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We compare two strategies of multidetector detection of compact binary inspiral signals, namely, the

coincidence and the coherent for the realistic case of geographically separated detectors. The naive

coincident strategy treats the detectors as if they are isolated—compares individual detector statistics with

their respective thresholds while the coherent strategy combines the detector network data coherently to

obtain a single detection statistic which is then compared with a single threshold. We also consider an

enhanced coincidence strategy which is intermediate in the sense that though the individual statistics are

added in quadrature and the sum compared with a single threshold, the estimated parameters are also

checked for consistency. For simplicity, we consider detector pairs having the same power spectral density

of noise, as that of initial LIGO and also assume the noise to be stationary and Gaussian. Further, since we

consider the detectors to be widely separated on Earth, we take the instrumental noises to be uncorrelated;

the wide separation implicitly means that since the detector arms must lie parallel to the Earth’s surface,

the detectors necessarily have different orientations. We compare the performances of the methods by

plotting the receiver operating characteristics for the strategies. Several results are derived analytically in

order to gain insight. Simulations are performed in order to plot the receiver operating characteristic

(ROC) curves. A single astrophysical source as well as a distribution of sources is considered. We assume

a 1 yr data train and a mass range of 1–40M� for the case of astrophysically distributed sources. We find

that the coherent strategy is superior to the two coincident strategies that we consider. Remarkably, the

detection probability of the coherent strategy is 50% better than the naive coincident strategy. One the

other hand, the difference in performance between the coherent strategy and enhanced coincident strategy

is not very large. Even in this situation, it is not difficult to perform the real data analysis with the coherent

strategy. The bottom line is that the coherent strategy is a good detection strategy.
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I. INTRODUCTION

Inspiraling binaries are one of the most promising can-
didates for first detection of gravitational waves (GW). The
compact objects can be treated essentially as point particles
leading to a sufficiently adequate description of the system
in terms of the post-Newtonian formalism [1]. The great
accuracy of the post-Newtonian approximation of the
phase, about a cycle for a wave train �104 cycles long,
renders it amenable for matched filtering analysis [2].
Inspiraling binaries are astrophysically important because
they will not only carry detailed information about the
binary system, but also general relativistic deviations
from Newtonian gravity in their orbit can experimentally
be measured [3,4]. The best available estimates suggest
that at 1% false alarm probability the expected number of
neutron star binary coalescence seen per year by ground-
based interferometers is 3� 10�4 � 0:3 for initial detec-
tors and 1–800 for advanced detectors [5]. In recent years,
a number of ground-based detectors are taking quality
science data and are collaborating together, thus the time
is ripe to consider analysis of network data for the detec-
tion of inspiraling binaries. The advantages of a multi-

detector search for the binary inspiral is that, not only
does it improve the confidence of detection, but it also
provides information about the direction and polarization
state of the source.
Two strategies currently exist in searching for inspiral-

ing binary sources with a network of detectors: the coher-
ent and the coincident. The coherent strategy involves
combining data from the different detectors’ phase coher-
ently, appropriately correcting for time delays and polar-
ization phases and obtaining a single statistic for the full
network that is optimized in the maximum likelihood
sense. On the other hand, the coincident strategy matches
the candidate event lists of individual detectors for consis-
tency of the estimated parameters of the GW signal. A
coincidence search with real data has been carried out by
several groups [6] and data analysis on S5 data of the LIGO
detectors has recently been performed [7].
There is a long standing debate as to which strategy

performs better. Finn [8] has compared the performance of
the two strategies with sinusoidal signals. While Arnaud
et al. [9] have compared the two strategies with Gaussian-
shaped signals in the case of three and six detector net-
works. Both these works have shown that the coherent
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strategy performs better than the coincident strategy. In our
earlier paper [10], hereafter referred to as paper-I, we
compared the performances for the simple case of coal-
igned detectors located in the same place. In this paper, we
considered signals from inspiraling binaries. The situation
of two coaligned detectors located at the same place with
correlated noise was first considered in paper-I and im-
proved in [11], and is applicable in the case of existing
detector pairs H1–H2. The coincident strategy has the
advantage of reduction of false alarm, however this is at
the price of reduced detection efficiency. On the other
hand, in the coherent strategy, the false alarm rate is not
reduced, the sensitivity is enhanced which in turn results in
higher detection efficiency. Which of these two competing
effects wins was determined by looking at the detection
efficiencies of the two strategies at the same false alarm
rate. The receiver operating characteristic (ROC) curve,
which is the plot of detection efficiency versus false alarm
rate, was drawn for both the strategies and from those
curves it was inferred that for the viable false alarm regime
the coherent strategy performs much better than the coin-
cident strategy.

In this paper we consider the general case of widely
separated pairs of detectors. Since the detectors are situated
on the globe and have their arms lying parallel to the
Earth’s surface, they necessarily have different orienta-
tions; we, however, consider the general problem of detec-
tors with arbitrary locations and orientations since this
does not greatly add to the mathematical complexity of
the problem. The coherent statistic for nonaligned detec-
tors is completely different from that of the aligned case
[12]. We cannot extrapolate the results of paper-I to incor-
porate the more general case that we consider here. We
compare the performance of the two strategies for the
generalized case by obtaining the relevant ROC curves.
We then investigate an enhanced coincidence strategy
which is basically an improvement on the simple coinci-
dence strategy for it is seen that when the detectors are not
aligned, the performance of the simple coincidence strat-
egy is very poor. In enhanced coincidence, although the
two detectors are considered in isolation and the candidate
event lists compared for consistency in the estimated signal
parameters, the two statistics from individual detectors are
added in quadrature and a single threshold is placed upon
the resulting statistic. This strategy, for the case of two
detectors only, renders a statistic identical in form to that of
the coherent strategy. The details of this strategy are given
in Sec. III B 2. It should be noted that it is different from the
coherent strategy.

The plan of the paper is as follows. In Sec. II, we discuss
the different coordinate systems required to describe the
problem, the signal and the response of the detectors and
the network. In Sec. III, we discuss the false alarm and
detection probabilities and derive the analytical formulas
for the coincidence and coherent strategies. In Sec. IV we

perform simulations and then use these to plot the ROC
curves for different detector pairs. We first briefly present
the simulation method and then we determine the parame-
ter windows required for coincidence analysis. We perform
simulations for arbitrarily oriented detector pairs and ob-
tain the false alarm and detection probabilities for each pair
and use these results to plot the ROC curves. In Sec. V, we
summarize our results and discuss future directions.

II. THE SIGNAL AND THE RESPONSE

In this section we discuss the GW signal and the re-
sponse of individual detectors as well as of the network and
introduce a normalization scheme and notations. We fol-
low the conventions and notations of [12]. In order to make
the paper self contained we briefly review the formalism. It
provides us with an efficient framework for the analysis
here in the context of widely separated detectors with
arbitrary orientations.

A. Reference frames and Euler angles

To understand the response to the GW signal of the
detectors and the network, the first step is to identify the
different coordinate systems naturally associated with the
problem and the interrelations between them. The frames
are related via rotations described by Euler angles which
then appear in the network response in the form of beam
pattern functions.
Wave frame—ðX; Y; ZÞ: The gravitational wave travels

along the positive Z direction and X and Y denote the axes
of polarization—ðX; Y; ZÞ form a right-handed Cartesian
coordinate system.
Frame of detector I—ðxI; yI; zIÞ: This is the frame of the

detector I having its origin at the intersection of the arms of
the detector. The arms of the detector lie in the xI � yI
plane, which is the plane tangent to the surface of the Earth
with the xI axis bisecting the angle between the two arms
and yI is chosen such that the frame forms a right-handed
coordinate system with the zI axis pointing radially out of
the surface of the Earth. Note that the Earth is assumed to
be a sphere for the purposes of this analysis.
Earth frame—ðx; y; zÞ: This is the Earth frame with its

origin at the center of the Earth. The z axis points due
north, the x axis points to the intersection of the equator
and the Greenwich meridian and the y axis is chosen such
that the coordinate system is right-handed. This frame is
usually chosen as the fiducial frame of reference, with
respect to which the orientations and locations of each
detector can be specified. In Table I we specify the loca-
tions and orientations only of those detectors which wewill
use in our analysis. This is clearly not an exhaustive list of
ground-based detectors existing or planned and the results
obtained in this paper can also be obtained similarly for
other detectors.
Let ð�; �; c Þ be the Euler angles through which the

Earth frame must be rotated in order to align with the
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wave frame. The angles � and � are closely related to
spherical polar coordinates and c is the polarization angle.
We opt for the Goldstein convention [14]. The Euler angles
ð�I; �I; �IÞ that rotate the Earth frame to the frame of the
I-th detector are then (�I þ �=2, ‘I, �I þ 3�=4).

B. Signal at a detector

Having described the coordinate system, we write down
the response of the I-th detector to the GW signal in the
Fourier domain. We adopt the following convention for the
Fourier transform:

~hðfÞ ¼
Z 1

�1
dthðtÞe2�ift; (2.1)

as in paper-I.
In the stationary phase approximation the spinless, re-

stricted post-Newtonian inspiral signal is given by

~h IðfÞ ¼ N � EIf�7=6 expi�Iðf; tc; 	c; 
0; 
3Þ; (2.2)

where tc and 	c are, respectively, the coalescence time and
the coalescence phase of the binary. EI is the extended
antenna pattern function which depends on seven angles—
two angles ð�;�Þ specifying the location of the source, two
angles ð�; c Þ specifying the orientation of the source, and
three Euler angles ð�I; �I; �IÞ specifying the orientation of
the detector with respect to the wave frame.

EI ¼
�
1þ cos2�

2

�
FIþ þ i cos�FI�; (2.3)

where the FIþ;� are the usual antenna pattern functions

depending on �, �, c , �I, �I, �I [12]. Note that EI is a
complex quantity. Thus the phase of EI, say �I, where,
tan�I ¼ 2FI� cos�=FIþð1þ cos2�Þ represents the polariza-
tion phase and plays an important role in coherent detec-
tion. On the other hand we observe that �I simply adds on
to the coalescence phase 	c and therefore for the purposes
of matched filtering in a single detector can be absorbed in
	c. In the coincidence strategy each detector is treated
separately, just like a single detector, and therefore, for

matched filtering when using coincidence, �I can be ab-
sorbed in 	c.
The factor N depends on the distance r to the binaries,

the total mass M ¼ m1 þm2 and the reduced mass ratio
 ¼ m1m2

M2 , where m1 and m2 are the individual masses of

the binary. In the units of c ¼ G ¼ 1 it is given by

N ¼
�
5

24

�
1=2 M5=61=2��2=3

r
: (2.4)

Instead of the total mass and the chirp mass of the binary
system, it is customary to use the dynamical parameters 
0
and 
3 for in these parameters the template placing is
approximately uniform. These parameters are defined as


0 ¼ 5

256�fa
ð�MfaÞ�5=3;


3 ¼ 1

8fa
ð�MfaÞ�2=3;

(2.5)

where fa is the fiducial frequency usually chosen to be the
seismic cutoff frequency—the lowest frequency of the
detection bandwidth.
The phase of the signal �Iðf; tc; 	c; 
0; 
3Þ in the I-th

detector frame relates to the phase in the fiducial frame
�ðf; tc; 	c; 
0; 
3Þ as

�Iðf; tc; 	c; 
0; 
3Þ ¼ �ðf; tc; 	c; 
0; 
3Þ þ 2�f�tI;

(2.6)

where �tI is the time delay between the I-th detector and
the fiducial detector. The fiducial detector may be taken to
coincide with the origin of the Earth frame, that is, a
detector situated at the center of the Earth or it could be
chosen as one of the detectors in the network. For the phase
in the fiducial frame we adopt the same 3PN formula we
took in paper-I [Eqs. (2.7) and (2.8) in paper-I] given by
[2].

C. The matched filtering paradigm for a network of
detectors

By virtue of (2.2), we can represent the i-th template for
the I-th detector as

~h Iðf; ~�i; tc; 	cÞ ¼ AIð~sI0ðf; ~�i; tcÞ cos	c

þ ~sI�=2ðf; ~�i; tcÞ sin	cÞ; (2.7)

where,

~s I
�=2ðf; ~�i; tcÞ ¼ i~sI0ðf; ~�i; tcÞ: (2.8)

We require that both the templates sI0 and s
I
�=2 have the unit

norm; i.e. the scalar products ðsI0; sI0ÞI ¼ ðsI�=2; sI�=2ÞI ¼ 1.

The scalar product ða; bÞI of two real functions aðtÞ and
bðtÞ for the I-th detector is defined as

TABLE I. The locations and orientations of some ground-
based GW detectors. L1-LIGO Louisiana, H1-LIGO Hanford
4 km, H2-LIGO Hanford 2 km, V1-Virgo, and K1-LCGT (the K
stands for Kamioka) [13]. The latitude and longitude of the
center and the angles through which the x arm and the y arm
must be rotated counter clockwise (viewed from top) from north
are listed. The angles ð�; ‘; �Þ are related to ð�I; �I; �IÞ for a
particular detector I.

Detector Latitude (�) Longitude (‘) x arm (�) y arm

H1, H2 46:45 �N �119:41 �E 36.8� 126.8�
L1 30:56 �N �90:77 �E 108.0� 198.0�
V1 43:63 �N 10:5 �E 71.5� 341.5�
K1 36:25 �N 137:18 �E 295.0� 25.0�
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ða; bÞI ¼ 2
Z fIu

fI
l

df
~aðfÞ~b�ðfÞ þ ~a�ðfÞ~bðfÞ

SIhðfÞ
; (2.9)

where, we use the Hermitian property of Fourier trans-
forms of real functions. SIhðfÞ is the one sided power

spectral density (PSD) of the noise. Although in this paper
we do not consider the case of different PSDs for different
detectors, we still keep the discussion general so that it
could also be used for the general case of different PSDs.
This does not complicate the discussion much. It also
follows from this definition that when the templates are
computed using the stationary approximation, ðsI0; sI�=2Þ ¼
0, i.e., they are orthonormal. Then, it is evident that AI is
the amplitude of the waveform, i.e., ðhI; hIÞ ¼ ðAIÞ2. fIl is
the lower cut-off frequency which is normally taken to be
the seismic cutoff—40 Hz for initial LIGO—and fIu is the
upper cutoff frequency usually taken to be about 1 kHz
when the signal power for inspirals within the usual mass
range, say, 1M� � m1,m2 � 40M� and initial LIGO PSD,
falls of below a fraction of a percent. In most of the cases
we have taken the noise PSD of the detectors to be identical
and the index I can be dropped in Eq. (2.9). However, since
for one case we consider different noise PSDs, we keep the
subscript in this discussion to retain the generic nature.

The statistic for the I-th detector is

�I ¼ max
i;tc

½ðsI0; hIÞ2I þ ðsI�=2; hIÞ2I �; (2.10)

which is to be compared with the threshold. The value
ffiffiffiffiffiffi
�I

p
is usually called the signal-to-noise ratios (SNR) of a single
detector.

Instead of two templates sI0 and sI�=2, we find it more

convenient to use a single complex template SI which
combines the two together:

~S IðfÞ ¼ 1

gI
f�7=6 exp½i�ðf; tc; 	c ¼ 0; 
0; 
3Þ�: (2.11)

The normalization factor gI is chosen such that ðSI; SIÞI ¼
1. It is given by

g2I ¼ 4
Z 1

fa

df

f7=3SIhðfÞ
: (2.12)

In terms of gI, the amplitude of the waveform hI is AI ¼
N EIgI.

In addition to the above normalization scheme followed
for the construction of the template bank, particularly for
coherent detection, where the network is treated as a
whole, we also need the concept of network normalization.
The total energy accessible to a network of N detectors is a
scalar and is given by

ðhI; hIÞNW ¼ XN
I¼1

ðhI; hIÞI ¼ N 2
X2
I¼1

g2IE
�
IE

I 	 jANWj2:

(2.13)

The subscript NW refers to network. The quantityP
N
I¼1 g

2
IE

�
IE

I ¼ kEk2 is the L2 norm of EI in CN . The
quantity N 2g2I has the significance of the maximum pos-
sible energy accessible by the network i.e., the energy
accessible when all the detectors are optimally oriented;
so kEk2 denotes the ratio of the total energy received by the
system to the maximum possible energy accessible.
This suggests the definition of the network-normalized

signal to be

Ŝ I ¼ QI�

gI
f�7=6 exp½i�ðf; tc; 	c ¼ 0; 
0; 
3Þ�; (2.14)

where,

QI ¼ EI

kEk : (2.15)

The network vector ~Q ¼ ðQ1; Q2; . . . ; QNÞ lies in CN and
has the unit norm. This is the vector of polarization phases,
which effectively ‘‘brings all the detectors to the same
orientation.’’
For the two detector network, the data consists of two

data trains, fxIðtÞjI ¼ 1; 2; and t 2 ½0; T�g where data is
taken in the time interval ½0; T�. Assuming additive noise
nI in each detector we have:

xI ¼ hI þ nI; I ¼ 1; 2: (2.16)

The noise random variables satisfy the statistical property:

hnIðfÞn�I ðf0Þi ¼ 1
2S

I
hðfÞ	ðf� f0Þ; (2.17)

where the angular brackets denote the ensemble average.
In this paper we take the noise in the two detectors to be
uncorrelated, i.e,

hn1ðfÞn�2ðf0Þi ¼ 0; (2.18)

which is not unjustified if the detectors happen to be
geographically separated. For the sake of simplicity of
the analysis, we assume the noise to be both stationary
and Gaussian. This is assumed in the analysis in Sec. III
and for the simulations in Sec. IV. However, analysis of
real data suggests it is neither—the SNRs and the �2 are
correlated [15].
We conclude this section by introducing the definition of

the complex correlations CI which will be particularly
needed for construction of the coherent statistic. We retain
the notation and definition as in paper-I which was origi-
nally introduced in [12]. The complex conjugate of CI is
denoted by C�

I . It is given by

C�
I ¼ ðSI; xIÞI ¼ cI0 � icI�=2; (2.19)

where, cI0 and cI�=2 are the real and imaginary parts of CI;

they are obtained by taking the scalar products of the data
xI with sI0 and sI�=2, respectively; that is,

cI0;�=2 ¼ ðsI0;�=2; xIÞI: (2.20)
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III. FALSE ALARM RATE AND DETECTION
PROBABILITY

Since in this paper we will be considering the case of
two geographically separated detectors, we will consider
pairs among the detectors H1, H2, L1, Virgo and LCGT,
except for the pair H1 and H2 which happen to be in the
same location. In this section we will derive and present
analytical formulas for the false alarm rate and detection
efficiency for the coherent and coincidence strategies. In
coincidence detection we consider two sub categories, one
of straight forward coincidence which we call naive coin-
cidence and a more sophisticated coincidence strategy
which we call enhanced coincidence. We therefore organ-
ize our discussion as follows:

(A) Coherent detection
(B) Coincidence detection
(1) Naive coincidence detection
(2) Enhanced coincidence detection
In the analytical formulas that we derive, we do not

include all procedural steps of the numerical simulation;
instead, we take a simplified route. The derived formulas
are thus slightly different from those obtained from the
results of the simulation. Nevertheless, the analytic for-
mulas provide us guidelines by giving us functional forms
for the false alarm and detection probabilities in terms of
parameters which then can be determined from simula-
tions. Even in such a simplified situation, as encountered in
paper-I, where we deal with aligned detectors in the same
location, the formulas depend on the unknown parameters
Nind—number of statistically independent templates and
Nwin—number of statistically independent templates
within the error window. These quantities are difficult, if
not impossible, to evaluate analytically; we therefore de-
termine them through simulations. We find here in the case
of geographically separated detectors, the quantity Nwin is
significantly different from that in paper-I, because here
the time-delay window becomes larger by the maximum
time delay between the two detectors. In this section, we
obtain the relevant formulas in which the parameters Nwin

and Nind appear implicitly. The situation will be clear from
the sections which follow.

A. Coherent detection

Coherent detection involves combining data streams in a
phase coherent manner so as to effectively construct a
single, more sensitive detector. The maximum likelihood
network statistic for two arbitrarily oriented geographi-
cally separated detectors has already been found. For the
case of two arbitrarily oriented detectors the network sta-
tistic is given by [12]

� ¼ kCk2 ¼ jC1j2 þ jC2j2
¼ ðc10Þ2 þ ðc1�=2Þ2 þ ðc20Þ2 þ ðc2�=2Þ2; (3.1)

where CI is the complex correlation of the I-th detector

(I ¼ 1, 2).1 This is quite different from the coherent sta-
tistics for two coaligned detectors as it does not contain the
terms involving cross correlation between the two detec-
tors. So, the false alarm rate and the detection efficiency
changes considerably even for slightly nonaligned detec-
tors. The comparison between the two strategies therefore
must be drawn separately for nonaligned detectors, for it is
not only a more general situation, it is different altogether.
In [16] the two detector paradox regarding this abrupt
change of detection statistic has been discussed and the
improvement of the coherent strategy, by suitably incorpo-
rating contributions from cross correlation terms, has been
advocated. We, however, restrict ourselves to the formal-
ism of coherent detection as in [12]. Any improvement to
this basic formalism will enhance the performance of the
coherent search and will further strengthen our results
obtained in Sec. IV.
Second, the correlations in the two detectors are com-

puted at the same mass parameters f
0; 
3g, and at time lags
which differ at most by the light travel time d=c between
the detectors, where d is the distance between the geo-
graphically separated detectors. This is matched filtering in
which the network template is matched to the network
data. The statistic is the maximum taken over the permitted
time-lags and polarization phases which make up the vec-

tor ~Q. We will see later that for enhanced coincidence, the
same expression for the statistic appears, but the correla-
tions in the two detectors are permitted to be evaluated at
different points in the parameter space, constrained by a
certain window or error box (which will be specified later
in the text). We therefore note that this is not matched
filtering.
To obtain the false alarm rate and the detection effi-

ciency, first, we concentrate on a single template. When

there is no signal, c1;20;�=2 are Gaussian random variables

with zero mean and unit variance. So, the probability
distribution of the log likelihood ratio can be shown to be

p0ð�Þ ¼ �

4
exp

�
��

2

�
: (3.2)

The rate of false alarm for a threshold of �� is

P1template
FA ¼

Z 1

��
d�p0ð�Þ ¼

�
1þ��

2

�
exp

�
���

2

�
:

(3.3)

We argued in paper-I that when we have closely packed
correlated templates, we can treat the template bank effec-
tively as having Nind statistically independent templates.
Nind is smaller than the actual number of total templates in
the bank—it will turn out that Nind is substantially smaller.
We will also make a simplifying assumption that the noise

1Note that in [12] the square root of � is used. But here we use
� because it has the �2 statistics for Gaussian noise which has a
simpler mathematical expression and is thus easier to implement.
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PSDs of the detectors are identical. With this assumption,
the template placement is identical and so also is Nind. In
which case, for the entire template bank, the false alarm
rate is

PFA ¼ Nind

�
1þ��

2

�
exp

�
���

2

�
: (3.4)

On the other hand, when there is a signal of amplitude
ANW in the network data, the expectation value of the
squared statistic isA2

NW and the probability distribution of
the statistic is

p1ð�Þ ¼ 1

2

� ffiffiffiffi
�

p
ANW

�
exp

�
��þA2

NW

2

�
I1ðANW

ffiffiffiffi
�

p
Þ;
(3.5)

where I1 is the modified Bessel function of the first kind.
False dismissal occurs when in spite of the presence of the
signal, the statistic � falls below the threshold ��. The
false dismissal (FD) probability is given by

PFD ¼
Z ��

0

d�

2

� ffiffiffiffi
�

p
ANW

�
exp

�
��þA2

NW

2

�
I1ðANW

ffiffiffiffi
�

p
Þ:

(3.6)

The detection efficiency PDE or detection probability is
then just PDE ¼ 1� PFD.

B. Coincidence detection

In coincidence detection, the two detectors are treated
essentially in isolation. Separate lists of candidate events
are prepared; a candidate event occurs in a given detector I
(where I ¼ 1, 2), when the statistic �I ¼ jCIj2 computed
for the detector I crosses the threshold ��

I set for the
detector I. This procedure produces two event lists, each
for one detector. In absence of prior knowledge of the
signal, we may choose the same threshold �� for both
detectors. The next step involves matching the lists of
candidate events and obtaining pairs of events. The match-
ing is performed by ascertaining whether the estimated
parameters for a pair of candidate events, each event
chosen from a separate event list, lie in a predetermined
parameter window. For a real astrophysical event, the
estimated signal parameters must be consistent: ideally,
the coalescence times tc must at most differ by the light
travel time d=c, where d is the distance between the
detectors, and the dynamical parameters 
0, 
3 must be
identical. This ideal situation may only be realized in the
limit of infinite SNR. However, for realistic SNRs, as are to
be expected from astrophysical considerations, these con-
straints must be made less stringent, because the presence
of noise introduces error in each parameter. The estimated
parameters therefore will differ from their actual values;
they must lie within an error window W . The determina-
tion of the size of this window is pivotal to this strategy.

The windowW is determined as follows. Consider first
the parameter tc. For two geographically separated detec-
tors, separated by distance d, the maximum time delay is
d=c. The estimated values of tc in the two detectors can
differ in addition to d=c from errors due to noise. We
denote the error boxes in tc due to noise by �ntcð�1Þ and
�ntcð�2Þ in detectors 1 and 2, respectively. The error boxes
depend on �1 and �2 for the respective events and also on
the probability we can tolerate in losing an event. We
choose the probability of not losing the event to be 99%
for each of the three parameters, giving a final probability
of not losing an event to be ð:99Þ3 � 0:97 for the error
window. The error box�ntcð�1;�2Þ is determined numeri-
cally by carrying out simulations (see the next section). We
assume that the errors in the two detectors are independent
and so the total error �W tc is then realized as a quadratic
sum. We have

ð�W tcÞ2 ¼
�
d

c

�
2 þ ð�ntcð�1ÞÞ2 þ ð�ntcð�2ÞÞ2: (3.7)

Similar considerations hold for the dynamical parameters

0, 
3 and their corresponding error boxes:

ð�W 
0Þ2 ¼ ð�n
0ð�1ÞÞ2 þ ð�n
0ð�2ÞÞ2; (3.8)

and

ð�W 
3Þ2 ¼ ð�n
3ð�1ÞÞ2 þ ð�n
3ð�2ÞÞ2: (3.9)

Let �tc, �
0, �
3 be the differences in the estimated
parameters for the candidate pair of events corresponding
to the parameters tc, 
0, 
3, respectively, then we say that
the parameters match if,

j�tcj � �W tc; j�
0j � �W 
0;

j�
3j � �W 
3:
(3.10)

Note that the dimensions of the windowW are symmetric
under the interchange of the detector labellings 1 and 2.
This is important for consistency: if a trigger in detector 1
has a window which includes a trigger in detector 2, then
the trigger in detector 2 has a window of the same size,
albeit translated, which then includes trigger 1. Let
Nwinð�1;�2Þ be the number of templates in the window
now determined by both �1 and �2. Note that because of
the symmetry in the definition of the window size, we have
Nwinð�1;�2Þ ¼ Nwinð�2;�1Þ.
Recently, a geometrical method for determining W

using the Fisher information matrix has been proposed
which uses ellipsoidal windows instead of a rectangular
ones [17]. This scheme takes into consideration the corre-
lation between the parameters which then reduces the false
alarm rate. Incorporating ellipsoidal windows would have
the effect of shifting the ROC curve for coincidence strat-
egy a little to the left. We may estimate by how much the
curve would shift. From Fig. 1 shown in [10] of the ellipse
in the ð
0; 
3Þ plane describing a template, one can see that
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the area of the ellipse is about a quarter of the correspond-
ing rectangle. However, for the parameter tc the window
must take into account the time delay for geographically
separated detectors. This is done by translating the error
ellipsoid (due to noise only) around a trigger in one detec-
tor by the amount 
d=c and check whether the so trans-
lated ellipsoid intersects the error ellipsoid of the second
detector. If d=c is reasonably larger than the errors in tc
only due to noise, then there is almost no advantage to be
gained in this parameter in using ellipsoidal windows.
Thus the false alarm may be reduced by about a factor of
5 which is �0:7 on the logarithmic scale (the logarithm is
to base 10). Although the procedure would produce better
results, for simplicity of implementation we perform the
conventional coincidence search with rectangular windows
and introduce a fudge factor �� 1=5 in Nwin which takes
into account the effect of using ellipsoidal windows in
reducing the false alarm.

1. Naive coincidence

The procedure for implementing naive coincidence for
two arbitrarily located and oriented detectors is as follows:

(1) Choose the same threshold�� for the two detectors.
Let �I, I ¼ 1, 2 be the individual statistics of the
two detectors, prepare two candidate event lists such
that �I >��, I ¼ 1, 2.

(2) Look for pairs of candidate events, each candidate
event coming from a different list, such that the sets
of estimated parameters match; that is, the condition
(3.10) is satisfied for the two events.

If the above requirements are satisfied, announce detec-
tion. We will now use these conditions to obtain expres-
sions for the false alarm rate and false dismissal.

In paper-I we have shown that for a network of two
detectors, the expression for the probability of false alarm
was obtained assuming a fixed window size dependent
only on the threshold ��. Here we have a variable window
size now depending on the SNRs �I (or equivalently�I) of
the two events and hence the derivation is more involved.
However, we normally need the result at high value of the
threshold �� in which case the expression for the false
alarm probability assumes a simple form.

Let the statistics �1, �2 >�� cross the threshold ��.
The probability that �2 lies in the infinitesimal interval of

size d�2 for some given template is 1
2 e

��2=2d�2. Now this

is the approximation we make: we assume that there is
exactly one false alarm in detector 2 lying within the
window; in general we could have more than one false
alarm in the window, but if we assume a high value of the
threshold��, then it is unlikely that one has more than one
false alarm occurring within the window and thus this
probability can be neglected (usually, in the literature the
probability of at least one false alarm is calculated, but
finally it is usually approximated to the probability of
exactly one false alarm; here instead we directly compute

this probability). Thus in this approximation, the probabil-
ity of �2 lying in an interval [�2, �2 þ d�2] for the

templates in the window is Nwinð�1;�2Þ � 1
2 e

��2=2d�2.

This probability must be multiplied by the probability

Nind � 1
2 e

��1=2d�1 to obtain the probability in the rect-

angle ½�1;�1 þ d�1� � ½�2;�2 þ d�2� and finally inte-
grated from �� to 1. Thus for the probability density we
obtain the expression:

pð�1;�2Þ ¼ 1
4NindNwinð�1;�2Þe�ð�1þ�2Þ=2: (3.11)

The false alarm probabilityPFA is then given by integrating
this probability density over the acceptable region. Thus,

PFA ¼
Z 1

��
d�1

Z 1

��
d�2pð�1;�2Þ: (3.12)

For high threshold �� and also using the fact that
Nwinð�1;�2Þ falls off rapidly with increasing �1, �2, it
is easily seen that this expression approximates to

PFA ’ NindNwinð��;��Þ expð���Þ: (3.13)

As remarked before, Nwin depends crucially on the
threshold��, because the size of the error window strongly
depends upon the SNR as suggested by both Fisher infor-
mation matrix considerations as well as by the simulations
we perform. It also depends weakly on the location of the
signal in the parameter space. However, we choose to
ignore this weak dependence and treat Nwin as a function
of the threshold only as in paper-I. The exact value of Nwin

must lie between zero and the total number of templates
within the parameter window. We choose Nwin to be the
total number of templates within the parameter window
following the practice adopted in paper-I and such a choice
leads to good agreement between theoretical estimates and
numerical simulations.
We now turn to the detection probability. When a signal

of network amplitude ANW falls on the detectors, the
expected value of the statistic in each detector will be
different because of differing orientations of the detectors.
This information is encoded in the extended antenna pat-
tern functions EI which depend on the detector orienta-
tions. Since the noise in the detectors is uncorrelated, the
detection efficiency is just the product of the detection
efficiencies of the individual detectors:

PDE ¼ P1
DEP

2
DE; (3.14)

where PI
DE, I ¼ 1, 2 are the detection efficiencies of the

individual detectors. In the earlier literature, these have
been calculated and here we merely state the result:

PI
DE ¼ 1

2

Z 1

��
d�exp

�
� 1

2
½�þ ðAIÞ2�

�
I0ðAI

ffiffiffiffi
�

p
Þ:

(3.15)

Note that eachAI, I ¼ 1, 2 is proportional to the extended
antenna pattern functions EI, respectively. The presence of
the individual functions EI in the expression of detection
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efficiency demonstrates the weak point in this type of
coincidence detection. In general, the response of the two
detectors will be different because of different orientations,
but since one has no a priori knowledge of the direction of
the source, one sets the same threshold for the two detec-
tors which leads to a lot of false dismissals. In fact, for the
case when the configuration is such that the response of one
detector is close to zero for some particular direction to the
source, actual candidate events would be missed even if the
noise level is low.

The main reason behind the poor performance of the
naive coincidence strategy has its roots in the sky coverage.
For a particular source at a fixed distance, the intrinsic SNR
of the GW emitted depends crucially on the location and
orientation of the source (the angles �, �, c , and �). For a
single detector, and for a given threshold (minimum SNR),
such a source would be ‘‘visible’’ for certain directions and
orientations. When the detectors are aligned the sky cover-
age of the coincident detector is the same as any one of the
single detectors although the coincident detector still per-
forms better than the single detector only because of the
low false alarm rate. For the nonaligned case, since differ-
ent parts of the sky are covered by each detector, for naive
coincidence, it is the intersection of the sky coverage of the
two individual detectors which decides detection. This
crucially hampers the naive coincidence strategy. Just to
get a quantitative idea of the performance of this strategy,
we consider a binary source at a distance 15Mpc. The mass
of each individual star is 1:4M�. The binary is taken to be
optimally oriented, i.e., c ¼ � ¼ 0. The location of the
source in the sky is varied and the intrinsic SNR is calcu-
lated for L1, VIRGO orientations and LIGO I design
sensitivity. In a simplistic scheme, if the intrinsic SNR in
a given detector is above 7 for a particular direction, we
take that direction of the sky as covered. We find that the
coverage of a single detector is 49% while in naive coin-
cidence the detectors cover only 18% of the sky. The
corresponding number for the coherent strategy is 92%
of sky coverage.

In order to counter the disadvantage of low sky coverage
of this simplistic strategy, we consider a more sophisticated
coincidence strategy which overcomes this problem. We
describe this strategy in the next subsection.

2. Enhanced coincidence detection

As we have pointed out for nonaligned detectors, the
performance of coincidence strategy is poor because of low
sky coverage. We adopt a more sophisticated strategy
which overcomes this problem. The procedure is as fol-
lows:

(1) Choose a low threshold ��
0 and if �I, I ¼ 1, 2

are the individual statistics of the two detectors,
prepare two candidate event lists such that �I >
��

0, I ¼ 1, 2.
(2) Look for a pair of candidate events, the events

coming from separate lists, such that the sets of

estimated parameters match within the error win-
dow; the window has already been defined in
Eq. (3.10).

(3) Choose the final (high) threshold �� > 2��
0 and

construct the final statistic � ¼ �1 þ�2 and regis-
ter detection if �>��.

This strategy in essence leads to increased detection
efficiency. Further, this strategy also involves preparing
separate candidate lists and matching candidate events,
but for the case of two detectors, the detection statistic is
of the same form as that of the coherent strategy. The
detection statistic is

� ¼ kCk2 ¼ jC1j2 þ jC2j2
¼ ðc10Þ2 þ ðc1�=2Þ2 þ ðc20Þ2 þ ðc2�=2Þ2: (3.16)

Note that although this statistic has the same form as in the
coherent case, as remarked before, it is actually different:
the mass parameters here do not have to be the same for the
two detectors, but are only constrained to lie in the window
described above. Also in tc, the error box is somewhat
larger than in the coherent case, where the time lag must
differ at most by d=c; in addition to d=c there is error
introduced by noise which increases the size of the error
box.
We first obtain the false alarm probability. We first note

that the first two steps in the procedure are identical to
those of naive coincidence except with the final threshold
�� for naive coincidence replaced by the low threshold ��

0

applied in the first step. Therefore, identical derivation
follows, and hence the probability density here is the
same as before and is given by Eq. (3.11). However, the
integration region is different essentially because of the
third step. Define the regions (or events) R1, R2, R12 in the
ð�1;�2Þ plane:
R1 ¼ fð�1;�2Þj�1 >��

0; 0 � �2 <1g;
R2 ¼ fð�1;�2Þj�2 >��

0; 0 � �1 <1g;
R12 ¼ fð�1;�2Þj�1 þ�2 >��g:

(3.17)

Let the region R ¼ R1 \ R2 \ R12 be the intersection of all
the three regions. Note that since �� is chosen greater than
2��

0 we have R as a proper subset of R1 \ R2. The region

‘‘cut out’’ from R1 \ R2 is an isosceles right angled triangle
we call �. Thus R1 \ R2 ¼ Rþ � where þ denotes the
disjoint union of the sets. The false alarm probability is
given by integrating the probability density given by
Eq. (3.11) over the region R. Thus,

PFA ¼
Z
R
d�1d�2pð�1;�2Þ: (3.18)

We may be able to approximate this expression by writing
R ¼ R1 \ R2 � � which leads to

PFA ¼ PðR1 \ R2Þ � Pð�Þ: (3.19)
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If again Nwin is a rapidly decreasing function of both its
arguments, we can again write

PðR1 \ R2Þ � NindNwinð��
0;�

�
0Þe���

0 : (3.20)

On the other hand, Pð�Þ becomes

Pð�Þ ¼
Z
�
dx1dx2pðx1; x2Þ

¼ Nind

4

Z �����
0

��
0

dx1e
�ð1=2Þx1

Z ���x1

��
0

dx2Nwinðx1; x2Þ

� e�ð1=2Þx2

’ Nind

4
Nwinð��

0;�
�
0Þ
Z �����

0

��
0

dx12e
�ð1=2Þx1

� ðe�ð1=2Þ��
0 � e�ðð���x1Þ=2ÞÞ

¼ NindNwinð��
0;�

�
0Þ

�
�
e���

0 � e�ð��=2Þ
�
��

2
���

0 þ 1

��
: (3.21)

Thus, we have

PFA ’ NindNwinð��
0;�

�
0Þe�ð��=2Þ

�
��

2
���

0 þ 1

�
: (3.22)

We now turn to the detection probability. We assume a
signal in the detectors with amplitudes AI, I ¼ 1, 2 and
true signal parameters ��

0 , where �� ¼ ftc; 
0; 
3g. The
true signal parameters f
0; 
3g will be the same for the
two detectors while the parameter tc will differ by the light
travel time depending on the direction of the wave. Thus
�
�
0 must be interpreted according to the context. However,

because of noise in the detectors, the detector statistics �1

and �2 in general will be evaluated at points in the pa-
rameter space different from �

�
0 , say at, �

�
1 and �

�
2 , which

will lie close to the true signal parameters �
�
0 , if the signal

amplitude is sufficiently high. We now compute the proba-
bility density function (pdf) for the statistic �1 in the limit
of high amplitude for detector 1. Similar arguments will
hold for the pdf for detector 2. In the limit of high ampli-
tude we may assume the errors in the estimated parameters
in detector 1 to be Gaussian distributed with a covariance
matrix C

��
1 . Also the amplitude parameter of the signal

will be reduced by the ambiguity function H ð���
1 Þ,

where we assume that the ambiguity function only depends
on the difference in signal parameters ���

1 ¼ ��
1 � ��

0 .

The ambiguity function is normalized toH ð0Þ ¼ 1 which
is also its maximum value. (Since we have assumed iden-
tical noise PSD for the two detectors, the ambiguity func-
tions for the two detectors are the same and accordingly we
have omitted the detector index I for the ambiguity func-
tion.) The joint pdf for the statistic �1 and signal parame-
ters ��

1 is given by

p1ð��
1 ; �1Þ ¼ fð��

1 Þgð��
1 ; �1Þ; (3.23)

where,

fð��
1 Þ ¼

1

ð2�Þ3=2ðdetC1Þð1=2Þ
e�ð1=2Þ½C�1

1
�����

�
1
���

1 ; (3.24)

and

gð��
1 ; �1Þ ¼ 1

2e
�ð1=2Þ½�1þðA1Þ2H 2ð���

1
Þ�

� I0½A1H ð���
1 Þ

ffiffiffiffiffiffi
�1

p �: (3.25)

A similar expression obtains for detector 2 with the index 1
replaced by the index 2.
We now note that the covariance matrix scales as the

inverse of the square of the amplitude or C��
1 �

C��ðA1 ¼ 1Þ=ðA1Þ2 and in the limit of A1 ! 1, the
function fð��

1 Þ tends to a delta function centered at the
signal parameters ��

0 . Now we integrate over the signal

parameters ��
1 or marginalize over them. Assuming high

amplitudeA1, we expand g up to the second order in ��
�
1

around �
�
0 , and the result after integration is

p1ð�1Þ ¼ p1ð��� ¼ 0;�1Þ þ
k1��C

��
1 ðA1 ¼ 1Þ
ðA1Þ2 ;

(3.26)

where k1�� are constants, namely, the second derivatives of

g with respect to ��� evaluated at ��� ¼ 0. This means
that the pdf for detector 1 is essentially given by the first
term plus corrections of order oð1=ðA1Þ2Þ. These correc-
tions are small ifA1 � 1. Or writing this result explicitly:

p1ð�1Þ ¼ 1
2e

�ð1=2Þ½�1þðA1Þ2�I0ðA1
ffiffiffiffiffiffi
�1

p Þ þ oð1=ðA1Þ2Þ:
(3.27)

For the detector 2 we obtain an identical result with 1
replaced by 2 on the right-hand side. Finally, the pdf for
the two detectors is obtained by simply multiplying the
pdfs of the individual detectors since the statistics �1 and
�2 are independent. Thus the detection probability or
efficiency is obtained by integrating the product of the
pdfs over the region R and is given by

PDE ¼
Z
R
p1ð�1Þp1ð�2Þd�1d�2: (3.28)

In this strategy the sky coverage is better than the naive
coincidence because ��

0 is chosen much smaller than the

threshold �� chosen in naive coincidence strategy. Thus
we expect the performance to be better than the naive
coincidence. In the next section we compare the perfor-
mances of all the strategies.

IV. COMPARING PERFORMANCES

In the previous section we have derived analytical for-
mulas for plotting the ROC curves. However, the quanti-
ties, Nind and Nwin, are unknown and we need to determine
them by numerical simulation before we can actually plot
the curves. On the other hand, as we shall see below, the
false alarm probability and the detection efficiency from
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the numerical simulation do not necessary agree with
theoretical formulae perfectly due to various practical
reasons. Thus, we have to resort to numerical simulations
for evaluating quantitatively the performances of each
detection strategy. Nevertheless, the analytical formulae
provide guidance towards deriving useful fitting formulae
from the simulation which are then used to plot the ROC
curves. In paper-I we have already discussed this matter in
detail. However, we include a description for making the
paper self contained.

A. Simulation method

In this paper, we take the noise PSDs of all the detectors
to be identical. We use the design sensitivity of initial
LIGO [18] for all the detectors.

ShðfÞ ¼ S0½ð4:49xÞ�56 þ 0:16x�4:52 þ 0:52þ 0:32x2�
for f  fs;

¼ 1 otherwise; (4.1)

where, x ¼ f=fk, fk ¼ 150 Hz, fs ¼ 40 Hz, and S0 ¼
9� 10�46 Hz�1. For computing the SNR (scalar product)
we set fl ¼ fs. We take the upper cutoff frequency fu to be
1024 Hz and the data are sampled at 2048 Hz in accordance
with the Nyquist theorem. This choice of the noise PSD is
simply to save the computation time of the simulation. If
we take the PSD of advanced LIGO, the lower cutoff
frequency fs becomes around 10 Hz. The length of the
signal in the bandwidth becomes longer which makes the
computation time of the matched filtering longer. Even if
we were to adopt the PSD of advanced LIGO, we do not
expect much qualitative change in the results. We consider
4 detector pairs listed in Table II.

Using a 3PN restricted waveform, we place the tem-
plates 25 ms apart in the 
0 direction and 19 ms apart in the

3 direction. This corresponds to a maximum mismatch of
3%. We have taken a rectangle in the parameter space with
25 templates along each of the 
0, 
3 directions, totally
giving us 625 templates in the 
0, 
3 parameters. We take a
data train 32 sec long and sample it at 2048 Hz. We
generate 32 sec of Gaussian data and repeat the coherent
and coincident searches for Nsim number of times. We test
for various values of Nsim, and we find that Nsim ¼ 20 000
is sufficient to give reliable estimates of the false alarm
rate. Therefore the total data length of the simulation is
6:4� 105 sec .

In the coherent searches, we first compute the statistics
from each detector, �1ðtc; 
0; 
3Þ 	 ðc10Þ2 þ ðc1�=2Þ2 and

�2ðtc; 
0; 
3Þ 	 ðc20Þ2 þ ðc2�=2Þ2 [i.e., Eq. (3.1)], which are

functions of tc, 
0, and 
3. We compute �1 þ�2 and take
the maximum over the possible time delay and over the
mass template space. We obtain the following statistic:

�ðtcÞ ¼ max

0;
3

max
jtdj�d=c

½�1ðtc; 
0; 
3Þ þ�2ðtc þ td; 
0; 
3Þ�;
(4.2)

where d is the distance between the detectors and c the
speed of light. Since the coalescence time tc is sampled at
2048 Hz, the samples�ðtcÞ (sampled at the same rate as tc)
are correlated. In order to remove the correlation, follow-
ing the procedure in paper I, we divide the data train into
	t ¼ 15:6 ms short data trains, where the i-th short train
starts at time tðiÞ ¼ 15:6 ms� i. In each short data train,

we take the maximum of �ðtcÞ,
�ðiÞ ¼ max

tðiÞ�tc�tðiþ1Þ
�ðtcÞ: (4.3)

f�ðiÞg defines the trigger list of the simulation.

In the coincident analysis, we first compute the statistics
of each detector and take the maximum over the mass
template space. As in the coherent analysis, we divide
the data train into 	t ¼ 15:6 ms short data trains, and
take the maximum of the statistics in each data train. We
obtain the triggers from each detector defined as

�IðiÞ ¼ max
tðiÞ�tc�tðiþ1Þ

�IðtcÞ; (4.4)

�IðtcÞ 	 max

0;
3

�Iðtc; 
0; 
3Þ; ðI ¼ 1; 2Þ: (4.5)

In the naive coincidence detection, for each�1ðiÞ >��
0, we

select a maximum of �2ðjÞ which satisfies the coincident

conditions, namely, Eq. (3.10) and second, �2ðjÞ >��
0. If

such a �2ðjÞ exists, the pair f�1ðiÞ;�2ðjÞg defines the trigger
list of the naive coincidence detection. From this trigger
list, we compute an enhanced coincident statistic defined as

� ¼ �1ðiÞ þ�2ðjÞ: (4.6)

B. Coincidence windows

To determine the size of windows for coincident analy-
sis, one way is to use the Fisher information matrix for this
purpose. However, it has been shown that at low SNR,
SNR & 10, the Fisher information matrix grossly under-
estimates the size of the window [19]. So, we determine
empirically the number of templates falling within the
error window W such that the signal is detected 99% of
the time. Since we have three parameters, the coalescence
time tc, and the dynamical parameters 
0 and 
3, on the
average, the fraction of signals detected will be ð:99Þ3 �
0:97. The simulations are carried out for a single detector

TABLE II. The light travel time between pairs of detectors.

Pair Light travel time [ms]

L1-V1 26.42

L1-H1 10.02

L1-K1 32.47

V1-K1 29.18
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for SNRð	 ffiffiffiffiffiffi
�I

p Þ ranging from 4 to 25. Determination of
W at low SNR is difficult because the signal tends to get
overwhelmed by false alarm triggers—in most cases, in-
stead of the signal we pick up false alarms. Since the false
alarm triggers occur anywhere in the parameter space at
random, it becomes impossible to decide on the window.
So, we restrict ourselves only to those signals for which
SNR  4. For SNR> 25, we take the samewindow size as
SNR ¼ 25, since the parameter estimation accuracy be-
comes nearly constant at large SNR due to the finite mesh
size of the mass template space and the finite sampling
rate. This constant window size at SNR> 25 does not
affect our analysis very much because we will use the false
alarm probability and the detection probability correspond-
ing �ð¼ SNR2Þ & 200. The parameter estimation errors
from the simulation are summarized in Table III. It is
useful to deduce a fitting formula of Table III. We observe
that the estimated error scales roughly inversely as the SNR
which we denote by �. Thus, we may write

�ntc ¼
atcffiffiffiffi
�

p ; (4.7)

�n
0 ¼
a
0ffiffiffiffi
�

p ; (4.8)

�n
3 ¼
a
3ffiffiffiffi
�

p ; (4.9)

for � � 25 with atc ¼ 98:7 ms, a
0 ¼ 1895:4 ms, and

a
3 ¼ 1386:0 ms. The window size is then given assuming

the box window as

ð�W tcÞð�W 
0Þð�W 
3Þ ¼
�
d2

c2
þ a2tc

�1

þ a2tc
�2

�
1=2

�
a2
0
�1

þ a2
0
�2

�
1=2

�
a2
3
�1

þ a2
3
�2

�
1=2

;

(4.10)

where d is the distance between the two detectors. As
discussed in paper-I, the decorrelation length of tc, 
0,
and 
3 can be taken as �15:8 ms, 220 ms, and 80 ms.
The number of independent templates in the coincidence
window size is thus estimated roughly as

Nwin � Nð0Þ
win

�
1

a2tc

�
d

c

�
2 þ 1

�1

þ 1

�2

�
1=2

�
1

�1

þ 1

�2

�
;

(4.11)

Nð0Þ
win 	

atc
15:8 ms

a
0
220 ms

a
3
80 ms

� 932:4: (4.12)

Note however that we do not use the value of Nð0Þ
win explic-

itly. We use only the functional form of Eq. (4.11) to obtain
the formulas for the false alarm rate.

C. Estimating the false alarm rate

The number of false alarm triggers as a function of the
threshold from simulations is shown in Fig. 1. In these
figures, and in the rest of the figures in this paper, ‘‘coin-
cident (AND)’’ and ‘‘coincident (SQS)’’ indicate the naive
coincident strategy and the enhanced coincident strategy,
respectively. We extrapolate these plots to the larger
threshold in order to obtain the false alarm probability
corresponding to a much larger data set. In this extrapola-
tion, the analytic formulas in the previous section are
helpful. In the single detector case, the number of false
alarms, NFAð�>��Þ is given analytically as

NFAð�>��Þ ¼ Ninde
�ð1=2Þ��

: (4.13)

The factor in the exponential, namely, �1=2 does not
necessary hold in a simulation. We thus replace �1=2
and also lnNind with parameters a and b to be determined
from the simulations. We take the logarithm of the above
equation and write

lnNFAð�>��Þ ¼ �a�� þ b; (4.14)

where a is the slope and b is the intercept if we plot
lnNFAð�>��Þ versus ��. From simulations we plot the
required curve and read off a and b.
We apply similar methods to coherent and coincident

cases. In the analytical formula for the coherent case, the
number of false alarms falls off as Eq. (3.4):

lnNFAð�>��Þ ¼ � 1

2
�� þ ln

�
1þ��

2

�
þ lnNind;

(4.15)

In the case of naive coincidence, the number of false

TABLE III. Average errors in parameters tc, 
0, and 
3 in units

of milliseconds due to detector noise for SNR 	 ffiffiffiffiffiffi
�I

p
ranging

from 4 to 25. The size of the error box corresponds to 99%
detection. For SNR> 25, we take the same window size as
SNR ¼ 25.

SNR �ntc �n
0 �n
3

4 24.2 476 314

5 23.1 413 289

6 19.6 351 260

7 16.0 300 234

8 11.6 239 188

9 9.8 194 157

10 8.0 162 129

11 6.3 136 108

12 5.9 126 101

13 5.3 110 89

14 4.9 109 87

15 4.8 98 80

20 4.1 82 70

>25 3.6 79 66
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alarms is given by [Eq. (3.13)]. We use Eq. (4.11) for Nwin

and obtain

lnNFAð�>��Þ ¼ ��� þ 1

2
ln

�
1

a2tc

�
d

c

�
2 þ 2

��

�

þ ln

�
2

��

�
þ lnðNindN

ð0Þ
winÞ: (4.16)

In the case of enhanced coincidence, we have from
Eq. (3.22),

lnNFAð�>��Þ ¼ � 1

2
�� þ ln

�
��

2
���

0 þ 1

�

þ lnðNindNwinð��
0;�

�
0ÞÞ; (4.17)

where ��
0 ¼ 42. The dominant term which determines the

slope of each curve is ���=2 in Eq. (4.15), ��� in
Eq. (4.16), and ���=2 in Eq. (4.17). We replace these
factors with a, and unknown terms lnNind in Eq. (4.15),

lnðNindN
ð0Þ
winÞ, in Eq. (4.16) and lnðNindNwinð�0;�0ÞÞwith b,

respectively. We then determine a and b from the simula-
tions. By fitting the curves obtained from simulations we
determine a and b in the four cases: (i) the single detector
case, (ii) the coherent case, (iii) the naive coincidence case,
and finally, (iv) the enhanced coincidence case. The results
are listed in Table IV in this order for the four detector
pairs, (L1, V1), (L1, H1), (L1, K1), and (V1, K1). We can
see that in all cases, the slope a is slightly smaller than
theoretical value. This is mainly because of the maximi-
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FIG. 1. The number of false alarm triggers as a function of the
threshold for various detector combinations.

TABLE IV. The results of the fitting of the number of false
alarm triggers in various detector pairs.

Fitting region a b

(a) L1-V1

Single 30 � �� � 50 �0:445 67 23.5293

Coherent 40 � �� � 60 �0:4551 26.6683

Naive coincidence 23 � �� � 33 �0:896 81 34.0749

Enhanced coincidence 50 � �� � 67 �0:464 12 31.2254

(b) L1-H1

Single 30 � �� � 50 �0:446 24 23.5448

Coherent 40 � �� � 60 �0:4668 26.3345

Naive coincidence 23 � �� � 33 �0:849 20 33.1193

Enhanced coincidence 50 � �� � 67 �0:461 04 31.0549

(c) L1-K1

Single 30 � �� � 50 �0:445 96 23.5328

Coherent 40 � �� � 60 �0:454 20 26.8005

Naive coincidence 23 � �� � 33 �0:901 59 34.0837

Enhanced coincidence 50 � �� � 67 �0:464 07 31.2229

(d) V1-K1

Single 30 � �� � 50 �0:438 49 23.2738

Coherent 40 � �� � 60 �0:454 80 26.7335

Naive coincidence 23 � �� � 33 �0:900 73 34.1248

Enhanced coincidence 50 � �� � 67 �0:464 10 31.2301
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zation over the coalescence time and the two mass parame-
ters described in Eq. (4.2), (4.3), (4.4), and (4.5). When we
take the maximum of�, we tend to pick up large� events.
This produces the deviation from the simple theoretical
curve. We have confirmed this by performing simulations
in which no maximization is done. When no maximization
is done, we obtain the slope a which agrees with the
theoretical value in all of cases from (i) to (iv). In this
paper, the maximization about tc, the time delay, and two
masses are essential to eliminate the statistical correlation
between nearby templates. Thus, the deviation of the slope
a from the theoretical value is not unnatural. Further, in the
analysis with real data, this type of maximization process is
usually carried out. Thus, such a deviation is more realistic
than the values obtained from simple theoretical analysis.

D. The ROC curves

After ascertaining the formulas for the false alarm, we
proceed to plot the ROC curves. We first consider a hypo-
thetical source such that the mass of each star in the binary
is equal to 1:4M�. We consider the detector pair (L1, V1).
We take the source to be located at 35 Mpc with the
inclination angle and the polarization angle as 0. The
direction to the source is taken to be described by the polar
angles � ¼ 1:0 rad and � ¼ 0:8 rad in the Earth centered
coordinate system. The amplitude of the signal in the noise
free situation is then given by A2 ¼ 32:2 for L1 and
A2 ¼ 28:3 for V1. The detection probability for this
case is shown in Fig. 2. Note that the detection probabilities
in Fig. 2 are slightly worse than the theoretical values
obtained in Sec. III. This is because, in the simulation,
we use a discrete time step and also a discrete set of mass
parameters’ values which then produce a mismatch be-
tween the signal and templates. Thus, the amplitude of
the signal detected is smaller than injected value.

From the detection probability and the false alarm rate
obtained in the previous subsection, we plot the ROC
curves. We use the fitting formulas for the false alarm
rate. We assume a 1 yr observation period and templates
in each individual mass ranging from 1M� to 40M�. The
total number of time samples is then 6:1� 1010 and the
number of mass templates is 1:2� 104. On the other hand,
the number of mass templates in the simulation is 625 and
the total number of time samples is 32� 2048� 2�
104 ¼ 1:3� 109. Thus, the false alarm probability for a
1 yr observation period with a template mass range of
1–40M� is found by scaling the false alarm probability
by the factor:

1:2� 104

625

6:1� 1010

1:3� 109
¼ 900:9:

We therefore add lnð900:9Þ ¼ 6:8 to b in Table IV to the
relevant L1-V1 part of the Table. As discussed in Sec. III B,
the coincidence window for two coincident strategies can
be improved using ellipsoidal windows with a factor of 5
reduction in the false alarm rate. We thus subtract lnð5Þ
from b for naive and enhanced coincidence strategies in
Table IV. We show the ROC curves in Fig. 3. We find that
the coherent case gives the largest detection probability. It
is about 70 to 80% larger than the naive coincident case.
The relative difference between the coherent case and the
enhanced coincident case is about 10 to 20%.
In order to obtain a fair comparison of the strategies, we

consider a distribution of sources with a different position,
orientation, and distance—we compare their average per-
formance. The sources are taken to be uniformly distrib-
uted within 15 Mpc. The orientation and direction of the
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FIG. 2. The detection probability for coherent, coincidence,
and single detector for a fixed source in the LIGO (L1) and
VIRGO (V1) case. The source is a 1:4� 1:4M� binary located at
35 Mpc with c ¼ 0, � ¼ 0, � ¼ 1:0 rad, and � ¼ 0:8 rad. The
amplitude of the signal at each detector is � ¼ 32:2ðL1Þ and
� ¼ 28:3ðV1Þ respectively.
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FIG. 3. The ROC curves for coherent, coincidence, and single
detector for a fixed source in the LIGO (L1) and VIRGO (V1)
case. The source is a 1:4� 1:4M� binary located at 35 Mpc with
c ¼ 0, � ¼ 0, � ¼ 1:0 rad, and � ¼ 0:8 rad. The amplitude of
the signal at each detector is � ¼ 32:2ðL1Þ and � ¼ 28:3ðV1Þ,
respectively.
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FIG. 4. The detection probability for coherent, coincidence,
and single detector for distributed sources. Two single detectors’
curves in each figures are almost identical and they can not be
distinguished in the figures.
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FIG. 5. The ROC curves for coherent, naive coincidence, and
enhanced coincidence for (a) L1-V1, (b) L1-H1, (c) L1-K1, and
(d) V1-K1 for distributions of sources.
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binary is randomly chosen from an uniform distribution
(uniform in c , cos�, �, and cos�). The detection proba-
bility is shown in Fig. 4.

We again consider a 1 yr data train and mass ranges from
1M� to 40M�. The ROC curves are drawn for L1-V1, L1-
H1, L1-K1, and V1-K1 network in Fig. 5. A reduction of
the factor of 5 for coincident strategies has been included
in these plots. For the sake of comparison, single detector
performance curves are also drawn. We have assumed that
all the detectors have the noise PSD of initial LIGO.

For example, in the L1-V1 case, at the false alarm
probability of 10�5, the detection probability is 0.69 (co-
herent), 0.45 (naive coincidence), 0.66 (enhanced coinci-
dence), and 0.45 (single). Thus, the coherent strategy
performs around 50% better than the naive coincident
strategy. In paper-I for coaligned detectors at the same
place, we concluded that the coherent detection is better
than the coincident detection by about 25–40%. Thus the
difference in misaligned detectors is larger than the coal-
igned case. In the case of misaligned detectors, the ampli-
tude of the signal in each detector differs, because of the
different orientations of the detectors. This difference pro-
duces smaller detection probability in the naive coincident
strategy. This is manifest in Fig. 4. Moreover, the detection
probability of the naive coincident strategy is even less
than each of the single detector cases of L1 and V1. In the
ROC plot (Fig. 5), however, the detection probability of the
naive coincident strategy and that of the single detectors is
nearly equal because the false alarm probability of the
naive coincident strategy is smaller than the single detec-
tors which compensates for the difference in the detection
probability. The reason why the naive coincidence’s curve
and single detectors’ curve in Fig. 5 coincide is only by
chance or coincidence. In the L1-H1 case, for example, the
light travel time is smaller and the orientations of the
detectors is nearly the same and therefore, the naive coin-
cident strategy gives a larger detection probability than the
L1-V1 case for a given false alarm probability.

Enhanced coincidence strategy performs better than the
naive coincidence strategy, but we see that coherent strat-
egy is still superior by around 5%. Although the detection
probabilities of the coherent and enhanced coincident
strategies are nearly equal as can be seen in Fig. 4, the
false alarm probabilities of the two strategies differ. This
produces a difference in the ROC curves.

Note that although in the two coincident strategies, we
reject the injected signal with �I � 16, I ¼ 1, 2 in the
evaluation of the detection efficiency, we do not follow this
procedure for the coherent strategy and in the single de-
tector cases. Thus, if we take a threshold less than 16 in
naive coincidence and 32 in enhanced coincidence, we
cannot do a fair comparison. However, in the ROC curve
of Fig. 5, the threshold range used in plotting the ROC
curve is 35–70 (naive coincidence) and more than 100
(enhanced coincidence). Thus, the rejection of the low

amplitude signals in the evaluation of the detection effi-
ciency does not affect the ROC curves.

V. CONCLUSION

We compare the two strategies for the analysis of net-
work GW data for inspiraling binaries, namely, the coher-
ent and the coincident strategy. Analysis with real data will
lead to an actual comparison between the two strategies but
as suggested by our findings under simplifying assump-
tions, the performance of the coherent strategy is superior
to the coincidence strategy on the whole. We distinguish
two sub strategies in coincident detection, namely, naive
coincidence and enhanced coincidence. For naive coinci-
dence, the difference in performance, as compared with
coherent, is even more conspicuous for misaligned detec-
tors than coaligned detectors, for there are regions of the
sky from where the signal may not be detected separately
by the two detectors ruling out the possibility of coinci-
dence detection, while, with a coherent detector, the source
may still be visible. In fact this difference is so glaring that
another strategy which we call enhanced coincidence
needs to be devised. The coherent strategy uses the statistic
which is optimal in the maximum likelihood sense for the
network. It inherently incorporates the information about
the phase to decide on the detection, for the statistic
explicitly contains data from different detectors added
with consistent phases. On the other hand coincident strat-
egy treats the detectors separately, missing the crucial
information about the phase altogether in consequence.
This vital difference leads to superior performance of the
coherent strategy.
Although the coherent strategy is superior to coincident

strategies, the difference between the coherent and en-
hanced coincident strategies is not so large. Only a relative
improvement of about 5% in the detection probability is
obtained with the coherent strategy. One may ask whether
there is any practical advantage in using the coherent
strategy in the case of two misaligned detectors. Note
however that the coherent method is not so computation-
ally expensive compared with two coincident methods,
since we do not take the cross correlation of two detectors’
data in the coherent strategy. Thus, overall, the coherent
strategy is a good detection method.
In the future wewould like to consider detector networks

with more than two detectors. In the case of a coherent
strategy, adding a detector to the network increases the
sensitivity and therefore the detection efficiency of the
coherent detector without exception. The locations in the
sky for which the source is detectable also increases for a
coherent strategy upon the addition of detectors thereby
increasing the number of potential sources. In fact regard-
less of the sensitivity of a detector in a network, adding a
detector to the network, for a coherent strategy, always
improves the performance of the network. Despite the
increase in computational cost [20], conducting a coherent
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search will enhance the probability of detection of GW.
The situation for enhanced coincidence is not so clear and
needs investigation.
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