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We study the weak gravitational lensing effects caused by a stochastic distribution of dark matter halos.

We develop a simple approach to calculate the magnification probability distribution function which

allows us to easily compute the magnitude bias and dispersion for an arbitrary data sample and a given

universe model. As an application we consider the effects of single-mass large-scale cosmic inhomoge-

neities (M� 1015h�1M�) to the SNe magnitude-redshift relation, and conclude that such structures could

bias the PDF enough to affect the extraction of cosmological parameters from the limited size of present-

day SNe data samples. We also release turboGL [turboGL is available at: http://www.turbogl.org.], a

simple and very fast ( & 1 s) Mathematica code based on the method here presented.
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I. INTRODUCTION

Large-scale inhomogeneities are known to affect the
light coming from very distant objects. It is important to
understand these effects well if one is to use cosmological
observations to accurately map the expansion history and
determine the precise composition of the universe. In
particular the evidence for dark energy in the current
cosmological concordance model is heavily based on the
analysis of the apparent magnitudes of distant type Ia
supernovae (SNe) [1,2]. One way inhomogeneities can
affect the observed SNe magnitude-redshift relation is
through gravitational lensing. How large these effects are
depends strongly on the assumptions regarding size and
density contrast of the structures through which light
passes on its way from source to observer. The main
purpose of this paper is to develop a simple tool to compute
weak-lensing effects on the SNe magnitude-redshift rela-
tion due to statistical distributions of large-scale
inhomogeneities.

The effect of inhomogeneities on cosmological observ-
ables have been studied earlier by many authors and in
many different contexts. The effect of matter clumping into
isolated halos, or isolated cores, was already considered by
Kantowski in 1969 [3], and more recent analyses of gravi-
tational lensing by statistically distributed inhomogeneities
have been carried out, for example, in Refs. [4–15]. Lately
many authors have studied exactly solvable models for
large-scale inhomogeneities, such as swiss-cheese, onion
and meatball models [3,16–24]. The local Hubble bubble
scenario has also been quite successful in explaining many
of the cosmological observations [25–34], obviously with
the price of giving up the cosmological principle. Yet
another aspect of inhomogeneities is to cause possibly

strong backreaction effects on the dynamical Einstein
equations governing the evolution of the metric [35–49].
The approach in this paper is closest in spirit to that of

Refs. [5,11]. Here the cosmological principle is respected
and we will assume that the inhomogeneities can be intro-
duced as a perturbation on a well defined global back-
ground solution. We will also neglect all redshift effects
in voids (see Refs. [16–18,50]) and concentrate purely on
cumulative weak lensing [51]. The central physical con-
cept for the present work is the observation, made already
by Zel’dovich in 1964 [52], that light travelling in empty
parts of a clumpy but globally homogenous universe be-
comes demagnified. Light going through mass concentra-
tions is magnified on the other hand and the null result of
the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
ground solution only arises through averaging over a large
number of photon geodesics. As a result, the magnification
probability distribution function (PDF) for a single obser-
vation is skewed favoring mild demagnifications, with a
long compensating tail of positive magnifications. Such
skewness is a concern for the interpretation of the cosmo-
logical data, because the demagnification effect could be
misinterpreted as a relative dimming of standard candles in
small data sets. The degree of skewness of the PDF ob-
viously depends on the size and the spatial distribution of
the matter concentrations.
The central object to compute then is the magnification

probability distribution function for a random photon geo-
desic in a given inhomogeneous universe model.
Refs. [5,11] evaluated the PDF numerically performing
large simulations in a model universe and computing the
magnification factors with ray-tracing techniques. Here we
will introduce a much simpler way to compute the PDF and
give an explicit expression for it as a sum over probability
weighted configurations of inhomogenities. Moreover, we
will develop a simple analytic approximation that can
reproduce the mode and the dispersion of the numerical
PDF. In addition to the statistical bias due to skewness,
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there may be systematic biases on the observed PDF, such
as extinction, foreground light contamination, strong lens-
ing and outlier corrections. These biases can be problem-
atic because they, unlike the statistical magnification bias,
persist even in large data sets. We will not try to estimate
the size the systematic biases here, but we will show how
their effects can easily be included in the analysis.

We test our method by reproducing the key results of
Refs. [5,11] for a universe in which all matter is homoge-
neously distributed in halos withM� 1012h�1M� and our
results are found to be in good agreement. We also consider
much larger halos of size M� 1015h�1M�, whose exis-
tence is suggested by the large voids and filamentary
structures seen both in the large-scale simulations and in
the galaxy redshift surveys [53–55]. From the weak-
lensing point of view such halos can be considered as
localized lenses, irrespectively of whether they are gravita-
tionally bound or not. We again produce the simulated
PDFs for a universe with such large structures, both in
the �CDM and in the Einstein-de Sitter (EdS) background
model. We also produce the distributions for binned sets of
observations and compute bias and dispersion for these
effective PDFs. Quite interestingly, supercluster size halos
with M� 1014h�1M� turn out to represent roughly the
borderline for when the skewness effects become impor-
tant in the PDFs for the current best data sets.

This paper is organized as follows. In Sec. II we define
the background spacetime and the precise form and distri-
bution of the inhomogeneities, and review the basic for-
malism needed to compute the weak-lensing convergence.
In Sec. III we develop the probabilistic formalism to cal-
culate the lensing magnification PDF. In Sec. IV we derive
the analytic approximation for the lensing PDF and its
mode and dispersion. In Sec. V we apply our methods to
compute the PDFs for both the �CDM model and the EdS
model for different types of matter distributions, and com-
pare our numerical and analytical results. In Sec. VI we
will give our conclusions. In Appendix A we give some
analytical results for the EdS model and in Appendix Awe
prove an identity used in the calculations.

II. SETUP

In order to concentrate purely on the effects of weak
gravitational lensing, we will ignore a possible strong
backreaction (see Ref. [35] for a definition and, for ex-
ample, Refs. [36–49] for a discussion). In particular we
will assume that the spacetime of the inhomogeneous
universe is accurately described by small perturbations
around the FLRW solution whose energy content and
spatial curvature are defined as Hubble-volume spatial
averages over the inhomogeneous universe. Following
Ref. [35] we will call this Hubble-volume average the
Global Background Solution (GBS), while the cosmologi-
cal background solution actually obtained through the ob-
servations will be called the Phenomenological Back-

ground Solution (PBS). The inhomogeneities we will in-
troduce will cause the PBS depart from the GBS, and so
this work falls into the category of weak backreaction. Also
other phenomena, such as a local Hubble bubble [25–34] or
redshift effects [16–18,50] could be studied within the
weak backreaction scenario. In a companion paper [23]
we have extended the current work to include a local
Hubble bubble, but here we will ignore this possibility
and we also neglect all redshift effects [3]. In what follows,
we will first introduce the GBS and the detailed form of the
inhomogeneities. Then, after defining the parameters that
describe our model universe, we will briefly review the
machinery necessary to calculate weak-lensing effects.

A. Global background solution

In agreement with CMB observations we will focus on
spatially flat models. Moreover, since we are only inter-
ested on the late evolution of the universe (z � 1:6) we
neglect radiation retaining only the contributions from
(dark and baryonic) matter and the dark energy in the
form of a cosmological constant. The parameters that
specify the GBS will be therefore be �M;0 and H0. As

special cases we will consider, in particular, the �CDM
model with �M;0 ¼ 0:28 and the EdS model with �M;0 ¼
1. The evolutions of the Hubble expansion rate and of the
density parameters as a function of redshift are given by

HðzÞ ¼ H0ð�M;0ð1þ zÞ3 þ��;0Þ1=2 (1)

�MðzÞ ¼ �M;0ð1þ zÞ3 H2
0

H2ðzÞ (2)

��ðzÞ ¼ 1��MðzÞ; (3)

where the subscript 0 will denote the present-day values of
the quantities throughout this paper and H0 ¼
100h km s�1 Mpc�1. Substituting in Eq. (1) H ¼
_aðtÞ=aðtÞ and 1þ z ¼ a0=aðtÞ we obtain the equation we
have to solve in order to find the time evolution of the GBS.
The observables we will be interested in are the angular
diameter distance, the luminosity distance and the distance
modulus:

DAðzÞ ¼ c

1þ z

Z z

0

d�z

Hð�zÞ (4)

DLðzÞ ¼ ð1þ zÞ2DAðzÞ (5)

mðzÞ ¼ 5log10
DLðzÞ
1 Mpc

þ 25: (6)

Analytical expressions for these quantities in the EdS case
can be found in Appendix A.

KIMMO KAINULAINEN AND VALERIO MARRA PHYSICAL REVIEW D 80, 123020 (2009)

123020-2



B. Inhomogeneities

We will first describe the statistical distribution of the
inhomogeneities within the GBS discussed in the previous
section. The more precise properties of the inhomogene-
ities, or halos, will be described in the second subsection
and in the last subsection we summarize the parameters
that describe our model universe.

1. General statistical properties

The inhomogeneity scale introduced by the halos will be
much smaller than the Hubble radius, dc � c=H0, so that
the GBS can perturbatively describe the spacetime. In
particular we will assume that redshifts can be related to
comoving distances through the GBS. In our setup the
halos are randomly distributed with a comoving number
density nc and all the matter in the universe is within these
objects [see Eq. (13)]. We will later generalize this picture
for a continuous mass distribution of halos.

Let us now consider a comoving volume V much larger
than the characteristic scale n�1

c so that the total number
NH of halos in V is large, NH ’ ncV � 1. Let us first
estimate the average comoving distance dc between the
halos. To this end we need the probability Pðk;vÞ of having
k objects in the comoving volume v:

Pðk;vÞ ¼ NH

k

 !�
v

V

�
k
�
1� v

V

�
NH�k

¼ NH

k

 !�
ncv

NH

�
k
�
1� ncv

NH

�
NH�k

���!NH!1
e�ncv

ðncvÞk
k!

; (7)

where we first wrote the binomial probability for p ¼ v=V
and then took the limit NH � 1. We have thus found that
the number of halos in the volume v is distributed as a

Poisson random variable of parameter ncv which is, as
expected, the mean number of halos. In particular, mean,
mode, variance and skewness functions characterizing the
distribution are:

�k ¼ ncv k̂ ¼ bncvc
� ¼ ðncvÞ1=2 �1 ¼ ðncvÞ�1=2;

(8)

where the notation bxc refers to the floor function corre-
sponding to the largest integer not greater than x and �1 is
the skewness. These are of course well known statistical
properties of the Poisson distribution. However, the skew-
ness of the distribution is so crucial to our results that we
illustrate this behavior as a function of ncv in Fig. 1. It is
evident that the distribution is strongly skewed for small
ncv, whereas for increasing ncv the mode starts to ap-
proach the mean (marked by a vertical dotted line), skew-
ness goes to zero and the distribution approaches the
normal distribution. In particular the difference between
mode and mean for low values of ncv will be of central
relevance for us in what follows.
Let us now return to the evaluation of dc. Evidently ncV

is a stable expectation for the number of objects in the
volume V. To see this imagine that the volume V is
embedded within an even bigger volumeW. The probabil-
ity of having k objects within V is then given by the
Poisson probability Pðk;VÞ, but because ncV � 1 this is
well approximated by a normal distribution with mean �k ¼
ncV and variance � ¼ ðncVÞ1=2. For ncV ! 1 we there-
fore obtain �= �k ! 0; that is, the relative fluctuations
around the expected value will go to zero and we can
simply write NH ¼ ncV. The latter property that the
Poisson distribution tends to a delta function for large
parameters will be important when we will discuss the
lensing bias with respect to the size of the data samples
of observations.
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FIG. 1 (color online). Poisson distribution with maximum normalized to unity for four different values of ncv. The vertical dotted
lines mark the mean.
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Because the objects are randomly distributed, the proba-
bility wðrÞdr that the nearest neighbor to an object is at a
radial distance between r and rþ dr equals the probability
of having no particle within r times the probability of
having at least one particle between r and rþ dr:

wðrÞdr ¼ Pð0;vÞPð� 1; dvÞ ¼ Pð0;vÞð1� Pð0; dvÞÞ
¼ e�ncvð1� e�ncdvÞ � ncdve

�ncv; (9)

where v ¼ 4�r3=3. Therefore, the average comoving dis-
tance dc between nearest neighbors is [56]:

dc ¼
Z rmax

0
rwðrÞdr ¼ �ð4=3Þ

ð4�=3Þ1=3 n
�1=3
c � 0:55n�1=3

c ;

(10)

where we put rmax ¼ 1 using the fact that V � n�1
c .

2. Detailed description of the halos

We take our halos to be spherical and characterized by a
comoving radius R where the density of the halo goes to
zero, so that beyond this distance a halo does not contribute
to the weak-lensing convergence. The density profile
within the radius R can be taken to be any smooth function
like a Gaussian (in which case R ’ 3�), a singular isother-
mal sphere (SIS) or the Navarro-Frenk-White (NFW) pro-
file [57]. All matter is taken to be in these halos, and so the
distribution of matter within the comoving volume V is:

�M ¼ XNH

j¼1

�Mj ¼ ��M

XNH

j¼1

’ðjr� rjjÞ; (11)

where ��M ¼ ��M;0ð1þ zÞ3 with ��M;0 ¼ 3H2
0�M;0=ð8�GÞ.

Throughout this paper we use the overbar to denote a
quantity corresponding to the GBS. The halo profile ’ðrÞ
must be normalized appropriately to get the average den-
sity. From Eq. (11) we find:

1 ¼ 1

V

Z
V

XNH

j¼1

’jdV ’ NH

V

Z
V
’dV )

Z
V
’dV ¼ 1

nc
;

(12)

where’j 	 ’ðjr� rjjÞ and in the second equality we used
the fact that NH � 1 in order to neglect boundary correc-
tions. Equation (12) ties the halo mass to the comoving
halo number density:

MH ¼ ��Ma
3
Z
V
’dV ¼ ��M;0a

3
0

nc
(13)

and nc is further related to the average distance dc between
halos through Eq. (10). In the present analysis nc is a
constant with redshift: we will extend this picture in
Sec. III D. The total energy content of the universe and
its density contrast can now be expressed as:

� ¼ ��M

XNH

j¼1

’j þ �� (14)

� ¼ ��

��
¼ �M � ��M

��
¼ �M�M

¼ �M

�XNH

j¼1

’j � 1

�
¼ �H þ �E; (15)

where �M ¼ �M= ��M � 1 and we have defined �H 	
�M

PNH

j¼1 ’j and �E 	 �� � 1 ¼ ��M. The latter gives

the density contrast in the empty space (voids) between the
halos, while the former the matter field due to the halos.
The average contrast of a halo is found by averaging �H

over the volume of a halo:

h�HiðzÞ ¼ �MðzÞ
nc

4�
3 R3ðzÞ � 1: (16)

Equation (16) will be used to relate the truncation radius R
to the average contrast at virialization.
We stress at this point that by ‘‘halo’’ we do not mean

only gravitationally bound systems, but also non virialized
large-scale structures for which the radius R is not related
to the virialization contrast of Eq. (16) (see Sec. III E).

3. Parameters of the model universe

Summarizing, the parameters that specify our model
universe are the matter abundance �M;0 and the Hubble

expansion rate H0 giving the GBS and the scales R and nc
describing the inhomogeneities. Another important pa-
rameter is the number of supernova observations NO at a
given redshift. As we will see, because of lensing effects,
the PBS will depend on NO and it will reduce to the GBS
only when the observations cover uniformly the entire sky
in the limit NO ! 1. The latter limit can also be under-
stood as averaging over all the sky. In Section III C we will
discuss this topic in detail including a redshift dependent
NOðzÞ-function. In Sec. III A we will consider the case
where the observations fail to cover the entire sky and
discuss how these selection effects may affect the PBS.
Thus, in what follows we will study quantitatively the
lensing predictions for universes described by the parame-
ter sets ð�M;0; H0; R; nc; NOÞ.

C. Cumulative gravitational weak lensing

We will now briefly introduce the tools necessary to
calculate weak-lensing effects for our setup. For more
details see Ref. [51]. In the weak-lensing theory the net
magnification � produced by a localized density perturba-
tion is:

� ¼ 1

ð1� �Þ2 � j�sj2
’ ð1� �Þ�2; (17)
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where � is the lens convergence and �s is the shear which
we assume to be negligible [51]. The shift in the distance
modulus caused by � then becomes

�m ¼ �2:5log10� ’ 5log10ð1� �Þ: (18)

The lens convergence � can be computed from the follow-
ing integral along the line of sight:

� ¼
Z rs

0
dr

rðrs � rÞ
rs

r2�

c2
; (19)

where rs is the comoving position of the source and the
integral is along an unperturbed light geodesic. The term
r2� is the Laplacian of the Newtonian potential of the
perturbation in comoving coordinates. In the present case
then

r2�

c2
¼ 4�G

c2
a2�� ¼ 3

2
�M;0

a20H
2
0

c2
a0
a

�XNH

j¼1

’j � 1

�
;

(20)

where we have used Eqs. (1), (2), and (15). The sum over
the halos describes the effect of inhomogeneities, while the
negative constant of unity can be understood as the de-
magnifying potential of empty space (the ‘‘empty beam’’).
Substituting Eq. (20) back to Eq. (19) we get

� 	 �H þ �E ¼
Z rs

0
drGðr; rsÞ

�XNH

j¼1

’j � 1

�
; (21)

where �E is the empty beam convergence and �H is the
convergence caused by halos, and we have defined the
auxiliary function Gðr; rsÞ:

Gðr; rsÞ ¼ 3

2
�M;0

a20H
2
0

c2
rðrs � rÞ

rs

a0
aðtðrÞÞ : (22)

In an exactly homogeneous FLRW model the two contri-
butions �H and �E in Eq. (21) cancel and there is no
lensing. In our setup, as we will see in detail in the next
section, the two contributions cancel also if we can take the
angular average over all sky. In other words, given a
number of observations NO, the GBS is obtained in the
limitNO ! 1, if no lines of sight are obscured. When both
these conditions are met, the entire volume of the space is
seen and the deduced sum

P
’j averages to unity.

However, it is evident that a limited size of the data set
(small NO) can cause a probabilistic deviation of the PBS
from the GBS, whereas selection effects can lead to sys-
tematic deviation of the PBS from the GBS. One can
imagine several qualitative selection effects that could
cause an apparent demagnification of the data sample,
such as rejection of ‘‘outliers’’, intergalactic extinction or
foreground light contamination. The simplest way to esti-
mate such effect is to assume that some fraction of the halo
mass is ‘‘hidden’’ from the observations.

Note also that for given parameters ðR; ncÞ, the density
contrast scales linearly with �M so that a flat dark-
energy—dominated model will have smaller lensing ef-
fects than does a flat matter-dominated EdS model.

The accuracy of the weak-lensing approximation

Above we defined a cumulative expression for the weak-
lensing convergence �, whereas the observable flux is
actually multiplicatively magnified by the subsequent
lenses. In practice this works well when the cumulative
magnification is small. That is, when �, j�sj � 1 we have

� ’ 1þ 2�þ 3�2 þ j�sj2 þ . . . ’ 1þ 2� (23)

and h�i ¼ 0, h�i ¼ 1 and h�mi ¼ 0 are all equivalent.
The accuracy of the weak-lensing scheme can be tested
quantitatively by a comparison with exact solutions. First,
it was shown by Ref. [15] that the weak-lensing approxi-
mation reproduces the full general relativistic results of
Ref. [17] to a �5% accuracy along a line of sight in an
inhomogeneous swiss-cheese model,1 where the difference
comes from neglecting higher order terms in the expression
for � in Eq. (19).
Let us next consider the solutions for empty or partially

filled beams with a filling factor � 	 �beam= ��. Physically
this corresponds to the case where a fraction 1� � of the
mass in the halos is for some reason hidden from the
observations and the remaining mass fraction� is observed
as a smooth distribution. Let us define the relative error
between the weak-lensing approximation and the exact
result for a partially filled beam:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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-0.02

-0.01
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α=0.5

FIG. 2 (color online). The relative error Err of the weak-
lensing calculation defined in Eq. (24) for the empty beam (� ¼
0) and for a half filled beam (� ¼ 0:5) for both the EdS and the
�CDM model.

1The authors of Ref. [15] found �m ’ 0:346 at redshift z ’
1:86 through a particular grid of LTB-bubbles. They claimed
only an accuracy of�10% probably because, unlike us, they did
not have the exact results of Ref. [17].
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Err ¼ �mwl
E;� � �mex

E;�

�mex
E;�

: (24)

In Fig. 2 we show Err in the case � ¼ 0 and � ¼ 0:5 for
the EdS and the �CDM models. The convergence factors
for the �CDM model were computed integrating numeri-
cally the results of Ref. [58]. Analytic expressions for the
exact and weak-lensing convergences �E;� in the EdS

model are shown in Appendix A. Clearly the weak lensing
and exact results agree to within a few percent over the
interesting redshift range. In this paper we are concerned
not with all possible magnifications but with the most
probable ones. Since these are bound in magnitude by
the empty beam convergence, the results of Fig. 2 then
suggest that the weak-lensing approximation should be
very good for our purposes.

III. PROBABILISTIC STUDY OF WEAK LENSING

Our next task is to compute the probability distribution
function (PDF) and the most likely value of the lens con-
vergence � along arbitrary photon geodesics as a function
of our model parameters ð�M;0; H0; R; nc; NOÞ. Since we

already know how to calculate �E it remains to evaluate the
halo-induced part �H in Eq. (21):

�HðzsÞ ¼
Z rs

0
drGðr; rsÞ

XNH

j¼1

’ðjr� rjjÞ; (25)

where rs ¼ rðzsÞ. We wish to obtain a probabilistic pre-
diction for this quantity along a random line of sight to a
source located at rs, in a universe with randomly distrib-
uted halos. One way to solve the problem would be to
construct explicitly a large enough comoving volume with
halos at fixed random locations ri, and then compute �H

along randomly selected directions in this space.
Alternatively, one can start from a fixed geodesic and
construct a random distribution of halos along that geode-
sic. We choose the latter approach, because it allows us to
find fast numerical and analytical solutions for the key
quantities we are interested in.

First consider a particular realization 	 of the integral in
Eq. (25), that is, a particular configuration of the halos and
a particular line of sight. Because of the finite size of the
halos, only the N	 halos with impact parameters bj < R

from the geodesic contribute to the sum (see the sketch in
Fig. 3). Moreover, because the halos are small compared
with the horizon scale, the functionG is to a good approxi-
mation a constant Gðr; rsÞ � Gðrj; rsÞ within each halo.

Similarly, the time dependence of the halo profile will be
weak, ’ðx; tÞ � ’ðx; tjÞ. After a little algebra one then

finds:

�Hð	; zsÞ ’
XN	

j¼1

Gðrj; rsÞ
Z Rj

bj

2xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2j

q ’ðx; tjÞ

	 XN	

j¼1

Gðrj; rsÞ�ðbj; tjÞ; (26)

where Rj 	 RðtjÞ and tj ¼ tðrjÞ. Our sample realization is

now characterized by a set of values frj; bjg, where j runs
from 1 to N	.
Next divide the geodesic in NS subintervals of (possibly

variable) length �ri � R, such that Gðr; rsÞ can still be
taken a constant within each interval. In practice one can
always construct such a division with ri � �ri � R.
When these conditions are met, all halos in a given bin
rj 2 ½ri; riþ1
 can be associated with the same distance ~ri
to the center of the bin, and (26) becomes

�Hð	; zsÞ ’
XNS

i¼1

Gð~ri; rsÞ
XNi

l¼1

�ðbl; tiÞ; (27)

where
PNS

i¼1 Ni ¼ N	. Now divide also the impact parame-

ter intoNR bins of width�bm, such that we can take �ðb; tÞ
a constant within each of these bins. In this way we can
rewrite (27) as

�Hð	; zsÞ ’
XNS

i¼1

XNR

m¼1

k	imGð~ri; rsÞ�ð~bm; tð~riÞÞ; (28)

where ~bm is the average b within the bin ½bm; bmþ1
 and
XNS

i¼1

XNR

m¼1

k	im ¼ N	: (29)

Now observe that Gðr; rsÞ and �ðb; tÞ are universal func-
tions for arbitrary values of r and b, and so all information
specific to the particular realization 	 in the Eq. (28) is
given by the set of integers fk	img giving the number of halos

FIG. 3 (color online). Shown is a comoving segment of a
photon geodesic between an observer at O and a source at S.
The shaded disks represent halos of radius R.
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within the distance and impact parameter bins character-

ized by the positions f~ri; ~bmg and sizes f�ri;�bmg.
Equation (28) is the starting point of our analysis, be-

cause it can be easily turned into a probabilistic quantity.
Instead of considering a set of realizations 	 along arbitrary
lines of sight through a pre-created model universe, we can
define a statistical distribution of convergences through
Eq. (28) because, as we have showed in Sec. II B 1, the
integers k	im are distributed as Poisson random variables of
parameter �Nim:

Pkim ¼ ð�NimÞkim
kim!

e��Nim ; (30)

where �Nim is the expected number of halos in the bin
volume �Vim:

�Nim ¼ nc�Vim ¼ nc2�bm�bm�ri: (31)

Equivalently, we can interpret�Nim as the mean number of
collisions of a photon with halos within the i’th
r-subinterval and within the m’th impact parameter bin.
Physically this statistical distribution of convergences is
equivalent to our original set of realizations 	 averaged
also over the position of the observer. Thus the statistical
model explicitly incorporates the Copernican Principle.

The basic quantity in our probabilistic treatment is a
configuration of random integers fkimg. The convergence
corresponding to a given configuration is given by an
equation analogous to Eq. (28):

�Hðfkimg; zsÞ ¼
XNS

i¼1

XNR

m¼1

kim�1imðzsÞ; (32)

where �1imðzsÞ 	 Gð~ri; rsÞ�ð~bm; tiÞ is the convergence due
to a single halo at distance ~ri and impact parameter ~bm. The
probability that such configuration occurs is just

Pfkimg ¼
YNS

i¼1

YNR

m¼0

Pkim 	 Y
im

Pkim : (33)

It is easy to see that this probability is normalized to one:

X
fkimg

Pfkimg ¼
Y
im

X1
kim¼1

Pkim ¼ 1: (34)

The expectation value for the convergence is given by the
probability weighted sum over all possible fkimg configu-
rations. Using the above results it becomes:

h�HðzsÞi 	
X
fkimg

Pfkimg�Hðfkimg; zsÞ ¼
X
im

hkimi�1imðzsÞ

¼ X
im

�Nim�1imðzsÞ ¼
XNS

i¼1

Gðri; rsÞ�ri ¼ ��E:

(35)

That is, the total expected convergence h�i ¼ h�Hi þ �E

vanishes bringing back the GBS result, consistent with

photon conservation in weak lensing. In going from the
third to the last line we used the identity

XNR

m¼1

2�bm�bmnc�ð~bm; tiÞ ¼ 2�nc
Z R

0
dbb�ðb; tÞ ¼ 1;

(36)

which, when calculated in the continuum limit, holds true
for any functional form of the halo profile ’ with the
normalization of Eq. (12) as shown in Appendix A.
Finally note that, using the identity (36), we can write
the total convergence for an observation corresponding to
a configuration fkimg simply as:

�ðfkimg; zsÞ ¼
XNS

i¼1

XNR

m¼1

�1imðzsÞðkim ��NimÞ; (37)

where kim’s are random variables drawn from the Poisson
distribution (30): kim 	 kim½�Nim
. Equation (37) makes
explicit that the expected convergence vanishes: the ex-
pected value of each term of the summation is indeed zero.
Note that in the analysis above, we did not give any

quantitative criterion for binning the variables r and b. The
fact that both �ri and �bi formally vanish in the final
expression in Eq. (35) already suggests that the exact way
the binning is done is not important. This is indeed so, and
one can even show formally that the binning is not impor-
tant as long as it is sufficiently fine to give a good approxi-
mation for the functions Gðr; rsÞ and �ðb; tÞ. One can also
easily test the effect of binning directly by comparing the
final results obtained with different size grids. In practice
we found that a grid with 10–20 points in each variable
already gives very accurate results.
The final convergence PDF can be formally written as

Pwlð�; zsÞ ¼
X
fkimg

Pfkimg�ð�� �ðfkimg; zsÞÞ: (38)

In the continuum limit this becomes formally a functional
integral over random integer-valued functions kðr; bÞ. It is
clear that the most likely configuration which maximizes
the probability function Pfkimg corresponds to the mode:

kim ! b�Nimc. Moreover, for large �Nim this most likely
configuration approaches the mean kim ! �Nim. When
this is the case the expectation value for total convergence
vanishes even for a single observation. This signals the fact
that the PDF then approaches a Gaussian with a vanishing
skewness.
One can also create the probability distribution directly

for the shift in distance modulus �m:

Pwlð�m; zsÞ ¼
X
fkimg

Pfkimg�ð�m��mðfkimg; zsÞÞ; (39)

where one uses Eq. (18) to compute �mðfkimg; zsÞ from the
convergence. Similarly, one can also define the PDF form
the magnification �.
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It is straightforward to compute the distributions (38)
and (39) through a numerical simulation, simply by creat-
ing a sufficiently large set of random configurations fkimg
drawn from the probability distribution Pfkimg. Note that the
distributions (38) and (39) are formally discrete but very
dense sets of distributions whose integral over � or �m is
normalized to unity. So the quantity that one actually
computes through a simulation is:

Pwlð�ml; zsÞ ¼
Z �mlþ�bin=2

�ml��bin=2
dyPwlðy; zsÞ; (40)

where �bin are some suitably chosen bin widths. The PDF
(40) is one of the main results of this paper. We wish to
stress the simplicity of this result. In order to specify the
model completely one needs only Eqs. (22) and (26) for the
functions Gðr; rsÞ and �ðb; tÞ respectively. After this,
Pð�ml; zsÞ is found from the random sample of magnifi-
cations �m computed through Eqs. (37) and (18).

A. Selection effects

As was discussed in Section II C, several selection ef-
fects might bias the convergence distribution, favoring
overall demagnification. It is straightforward to generalize
our probabilistic approach to include many such effects.
For example, all effects that would lead to a rejection of a
potential SN observation can easily be described by an
additional survival probability function. That is, we replace

Pfkimg ! Peff
fkimg 	 KPsur

fkimgPfkimg (41)

in our master formula for the magnification PDF (40). Here
K is a normalization constant that makes sure that the final
PDF is normalized to unity. The most generic form of the
survival probability function is

Psur
fkimg ¼

Y
im

ðPsur
im Þkim : (42)

This allows the survival function depend on the arbitrary
local properties along the photon geodesic. Given the form
(42) the proper normalization is easily seen to be:

Peff
fkimg ¼

Y
im

ð�Neff
im Þkim

kim!
e��Neff

im ; (43)

where

�Neff
im ¼ Psur

im�Nim: (44)

The correct expression for the convergence is still given by
Eq. (37), with the important difference that the random
integers kim are now drawn from the Poisson distribution
Eq. (43) with the effective expected number of halos:
kim 	 kim½�Neff

im 
. Now hkimi ¼ �Neff
im so that the average

convergence over a large number of observations becomes

h�ðzsÞi ¼
X
im

�1imðzsÞðPsur
im � 1Þ�Nim: (45)

As expected, the selection biases survive in the data even
after averaging over many observations. Note that in the
above analysis we implicitly assumed that the survival
probability for a light ray going through empty space
equals unity.
The actual form of the survival function Psur

im depends on
detailed input both from the astrophysical properties of the
intervening matter distributions (estimate for extinction,
foreground light contamination, etc.) and from the obser-
vational apparatus (e.g. detection efficiency of SNe-
triggering telescopes). A quantitative analysis of these
issues is beyond the scope of the present paper, and we
merely show how the method can be applied to the simple
selection effect discussed in Sec. II C. To see this, rewrite
Eq. (45) as

h�ðzsÞi ¼
XNS

i¼1

ð�i � 1ÞGð~ri; rsÞ�ri; (46)

where

�i 	 nc
X
m

2�bm�bm�ð~bm; tiÞPsur
im (47)

is the fraction of the mass in the halos that is accessible for
observations at ri. Note that a constant P

sur
im ¼ �i, thanks to

the identity (36), is a special solution to Eq. (47). If Psur
im did

not depend on ri, then this further reduces to

h�i ¼ ð1� �Þ�E (48)

with �i ¼ � for all i. As outlined in Sec. II C and showed
in detail in Appendix A, � can be interpreted as the filling
factor � 	 �beam= �� of a partial filled beam. We see there-
fore that the results of Ref. [3] can be obtained as a limiting
case of our approach.
Other types of selection biases, such as due to an error in

the estimate for reddening, would not affect the probability
distributions, but the evaluation of the effective magnifica-
tion factor itself. Also these corrections could depend on
the mass distribution along the photon path, and so, to be as
general as possible, one should replace

�m ! �mðfkimg; zsÞ þ �s�mðfkimg; zsÞ
	 �meffðfkimg; zsÞ (49)

in the integrand of Eq. (40). Again, a quantitative estimate
of the size of the bias factor �s�m is beyond the scope of
this paper.

B. Sources with intrinsic luminosity dispersion

Our results can be easily generalized for an arbitrary
initial flux or magnitude spectrum of an imperfect standard
candle. If we know that the source magnitudes can be
described by a function Pinð�m0Þ, then the observed mag-
nification PDF is obtained by the convolution of the initial
PDF and the weak-lensing PDF
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Pð�m; zsÞ ¼
Z

dyPwlðyÞPinð�m� yÞ

¼ X
fkimg

PfkimgPinð�m� �mðfkimg; zsÞÞ: (50)

Alternative expressions where one or both distributions are
replaced by the probability distribution in the flux are
trivially obtained by a simple change of variables.

C. PDF for a sample of NO observations

The effective distribution for a binned sample of NO

supernova observations can formally be expressed as an
iterative convolution [11]:

PNO
ðzs;�mÞ ¼ NO

Z
dyPNO�1ðzs; yÞ

� P1ðNO�m� ðNO � 1ÞyÞ: (51)

Here P1 is the normalized fundamental PDF that may
include selection effects and a convolution over the initial
distribution. Alternatively, one can compute PNO

directly

from the fundamental PDF by creating a large number of
sets of NO random realizations from it, and creating a
normalized distribution for the average �m within these
sets.

A third way is to create the PNO
distribution directly in

the initial simulation, bypassing the calculation of the
fundamental P1 altogether. This reduces computational
time and improves accuracy, of course with the price of
limiting the amount of information available. If we label
the configurations within a given sample of observations by
s, the mean convergence after NO observations is:

�NO
ðfkimgÞ ¼ 1

NO

XNO

s¼1

�ðfkimgsÞ

¼ XNS

i¼1

XNR

m¼1

�1im

�PNO

s¼1 kim;s

NO

� �Nim

�

¼ XNS

i¼1

XNR

m¼1

�1im

�
kim;NO

NO

� �Nim

�
; (52)

where, given that each of the NO observations are inde-
pendent, we have used the fact that independent Poisson
variables with the same weight sum exactly into a Poisson
variable of parameter given by the sum of the individual
parameters: kim;NO

	 kim½NO�Nim
. PNO
is then given by

Eq. (39) where the magnification for a given configuration
fkimg is computed from the convergence of Eq. (52).

We followed this last approach when creating the illus-
trations relevant for the Union Catalog and JDEM data in
Sec. V. However, note that including the selection effects in
general does not commute with taking the average over the
observations. In other words, if the NO measurements are
correlated then we cannot use Eq. (52), but we have to start
from the fundamental PDF. On the other hand, Eq. (52)

displays explicitly the effect of the size of the data sample:
even when � has a skewed PDF and a nonzero mode for
NO ¼ 1, for large NO the distribution approaches a
Gaussian and eventually converges to a �-function at
zero convergence, as it is clear from the properties of
Poisson variables discussed in Sec. II B 1.

D. Arbitrary mass-distribution of halos

We have so far expressed all our derivations assuming
there is only one halo type. At this point it is straightfor-
ward to generalize all our formulas to the case where one
has a continuous distribution of halos. Let us assume that
the halo mass distribution is given by some dimensionless
function fðM; zÞ, which is related to the comoving number
density nðM; zÞ through the standard relation

nðM; zÞ 	 ��M;0a
3
0

M
fðM; zÞ: (53)

We also assume that fðM; zÞ is normalized to one, say:Z
dM15fðM15; zÞ 	 1; (54)

where we have introduced the usual dimensionless mass
parameter M15 	 M=ð1015h�1M�Þ. That is, our definition
for fðM; zÞ is analogous to the usual Press-Schecter [59]
and the Sheth-Tormen [60] mass functions. However, our
fðM; zÞ is not expected to be quantitatively similar to the
PS- and ST-functions, since the latter are designed to
model the density of virialized systems, while we are
also interested in effectively describing other large-scale
structures (see the next Sec. III E).
The first step to extend our treatment is to generalize the

normalization of the halo profile ’:

4�
Z Rðt;MÞ

0
’ðb; t;MÞb2db ¼ fðM; tÞ

nðM; tÞ ; (55)

where instead of the redshift z we have used the time along
the geodesic, fðM; tÞ ¼ fðM; zðtÞÞ. The halo mass is now
given by Eq. (53) and the definition of �ðb;M; tÞ follows as
in Eq. (26):

�ðb; t;MÞ ¼
Z Rðt;MÞ

b

2xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ’ðx; t;MÞ: (56)

Finally we discretize the function fðM; zÞ in the same way
we discretized the impact parameter and the comoving
distance and the final result is:

�ðfkimng; zsÞ ¼
XNS

i¼1

XNR

m¼1

XNM

n¼1

�1imnðzsÞðkimn � �NimnÞ;

(57)

where �1imnðzsÞ 	 Gð~ri; rsÞ�ð~bm; ti; ~MnÞ and ~Mn is the
mean M in the n’th mass bin. The parameter of the
Poisson variable kimn 	 kimn½�Nimn
 now is
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�Nimn ¼ nðMn; tiÞ�Mn2�bm�bm�ri: (58)

The probability distribution for the shift in distance modu-
lus �m now becomes

Pwlð�m; zsÞ ¼
X
fkimng

Pfkimng�ð�m��mðfkimng; zsÞÞ: (59)

One can similarly extend the systematic effects to be
dependent on the mass, such that the survival probability
Pim ! Pimn, whereby �Neff

im ! �Neff
imn in Eq. (44), and

also �m ! �meffðfkimng; zsÞ in Eq. (49). Finally, Eq. (40)
formally retains its present form. Equations (57)–(59) can
be used to compute all the interesting quantities for an
arbitrary halo mass function fðM; zÞ. However, for sim-
plicity, we will from now on concentrate only on single-
mass functions in this paper. See the model of Ref. [23] for
an example with two types of halos.

E. Discussion

Our stochastic analysis of lensing presented above is
based on using an unclustered Poisson distribution of
halos. Let us now discuss the applicability of this assump-
tion and the possible ways to improve the clustering
algorithm.

Ref. [5] states that the lensing properties of a universe
made of point masses are independent of their masses and
clustering. The statement was confirmed numerically in
two steps. First, it was shown that random distributions of
point masses of M�, 1012M� and 1013M� share the same
lensing properties. Second, Ref. [5] compared a universe
made of point mass galaxies with a universe made of
uniform density galaxies composed of point mass stars.
The authors concluded with their Fig. 10 that, for an
intergalactic separation of 2 Mpc (which corresponds to a
mass of �1012M�) and a radius for the uniform density
galaxies of 200 kpc, the above two universes have the same
lensing properties.

These results, however, do not apply for extended halos,
and anyway do not prove that clustering can be neglected
for objects with masses larger than �1013M�. On the
contrary, we will show in Sec. V that the lensing PDF
changes significantly when one considers halos of the scale
of large superclusters of galaxies (compare Fig. 5 with
Fig. 9). Let us stress again, as we pointed out in
Sec. II B 2, that by halo we do not mean only gravitation-
ally bound systems, but (actually the surface mass projec-
tion of) any unvirialized sufficiently localized large-scale
structures. The idea is that an unclustered Poisson distri-
bution of large-scale structures can give a qualitative esti-
mate of the lensing effects produced by the actual
clustering of galaxies into filaments and walls. This idea
was carried out further in the companion work of Ref. [23]
where structures of average separation of dc ¼
100h�1 Mpc (which corresponds to a mass of 6 �

1017h�1M�) and radius of Rp ¼ 10h�1 Mpc were

considered.
Of course randomly placed spherical structures is but a

crude approximation for the actual three-dimensional web-
like structure of clusters and filaments. However, all that
matters for weak lensing are the projected 2D-surface mass
densities over a series of spatial slices from the observer to
the source. For these projections the difference between a
realistic 3D-structure and the crude meatball model is less
distinctive. Nevertheless, it would be desirable to improve
the clustering algorithm, and we can imagine several ways
to do it within our approach. First, our most general result
in the form of Eq. (57) allows us to deal with a generic halo
mass-distribution function fðM; zÞ. In the most conserva-
tive approach one would identify f with some known
clustering function, such as the Press-Sechter distribution.
However, to incorporate also the noncoherent structures
one could use instead an effective form, say fðM; zÞ �
N
fPSð
M; zÞ, where N
 is a normalization factor. For 
 <
1 such form would in a simple way model the merging of
smaller halos into larger systems of (unvirialized) clusters.
Another, and probably a more accurate method to describe
very large-scale clustering would be to use a master proba-
bility distribution function to modulate the average matter
background density on the scale Oð100Þ Mpc, along the
lines of sight, together with a normal local clustering
function fðM; z; ��ðzÞÞ, where �� is the modulation
around the GBS density. This method also allows an easy
way to implement a local void around the observer. Yet
another way to improve the clustering algorithm would be
to introduce nonspherical structures, such as cylinders to
better describe filaments and walls. However, we suspect
that while such extension would apparently help gaining a
more realistic 3D-distribution, it would not be crucial for
the modelling of the surface density projections.

IV. ANALYTIC RESULTS FOR Pwlð�m; zsÞ
In this chapter we will derive an analytic approximation

for the magnification PDF defined in the previous section,
in particular, we will focus on mode and variance. A reader
not interested in details can skip to the final results pre-
sented in Eqs. (83), (87), and (94); the validity of these
expressions will be tested numerically in the Sec. V. The
procedure will consist of two steps of resummation over
the variables bm and ri. Let us first introduce the central
idea for these summations using a generic example de-
pending on one set of variables.

A. Linear combination of Poisson random variables

Consider a collection of independent Poisson random
variables ki with parameters �i, ki½�i
. As we have seen in
the derivation of Eq. (52), the sum k ¼ P

iki is then a
Poisson random variable with parameter � ¼ P

i�i.
However, we wish to study the distribution of the quantity
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S ¼ X
i

Ziki½�i
; (60)

where the weights Zi are positive real numbers. When the
weights Zi are different, no simple exact expression exists
for the probability distribution of S. We shall adapt the
following approximative procedure:

S ¼ X
i

Ziki½�i
 ¼ �Z
X
i

ziki½�i
 � �Z
X
i

ki½zi�i


¼ �Zk

�X
i

zi�i

�
¼ �Zk½ ��
 	 ~S; (61)

where we have defined �Z ¼ maxfZig and zi ¼ Zi= �Z. The

new variable ~S is Poisson distributed with the parameter
�� 	 P

izi�i. The idea of the approximation made in the
third step of Eq. (61) is to use the normalized weight
distribution zi to define a new set of random variables
zi�i that favor the terms that give the largest contribution

to the original sum S. In this way, the PDF for ~S should
provide a reasonable approximation for the mode and the
skewness of the actual distribution. It easy to show that this
procedure preserves the mean and works exactly for the
trivial case of constant Zi. However, the approximation
distorts the variance of the distribution:

�2ðSÞ ¼ �Z2
X

z2i �i (62)

�2ð~SÞ ¼ �Z2
X

zi�i: (63)

Thus the dispersion � for ~S should be corrected with:

! ¼
�P

i z
2
i �iP

i zi�i

�
1=2

: (64)

B. Summation in bm

Let us now apply the results of the previous Section to
reduce Eq. (37). Here we have two independent indices to
be accounted for, and we shall resum them sequentially
starting from the summation in bm. Writing only the rele-
vant pieces we have

XNR

m¼1

�ðbm; tiÞkim½�Nim
 � ��iki½�Ni
; (65)

where ��i 	 maxf�ðbm; tiÞg and ki is the new effective
Poisson distributed random variable with an effective pa-
rameter �Ni:

�Ni ¼ �ri
��i

XNR

m¼1

2�bm�bmnc�ðbm; tiÞ ¼ �ri
��i

; (66)

where we again used Eq. (36). Inserting the approximation
(65) in Eq. (37) we then find

� ¼ XNS

i¼1

Gðri; rsÞð ��iki½�Ni
 ��riÞ: (67)

Before resumming the r-variable we pause to give esti-

mates for the quantity ��. These obviously depend on the
choice of the halo density profile. First consider the uni-
form density halo with ’uni ¼ 3=ð4�R3ncÞ. This implies

�uniðb; RÞ ¼
Z R

b

2xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ’uni ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p

2�R3nc
(68)

so that

�� uni ¼ �unið0; RÞ ¼ 3

2nc�R
2
: (69)

Second, for a correctly normalized Gaussian

’gauðrÞ ¼ 27

ncR
3ð2�Þ3=2 exp

�
� 9r2

2R2

�
(70)

one finds

�� gau ¼ 9

2nc�R
2
: (71)

These results suggest we parametrize our ��i as:

���1
i 	 nc�R

2
i Q

2
’; (72)

where Ri ¼ RðtiÞ. That is, ��i corresponds to an effective
mean free path of a photon at r � ri. The effective distri-
bution parameter �Ni now becomes:

�Ni ¼ nc�R
2
i Q

2
’�ri: (73)

For example for the Gaussian profile above it is Q’ ¼ffiffiffi
2

p
=3 ’ 0:47. Eqs. (72) and (73) specify the distribution

(67) completely in terms of a single effective parameter
Q’, which depends on the particular density profile ’

chosen. This method of estimating analytically Q’ fails

for profiles that are singular at the origin, such as the
singular isothermal sphere (SIS). In these cases Q’ can

be fitted from the numerical distribution. In any case, the
essential point is thatQ’ can be taken as a constant, and the

general rule is that the more peaked the profile is, the
smaller effective Q’ one finds. Table I at the end of this

Section shows the numerical values used in Sec. V.

TABLE I. Effective parameters Q’ and R’.

Halo profile ’ Q’ R’

Uniform 0.90 0.9

Gaussian 0.53 1.3

SIS 0.25 2.4
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C. Summation in ri

We now repeat the resummation approximation for
Eq. (67). Again writing only the relevant term, we get

�H ¼ XNS

i¼1

HiðrsÞki½�Ni
 � �HðrsÞk½NC
; (74)

where HiðrsÞ 	 Gðri; rsÞ ��i and again �HðrsÞ 	 maxfHig.
Finally

NC 	 XNS

i¼1

hi�Ni; (75)

with hi 	 Hi= �H. Inserting the expression Eq. (66) for �Ni

into Eq. (75) we get

NC ¼
�GðrsÞ
�HðrsÞ

XNS

i¼1

giðrsÞ�ri �
�GðrsÞ
�HðrsÞ

rsE; (76)

where we again defined �GðrsÞ 	 maxfGðri; rsÞg and
giðrsÞ 	 Gðri; rsÞ= �GðrsÞ. The function g depends very
weakly on rs and one finds that numerically

E �
Z 1

0
dxgðxÞ ’ 2

3
: (77)

Finally one can show that to a very good accuracy

�GðrsÞ
�HðrsÞ

’ nc� �R2Q2
’; (78)

where �R 	 Rðtðrs=2ÞÞ. Inserting these results back to
Eq. (75) we finally get the estimation:

NC � nc � rsE � � �R2Q2
’: (79)

Physically NC corresponds to the expected number of
collisions with halos in a tube of effective radius �RQ’

and effective length rsE connecting observer to source.
Our final result is an effective convergence function which
is Poisson distributed with parameter NC:

�ðk; zsÞ ¼ �E

�
1� k½NC


NC

�
: (80)

Note that the average convergence for this distribution
vanishes as it must.

D. Final analytic result

Both our exact result of Eq. (37) and our approximate
result of Eq. (80) are representative of the actual PDF for
magnification and convergence. Often one is rather inter-
ested in the probabilistic interpretation of a set of NO

identical, or sufficiently similar observations. For example,
one typically introduces some binning of the data points,
and one would like to know what is the most likely value
and the dispersion for such an effective observable.
Repeating the derivation of the result of Eq. (52), we can
extend Eq. (80) to a sample ofNO observation by replacing

NC with the total effective number of collisions:

NTðzÞ 	 NOðzÞNCðzÞ; (81)

so that the convergence for a configuration k is

�ðk; zsÞ ¼ �E

�
1� k½NT


NT

�
: (82)

Finally, the approximate probability distribution function
in magnitudes is:

Pwlð�m; zsÞ ¼ e�NT
Nk

T

k!
; (83)

where k solves �m ¼ 5log10ð1� �ðk; zsÞÞ. The dispersion
of Eq. (83) has to be corrected by the factor! to be derived
below in Section IVF.
The distribution of Eq. (83), similarly to the exact result

of Eq. (39), is discrete. For the latter the chosen bin width
�bin of Eq. (40) is irrelevant because the PDF is a very
dense in its domain. This is not, however, the case for
Eq. (83) and so we have to give an explicit prescription
for the binning. In order to estimate the order of magnitude
of �bin, we evaluate the convergence caused by one halo
placed at half way between observer and source and hit
with impact parameter �RQf:

�� 1 �Gðrs=2; rsÞ�ð �RQf; tðrs=2ÞÞ: (84)

The bin width will then be �bin � 5log10ð1� ��1Þ.

E. Mode

The mode for the effective convergence is obviously

�BðzÞ ¼ �EðzÞ
�
1� bNTðzÞc

NTðzÞ
�
: (85)

We denoted the mode by �BðzÞ to emphasize its meaning as
the bias away from the homogenous limit � ¼ 0. The final
step in our derivation is to remove the discreteness of the
probability distribution by introducing the continuum ap-
proximation �ðxÞ for the floor function:

bxc
x

! �ðxÞ ¼
�
0 0 � x � 1=2
1� 1

2x x � 1=2
; (86)

which is obtained averaging upper and lower boundaries of
bxc=x. The final expression for the bias is then given by:

�BðzÞ ¼ �EðzÞð1� �ðNTðzÞÞÞ: (87)

We shall see in Section V below that this simple analytic
approximation can reproduce the mode of the numerically
simulated magnification PDF (40) for different redshifts,
for different halo profiles and for different values of NO.
Finally, if we include the probabilistic selection effects
through the parameter � (see Sec. III A), we get simply

�BðzÞ ¼ �EðzÞð1� ��ðNTðzÞÞÞ: (88)
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When NO is very large, �ðNOÞ ! 1 and �B ! ð1� �Þ�E

as expected from Eq. (48).

F. Dispersion

In order to estimate the dispersion of the magnification
PDF we first need to evaluate the streching factor Eq. (64)
for our setup. We define

! ’ ffiffiffiffiffiffiffiffiffiffiffiffi
!r!b

p
; (89)

where the factor !r comes from the ri-summation and the
factor !b from the bm-summation. !r is roughly given by

!r �
R
1
0 dxgðxÞhðxÞR

1
0 dxgðxÞ

’ 0:77: (90)

Like the factor E above,!r is an almost universal constant,
essentially set by the form of the function Gðr; rsÞ. !b

depends on the profile ’ and is more difficult to estimate.
We find that it is reasonably well approximated by the
ratio:

!b �
�ðRQ’; tðrs=2ÞÞ

��ðtðrs=2Þ
: (91)

For example for the Gaussian profile one finds!b � e�1 so
that ! ’ 0:53. Similarly to the evaluation of Q’, our

derivation does not apply for singular profiles and the value
of ! has to be obtained from the numerical distribution.
The essential point is again that ! can be taken a constant.

Now consider the limit NT � 1, so that the Poisson
distribution (83) can be approximated with a normal dis-
tribution. Taking into account the stretching factor ! we
have (up to normalization):

PwlðkÞ / exp

�
�ðk� NTÞ2

2�2
!

�
; (92)

where �! ¼ ffiffiffiffiffiffiffi
NT

p
!. The corresponding dispersion in

magnitudes is found by evaluating Eq. (82) at k ¼ NT 

�!:

��m;NO
¼ 2:5log10

ffiffiffiffiffiffiffiffiffiffiffiffi
NTðzÞ

p � �EðzÞ!ffiffiffiffiffiffiffiffiffiffiffiffi
NTðzÞ

p þ �EðzÞ!
’ � 5

ln10

�EðzÞ!ffiffiffiffiffiffiffiffiffiffiffiffi
NTðzÞ

p 	 ��m;1effffiffiffiffiffiffiffiffiffiffiffiffiffi
NOðzÞ

p : (93)

We see that the dispersion scales as expected withNO. This
derivation makes sense for ��m;NO

even when NCðzÞ � 1

given enough observations such that NT � 1 holds. This is
actually the way Ref. [11] defined the effective dispersion
for a singular observation, so that

��m;1eff ¼ � 5

ln10

�EðzÞ!ffiffiffiffiffiffiffiffiffiffiffiffi
NCðzÞ

p : (94)

From Eq. (79) it is clear that ��m;1eff depends on the ratio

R’ 	 !=Q’ and not on Q’ and ! individually.

Summarizing, Q’ is about the bias and R’ about the

dispersion, two independent degrees of freedom. In
Table I we list the values we will use in the next Section.
We wish to stress that Eq. (94) and (87) depend analyti-

cally upon the parameters of the model universe and pro-
vide an easy way to estimate magnification bias and
dispersion.
Finally, note that the PDF of a single supernova is not a

Gaussian of standard deviation ��m;1eff and therefore we

will introduce in the next Section the full width at half
maximum (FWHM) as an indicator of the dispersion for
skewed distributions. The applicability of Eq. (94) is in-
deed restricted only to data sets for which the condition
NTðzÞ ¼ NOðzÞNCðzÞ � 1 holds. In the upper panel of
Fig. 4 we show the binned data for NO from the currently
largest SNe-sample, the Union Compilation of Ref. [2].
The data set is still quite sparse for z * 1, which suggests
using the approximation (94) might not be applicable there
to model large structures with NCðzÞ & 1. The lower panel
in Fig. 4 shows the simulated data for the future JDEM
survey. As we shall see in Sec. V, almost no bias remains in
the effective PDF for the JDEM-dataset, even within a
universe with very large structures.

V. RESULTS

Here we will present numerical and analytical results for
the magnification PDF. We will first consider a model
similar to the one studied by Ref. [11] in order to compare
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FIG. 4. On the top, binned number of observed SNe for �z ¼
0:1 for the Union Compilation of Ref. [2] of 307 SNe. On the
bottom, binned number of observed SNe for �z ¼ 0:1 for a
JDEM-like survey of 2000 SNe, see Ref. [1].
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our method with their ray-tracing simulations. In the next
subsection we will consider the possible effects of large-
scale clustering on the magnification PDF.

Our numerical results are computed with turboGL, a
very fast Mathematica code based on the formalism devel-
oped in Sec. III, and publicly available: on an ordinary
desktop/laptop computer it takes less than a second to
compute a PDF with the usual statistics of 104 configura-
tions. This has to be compared to expensive ray-tracing
techniques. Thanks to this performance we can use much
better statistics in our analysis and simulations: 105 con-
figurations already give rise to very smooth histograms and
curves. We would like to stress that since turboGL is so
fast, the analytic results of the previous section are not used
as a tool for the analysis, but rather to provide analytic
insights into the problem.

A. Comparison with Holz & Linder (2005)

Holz and Linder [11] computed lensing effects in a
�CDM universe where all matter was assumed to exist
in the form of a random distribution of spherical halos the
size of large galaxies. Ref. [11] used the ray-tracing simu-
lation developed in Ref. [5] from which we also obtained
the value of the parameters Rp and dc and the density

profile used.2 Rp is the proper radius which is assumed to

be constant, while the value of dc fixes, through Eq. (13),
the halo mass. The value of the parameters used in this Sec.
are summarized in Table II.

In Fig. 5 we plot the magnification PDF for a source
(NO ¼ 1) at redshift z ¼ 1:5 in the case of SIS and
Gaussian halo profiles. Both PDFs are visibly skewed,
but the bias is still relatively weak, thanks to the high
degree of homogeneity given by the parameters of
Table II. The SIS-PDF has both a larger bias and a more
pronounced tail at high-magnifications than does the
Gaussian PDF. This was expected because the strong
cusp of the SIS leads to more high-magnification events
compensated by a drop at small magnifications. Also
shown in Fig. 5 is the SIS-PDF relative to a set of NO ¼
50 SNe measurements: as expected skewness and disper-
sion are reduced showing that, as discussed in Sec. III C,

the distribution approaches a Gaussian for large NO, even-
tually reducing to a �-function at zero convergence. These
results are in good agreement with Fig. 1 of Ref. [11],
which shows that our statistical weak-lensing approxima-
tion can well reproduce the results of ray-tracing calcula-
tions. In Fig. 5 we also show (filled circles) the analytic
effective probability distribution developed in Sec. IV. As
was discussed in subsection IV F, the effective PDF distri-
bution is a useful quantity only for NT � 1, and so we
plotted the full effective PDF only for the SIS case with
NO ¼ 50, where NT ’ 37. The agreement with the exact
results is remarkably good. For the NO ¼ 1 cases the point
density is not sufficient to model the full PDF, but the
modes of the distributions are still well produced by the
analytic approximation (single filled circles on NO ¼ 1
curves).
Besides the standard deviation and similarly to Ref. [11],

we will use the full width at half maximum (FWHM) as an
alternative indicator for the dispersion of a skewed distri-
bution. In particular we define three different indicators:

v� ¼ FWHM�
1:18

vþ ¼ FWHMþ
1:18

v ¼ v� þ vþ
2

¼ FWHM

2:35
;

(95)

where FWHM�=þ are defined as the distances from the

left/right edges to the mode of the total FWHM and so
FWHM� þ FWHMþ ¼ FWHM (see Fig. 10 for an
illustration). We found these indicators particularly useful
because for a gaussian distribution one has v� ¼ vþ ¼
v ¼ � where � is the standard deviation and so departures
from this limit signal the presence of skewness in the

TABLE II. Setup to be compared to the results of Ref. [11].

Quantity Value

�M;0 0.28

h 0.7

dc 2 Mpc

Rp 200 kpc

MH 1:8� 1012M�
Halo profile SIS
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FIG. 5 (color online). Shown are the magnification PDFs for a
source at z ¼ 1:5 for the �CDM model of Table II with SIS and
Gaussian halo profiles. The SIS case has been evaluated for both
NO ¼ 1 and NO ¼ 50 SNe measurements. Each histogram has a
statistics of 105 realizations. Also shown (filled circles) are the
approximate PDFs given by the distribution of Eq. (92). For the
PDFs relative to NO ¼ 1 only the mode of the distribution is
shown.

2The values of the parameters used by Ref. [11] were not
stated.
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distribution. Mode together with v�=þ will describe the

skewed peak of a PDF, while v and � its dispersion. The
idea is that for skewed distributions and small datasets v is
more meaningful than �, which is affected by the long
high-magnification tail which is of little importance if we
deal with small data sets. This is actually the reason why
we focused on the FWHM to characterize the skewness:
the third standardized moment (the skewness �1), for
example, would have been again sensitive to the long and
low high-magnification tail.

In Fig. 6 we show the bias and the dispersion for the SIS
profile for NO ¼ 1. This figure can be compared with
Figs. 5 and 7 of Ref. [11]. While the bias introduced by
the skewness of the distribution is moderate as shown from
the top panel of Fig. 6, there is a clear deviation from
Gaussianity, as one finds that �� 2v. Moreover ��m;1eff

very well reproduces the numerical results for � and con-
sequently overestimates the dispersion v.

Figure 7 is similar to Fig. 6 but now constructed for
NO ¼ 50. The bias introduced by the skewness of the
distribution is now greatly reduced. Moreover the disper-
sions v and � are converging (�� 1:3v) showing that
averaging over a large sample of measurements can reduce
the effects of the skewness of the distribution.

In order to investigate the convergence of the lensing
PDF to a Gaussian, we studied in Fig. 8 the dependence of
bias and dispersion upon the data set sizeNO. The bias (top
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FIG. 6 (color online). Shown are the bias (top) and the disper-
sion (bottom) of the magnification PDF in the �CDM model of
Table II as a function of the redshift of the source for NO ¼ 1.
Filled circles mark the values obtained from the numerical
simulation (omitted for clarity in the v� and vþ curves).
��m;1eff is calculated from Eq. (94).
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FIG. 7 (color online). Same as Fig. 6, but for NO ¼ 50. The
dispersions v and � are now closer than in Fig. 6 showing that,
by increasing the number of observations, the lensing PDF
approaches a Gaussian.
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FIG. 8 (color online). Shown are the bias (top) and the disper-
sion (bottom) of the magnification PDF in the �CDM model of
Table II as a function of the size NO of the data set for a source at
redshift z ¼ 1:5. Filled circles mark the values obtained from the
numerical simulation. ��m;1eff is calculated from Eq. (94) and �B

from Eq. (87).
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panel of Fig. 8) is plotted together with the analytic result
of Eq. (87): �B scales like 1=NO and so we conclude that
the actual bias converges slower than that, in agreement
with Fig. 2 of Ref. [11]. The bottom panel of Fig. 8 instead
shows that � is well described by ��m;1eff , which means

that � scales, as expected, like 1=
ffiffiffiffiffiffiffi
NO

p
. This plot agrees

again with Fig. 4 of Ref. [11] and shows that � converges
to v only for very large NO. We stress at this point that this
strong non-Guassian signature is not a general feature but
is due to the strong cusp of the SIS profile and is largely
reduced with other density profiles like the NFW or the
Gaussian.

As a technical note, we point out that to obtain the non-
Gaussian signature of Fig. 8, we had to increase the binning
in the impact parameter in order to accurately resolve the
cusp. This of course increases computational time and so it
is worth asking what is the impact of a less accurate
binning. Our conclusions are that losing that non-
Gaussian signature is not an important problem because
the skewness of the distribution is under estimated only
when the latter is already very close to a Gaussian and thus
at worst leads to a slight conservative underestimation of
the bias for large data sets and SIS profiles.

The results of this Section show that our statistical
model, based on cumulative weak lensing, very well de-
scribes the most important effects of lensing by the inho-
mogeneous matter distributions. However, the model
discussed in this section, defined by the parameters in
Table II, neglects all effects of large-scale clustering on
the weak-lensing. Such clustering is nevertheless clearly
present in the form of large voids, superclusters and fila-
mentary structures seen both in the large-scale simulations
and in the actual redshift survey data sets. We will next try
to get an idea of the potential impact of these effects by
considering a universe made out of much larger halos.

B. Large-scale structures

In this section we study the lensing effects caused by
very large-scale structures. For simplicity we still consid-
ered universe models made of a statistical distribution of a
single type of halos. We performed several simulations
with different halo masses and found that the bias effects
start to become significant when the halo masses are at
least of the order of the largest gravitationally bound super-

clusters: M * 1014h�1M�. However, even larger nonviri-
alized structures can exist and to illustrate their effects we
chose models with even larger masses. The details of the
models are given in Table III. We will consider both the
�CDM model with�M;0 ¼ 0:28 and h ¼ 0:7 and the EdS
model with �M;0 ¼ 1 and h ¼ 0:5. The latter has been

given a lower Hubble constant in order to better agree with
the CMB observations. For simplicity, we are again taking
our objects to have a constant proper radius Rp, although

for large, possibly unvirialized structures this is not neces-
sarily true. We shall come back to this issue in a forth-
coming publication [61]. The size of the halos in Table III
roughly corresponds to the scale of large superclusters and
has been chosen in order to have an average density con-
trast of 200 at virialization which we assume to happen at
z ¼ 1:6. For cluster scale halos the most appropriate profile
to be used would be the NFW profile [57]. In this study,
however, we have used for simplicity the Gaussian profile
which does not need any extra parameter. Again we will
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FIG. 10 (color online). Same as in Fig. 9, but now for the EdS
model described in Table III. Also displayed is the definition of
FWHM� and FWHMþ used in Eqs. (95).

TABLE III. Parameters modelling large-scale structures.

Quantity �CDM EdS

�M;0 0.28 1

h 0.7 0.5

dc 15h�1 Mpc 15h�1 Mpc
Rp 1:1h�1 Mpc 1:1h�1 Mpc
MH 1:5 � 1015h�1M� 5:5 � 1015h�1M�
Halo profile gaussian gaussian
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FIG. 9 (color online). Shown are the magnification PDFs for
the �CDM model described in Table III for a source at z ¼ 1:5
in the case of NO ¼ 1 and NO ¼ 20 observations.
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investigate various profiles in a forthcoming publication
[61].

We plot the magnification PDF for the models of
Table III in Figs. 9 and 10 for the �CDM and for the
EdS models, respectively. As expected, the distributions
are now significantly more skewed than they were in the
case of the smaller halos of the previous section: in both
cases the fundamental PDF (NO ¼ 1) has the mode at the
demagnification corresponding to the empty beam, the
maximum demagnification possible. Moreover Figs. 9
and 10 clearly illustrate the importance of introducing
the dispersion indicators of Eqs. (95). Even if the� relative
to the PDF of NO ¼ 1 is larger than the � relative to the
PDF of NO ¼ 20 because of the long high-magnification
tail, the dispersion v behaves in the opposite way showing
that with little data sets the actual dispersion is much
smaller than the one computed assuming almost-
Gaussian distributions.

In Fig. 11 we show the magnification bias �m. Left
panels correspond to the �CDM and right panels to the
EdS model as the GBS. As we have explained, the bias of
the effective PDF depends quantitatively on the number of
observations at each redshift. The upper panels show the
bias computed from NO corresponding to the UC-data
displayed in the upper panel of Fig. 4. The line has been
made continuous by using a continuous interpolation for
NOðzÞ between the actual data points. The lower panels

show the results for NO corresponding to the simulated
data of the JDEM experiment. Also plotted are the dis-
persions v� and vþ introduced in Eqs. (95): they give a
quantitative estimation of the dispersion relative to the
plotted bias. We stress that v� and vþ refer to the PDF
relative to NO measurements and therefore they are good
indicators of the actual dispersion relative to the data set
used.
First note that the EdS model has larger lensing

effects (observe that in Fig. 11 the scales in the left
and the right panels are not the same). This is clearly
seen from the convergence for the empty beam given in
Eq. (21): �E / h2�M;0 and even if the EdS universe has

a lower h, the larger value of �M;0 is dominant:

h2�M;0jEdS=h2�M;0j�CDM � 1:7. See Ref. [23] for an ap-

plication of the latter amplification of lensing effects in the
EdS model.
Moreover, the Union Compilation of Ref. [2] does not

have enough SNe measurements at high redshifts (z > 1)
to suppress the lensing bias, while a JDEM-like survey of
2000 SNe will be able to recover the GBS result within the
intrinsic SNe dispersion of �M � 0:1 mag, that is, �m �
�M. If the model universe of Table III captures the actual
degree of inhomogeneity of the universe, then these results
suggest that lensing bias has to be incorporated within the
data analysis of SNe observations for the present-day data
sets. Let us remind that the crucial feature that our model
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FIG. 11 (color online). Lensing bias as a function of redshift for the parameters of Table III. The left panels are for the �CDM
model, while the right panels are for the EdS model. Moreover the top panels use the redshift distribution for SNe measurements given
by the Union Compilation, while the bottom panels use the redshift distribution for a JDEM-like survey of 2000 SNe, see Fig. 4. Filled
circles mark the values obtained from the numerical simulation and the dotted curves give the dispersions v� and vþ, as indicated in
the figure.
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universe captures, and which gives rise to the large biases,
is that photons can travel through voids and miss the
localized overdensities. This feature is absent from swiss-
cheese models where the boundaries of the holes are de-
signed to have compensating overdensities. In these mod-
els a photon that passes through a void always has to pass
also through a compensating high-density shell, which
results in a constrained PDF. It is not surprising then that
such models have been shown to have on average little
lensing effects [14,15].

VI. CONCLUSIONS

In this paper we have presented a new method to calcu-
late the magnification probability distribution function
(PDF) for a universe made of randomly distributed halos.
The method is based on the weak-lensing approximation
and on generating stochastic configurations of halos along
the line of sight, or along the photon geodesic from source
to the observer. The basic physical feature incorporated by
the method is the fact that underdensities occupy most of
the volume while most of the mass lies in overdense
regions in the form of clusters and filaments. As a conse-
quence the column density along a single geodesic is likely
to be lower than the average density of the global back-
ground solution. This is of potential importance for the
interpretation of the supernova observations, which are still
probing much smaller angular scales than the scale at
which the homogeneity of the GBS is recovered.

We derived a simple statistical formula by use of which
one can easily compute the fundamental PDF for a single
event and the effective PDF for quantities averaged over a
number of observations NO. Our formulas were explicitly
written for arbitrary mass distributions of spherical halos
with arbitrary density profiles and they can be straightfor-
wardly extended to include also different halo geometries
(say thin cylinders to model filaments). We also showed
how one can easily incorporate most selection effects into
the formulas for the observable fundamental PDF. Along
with this paper, we released the turboGL package [62], a
simple and very fast Mathematica code to perform numeri-
cal simulations based on our model. The code will be
continuously updated to incorporate more features (halo
mass distributions, geometries, systematic biases, etc.) in
the future.

While our method can easily compute the PDF relative
to arbitrary halo mass distributions, selection biases and
halo profiles and evolutions, we focused for simplicity on
the simplest configuration of one family of halos with no
evolution and no selection biases in the numerical ex-
amples shown in the present paper. More general results
will be presented in a forthcoming paper [61]. We checked
the validity of our weak-lensing approximation against
exact results of light propagation in an inhomogeneous
universe and the validity of our stochastic approach against
the ray-tracing simulations of Ref. [11] (in a model uni-

verse with halos of mass M� 1012h�1M�). In both cases
we were able to recover the main results within a few
percent accuracy.
In addition, we considered the biasing effect on the PDF

due to very large structures, M� 1015h�1M�, whose ex-
istence is suggested by the large voids and filamentary
structures seen both in the large-scale simulations and in
the galaxy redshift surveys [53–55]. We produced simu-
lated PDFs for such universes both in the�CDM and in the
Einstein-de Sitter (EdS) background model. We also pro-
duced the distributions for binned sets of observations and
computed the biases and dispersions for these effective
PDF. Our results suggest that the lensing bias could affect
the extraction of cosmological parameters from the current
best data sets. However, we found that a JDEM-like survey
should be able to remove the lensing effects of even the
largest imaginable structures assuming, of course, that no
selection biases were present in the measured SNe.
Indeed, in addition to computing the statistical bias, and

perhaps beyond that, the most potential use of our method
may be in computing the effect of different sets of selection
biases on the observational magnification PDF. For ex-
ample, the effects of rejecting outliers, or existence of
zones of avoidance in the sky, possibly correlated with
the densest structures, are easily incorporated. This issue
will be matter of further investigation [61]. The method can
be extended to include also strong lensing effects and
eventually it will be interesting to incorporate also the
redshift effects to our simulation package.

APPENDIX A: PARTIALLY FILLED BEAMS
IN EDS UNIVERSE

Here we shall compare the analytic expressions for exact
and cumulative weak-lensing convergence functions for
empty and partially filled beams in the EdS model. Given
the redhsift dependence of the comoving distance

rðzÞ ¼ 2c

a0H0

ð1� ð1þ zÞ�1=2Þ (A1)

we can compute the empty bin demagnification of a source
at redshift z (rs ¼ rðzÞ)

�EðzÞ ¼ � 3

2

a20H
2
0

c2

Z rs

0
dr

rðrs � rÞ
rs

a0
aðtðrÞÞ

¼ 12� 3
1þ ð1þ zÞ�1=2

1� ð1þ zÞ�1=2
lnð1þ zÞ: (A2)

Note that �EðzÞ does not depend on H0. That is, it only
depends on the redshift difference and not on the time of
the observation. For a partially filled beam, with the filling
factor

� ¼ �beam

��
; (A3)

the weak-lensing result becomes simply
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�wl
E;�ðzÞ ¼ ð1� �Þ�EðzÞ; (A4)

as shown in Sec. III A. Let us now compare this result to the
exact formulas from Refs. [3,52,63]. Zel’Dovich [52] was
perhaps the first to recognize the importance of inhomo-
geneities on FLRW distances. He found the following
exact result for the luminosity distance along an empty
beam (a line of sight emptied of any matter) in the EdS
universe:

DL;0ðzÞ ¼ 2c

5H0

ð1þ zÞ2ð1� ð1þ zÞ�5=2Þ: (A5)

This result can be extended to the case of a partially filled
beam [63]:

DL;�ðzÞ ¼ 2c

kH0

ð1þ zÞðkþ3Þ=4ð1� ð1þ zÞ�k=2Þ; (A6)

where:

k ¼ ð25� 24�Þ1=2; (A7)

with � given in Eq. (A3). Note that for � ¼ 0 Eq. (A6)
reduces to Eq. (A5) and for � ¼ 1 it reduces to the EdS
luminosity distance:DL;1ðzÞ ¼ ð1þ zÞa0rðzÞ, where rðzÞ is
given by Eq. (A1). Using Eq. (A1) and (A6) we can then
compute the (de)magnification � ¼ ðDL;�=DL;1Þ2 and the

convergence:

�ex
E;�ðzÞ ¼ 1���1=2

�

¼ 1� ð1þ zÞðk�1Þ=4

k

1� ð1þ zÞ�k=2

1� ð1þ zÞ�1=2
: (A8)

Results (A4) and (A8) look very different, but they agree
numerically to within a few per cent up to z � 2, as can be
seen from the Fig. 2. For small z the agreement of (A4) and
(A8) can be seen explicitly from their power series expan-
sions:

�wl
E;�ðzÞ ¼

1� �

4

�
�z2 þ z3 � 73

80
z4
�
þOðz5Þ (A9)

and

�ex
� ðzÞ � �wl

E;�ðzÞ ¼ � 3ð1� �Þ2
160

z4 þOðz5Þ: (A10)

The first two terms of the expansions vanish in accordance
with the fact that lensing is negligible at small redshifts.
Moreover, the functions �ex

� and �wl
E;� agree exactly up to

third order and up to the fifth order the correction is�ð1�
�Þ2. That is, while for � ! 1 the convergence goes to zero
as 1� �, the difference between the exact result and the
weak-lensing approximation goes to zero even faster ð1�
�Þ2.

APPENDIX B: IDENTITY OF EQ. (36)

We want to express the following integral I as a volume
integral of ’:

I ¼ 2�
Z R

0
dbb�ðb; tÞ 	 2�

Z R

0
dbb

Z R

b

2ldlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p ’ðl; tÞ:

First we rewrite the latter as

I ¼ 2�
Z R

0
db

Z R

b

d

db
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p
Þ2ldl’ðl; tÞ: (B1)

Then we introduce the auxiliary function

ZðbÞ ¼ �
Z R

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p
2ldl’ðl; tÞ;

and calculate its derivative:

Z0ðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p
2ldl’ðl; tÞjl¼b �

Z R

b

d

db

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p
2ldl’ðl; tÞ

¼ 0þ
Z R

b

d

db
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � b2

p
Þ2ldl’ðl; tÞ:

Finally we substitute the latter expression in Eq. (B1):

I ¼ 2�
Z R

0
dbZ0ðbÞ ¼ 2�ðZðRÞ � Zð0ÞÞ

¼ 4�
Z RðtÞ

0
dbb2’ðb; tÞ:
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