ¼ �1. The vertical dashed line shows the minimum redshift
of the data assumed for computing the PCs, zSNmin ¼ 0:03. The
PCs are offset vertically from each other for clarity with dotted
lines showing the zero point for each component.

2Similar top-hat priors are derived in Ref. [53] in the context
of principal components of the reionization history.

3Note that the uncertainty in growth predictions depends on
the priors assumed in addition to the SN and CMB data forecasts,
in this case taken from current H0, BAO, and CMB data as
described in Sec. II E.
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significantly reduce the uncertainty in curvature from cur-
rent distance constraints [40].

As observed in MHH09, MCMC estimates of �K from
distance data are dependent on wðzÞ priors if ‘‘phantom’’
dark energy models (w<�1) are allowed. This depen-
dence is essentially a volume effect related to the large
volume of degenerate w<�1 models that are correlated
with �K < 0 [58]. Precise growth measurements help
reduce this dependence on dark energy priors as we will
see in Sec. VI.

B. MCMC estimates of curvature

The procedure described in the previous section pro-
duces chains of parameter combinations that match the SN
and CMB distance data, as well as the additional priors. To
obtain forecasts for�K from distance and growth data, we

need to add the growth information from measured cluster
abundances.
The first step for including the growth constraints is to

simply compute the growth evolution for each MCMC
sample. With a growth history associated with each
distance-matched MCMC sample, we then use importance
sampling of the parameter chains [59] to reweight the
samples according to the growth likelihood described in
Sec. II E. The posterior probability for �K from the dis-
tance and growth forecasts is then computed as usual by
marginalizing over the other MCMC parameters. In
Sec. VI, we will describe the resulting curvature con-
straints and compare them with the forecasts from the
growth reconstruction method.

V. GROWTH RECONSTRUCTION

The MCMC approach in the previous section used a
general parametrization of the dark energy equation of
state to predict growth evolution from measured distances
by searching for wðzÞ satisfying the distance constraints
and computing the corresponding growth evolution.
However, it is possible to go from distances to growth
directly without using an intermediary like wðzÞ. Here we
will first summarize this growth reconstruction method and
then show how it can be used to study model-independent
curvature constraints. Additional details about the proce-
dure we use for growth reconstruction from simulated SN
and CMB data are provided in Appendix B.
The growth reconstruction equations derived by Alam,

Sahni, and Starobinsky [23,60] express the amplitude of
linear perturbations � as a function of the comoving dis-
tance assuming spatial flatness, Df [Eq. (2)]. For conve-

nience, we define a dimensionless comoving distance,
	 � H0Df.

4

Starting from Eq. (5) for the linear growth function, we
can rewrite the equation in terms of 	 by using d=dt ¼
�H0ð1þ zÞd=d	 and writing the matter density as �m ¼
3�mH

2
0=ð8�GNÞð1þ zÞ3 to get

H2
0ð1þ zÞ½ð1þ zÞ�0�0 � 2H0Hð1þ zÞ�0

� 3
2H

2
0�mð1þ zÞ3� ¼ 0; (22)

where primes denote derivatives with respect to 	. Since
d	=dz ¼ H0=H, we can replace H by H0dz=d	 ¼
H0ð1þ zÞ0. After dividing by H2

0ð1þ zÞ3, this yields
½ð1þ zÞ�0�0 � 2ð1þ zÞ0�0

ð1þ zÞ2 ¼ 3

2
�m�: (23)

The left-hand side of this equation is equal to ½ð1þ zÞ�00 �
ð1þ zÞ0�0�=ð1þ zÞ2, which can be written as

FIG. 4 (color online). Growth functions of MCMC samples
with general dark energy equation of state variations at z < 1:7
within the range �5 � w � 3, including either early dark en-
ergy (EDE) at z > 1:7 (w1 � �1; top panels), curvature (�K �
0; middle panels), or both (bottom panels). The left panels show
growth relative to early times, and the right panels show growth
relative to the present. Dashed red curves show growth in the
fiducial flat �CDM model (�m ¼ 0:24, h ¼ 0:73). Samples are
selected randomly from those with likelihoods satisfying �	2 �
4, but for visual clarity we plot samples that are approximately
evenly spaced in Gðz ¼ 0Þ (left panels) or G0ðz ¼ 4Þ (right
panels). The dotted vertical line in each panel marks the division
between the low-z and high-z dark energy descriptions at z ¼
1:7.

4Note that in Ref. [23] this quantity is called E, but here we use
the notation 	 instead to avoid confusion with the common
definition EðzÞ ¼ HðzÞ=H0.
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�
�0

1þ z

�0 ¼ 3

2
�m�: (24)

Integrating Eq. (24) over 	 leads to the main growth
reconstruction equation [23,60], which is an integral equa-
tion for �ð	Þ:

�ð	Þ ¼ 1þ �0
0

Z 	

0
d	1½1þ zð	1Þ�

þ 3

2
�m

Z 	

0
d	1½1þ zð	1Þ�

Z 	1

0
d	2�ð	2Þ; (25)

where �0
0 is the derivative of �ð	Þ at z ¼ 0, and the growth

function is normalized to �ðz ¼ 0Þ ¼ 1. Solving for the
growth function involves making an initial guess for �ð	Þ
and plugging it into the right-hand side of Eq. (25), taking
the resulting �ð	Þ from the left-hand side and plugging it
back into the right-hand side, and repeating until the solu-
tion has converged.

As noted in Ref. [23], Eq. (25) only requires integration
of observed quantities, so the growth reconstruction
method is more stable to the presence of scatter in the
data than other methods that use derivatives of the ob-
served distance-redshift relation. Differentiation uses in-
formation from the data over only a small range of redshift
or 	, whereas an integral from 0 to 	 uses data over the
entire range, which helps average out statistical noise. For
	 near 0 the number of data points used is still small, but
the reduced statistical power can be offset by having
smaller intrinsic uncertainties at lower redshifts.

By differentiating Eq. (25) and evaluating it at 	 ¼
	ðzmaxÞ, we can shift the boundary condition on the de-
rivative of �ð	Þ from z ¼ 0 to z ¼ zmax:

�0
0 ¼

�0
max

1þ zmax

� 3

2
�m

Z 	ðzmaxÞ

0
d	�ð	Þ; (26)

where �0
max ¼ �0ð	ðzmaxÞÞ. Then Eq. (25) can be rewritten

as

�ð	Þ ¼ 1þ �0
max

1þ zmax

Z 	

0
d	1½1þ zð	1Þ�

� 3

2
�m

Z 	

0
d	1½1þ zð	1Þ�

Z 	ðzmaxÞ

	1

d	2�ð	2Þ:
(27)

This is the form of the growth reconstruction equation that
we will use for the curvature forecasts.

One advantage of setting the boundary condition for
�0ð	Þ at 	ðzmaxÞ instead of 	 ¼ 0 is that �0

max depends
mainly on the assumed cosmology at high redshifts,
whereas �0

0 depends on not only the high-z assumptions

but also the low-z SN data constraints and iterative growth
solution. Also, setting �0

max makes it easier to ensure that
�ð	Þ is smooth at 	ðzmaxÞ by requiring the same derivative
there for both the fiducial model at z > zmax and the
reconstructed growth function at z < zmax. Rather than

setting the value of the �0ð	Þ boundary condition using
an integral over �ð	Þ as suggested in Ref. [60], here we use
an approximate analytic form for the high-redshift growth
function valid when matter is the dominant component.
Solving Eq. (27) for �ð	Þ requires specifying the func-

tion zð	Þ and three parameters: �K, �m, and �0
max. Some

of these inputs to the growth reconstruction are set by the
SN and CMB data constraints, while others are free pa-
rameters. Because of this link between the distance data
sets and the growth reconstruction, some of the scatter in
the SN and CMB observations will propagate to uncertain-
ties in the reconstructed growth. We compute the mean
values of reconstructed growth observables and their un-
certainties using Monte Carlo simulations of the SN and
CMB data, modeled on SNAP and Planck as for the
MCMC method.
The following steps summarize the procedure for these

Monte Carlo simulations. Additional details about each
step are provided in Appendix B.
(1) Assume values for the curvature and any additional

parameters describing the high-redshift cosmology;
here we use w1 for parametrizing early dark energy.
The output of the Monte Carlo simulations will be
the conditional probability for the growth observ-
ables given �K and w1.

(2) Draw a realization of the SN data [H0DðzÞ] for the
fiducial cosmology and estimate zð	Þ from the data.
Given an assumed value of �K, we can invert Eq.
(3) to get

	ðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffij�Kj
p S�1

K ½
ffiffiffiffiffiffiffiffiffiffiffi
j�Kj

q
H0DðzÞ�; (28)

where S�1
K ðxÞ is sinh�1x for an open universe,

sin�1x for a closed universe, and x if �K ¼ 0. To
reduce bias in the estimated 	ðzÞ relation, we take
the maximum redshift for the growth reconstruction
to be zmax ¼ 1:5, slightly lower than the maximum
SN redshift of z ¼ 1:7 that was used as zmax in the
MCMC method of Sec. IV (see Appendix B for
details).

(3) Draw a realization of the CMB data [Dðz�Þ and
�mh

2] and use Eq. (18) along with the assumed
values of �K and w1 to compute the value of �m

required by the CMB parameters.
(4) Steps 1–3 fix the cosmological model at z > zmax, so

we can compute GðzmaxÞ for this cosmology as one
of the growth observables, and use the approximate
high-z growth solution of Appendix A [Eq. (A5)] to
set �0

max for the growth reconstruction.
(5) Solve Eq. (27) to find the reconstructed growth �ð	Þ

for the particular realization of SN and CMB data.
Use the 	ðzÞ relation from step 2 to express this
solution as �ðzÞ or G0ðzÞ.

Repeating these steps for many realizations of the dis-
tance data produces a distribution of the growth observ-
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ables g, which include GðzmaxÞ from step 4 and G0ðzÞ from
step 5, for the chosen values of�K andw1. This procedure
can be carried out at several different values of�K and w1
to map out the conditional probability Pðgj�K;w1Þ. This
probability describes the growth predictions from distance
data in the context of the growth reconstruction method.

Note that in step 3, there will generally be degeneracies
between �K, �m, and early dark energy in the CMB
constraints, increasing the uncertainty in the model-
independent estimate of curvature. Fortunately, measure-
ments of growth relative to high z can reduce this uncer-
tainty. The top panel of Fig. 5 shows the effect of various
early dark energy models on the difference between the
distance to recombination and the distance to zmax. Both
w1 >�1 and �DEðzmaxÞ * 0:05 are required for the dis-
tances to be significantly affected. As the bottom panel of
Fig. 5 shows, the growth relative to high redshift, GðzmaxÞ,
is sensitive to early dark energy in a way that is similar to
how the distances depend on early dark energy. Therefore,
precise measurement of the growth at zmax relative to
growth at early times (for example, by comparing the
normalization of growth from cluster abundances with
the amplitude of CMB power spectra) can constrain the
effect of early dark energy on high-z distances, thereby
reducing the uncertainty in the�m ��K relation from the
CMB constraints. Although GðzÞ predicted from distances
is relatively insensitive to curvature in a direct sense (see
Fig. 4), it provides an important complementary constraint

to the curvature estimates from distances and G0ðzÞ that
reduces model dependence.
The approximation for �0

max used in step 4, which is
described in Appendix A, assumes that the curvature and
early dark energy fractions at high z are small enough that
the growth can be written as a perturbation to the matter-
dominated solution where GðzÞ is constant. The depen-
dence of �0

max on early dark energy turns out to be fairly
weak. Figure 6 shows the value of the growth rate f ¼
d ln�=d lna ¼ 1þ d lnG=d lna at zmax as a function of
curvature and the fraction of dark energy at zmax.
Changing w1 only slightly shifts the contours of f, espe-
cially for models that satisfy CMB constraints on the dark

FIG. 5. Effect of early dark energy on distance and growth. Top
panel: Difference between the distance to recombination and the
distance to zmax ¼ 1:5. Bottom panel: Growth at zmax relative to
recombination. Early dark energy models are parametrized by
the fraction of dark energy at zmax and w1 ¼ wðz > zmaxÞ. From
top to bottom in each panel, w1 ¼ �1,�0:7,�0:5,�0:3,�0:2,
�0:1, and 0. Flat �CDM is assumed here with �m ¼ 0:24 and
h ¼ 0:73.

FIG. 6 (color online). Contours of the growth rate f at zmax ¼
1:5 as a function of �K and �DEðzmaxÞ, for three choices of w1
at fixed �m ¼ 0:24 (top panel) and three choices of �m at fixed
w1 ¼ �1 (bottom panel).
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energy fraction at recombination. Therefore, at fixed cur-
vature �0

max=�ðzmaxÞ ¼ �ð1þ zmaxÞ�1EðzmaxÞfðzmaxÞ
mainly depends on �DEðzmaxÞ, which can be estimated
from the SN data using Eq. (15). Likewise, for curvature
at the level of a few percent or less, uncertainty in�m does
not strongly affect �0

max.
In summary, the growth reconstruction method as out-

lined above requires choosing values for two parameters:
the curvature �K and the early dark energy equation of
state w1. All other quantities are estimated from the dis-
tance information provided by measurements of SNe and
the CMB. Given this distance data, the end result of the
growth reconstruction procedure is a prediction for the
growth evolution for each f�K;w1g pair, Pdðgj�K; w1Þ.

Figure 7 shows an example of the reconstructed growth
evolution from the distance data for the fiducial flat�CDM
model, assuming �K ¼ 0 and w1 ¼ �1. In the lowest
redshift bins, the growth reconstruction is biased due to
the relatively small number of SNe in the SNAP distribu-
tion at low z, but over most of the redshift range the
reconstruction is in good agreement with the true growth
function.

A. Growth reconstruction estimates of curvature

By combining the predicted growth from distances
Pdðgj�KÞ with measurements of the growth observables
g, we can obtain an estimate of �K from the growth
reconstruction method5:

Pð�KÞ ¼
Z

dgPdð�K;gÞPgðgÞ; (29)

where Pdð�K;gÞ ¼ Pdðgj�KÞPpriorð�KÞ is the joint

probability for curvature and growth observables from
the growth reconstruction from distance data as described
in the previous section combined with any additional prior
information about�K, and PgðgÞ represents the constraints
on the growth observables from probes of the growth
history such as clusters. We use subscripts d and g to
indicate constraints coming from distance and growth
data, respectively.

Assuming that the Monte Carlo simulations produce
conditional probabilities for growth observables at fixed
�K that can be approximated as a multivariate Gaussian,
we can write

Pdðgj�KÞ ¼ 1

ð2�Þn=2ðdetFdÞ�1=2
exp

�
� 1

2
�gTFd�g

�
;

(30)

where Fd is the Fisher matrix for the n growth observables

from the simulated distance data, computed by inverting
the covariance matrix Cd from the growth reconstruction
Monte Carlo simulations, and �g � g� �gd is the devia-
tion of the growth observables from the mean growth
reconstruction solution. Note that both Fd and �gd depend
on the value of�K (and additional parameters such asw1).
If the growth observations are also well approximated by

a multivariate Gaussian with covariance matrix Cg, Fisher

matrix Fg ¼ C�1
g , and mean values �gg (assumed to be

equal to the true growth history of the fiducial model),
then the posterior probability for �K in Eq. (29) is

Pð�KÞ / Ppriorð�KÞ½detðIþ F�1
d FgÞ��1=2


 exp½12�TFgðFd þ FgÞ�1Fg�� 1
2�

TFg��;
(31)

where � � �gd � �gg is the difference between the average

growth evolution predicted from distances at a particular
assumed value of �K and the true growth evolution, and I
is the n
 n identity matrix. We describe the resulting
forecasts for curvature in the next section.

VI. MODEL-INDEPENDENT CURVATURE
CONSTRAINTS

In this section, we use the techniques for combining
distance and growth measurements described in Secs. IV
and V to obtain forecasts for spatial curvature constraints
from the simulated SN, CMB, and cluster data of Sec. II E.

FIG. 7. Growth reconstruction for �K ¼ 0 and w1 ¼ �1,
where the fiducial cosmology is flat �CDM with �m ¼ 0:24
and h ¼ 0:73. The shaded band is the 68% C.L. region for G0ðzÞ
reconstructed from simulated SNAP and Planck data, and the
true growth evolution is plotted as a solid curve. The redshift bin
width for the reconstruction is �z ¼ 0:05.

5For notational compactness, in this section we suppress
dependence on additional parameters varied in the growth re-
construction analysis such as w1, but in general, these should
appear along with �K wherever there is dependence on
curvature.
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The accuracy of curvature estimates depends not only on
the assumed characteristics of the distance and growth data
sets, but also on the fiducial, ‘‘true’’ cosmological model
assumed for the forecasts. We begin in Sec. VIA with the
simple case in which the fiducial model is flat �CDM, and
use this example to compare forecasts from the MCMC
and growth reconstruction methods. In Sec. VIB, we gen-
eralize to other fiducial cosmologies that are more or less
consistent with constraints from current data. Tests of the
dependence of these results on modeling of the SN, CMB,
and cluster data sets are described in Secs. VI C and VID.
Finally, Sec. VI E compares these distance and growth
constraints on curvature with other model-independent
tests of curvature.

A. Flat �CDM

We begin by comparing MCMC and growth reconstruc-
tion constraints on �K in the context of a flat �CDM
fiducial cosmology, taking the parameters to be �m ¼
0:24 and h ¼ 0:73. Figure 8 shows curvature forecasts
for two different sets of data. Both cases include distance
constraints from SNe modeled after SNAP and CMB data
based on Planck. On their own, these data sets would place
almost no limits on curvature, assuming that general forms
of the dark energy evolution are allowed.

In the top panel of Fig. 8, the SN and CMB data are
supplemented by weak priors based on current data: an
11% H0 prior from HST Key Project data [46], a 3.7%
BAO measurement of Dðz ¼ 0:35Þ from SDSS [1], and a
2.5% upper limit on the fraction of early dark energy at
recombination from the WMAP temperature spectrum
[47]. We adopt these priors here for consistency with the
MCMC analysis of model-independent growth predictions
in MHH09.
Using only the current priors in addition to the SN and

CMB data, curvature is determined with an accuracy of
�ð�KÞ � 0:02. However, the results depend on the analy-
sis method. In particular, the MCMC constraints on �K

depend strongly on the assumed priors on the dark energy
parameters (MHH09). For priors that are flat in the wðzÞ
principal component amplitudes [Pð�iÞ ¼ constant], the
curvature constraint is biased toward �K < 0. Taking al-
ternate priors which are instead flat in the density associ-
ated with each principal component at zmax ¼ 1:7,

�iðzmaxÞ
�ið0Þ

¼ exp

�
3�i

Z zmax

0
dz

eiðzÞ
1þ z

�
; (32)

the resulting curvature constraint is less biased, but has a
long tail at �K > 0. The curvature estimate from the
growth reconstruction method using the same data is
more consistent with the flat-density prior constraint
from the MCMC analysis, but has a slightly narrower
distribution.
The lower panel of Fig. 8 shows the resulting curvature

forecasts when we drop the current priors on H0, BAO
distance, and the early dark energy fraction, and instead
combine the SN and CMB distances with 1% growth
function measurements from IXO clusters. Using growth
to break the geometric degeneracy in distances, the curva-
ture constraint improves to an accuracy of �ð�KÞ ¼
0:0022. Not only is this a much stronger constraint on
curvature than without the growth information, but it is
also significantly less dependent on the parameter estima-
tion methodology. The MCMC constraints using different
types of dark energy priors are consistent with each other
and unbiased, and the forecast from growth reconstruction
agrees with the MCMC results.
Since we are taking a forecast for future data as the

source of growth information, it is not quite fair to compare
this future distance plus growth constraint with the curva-
ture estimate from current Hubble constant, BAO, and
early dark energy priors. We use those priors only to
illustrate the possible dependence of estimates that do
not use growth information on dark energy priors or other
details of the analysis, and for comparison with the earlier
MCMC results fromMHH09. If we instead combine SNAP
and Planck forecasts with future priors onH0 and�DEðz�Þ,
both with 1% accuracy (see Sec. II E), the curvature esti-
mate improves but remains weaker and more skewed than
the distance plus growth forecasts (see bottom panel of

FIG. 8 (color online). Comparison of MCMC and growth
reconstruction curvature forecasts for the flat �CDM fiducial
cosmology. Top panel: Combining current priors on H0, Dðz ¼
0:35Þ, and �DEðz�Þ with SN and CMB forecasts based on SNAP
and Planck, respectively. Bottom panel: Combining SNAP and
Planck forecasts with cluster forecasts based on IXO as a probe
of the growth evolution. For comparison, the dotted curve shows
a forecast for SNAP, Planck, and future 1% measurements of H0

and �DEðz�Þ (without growth constraints).
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Fig. 8). We discuss the impact of future BAO measure-
ments and other types of data on model-independent cur-
vature constraints in comparison to constraints from
distances and growth in Sec. VI E.

The MCMC and growth reconstruction forecasts show
that combinations of distances and growth have the poten-
tial to provide reliable, model-independent measurements
of curvature with�0:2% accuracy, at least in the context of
a flat�CDM cosmology. Before exploring the forecasts for
this method for other fiducial cosmological models, we
examine how different parts of the distance and growth
data contribute to the curvature estimate.

Figure 9 shows the impact of different components of
the assumed growth information from IXO cluster data on
the joint constraint on curvature and early dark energy.
Recall from Sec. II E that there are two types of growth
information used here: 1% measurements of the growth
evolution at 0< z < zmax that probe G0ðzÞ, and a 1%
measurement of the growth at zmax relative to the growth
at recombination,GðzmaxÞ. The unshaded contours in Fig. 9
show the results of using each of these growth constraints
separately (in addition to the SN and CMB data).

If the growth information consists only ofG0ðzÞ (i.e. just
the relative evolution of the cluster mass function at low z
with unknown normalization relative to the CMB), the
constraints on �K are a few times weaker than the com-
bined growth constraints for w1 & �1. As w1 approaches

0, the G0 constraint shifts toward open models. As a result,
Pð�KÞmarginalized overw1 is weakened even further and
is skewed toward �K > 0.
On the other hand, growth information from GðzmaxÞ

only (e.g., comparing �8 from clusters and the CMB)
places very weak constraints on curvature, only signifi-
cantly limiting the range of allowed open models.
However, the information provided by GðzmaxÞ is comple-
mentary to that from G0ðzÞ since it cuts off the G0 degen-
eracy at �K > 0 and w1 * �0:5. By removing this
degeneracy, the combined growth constraints are much
less sensitive to the early dark energy parameters, resulting
in a stronger, unbiased curvature estimate.
Moreover, the covariance between GðzmaxÞ and G0ðzÞ

predictions from measured distances reduces the curvature
uncertainty beyond what would be expected from simply
combining the separate GðzmaxÞ and G0ðzÞ constraints. As
shown in Fig. 9, the distance plus growth constraints on
curvature with theGðzmaxÞ �G0ðzÞ covariance removed by
hand (red shaded contours) are a few times weaker than the
full constraint including this covariance (blue shaded
contours).
The covariance between the growth observables comes

primarily from the CMB distance constraint. Matching the
distance to recombination requires a balance between the
low-z and high-z dark energy evolution. For example,
increasing the dark energy density at low redshifts tends
to decrease Dðz�Þ, and decreasing the high-redshift dark
energy density can compensate for this shift. The CMB
distance priors therefore anticorrelate the dark energy evo-
lution at early and late times. This results in a positive
correlation between the predicted values of G0ðzÞ and
GðzmaxÞ from SN and CMB data. In the example above,
the larger dark energy density at low z enhances the
suppression of the late-time growth of perturbations, which
corresponds to higher values of G0ðzÞ. A smaller dark
energy density at high z results in less growth suppression
at early times and therefore a higher value of GðzmaxÞ.
This positive correlation between G0 and G for growth

reconstructed from distances is the opposite of the effect of
curvature. Relative to a flat universe, an open geometry
tends to suppress growth at both early and late times while
a closed geometry has the opposite effect. This means that
increasing �K increases G0ðzÞ while decreasing GðzmaxÞ,
and vice versa. The positive covariance between these two
types of growth observables required by CMB constraints
therefore leads to stronger limits on curvature.
To summarize, in the case of flat �CDM the primary

information about curvature from growth combined with
distance data comes from G0ðzÞ, as expected based on the
discussions in the previous sections. However, normaliza-
tion of low-redshift growth relative to the high redshift of
recombination can significantly improve the accuracy of
the curvature estimate by reducing early dark energy un-
certainties and through the covariance with the low-z

FIG. 9 (color online). Forecasts in the �K � w1 plane for the
flat �CDM fiducial model, including various combinations of
growth information in addition to SN and CMB distance con-
straints: GðzmaxÞ (dashed contours), G0ðzÞ at z � 1:5 (solid
contours), or both (shaded blue contours). The combined growth
constraint without the covariance between the predicted GðzmaxÞ
and G0ðzÞ from the growth reconstruction is shown as shaded red
contours. Contours are plotted at 68% C.L. (thick curves/dark
shading) and 95% C.L. (thin curves/light shading).
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growth evolution required to match SN and CMB
distances.

B. Dependence on cosmology

We now turn to curvature forecasts from distances and
growth for fiducial cosmologies other than the flat �CDM
example of the previous section. Since the analytic growth
reconstruction method is more efficient at exploring differ-
ent assumptions about the true cosmology and properties of
the data, we will primarily rely on that method for the
forecasts in this section.

As the first test of dependence on the fiducial cosmology
underlying the data, we consider flat �CDM models with
different parameters from those in the previous section. For
a model with �m ¼ 0:3 and h ¼ 0:7, the constraint on
curvature is almost identical to that for �m ¼ 0:24 and
h ¼ 0:73. Thus variation of flat �CDM parameters in the
range allowed by current data does not significantly affect
the curvature forecasts.

Next, we consider models with different values of the
curvature. We saw in the previous section that if the uni-
verse is actually flat, future distance and growth probes can
exclude at 95% C.L. alternate models with j�Kj * 0:005.
It is also interesting to ask whether true nonzero curvature
could be detected (i.e. distinguished from �K ¼ 0) using
this method. Figure 10 compares the forecast for the flat
�CDM model of the previous section with forecasts for an
open model and a closed model, both with j�Kj ¼ 0:01
and the other parameters unchanged. The resulting con-
straints on curvature for the open and closed models are

nearly identical to that for the flat model, except for being
shifted to be centered on the true curvature. Therefore,
distances and growth from SNAP, Planck, and IXO data
enable percent-level curvature to be cleanly distinguished
from flatness.
Curvature forecasts are similarly precise and unbiased

for models with different dark energy evolution from
�CDM at low redshifts. For example, if we adopt the
commonly used parametrization of the dark energy equa-
tion of state wðzÞ ¼ w0 þ waz=ð1þ zÞ [61,62] with w0 ¼
�0:8 and wa ¼ �0:5, and keep all other parameters the
same as in the fiducial flat �CDM model, then the growth
reconstruction analysis again returns an unbiased estimate
of �K with �ð�KÞ � 0:002. Note that in this model, dark
energy is negligible at high redshifts since limz!1wðzÞ ¼
w0 þ wa, which is less than �1.
Although changing parameter values in the context of

flat �CDM and similar cosmological models has little
effect on the accuracy of the estimated curvature from
future distances and growth, changing the fiducial model
for the high-redshift universe can have more interesting
consequences. We consider first early dark energy scenar-
ios and then models with massive neutrinos. In both cases,
the GðzmaxÞ constraint takes on a much larger role and
constraints from G0ðzÞ alone become unreliable.
Given the fact that current data are consistent with flat

�CDM, models with significant early dark energy are
more likely to be open than flat or closed since the geo-
metric effect of negative spatial curvature can compensate
for the reduced distance to recombination due to early dark
energy (e.g., [17]). Figure 11 shows the SNAPþ Planckþ
IXO constraints on a w0 � wa model with w0 þ wa � 0 to
act as early dark energy and �K ¼ 0:025 compared with
the flat �CDM model of the previous section.
For the open early dark energy model, the best fit to

distance and growth constraints is near the true parameter
values (the effective value ofw at z > zmax that matches the
fiducial CMB distance and growth function normalization
is w1 � �0:25). However, a significant degeneracy be-
tween curvature and early dark energy remains even with
the combination of distance and growth data. One conse-
quence of this is that the curvature constraints marginalized
over w1 would be misleading; for example, the shape of
the w0 � wa model constraints in the �K � w1 plane
cause Pð�KÞ to be biased high, although maximizing the
likelihood over w1 instead of marginalizing would reduce
the apparent bias somewhat. Furthermore, the marginal-
ized �K constraints are weaker than the 0.2% flat �CDM
estimate, despite the fact that the contours in the�K � w1
plane are of comparable width.
Despite the loss of precision in the curvature estimates in

the presence of early dark energy, the constraints from
distances and growth for such models remain extremely
interesting since they provide clear evidence for either
large amounts of early dark energy or nonzero curvature,

FIG. 10. Growth reconstruction forecast of the marginalized
probability of �K for models with �K ¼ 0 (solid line), �K ¼
�0:01 (short dashed line), and �K ¼ 0:01 (long dashed line).
Each model is a �CDM cosmology with �m ¼ 0:24 and h ¼
0:73.
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if not both. And, in fact, for models like this example with
�K * 0:02, it is still possible to confidently exclude a flat
universe independent of the assumptions about early dark
energy.

Unlike the models without early dark energy where the
main curvature constraints come from distances plus
G0ðzÞ, and GðzmaxÞ has a lesser role (see Fig. 9), for early
dark energy models the GðzmaxÞ constraint combined with
distance data is the main source of both the early dark
energy and curvature constraints. In fact, curvature esti-
mates using distances and measurements of G0ðzÞ alone
would indicate a preference for flatness and no early dark
energy even if the true model was the w0 � wa example
with�K ¼ 0:025. Other types of curvature constraints, for
example, using a 1% H0 prior in addition to SNAP and
Planck data, similarly fail to detect the nonzero curvature
and early dark energy for such models. While a measure-
ment of GðzmaxÞ is a helpful additional constraint on mod-
els in which dark energy only becomes important at late
times, it is crucial for obtaining accurate constraints on
models with early dark energy. Figure 11 shows contours
of GðzmaxÞ for the open w0 � wa model; the forecast
roughly follows these contours, but is tilted somewhat
due to the G0ðzÞ �GðzmaxÞ covariance from the CMB
distance constraint.

To test how well the early dark energy parametrization
with w1 can model other forms of early dark energy
evolution, we use the parametrization of Ref. [63] in which
the dark energy fraction approaches a constant value�e at
high redshift:

�DEðaÞ ¼ �DE ��eð1� a�3w0Þ
�DE þ�ma

3w0
þ�eð1� a�3w0Þ;

(33)

where w0 ¼ wðz ¼ 0Þ. (This form assumes�K ¼ 0, so we
only use it to simulate distance and growth data for a flat
universe.) The equation of state at high redshifts during
matter domination is w � 0. However, since the transition
between w � w0 at low z and w � 0 at high z can occur at
z � zmax, the effective value of w1 that best matches
distance and growth observables for this model is not
necessarily w1 ¼ 0.
We take the parameters for the simulated SNAP, Planck,

and IXO data to be w0 ¼ �0:9, �e ¼ 0:02, �m ¼ 0:225,
h ¼ 0:73, and �K ¼ 0. As for the previous early dark
energy example, the constraint on �K marginalized over
w1 is biased due to the shape of the likelihood in the�K �
w1 plane. However, for this model there is some additional
bias such that the best fit is at �K � 0:004. Given the
increased width of the likelihood in �K [�ð�KÞ � 0:003]
and the long tail toward �K < 0, the true curvature �K ¼
0 is not strongly disfavored despite this bias. The bias in
�K is likely a reflection of the limitations of the w1
parametrization of early dark energy, suggesting that a
more flexible parametrization may be needed to accurately
model a wide variety of early dark energy behavior.
Additional priors can help reduce bias in curvature even

with the default w1 modeling of early dark energy in the
growth reconstruction analysis. The open models favored
in the analysis of the Doran & Robbers model are only able
to fit the distance to recombination well by changing �m

and H0 from their true values. Therefore, including a
strong, 1% prior on H0 in addition to the SN, CMB, and
cluster data leads to nearly unbiased constraints on the
curvature for this model of early dark energy. Including
the full CMB constraints instead of just the distance priors
would also help in this case, since the 2% early dark energy
fraction at recombination would be detectable in Planck
data.
For models with massive neutrinos, the results of the

growth reconstruction analysis are similar to those for early
dark energy models. Massive neutrinos suppress growth on
scales below their free-streaming length [64,65], affecting
the growth evolution in a manner similar to dark energy
that tracks the dominant matter or radiation density at early
times (w1 ¼ 0). Some of the strongest current cosmologi-
cal limits on the neutrino mass come from the combination
of the Lyman-� forest power spectrum with CMB data,
with a 95% C.L. upper limit on the sum of neutrino masses
of

P
m
 < 0:17 eV, assuming flat �CDM [66]. More

FIG. 11 (color online). Forecast in the �K � w1 plane for an
open universe with early dark energy: �K ¼ 0:025, w0 ¼
�1:08, wa ¼ 1:02 (shaded blue contours, right). The mean value
of GðzmaxÞ for the growth function reconstructed from the
fiducial distances of this model is plotted with dashed, unshaded
contours at GðzmaxÞ ¼ 0:5, 0.6, 0.7, 0.8, and 0.9, from top to
bottom. The flat �CDM forecast from Fig. 11 is plotted for
comparison (shaded gray contours, left). Crosses mark the best
fit point for each model. Shaded contours are plotted at 68% and
95% C.L.

MICHAEL J. MORTONSON PHYSICAL REVIEW D 80, 123504 (2009)

123504-16



conservative upper bounds limit the masses to
P

m
 <
1:3 eV (95% C.L.) using the CMB alone and

P
m
 <

0:67 eV (95% C.L.) with CMB, BAO, and SN data (also
assuming flat �CDM [2]). On the other hand, neutrino
oscillation experiments indicate that there must be at least
one neutrino mass eigenstate with m
 * 0:05 eV (e.g.,
[67,68]).

Using w1 as an effective parameter to absorb the effects
of massive neutrinos on distances and growth, the resulting
curvature estimates tend to be biased toward high values of
�K. The bias is similar to what we found for the Doran &
Robbers early dark energy model above, and as in that case
an additional H0 prior can reduce the curvature bias.
Without any extra priors, the curvature can be biased by
as much as �0:5� even for the minimal mass of

P
m
 �

0:05 eV, so proper modeling of the effects of massive
neutrinos is likely to be important for future curvature
constraints from distances and growth.

Using the sum of neutrino masses as an additional
parameter in the growth reconstruction analysis, instead
of modeling the effects of neutrinos with w1, produces
unbiased curvature constraints. However, for models with
massive neutrinos the uncertainty in curvature is fairly
large due to a strong degeneracy between �K and

P
m
.

In such a scenario, independent measurements of the neu-
trino masses would greatly reduce the uncertainty in cur-
vature from distance and growth probes. Future
cosmological measurements such as weak lensing of the
CMB may be able to determine neutrino masses with an
accuracy of �ðPm
Þ � 0:05 eV, which should yield
strong constraints on neutrino masses when combined
with the results of terrestrial experiments (e.g., see [69]
for a review).

For the most general treatment of the high-redshift uni-
verse, one should ideally include parameters for both mas-
sive neutrinos and early dark energy models. We leave
further study of this approach for future work, but note
here that a simultaneous analysis of the impact of massive
neutrinos and early dark energy on curvature estimation
may be complicated by degeneracies between the two in
the distance and growth observables.

C. Dependence on SN and CMB data modeling

Using the growth reconstruction method, we can study
the relative contributions of scatter in the SN and CMB
data to uncertainties in the reconstructed growth function
by only including the scatter in one of these data sets in the
Monte Carlo simulations. For the predicted growth observ-
ables Pdðgj�KÞ, the SN errors assumed for SNAP are the
dominant source of uncertainty. More precise CMB data
than anticipated from Planck would have little impact on
the uncertainties in the growth reconstruction. However,
for the curvature constraint, more precise SN or CMB data
would not significantly reduce �ð�KÞ since the assumed

1% growth uncertainties for IXO clusters dominate the
curvature uncertainty.
If we could obtain more precise growth measurements

with uncertainties less than a few tenths of a percent, then
the curvature estimate would be limited by the precision of
the data from SNAP and Planck. However, the relative
importance of these two data sets for curvature is opposite
that for Pdðgj�KÞ. That is, given extremely precise growth
measurements, �ð�KÞ would be reduced more by improv-
ing CMB data beyond Planck than by reducing SN uncer-
tainties. The reason for this is related to the covariance
between G0ðzÞ and GðzmaxÞ: as explained above (see
Fig. 9), CMB data induce a positive correlation between
the reconstructions of G0ðzÞ and GðzmaxÞ from distance
data. Since changing the curvature has opposite effects
on G0ðzÞ and GðzmaxÞ, the covariance from CMB con-
straints leads to more precise limits on curvature.
Improving CMB constraints therefore reduces curvature
uncertainty by strengthening the G0ðzÞ �GðzmaxÞ
correlation.
The curvature forecasts are not strongly dependent on

the redshift distribution of the supernova sample. For ex-
ample, if we assume a uniform distribution of 2300 SNe
over 0< z < 1:7 instead of the SNAP distribution of 2000
SNe plus 300 low-z SNe, the curvature estimate from
SNAPþ Planckþ IXO is unchanged.
Interpolation of the distance-redshift relation between

redshift bins or across gaps in the SN data introduces
additional assumptions about the evolution of the expan-
sion rate. To test the impact of these assumptions, we have
tried several distinct methods for interpolating between
bins and found that the reconstructed growth changes by
& 1%, and the mean value of �K in forecasts changes by
& 5
 10�4. However, there is always an inherent assump-
tion about smoothness of 	ðzÞ in the growth reconstruction
method that should be kept in mind when interpreting the
results.

D. Dependence on cluster data modeling

We have assumed fairly optimistic future growth con-
straints for the curvature forecasts, with 1% measurements
of the growth function at z < 1:5 as anticipated for the
proposed IXO cluster sample [51]. We can easily study
how the curvature forecasts depend on the assumed preci-
sion of the growth measurements by rescaling the Fisher
matrix of the growth observables Fg used in Eq. (31). We

find that for less optimistic assumptions about the growth
uncertainties, it is still possible to obtain interesting model-
independent estimates of the curvature. For example, dou-
bling the growth uncertainties to 2% increases the curva-
ture uncertainty from �ð�KÞ ¼ 0:0022 to �ð�KÞ ¼
0:0033, and for 3% growth measurements, �ð�KÞ ¼
0:0045.
The forecasts presented in the previous sections assume

that the cluster likelihood can be approximated as a multi-
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variate Gaussian distribution for uncorrelated growth ob-
servables fG0ðziÞg in�z ¼ 0:1 redshift bins andGðzmaxÞ. In
reality, we can expect that at least some of the growth
observables will be correlated. Perhaps more importantly,
the observed cluster abundance depends on distances and
the expansion rate as well as the growth function, and there
may be degeneracies between these functions in the cluster
likelihood. We might expect that the effect on curvature
estimates of treating cluster abundance as purely a probe of
the growth history is small since the distance-redshift
relation is well constrained by the SN and CMB data.
Although a detailed study of curvature constraints using
the full cluster likelihood is beyond the scope of this work,
we present a simple test of this expectation here.

To check how well the fiducial distance data sets con-
strain degeneracies between distances and growth in the
cluster likelihood, we compute the Fisher matrix for
growth and distance assuming Poisson-distributed clusters
[70,71],

F�� ¼ X
i;j

1

NðMi; zjÞ
@NðMi; zjÞ

@��

@NðMi; zjÞ
@��

; (34)

where � ¼ ðfG0ðzjÞg; fH0DðzjÞgÞ, taking derivatives of the

number of clusters in each bin NðMi; zjÞ at the fiducial flat
�CDM model. The mass bins fMig have width � lnM �
0:35 and start at a mass threshold Mmin, and the redshift
bins fzjg have width �z ¼ 0:1 and cover the range 0:1 �
z � 1:5.

As described in Sec. II C, the abundance of massive
clusters is exponentially sensitive to growth through the
mass function dn=dM [Eq. (9)]. However, the observed
number of clusters depends on the cosmological model in
other ways as well. In particular, the comoving volume
element [Eq. (8)] introduces additional dependence on the
distance-redshift relation and expansion rate. The mass
dependence of the effective volume in which a given
survey probes clusters of a certain mass is also cosmology
dependent (and redshift dependent) in general, although
here for simplicity we take the volume to be constant above
a mass threshold Mmin ¼ 1014h�1M�.

The main mass proxy proposed for IXO is the product of
the x-ray temperature TX and gas massMgas, YX ¼ TXMgas,

which is expected to have a relatively small,<10%, scatter
based on cluster simulations [72]. Assuming lognormal
scatter in the YX �M relation, the total number of clusters
in redshift bin zj with width �z and mass bin Mi <M<

Miþ1 is [73]

NðMi; zjÞ � �z

2

Z 1

�1
d lnM

dnðM; zjÞ
d lnM

dVðzjÞ
d�dz



�
erf

�
lnMiþ1 � lnMffiffiffi

2
p

�lnM

�

� erf

�
lnMi � lnMffiffiffi

2
p

�lnM

��
: (35)

We include a 3% systematic error in M in uncorrelated
�z ¼ 0:1 redshift bins to represent the IXO forecast for the
error in the normalization of the YX �M relation from
weak lensing mass measurements of 100 clusters per red-
shift bin [73].
Cluster mass estimates generally also depend on the

assumed cosmology, although the exact dependence varies
for different mass proxies. Recent results from simulations
indicate that this additional cosmological dependence is
fairly weak [74], but it is nevertheless important to include
in a full analysis of cluster data. For simplicity, however,
we neglect the cosmological dependence of the cluster
masses here and assume that the sensitivity of cluster
abundances to cosmology is dominated by the mass func-
tion and the volume element.
For the halo mass function [Eq. (9)], we use the parame-

trization fit to simulations in Ref. [75],

fð�Þ ¼ AðzÞ
��

�

bðzÞ
��aðzÞ þ 1

�
e�c=�2

; (36)

where A, a, and b are weakly redshift dependent. As the
authors of that paper note, it is probably more appropriate
for the wide variety of cosmological models considered
here to replace the redshift dependence of these parameters
with dependence on the growth function. In fact, it may be
important to include dependence on not only the instanta-
neous value of the growth function at the redshift of a
cluster, but also the evolution of the growth function prior
to that redshift [76]. Recent studies using N-body simula-
tions or semianalytic modeling of nonlinear growth in
cosmologies with more complex dark energy evolution
than �CDM have begun to examine such issues [77–88].
For the approximate modeling of the cluster mass function
here, however, we use the simpler redshift dependence
given by Ref. [75].
By taking the submatrix of F�� from Eq. (34) that

corresponds to fG0ðzjÞg only and inverting to get the co-

variance matrix, we find that the growth uncertainties for
fixed distances are �1%. Marginalizing over the distances
by inverting the full Fisher matrix, including both growth
and distance variables, increases the growth function un-
certainties by a factor of 5–10. However, adding SNAP-like
SN distance constraints with 1% accuracy in fH0DðziÞg
reduces the growth uncertainties after marginalizing over
distances to 1%–3%. Recall from the beginning of this
section that 3% growth function uncertainties approxi-
mately double the error in the curvature estimate relative
to 1% growth uncertainties.
This test shows that distances at low z should be con-

strained well enough by the future SN and CMB data that
the impact of additional cluster data can be roughly ap-
proximated by its expected accuracy on the growth func-
tion alone. Including degeneracies between growth and
distances in the halo mass function and comoving volume
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element results in somewhat weaker but still interesting
constraints on curvature. However, given the simplifying
assumptions made here, curvature constraints from dis-
tance and growth data using the full cluster likelihood are
a subject that deserves further exploration.

E. Comparison with other methods

The model-independent curvature constraint from dis-
tances and growth has a forecasted accuracy of �ð�KÞ ¼
0:002 for SNAP SN, Planck CMB, and IXO cluster data,
assuming that the true cosmology is close to flat �CDM.
This is very close to the accuracy expected in the model-
dependent context of �CDM using the SN and CMB
distance data only. Thus the inclusion of growth informa-
tion provides a curvature measurement that is free from
possible biases due to assuming an incorrect form of the
dark energy evolution without sacrificing precision.

As we have seen, other types of measurements can play
a role similar to the growth constraints. A 1%measurement
of the Hubble constant and a 1% upper limit on the fraction
of dark energy at recombination, when combined with
SNAP SN and Planck CMB data, provide a model-
independent curvature constraint with �ð�KÞ � 0:005
(bottom panel of Fig. 8; also see the end of Sec. III for a
discussion of the origin of this constraint). However, the
distribution of �K is strongly skewed with a long tail
toward open models, and without growth information the
constraints such data can place on cosmologies that have
significant amounts of early dark energy are severely
limited.

The method of curvature estimation studied here can
provide complementary constraints to other model-
independent techniques. Knox [13] proposed using precise
distance measurements, for example, from BAO at high
redshifts (z * 3), in comparison with the distance to re-
combination measured in CMB data to probe curvature.
With future, percent-level BAO distances and Planck CMB
data, this method is expected to attain an accuracy of
�ð�KÞ � 0:001–0:002 [13,89,90]. However, this measure-
ment depends on the assumption that the universe is matter
dominated between the redshift of the BAO measurement
and recombination. As a result, the estimated curvature is
independent of the low-redshift dark energy modeling but
still depends on the high-redshift dark energy evolution
[13]. This dependence is similar to the degeneracy between
curvature and early dark energy that we find when compar-
ing high-z SN distances to the CMB distance [Eq. (18)].
Additional information, such as a measurement of GðzÞ (or
�8), or BAO in the line-of-sight direction to probe HðzÞ at
z� 3, could help to reduce the high-z model dependence
of this method [13].

The curvature measurement proposed by Bernstein [12]
is perhaps the most model-independent method since it
relies only on the FRW form of the metric without assum-
ing particular dark energy properties and is valid for alter-

native theories of gravity as well. Weak lensing galaxy-
shear correlations can measure distance ‘‘triangles’’ in-
volving the lens distance, source distance, and the distance
between the two, and the relations between these distances
are sensitive to curvature. Future lensing and galaxy sur-
veys can provide a purely geometric test of curvature with
an expected accuracy of �ð�KÞ � 0:02–0:04 [12,91]. This
technique is likely to be even less model dependent than
the distance plus growth method described here, but the
forecasted uncertainties are an order of magnitude larger.
Given that each of these methods for obtaining model-

independent curvature estimates relies on different types of
data, it is difficult to compare forecasts directly. On the
other hand, the existence of multiple methods using inde-
pendent data sets means that there will be many opportu-
nities for cross-checks of the curvature estimates. In this
sense, it is useful to have an array of model-independent
methods available that will have different systematics, both
theoretical and instrumental.

VII. DISCUSSION

With future supernova and CMB data sets making defi-
nite predictions for the growth of linear perturbations based
on measured distances, precise measurements of the actual
growth history will provide model-independent estimates
of spatial curvature. Such constraints have important im-
plications for testing models of inflation, which predict
�K � 0, and for obtaining constraints on dark energy
models that are robust to uncertainty in curvature.
If the true cosmology is similar to flat�CDM, as current

data would suggest, then a combination of SNe from
SNAP, CMB data from Planck, and x-ray clusters from
IXO can measure the curvature with an accuracy of
�ð�KÞ � 0:002, making minimal assumptions about the
dark energy evolution. The main constraint on curvature in
this scenario comes from combining distance data with
measurements of the evolution of the growth function at
low redshifts. However, information about the normaliza-
tion of growth relative to early times, obtained by compar-
ing cluster abundances with the amplitude of CMB
anisotropies, can significantly reduce the uncertainty in
curvature. The extra information mainly comes from the
covariance between the growth normalization and the low-
redshift growth evolution required by the CMB constraint
on the distance to recombination.
These forecasts are robust to changes in the true value of

the curvature and in the dark energy evolution at low
redshift. However, if the true cosmology is significantly
different from the concordance flat �CDM model at high
redshifts (z * 2), then the forecasted errors on�K increase
by a factor of a few and the constraints depend more
strongly on the normalization of the low-redshift growth
function relative to early times. Although model-
independent limits on curvature alone are weaker in this
scenario, the combination of future SN, CMB, and cluster
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data would reduce the allowed model space to a narrow
degeneracy between curvature and early dark energy or
massive neutrinos. A precise independent measurement of
the Hubble constant would mitigate possible biases in
these constraints.

Estimates of curvature from distances and growth are
complementary to other model-independent techniques.
The projected accuracy is similar to that expected from
comparing distances measured at z� 3 to the distance to
recombination [13], but the inclusion of growth informa-
tion reduces dependence on assumptions about the high-
redshift universe. Compared with proposed metric tests of
curvature using weak lensing distance triangles [12], con-
straints from distances and growth are more model depen-
dent, in particular, relying on the assumption that GR is
valid on large scales and that dark energy clustering does
not significantly affect the growth observables. However,
limits on curvature from combinations of distance and
growth data are potentially much more precise.

We have focused here on the use of x-ray clusters to
probe the growth history, but there are a number of other
possible methods for measuring growth that may also
provide interesting curvature constraints when combined
with distance measurements. Correlations involving weak
lensing shear and galaxy density measurements should
constrain both distances and growth in several redshift
bins (e.g., [91]). Redshift space distortions of galaxy cor-
relation functions can be used to constrain the growth rate
rather than the integrated growth, so such data sets may
provide interesting complementary constraints to those
from clusters or weak lensing. Forecasts of the ability of
these alternative probes of growth to measure curvature
when combined with distance data are an interesting sub-
ject for future study.

A fundamental assumption for using distances and
growth to measure spatial curvature is that the relation
between the growth history and the expansion rate is
governed by GR. In the context of modified theories of
gravity, many authors have studied the use of distances and
growth to test for deviations from GR. These investigations
typically make some simplifying assumptions regarding
spatial flatness and/or the dark energy evolution, and relax-
ing these assumptions could make such tests of gravity
considerably more complicated. For example, at any par-
ticular scale the deviations in the distance-growth relation
caused by modifying gravity may be difficult to distinguish
from the effects of nonzero curvature or dynamical dark
energy. However, scale dependence of growth could still be
a robust signature of certain classes of modified gravity
theories even in the context of more general cosmologies.
Regardless of our ability to use future data to distinguish
between nonzero curvature, dynamical dark energy, and
modified gravity, finding hints of any of these possibilities
would be an intriguing sign of physics beyond the standard
cosmological model.
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APPENDIX A: GROWTH FUNCTION
APPROXIMATION AT HIGH REDSHIFT

At high redshift, assuming that the contributions of dark
energy and curvature to HðzÞ are much smaller than that of
the matter density, we can derive an approximate form for
the growth history. In an Einstein–de Sitter universe with
matter only, the growth function is constant. We therefore
start with an ansatz that the growth history in a universe
with small fractions of dark energy and curvature is a small
perturbation to the constant Einstein–de Sitter solution,
expanding around some redshift zi where GðziÞ ¼ Gi,

GðzÞ ¼ Gi þ CEDE

��
1þ z

1þ zi

�
3w1 � 1

�

þ Ccurv

��
1þ z

1þ zi

��1 � 1

�
; (A1)

where CEDE � Gi, Ccurv � Gi, and we have assumed that
dark energy at early times can be parametrized by a con-
stant effective equation of state w1. The redshift depen-
dence of the terms in Eq. (A1) is the same as that of�DEðzÞ
and �KðzÞ during matter domination. The growth solution
must have this dependence in order to solve Eq. (6) since
d lnH=d lna contains terms proportional to �DEðzÞ and
�KðzÞ.
For this approximate solution to the growth equation, we

neglect terms of second or higher order in CEDE, Ccurv,
�DEðziÞ, and�KðziÞ. In this limit, the quantity d lnH=d lna
appearing in Eq. (6) is

d lnH

d lna
� � 3

2
þ 1

2
�KðzÞ � 3

2
w1�DEðzÞ: (A2)

Using Eqs. (A1) and (A2) in the differential equation for
GðzÞ produces algebraic relations for the early dark energy
and curvature coefficients:

CEDE ¼ 1� w1
w1ð5� 6w1Þ�DEðziÞGi; (A3)

Ccurv ¼ �4
7�KðziÞGi: (A4)

This approximation can be used to set the value of
�0ðzmaxÞ needed for the analytic growth reconstruction in
Sec. V:

�0ðzmaxÞ ¼ � �ðzmaxÞ
ð1þ zmaxÞ

HðzmaxÞ
H0

�
1þ d lnG

d lna

��������zmax

�
;

d lnG

d lna

��������zmax

¼ � 3ð1� w1Þ
5� 6w1

�DEðzmaxÞ � 4

7
�KðzmaxÞ:

(A5)
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The approximation breaks down when either the curva-
ture or early dark energy fraction is large. For�DEðzmaxÞ<
0:25 and j�Kj< 0:01, the error in the approximation for
�0=� at zmax � 1:5 is & 1%. The approximate form of the
growth rate in Eq. (A5) remains accurate even as w1 ! 0
despite the fact that the integrated growth function
[Eq. (A1)] becomes inaccurate at w1 * �1.

APPENDIX B: MONTE CARLO SIMULATIONS OF
GROWTH RECONSTRUCTION

The procedure we use to estimate the covariance of
growth reconstructed from distances (Sec. V) for future
SN and CMB data is as follows:

(1) Define redshift bins fzig, i ¼ 1; . . . ; nz with z1 ¼ 0
and znz ¼ zmax.

(2) Choose the assumed values of �K and early dark
energy/massive neutrino parameters (here, we use
w1 as an example).

(3) Draw a realization of the SN data, specified by the
redshift distribution of type Ia SNe and their mag-
nitude errors:

	� ¼ 1ffiffiffiffiffiffiffiffiffiffiffij�Kj
p S�1

K ½
ffiffiffiffiffiffiffiffiffiffiffi
j�Kj

q
ðH0Dðz�Þ þ ��Þ�;

�� ¼ �stat;� þ �sysðz�Þ;
(B1)

where the statistical error �stat;� is drawn for each

SN (labeled by �) from a Gaussian with width
�H0D;� ¼ 0:15H0Dðz�Þ=ð5 logeÞ, and the system-

atic error �sysðz�Þ is drawn for each �z ¼ 0:1 red-

shift bin from a Gaussian with width
0:02½ð1þ zÞ=2:7�=ð5 logeÞ. The SN distance-
redshift relation is assumed to be unbiased relative
to the fiducial model for the data, so h��i ¼ 0.

(4) Estimate zð	Þ from the SN data by first estimating
	ðzÞ and then inverting the relation. We compute
	ðzÞ in redshift bins zi with width �z as

	ðziÞ ¼
P
�
	� exp½�ðz� � ziÞ2=ð2�z2Þ�
P
�
exp½�ðz� � ziÞ2=ð2�z2Þ�

; (B2)

where z� and 	� are the redshifts and 	 values of
SNe from step 3. The default bin width used here is
�z ¼ 0:05.
To invert this to obtain zð	Þ, the estimated 	ðziÞ
must be monotonic. For large enough �z this is
typically not a problem since the fiducial 	ðzÞ rela-
tion is always monotonically increasing, but even
with wide redshift bins there is a chance of having a
few realizations with nonmonotonic 	ðziÞ estimates.

We correct for this when it occurs by simply setting
	ðziþ1Þ ¼ 	ðziÞ in any bin for which Eq. (B2) gives
	ðziþ1Þ< 	ðziÞ. The fact that the results are rela-
tively independent of the redshift bin width indi-
cates that this correction is not a significant source
of error.
SN coverage that is fairly uniform in z is important
to avoid bias in the zð	Þ relation. For the anticipated
SNAP distribution the largest biases are at the ends,
z � 0 and z � zmax. The low-z bias has little impact
on the growth reconstruction at z * 0:1, but the
high-z bias can cause problems with connecting
the reconstructed growth at z < zmax to the fiducial
z > zmax growth history. To avoid such problems,
we take zmax for the growth reconstruction to be
slightly smaller than the maximum SN redshift; in
the case of SNAP where the SN distribution ends at
z ¼ 1:7, zmax ¼ 1:5 is sufficiently low to avoid
problems relating to bias in zð	Þ. (Note that using
a different value of zmax results in slightly different
definitions of early dark energy for the MCMC and
growth reconstruction methods.)

(5) Estimate Emax ¼ dz=d	ðzmaxÞ using a linear fit to
the high-z end of the zð	Þ relation.

(6) Draw simulated CMB distance data from the 2
 2
Fisher matrix for flnðD�=MpcÞ;�mh

2g (Sec. II E).
Using the assumed curvature and early dark energy
parameters in addition to the estimate of Emax from
step 5, set �m and h to match the CMB constraints.

(7) Optionally include additional priors (e.g. H0 and
dark energy fraction at last scattering). Each
Monte Carlo simulation is weighted by the likeli-
hood associated with these priors, and the entire set
of simulations for a single f�K; w1g pair has a
weight assigned to it equal to the average of the
individual simulation weights.

(8) Compute the growth at zmax relative to recombina-
tion, GðzmaxÞ, for the expansion history specified by
�K and w1 (step 2); Emax (step 5); and �m and h
(step 6).

(9) Given zð	Þ from step 4 and �m from step 5, iter-
atively solve the growth reconstruction equation,
Eq. (27). For each iteration, �0

max is set to the aver-
age of its value in the previous iteration and the
target value based on the approximate growth evo-
lution at z > zmax given by Eq. (A5).

(10) Repeat steps 3–9 for many realizations of the SN
and CMB data, and compute the mean and covari-
ance (using the weights from step 7) of the resulting
estimates of g ¼ fGðzmaxÞ; G0ðziÞg. This produces
the predicted growth observables at fixed �K and
w1.

(11) Repeat steps 2–10 for different curvature and early
dark energy parameter values to compute
Pdðgj�K; w1Þ.
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